summaryrefslogtreecommitdiff
path: root/mm/huge_memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/huge_memory.c')
-rw-r--r--mm/huge_memory.c2346
1 files changed, 2346 insertions, 0 deletions
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
new file mode 100644
index 000000000000..004c9c2aac78
--- /dev/null
+++ b/mm/huge_memory.c
@@ -0,0 +1,2346 @@
+/*
+ * Copyright (C) 2009 Red Hat, Inc.
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ */
+
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/highmem.h>
+#include <linux/hugetlb.h>
+#include <linux/mmu_notifier.h>
+#include <linux/rmap.h>
+#include <linux/swap.h>
+#include <linux/mm_inline.h>
+#include <linux/kthread.h>
+#include <linux/khugepaged.h>
+#include <linux/freezer.h>
+#include <linux/mman.h>
+#include <asm/tlb.h>
+#include <asm/pgalloc.h>
+#include "internal.h"
+
+/*
+ * By default transparent hugepage support is enabled for all mappings
+ * and khugepaged scans all mappings. Defrag is only invoked by
+ * khugepaged hugepage allocations and by page faults inside
+ * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
+ * allocations.
+ */
+unsigned long transparent_hugepage_flags __read_mostly =
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
+ (1<<TRANSPARENT_HUGEPAGE_FLAG)|
+#endif
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
+ (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
+#endif
+ (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
+ (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
+
+/* default scan 8*512 pte (or vmas) every 30 second */
+static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
+static unsigned int khugepaged_pages_collapsed;
+static unsigned int khugepaged_full_scans;
+static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
+/* during fragmentation poll the hugepage allocator once every minute */
+static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
+static struct task_struct *khugepaged_thread __read_mostly;
+static DEFINE_MUTEX(khugepaged_mutex);
+static DEFINE_SPINLOCK(khugepaged_mm_lock);
+static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
+/*
+ * default collapse hugepages if there is at least one pte mapped like
+ * it would have happened if the vma was large enough during page
+ * fault.
+ */
+static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
+
+static int khugepaged(void *none);
+static int mm_slots_hash_init(void);
+static int khugepaged_slab_init(void);
+static void khugepaged_slab_free(void);
+
+#define MM_SLOTS_HASH_HEADS 1024
+static struct hlist_head *mm_slots_hash __read_mostly;
+static struct kmem_cache *mm_slot_cache __read_mostly;
+
+/**
+ * struct mm_slot - hash lookup from mm to mm_slot
+ * @hash: hash collision list
+ * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
+ * @mm: the mm that this information is valid for
+ */
+struct mm_slot {
+ struct hlist_node hash;
+ struct list_head mm_node;
+ struct mm_struct *mm;
+};
+
+/**
+ * struct khugepaged_scan - cursor for scanning
+ * @mm_head: the head of the mm list to scan
+ * @mm_slot: the current mm_slot we are scanning
+ * @address: the next address inside that to be scanned
+ *
+ * There is only the one khugepaged_scan instance of this cursor structure.
+ */
+struct khugepaged_scan {
+ struct list_head mm_head;
+ struct mm_slot *mm_slot;
+ unsigned long address;
+} khugepaged_scan = {
+ .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
+};
+
+
+static int set_recommended_min_free_kbytes(void)
+{
+ struct zone *zone;
+ int nr_zones = 0;
+ unsigned long recommended_min;
+ extern int min_free_kbytes;
+
+ if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
+ &transparent_hugepage_flags) &&
+ !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+ &transparent_hugepage_flags))
+ return 0;
+
+ for_each_populated_zone(zone)
+ nr_zones++;
+
+ /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
+ recommended_min = pageblock_nr_pages * nr_zones * 2;
+
+ /*
+ * Make sure that on average at least two pageblocks are almost free
+ * of another type, one for a migratetype to fall back to and a
+ * second to avoid subsequent fallbacks of other types There are 3
+ * MIGRATE_TYPES we care about.
+ */
+ recommended_min += pageblock_nr_pages * nr_zones *
+ MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
+
+ /* don't ever allow to reserve more than 5% of the lowmem */
+ recommended_min = min(recommended_min,
+ (unsigned long) nr_free_buffer_pages() / 20);
+ recommended_min <<= (PAGE_SHIFT-10);
+
+ if (recommended_min > min_free_kbytes)
+ min_free_kbytes = recommended_min;
+ setup_per_zone_wmarks();
+ return 0;
+}
+late_initcall(set_recommended_min_free_kbytes);
+
+static int start_khugepaged(void)
+{
+ int err = 0;
+ if (khugepaged_enabled()) {
+ int wakeup;
+ if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
+ err = -ENOMEM;
+ goto out;
+ }
+ mutex_lock(&khugepaged_mutex);
+ if (!khugepaged_thread)
+ khugepaged_thread = kthread_run(khugepaged, NULL,
+ "khugepaged");
+ if (unlikely(IS_ERR(khugepaged_thread))) {
+ printk(KERN_ERR
+ "khugepaged: kthread_run(khugepaged) failed\n");
+ err = PTR_ERR(khugepaged_thread);
+ khugepaged_thread = NULL;
+ }
+ wakeup = !list_empty(&khugepaged_scan.mm_head);
+ mutex_unlock(&khugepaged_mutex);
+ if (wakeup)
+ wake_up_interruptible(&khugepaged_wait);
+
+ set_recommended_min_free_kbytes();
+ } else
+ /* wakeup to exit */
+ wake_up_interruptible(&khugepaged_wait);
+out:
+ return err;
+}
+
+#ifdef CONFIG_SYSFS
+
+static ssize_t double_flag_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf,
+ enum transparent_hugepage_flag enabled,
+ enum transparent_hugepage_flag req_madv)
+{
+ if (test_bit(enabled, &transparent_hugepage_flags)) {
+ VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
+ return sprintf(buf, "[always] madvise never\n");
+ } else if (test_bit(req_madv, &transparent_hugepage_flags))
+ return sprintf(buf, "always [madvise] never\n");
+ else
+ return sprintf(buf, "always madvise [never]\n");
+}
+static ssize_t double_flag_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count,
+ enum transparent_hugepage_flag enabled,
+ enum transparent_hugepage_flag req_madv)
+{
+ if (!memcmp("always", buf,
+ min(sizeof("always")-1, count))) {
+ set_bit(enabled, &transparent_hugepage_flags);
+ clear_bit(req_madv, &transparent_hugepage_flags);
+ } else if (!memcmp("madvise", buf,
+ min(sizeof("madvise")-1, count))) {
+ clear_bit(enabled, &transparent_hugepage_flags);
+ set_bit(req_madv, &transparent_hugepage_flags);
+ } else if (!memcmp("never", buf,
+ min(sizeof("never")-1, count))) {
+ clear_bit(enabled, &transparent_hugepage_flags);
+ clear_bit(req_madv, &transparent_hugepage_flags);
+ } else
+ return -EINVAL;
+
+ return count;
+}
+
+static ssize_t enabled_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return double_flag_show(kobj, attr, buf,
+ TRANSPARENT_HUGEPAGE_FLAG,
+ TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
+}
+static ssize_t enabled_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ ssize_t ret;
+
+ ret = double_flag_store(kobj, attr, buf, count,
+ TRANSPARENT_HUGEPAGE_FLAG,
+ TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
+
+ if (ret > 0) {
+ int err = start_khugepaged();
+ if (err)
+ ret = err;
+ }
+
+ if (ret > 0 &&
+ (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
+ &transparent_hugepage_flags) ||
+ test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+ &transparent_hugepage_flags)))
+ set_recommended_min_free_kbytes();
+
+ return ret;
+}
+static struct kobj_attribute enabled_attr =
+ __ATTR(enabled, 0644, enabled_show, enabled_store);
+
+static ssize_t single_flag_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf,
+ enum transparent_hugepage_flag flag)
+{
+ if (test_bit(flag, &transparent_hugepage_flags))
+ return sprintf(buf, "[yes] no\n");
+ else
+ return sprintf(buf, "yes [no]\n");
+}
+static ssize_t single_flag_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count,
+ enum transparent_hugepage_flag flag)
+{
+ if (!memcmp("yes", buf,
+ min(sizeof("yes")-1, count))) {
+ set_bit(flag, &transparent_hugepage_flags);
+ } else if (!memcmp("no", buf,
+ min(sizeof("no")-1, count))) {
+ clear_bit(flag, &transparent_hugepage_flags);
+ } else
+ return -EINVAL;
+
+ return count;
+}
+
+/*
+ * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
+ * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
+ * memory just to allocate one more hugepage.
+ */
+static ssize_t defrag_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return double_flag_show(kobj, attr, buf,
+ TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
+ TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
+}
+static ssize_t defrag_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ return double_flag_store(kobj, attr, buf, count,
+ TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
+ TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
+}
+static struct kobj_attribute defrag_attr =
+ __ATTR(defrag, 0644, defrag_show, defrag_store);
+
+#ifdef CONFIG_DEBUG_VM
+static ssize_t debug_cow_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return single_flag_show(kobj, attr, buf,
+ TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
+}
+static ssize_t debug_cow_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ return single_flag_store(kobj, attr, buf, count,
+ TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
+}
+static struct kobj_attribute debug_cow_attr =
+ __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
+#endif /* CONFIG_DEBUG_VM */
+
+static struct attribute *hugepage_attr[] = {
+ &enabled_attr.attr,
+ &defrag_attr.attr,
+#ifdef CONFIG_DEBUG_VM
+ &debug_cow_attr.attr,
+#endif
+ NULL,
+};
+
+static struct attribute_group hugepage_attr_group = {
+ .attrs = hugepage_attr,
+};
+
+static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ char *buf)
+{
+ return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
+}
+
+static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ unsigned long msecs;
+ int err;
+
+ err = strict_strtoul(buf, 10, &msecs);
+ if (err || msecs > UINT_MAX)
+ return -EINVAL;
+
+ khugepaged_scan_sleep_millisecs = msecs;
+ wake_up_interruptible(&khugepaged_wait);
+
+ return count;
+}
+static struct kobj_attribute scan_sleep_millisecs_attr =
+ __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
+ scan_sleep_millisecs_store);
+
+static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ char *buf)
+{
+ return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
+}
+
+static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ unsigned long msecs;
+ int err;
+
+ err = strict_strtoul(buf, 10, &msecs);
+ if (err || msecs > UINT_MAX)
+ return -EINVAL;
+
+ khugepaged_alloc_sleep_millisecs = msecs;
+ wake_up_interruptible(&khugepaged_wait);
+
+ return count;
+}
+static struct kobj_attribute alloc_sleep_millisecs_attr =
+ __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
+ alloc_sleep_millisecs_store);
+
+static ssize_t pages_to_scan_show(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ char *buf)
+{
+ return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
+}
+static ssize_t pages_to_scan_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ int err;
+ unsigned long pages;
+
+ err = strict_strtoul(buf, 10, &pages);
+ if (err || !pages || pages > UINT_MAX)
+ return -EINVAL;
+
+ khugepaged_pages_to_scan = pages;
+
+ return count;
+}
+static struct kobj_attribute pages_to_scan_attr =
+ __ATTR(pages_to_scan, 0644, pages_to_scan_show,
+ pages_to_scan_store);
+
+static ssize_t pages_collapsed_show(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ char *buf)
+{
+ return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
+}
+static struct kobj_attribute pages_collapsed_attr =
+ __ATTR_RO(pages_collapsed);
+
+static ssize_t full_scans_show(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ char *buf)
+{
+ return sprintf(buf, "%u\n", khugepaged_full_scans);
+}
+static struct kobj_attribute full_scans_attr =
+ __ATTR_RO(full_scans);
+
+static ssize_t khugepaged_defrag_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ return single_flag_show(kobj, attr, buf,
+ TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
+}
+static ssize_t khugepaged_defrag_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ return single_flag_store(kobj, attr, buf, count,
+ TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
+}
+static struct kobj_attribute khugepaged_defrag_attr =
+ __ATTR(defrag, 0644, khugepaged_defrag_show,
+ khugepaged_defrag_store);
+
+/*
+ * max_ptes_none controls if khugepaged should collapse hugepages over
+ * any unmapped ptes in turn potentially increasing the memory
+ * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
+ * reduce the available free memory in the system as it
+ * runs. Increasing max_ptes_none will instead potentially reduce the
+ * free memory in the system during the khugepaged scan.
+ */
+static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ char *buf)
+{
+ return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
+}
+static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
+ struct kobj_attribute *attr,
+ const char *buf, size_t count)
+{
+ int err;
+ unsigned long max_ptes_none;
+
+ err = strict_strtoul(buf, 10, &max_ptes_none);
+ if (err || max_ptes_none > HPAGE_PMD_NR-1)
+ return -EINVAL;
+
+ khugepaged_max_ptes_none = max_ptes_none;
+
+ return count;
+}
+static struct kobj_attribute khugepaged_max_ptes_none_attr =
+ __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
+ khugepaged_max_ptes_none_store);
+
+static struct attribute *khugepaged_attr[] = {
+ &khugepaged_defrag_attr.attr,
+ &khugepaged_max_ptes_none_attr.attr,
+ &pages_to_scan_attr.attr,
+ &pages_collapsed_attr.attr,
+ &full_scans_attr.attr,
+ &scan_sleep_millisecs_attr.attr,
+ &alloc_sleep_millisecs_attr.attr,
+ NULL,
+};
+
+static struct attribute_group khugepaged_attr_group = {
+ .attrs = khugepaged_attr,
+ .name = "khugepaged",
+};
+#endif /* CONFIG_SYSFS */
+
+static int __init hugepage_init(void)
+{
+ int err;
+#ifdef CONFIG_SYSFS
+ static struct kobject *hugepage_kobj;
+#endif
+
+ err = -EINVAL;
+ if (!has_transparent_hugepage()) {
+ transparent_hugepage_flags = 0;
+ goto out;
+ }
+
+#ifdef CONFIG_SYSFS
+ err = -ENOMEM;
+ hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
+ if (unlikely(!hugepage_kobj)) {
+ printk(KERN_ERR "hugepage: failed kobject create\n");
+ goto out;
+ }
+
+ err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
+ if (err) {
+ printk(KERN_ERR "hugepage: failed register hugeage group\n");
+ goto out;
+ }
+
+ err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
+ if (err) {
+ printk(KERN_ERR "hugepage: failed register hugeage group\n");
+ goto out;
+ }
+#endif
+
+ err = khugepaged_slab_init();
+ if (err)
+ goto out;
+
+ err = mm_slots_hash_init();
+ if (err) {
+ khugepaged_slab_free();
+ goto out;
+ }
+
+ /*
+ * By default disable transparent hugepages on smaller systems,
+ * where the extra memory used could hurt more than TLB overhead
+ * is likely to save. The admin can still enable it through /sys.
+ */
+ if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
+ transparent_hugepage_flags = 0;
+
+ start_khugepaged();
+
+ set_recommended_min_free_kbytes();
+
+out:
+ return err;
+}
+module_init(hugepage_init)
+
+static int __init setup_transparent_hugepage(char *str)
+{
+ int ret = 0;
+ if (!str)
+ goto out;
+ if (!strcmp(str, "always")) {
+ set_bit(TRANSPARENT_HUGEPAGE_FLAG,
+ &transparent_hugepage_flags);
+ clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+ &transparent_hugepage_flags);
+ ret = 1;
+ } else if (!strcmp(str, "madvise")) {
+ clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
+ &transparent_hugepage_flags);
+ set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+ &transparent_hugepage_flags);
+ ret = 1;
+ } else if (!strcmp(str, "never")) {
+ clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
+ &transparent_hugepage_flags);
+ clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
+ &transparent_hugepage_flags);
+ ret = 1;
+ }
+out:
+ if (!ret)
+ printk(KERN_WARNING
+ "transparent_hugepage= cannot parse, ignored\n");
+ return ret;
+}
+__setup("transparent_hugepage=", setup_transparent_hugepage);
+
+static void prepare_pmd_huge_pte(pgtable_t pgtable,
+ struct mm_struct *mm)
+{
+ assert_spin_locked(&mm->page_table_lock);
+
+ /* FIFO */
+ if (!mm->pmd_huge_pte)
+ INIT_LIST_HEAD(&pgtable->lru);
+ else
+ list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
+ mm->pmd_huge_pte = pgtable;
+}
+
+static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
+{
+ if (likely(vma->vm_flags & VM_WRITE))
+ pmd = pmd_mkwrite(pmd);
+ return pmd;
+}
+
+static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
+ struct vm_area_struct *vma,
+ unsigned long haddr, pmd_t *pmd,
+ struct page *page)
+{
+ int ret = 0;
+ pgtable_t pgtable;
+
+ VM_BUG_ON(!PageCompound(page));
+ pgtable = pte_alloc_one(mm, haddr);
+ if (unlikely(!pgtable)) {
+ mem_cgroup_uncharge_page(page);
+ put_page(page);
+ return VM_FAULT_OOM;
+ }
+
+ clear_huge_page(page, haddr, HPAGE_PMD_NR);
+ __SetPageUptodate(page);
+
+ spin_lock(&mm->page_table_lock);
+ if (unlikely(!pmd_none(*pmd))) {
+ spin_unlock(&mm->page_table_lock);
+ mem_cgroup_uncharge_page(page);
+ put_page(page);
+ pte_free(mm, pgtable);
+ } else {
+ pmd_t entry;
+ entry = mk_pmd(page, vma->vm_page_prot);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+ entry = pmd_mkhuge(entry);
+ /*
+ * The spinlocking to take the lru_lock inside
+ * page_add_new_anon_rmap() acts as a full memory
+ * barrier to be sure clear_huge_page writes become
+ * visible after the set_pmd_at() write.
+ */
+ page_add_new_anon_rmap(page, vma, haddr);
+ set_pmd_at(mm, haddr, pmd, entry);
+ prepare_pmd_huge_pte(pgtable, mm);
+ add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
+ spin_unlock(&mm->page_table_lock);
+ }
+
+ return ret;
+}
+
+static inline gfp_t alloc_hugepage_gfpmask(int defrag)
+{
+ return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
+}
+
+static inline struct page *alloc_hugepage_vma(int defrag,
+ struct vm_area_struct *vma,
+ unsigned long haddr)
+{
+ return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
+ HPAGE_PMD_ORDER, vma, haddr);
+}
+
+#ifndef CONFIG_NUMA
+static inline struct page *alloc_hugepage(int defrag)
+{
+ return alloc_pages(alloc_hugepage_gfpmask(defrag),
+ HPAGE_PMD_ORDER);
+}
+#endif
+
+int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmd,
+ unsigned int flags)
+{
+ struct page *page;
+ unsigned long haddr = address & HPAGE_PMD_MASK;
+ pte_t *pte;
+
+ if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
+ if (unlikely(anon_vma_prepare(vma)))
+ return VM_FAULT_OOM;
+ if (unlikely(khugepaged_enter(vma)))
+ return VM_FAULT_OOM;
+ page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
+ vma, haddr);
+ if (unlikely(!page))
+ goto out;
+ if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
+ put_page(page);
+ goto out;
+ }
+
+ return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
+ }
+out:
+ /*
+ * Use __pte_alloc instead of pte_alloc_map, because we can't
+ * run pte_offset_map on the pmd, if an huge pmd could
+ * materialize from under us from a different thread.
+ */
+ if (unlikely(__pte_alloc(mm, vma, pmd, address)))
+ return VM_FAULT_OOM;
+ /* if an huge pmd materialized from under us just retry later */
+ if (unlikely(pmd_trans_huge(*pmd)))
+ return 0;
+ /*
+ * A regular pmd is established and it can't morph into a huge pmd
+ * from under us anymore at this point because we hold the mmap_sem
+ * read mode and khugepaged takes it in write mode. So now it's
+ * safe to run pte_offset_map().
+ */
+ pte = pte_offset_map(pmd, address);
+ return handle_pte_fault(mm, vma, address, pte, pmd, flags);
+}
+
+int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
+ pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
+ struct vm_area_struct *vma)
+{
+ struct page *src_page;
+ pmd_t pmd;
+ pgtable_t pgtable;
+ int ret;
+
+ ret = -ENOMEM;
+ pgtable = pte_alloc_one(dst_mm, addr);
+ if (unlikely(!pgtable))
+ goto out;
+
+ spin_lock(&dst_mm->page_table_lock);
+ spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
+
+ ret = -EAGAIN;
+ pmd = *src_pmd;
+ if (unlikely(!pmd_trans_huge(pmd))) {
+ pte_free(dst_mm, pgtable);
+ goto out_unlock;
+ }
+ if (unlikely(pmd_trans_splitting(pmd))) {
+ /* split huge page running from under us */
+ spin_unlock(&src_mm->page_table_lock);
+ spin_unlock(&dst_mm->page_table_lock);
+ pte_free(dst_mm, pgtable);
+
+ wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
+ goto out;
+ }
+ src_page = pmd_page(pmd);
+ VM_BUG_ON(!PageHead(src_page));
+ get_page(src_page);
+ page_dup_rmap(src_page);
+ add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
+
+ pmdp_set_wrprotect(src_mm, addr, src_pmd);
+ pmd = pmd_mkold(pmd_wrprotect(pmd));
+ set_pmd_at(dst_mm, addr, dst_pmd, pmd);
+ prepare_pmd_huge_pte(pgtable, dst_mm);
+
+ ret = 0;
+out_unlock:
+ spin_unlock(&src_mm->page_table_lock);
+ spin_unlock(&dst_mm->page_table_lock);
+out:
+ return ret;
+}
+
+/* no "address" argument so destroys page coloring of some arch */
+pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
+{
+ pgtable_t pgtable;
+
+ assert_spin_locked(&mm->page_table_lock);
+
+ /* FIFO */
+ pgtable = mm->pmd_huge_pte;
+ if (list_empty(&pgtable->lru))
+ mm->pmd_huge_pte = NULL;
+ else {
+ mm->pmd_huge_pte = list_entry(pgtable->lru.next,
+ struct page, lru);
+ list_del(&pgtable->lru);
+ }
+ return pgtable;
+}
+
+static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
+ struct vm_area_struct *vma,
+ unsigned long address,
+ pmd_t *pmd, pmd_t orig_pmd,
+ struct page *page,
+ unsigned long haddr)
+{
+ pgtable_t pgtable;
+ pmd_t _pmd;
+ int ret = 0, i;
+ struct page **pages;
+
+ pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
+ GFP_KERNEL);
+ if (unlikely(!pages)) {
+ ret |= VM_FAULT_OOM;
+ goto out;
+ }
+
+ for (i = 0; i < HPAGE_PMD_NR; i++) {
+ pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
+ vma, address);
+ if (unlikely(!pages[i] ||
+ mem_cgroup_newpage_charge(pages[i], mm,
+ GFP_KERNEL))) {
+ if (pages[i])
+ put_page(pages[i]);
+ mem_cgroup_uncharge_start();
+ while (--i >= 0) {
+ mem_cgroup_uncharge_page(pages[i]);
+ put_page(pages[i]);
+ }
+ mem_cgroup_uncharge_end();
+ kfree(pages);
+ ret |= VM_FAULT_OOM;
+ goto out;
+ }
+ }
+
+ for (i = 0; i < HPAGE_PMD_NR; i++) {
+ copy_user_highpage(pages[i], page + i,
+ haddr + PAGE_SHIFT*i, vma);
+ __SetPageUptodate(pages[i]);
+ cond_resched();
+ }
+
+ spin_lock(&mm->page_table_lock);
+ if (unlikely(!pmd_same(*pmd, orig_pmd)))
+ goto out_free_pages;
+ VM_BUG_ON(!PageHead(page));
+
+ pmdp_clear_flush_notify(vma, haddr, pmd);
+ /* leave pmd empty until pte is filled */
+
+ pgtable = get_pmd_huge_pte(mm);
+ pmd_populate(mm, &_pmd, pgtable);
+
+ for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
+ pte_t *pte, entry;
+ entry = mk_pte(pages[i], vma->vm_page_prot);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ page_add_new_anon_rmap(pages[i], vma, haddr);
+ pte = pte_offset_map(&_pmd, haddr);
+ VM_BUG_ON(!pte_none(*pte));
+ set_pte_at(mm, haddr, pte, entry);
+ pte_unmap(pte);
+ }
+ kfree(pages);
+
+ mm->nr_ptes++;
+ smp_wmb(); /* make pte visible before pmd */
+ pmd_populate(mm, pmd, pgtable);
+ page_remove_rmap(page);
+ spin_unlock(&mm->page_table_lock);
+
+ ret |= VM_FAULT_WRITE;
+ put_page(page);
+
+out:
+ return ret;
+
+out_free_pages:
+ spin_unlock(&mm->page_table_lock);
+ mem_cgroup_uncharge_start();
+ for (i = 0; i < HPAGE_PMD_NR; i++) {
+ mem_cgroup_uncharge_page(pages[i]);
+ put_page(pages[i]);
+ }
+ mem_cgroup_uncharge_end();
+ kfree(pages);
+ goto out;
+}
+
+int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
+{
+ int ret = 0;
+ struct page *page, *new_page;
+ unsigned long haddr;
+
+ VM_BUG_ON(!vma->anon_vma);
+ spin_lock(&mm->page_table_lock);
+ if (unlikely(!pmd_same(*pmd, orig_pmd)))
+ goto out_unlock;
+
+ page = pmd_page(orig_pmd);
+ VM_BUG_ON(!PageCompound(page) || !PageHead(page));
+ haddr = address & HPAGE_PMD_MASK;
+ if (page_mapcount(page) == 1) {
+ pmd_t entry;
+ entry = pmd_mkyoung(orig_pmd);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+ if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
+ update_mmu_cache(vma, address, entry);
+ ret |= VM_FAULT_WRITE;
+ goto out_unlock;
+ }
+ get_page(page);
+ spin_unlock(&mm->page_table_lock);
+
+ if (transparent_hugepage_enabled(vma) &&
+ !transparent_hugepage_debug_cow())
+ new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
+ vma, haddr);
+ else
+ new_page = NULL;
+
+ if (unlikely(!new_page)) {
+ ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
+ pmd, orig_pmd, page, haddr);
+ put_page(page);
+ goto out;
+ }
+
+ if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
+ put_page(new_page);
+ put_page(page);
+ ret |= VM_FAULT_OOM;
+ goto out;
+ }
+
+ copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
+ __SetPageUptodate(new_page);
+
+ spin_lock(&mm->page_table_lock);
+ put_page(page);
+ if (unlikely(!pmd_same(*pmd, orig_pmd))) {
+ mem_cgroup_uncharge_page(new_page);
+ put_page(new_page);
+ } else {
+ pmd_t entry;
+ VM_BUG_ON(!PageHead(page));
+ entry = mk_pmd(new_page, vma->vm_page_prot);
+ entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
+ entry = pmd_mkhuge(entry);
+ pmdp_clear_flush_notify(vma, haddr, pmd);
+ page_add_new_anon_rmap(new_page, vma, haddr);
+ set_pmd_at(mm, haddr, pmd, entry);
+ update_mmu_cache(vma, address, entry);
+ page_remove_rmap(page);
+ put_page(page);
+ ret |= VM_FAULT_WRITE;
+ }
+out_unlock:
+ spin_unlock(&mm->page_table_lock);
+out:
+ return ret;
+}
+
+struct page *follow_trans_huge_pmd(struct mm_struct *mm,
+ unsigned long addr,
+ pmd_t *pmd,
+ unsigned int flags)
+{
+ struct page *page = NULL;
+
+ assert_spin_locked(&mm->page_table_lock);
+
+ if (flags & FOLL_WRITE && !pmd_write(*pmd))
+ goto out;
+
+ page = pmd_page(*pmd);
+ VM_BUG_ON(!PageHead(page));
+ if (flags & FOLL_TOUCH) {
+ pmd_t _pmd;
+ /*
+ * We should set the dirty bit only for FOLL_WRITE but
+ * for now the dirty bit in the pmd is meaningless.
+ * And if the dirty bit will become meaningful and
+ * we'll only set it with FOLL_WRITE, an atomic
+ * set_bit will be required on the pmd to set the
+ * young bit, instead of the current set_pmd_at.
+ */
+ _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
+ set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
+ }
+ page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
+ VM_BUG_ON(!PageCompound(page));
+ if (flags & FOLL_GET)
+ get_page(page);
+
+out:
+ return page;
+}
+
+int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
+ pmd_t *pmd)
+{
+ int ret = 0;
+
+ spin_lock(&tlb->mm->page_table_lock);
+ if (likely(pmd_trans_huge(*pmd))) {
+ if (unlikely(pmd_trans_splitting(*pmd))) {
+ spin_unlock(&tlb->mm->page_table_lock);
+ wait_split_huge_page(vma->anon_vma,
+ pmd);
+ } else {
+ struct page *page;
+ pgtable_t pgtable;
+ pgtable = get_pmd_huge_pte(tlb->mm);
+ page = pmd_page(*pmd);
+ pmd_clear(pmd);
+ page_remove_rmap(page);
+ VM_BUG_ON(page_mapcount(page) < 0);
+ add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
+ VM_BUG_ON(!PageHead(page));
+ spin_unlock(&tlb->mm->page_table_lock);
+ tlb_remove_page(tlb, page);
+ pte_free(tlb->mm, pgtable);
+ ret = 1;
+ }
+ } else
+ spin_unlock(&tlb->mm->page_table_lock);
+
+ return ret;
+}
+
+int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ unsigned char *vec)
+{
+ int ret = 0;
+
+ spin_lock(&vma->vm_mm->page_table_lock);
+ if (likely(pmd_trans_huge(*pmd))) {
+ ret = !pmd_trans_splitting(*pmd);
+ spin_unlock(&vma->vm_mm->page_table_lock);
+ if (unlikely(!ret))
+ wait_split_huge_page(vma->anon_vma, pmd);
+ else {
+ /*
+ * All logical pages in the range are present
+ * if backed by a huge page.
+ */
+ memset(vec, 1, (end - addr) >> PAGE_SHIFT);
+ }
+ } else
+ spin_unlock(&vma->vm_mm->page_table_lock);
+
+ return ret;
+}
+
+int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
+ unsigned long addr, pgprot_t newprot)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ int ret = 0;
+
+ spin_lock(&mm->page_table_lock);
+ if (likely(pmd_trans_huge(*pmd))) {
+ if (unlikely(pmd_trans_splitting(*pmd))) {
+ spin_unlock(&mm->page_table_lock);
+ wait_split_huge_page(vma->anon_vma, pmd);
+ } else {
+ pmd_t entry;
+
+ entry = pmdp_get_and_clear(mm, addr, pmd);
+ entry = pmd_modify(entry, newprot);
+ set_pmd_at(mm, addr, pmd, entry);
+ spin_unlock(&vma->vm_mm->page_table_lock);
+ flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
+ ret = 1;
+ }
+ } else
+ spin_unlock(&vma->vm_mm->page_table_lock);
+
+ return ret;
+}
+
+pmd_t *page_check_address_pmd(struct page *page,
+ struct mm_struct *mm,
+ unsigned long address,
+ enum page_check_address_pmd_flag flag)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd, *ret = NULL;
+
+ if (address & ~HPAGE_PMD_MASK)
+ goto out;
+
+ pgd = pgd_offset(mm, address);
+ if (!pgd_present(*pgd))
+ goto out;
+
+ pud = pud_offset(pgd, address);
+ if (!pud_present(*pud))
+ goto out;
+
+ pmd = pmd_offset(pud, address);
+ if (pmd_none(*pmd))
+ goto out;
+ if (pmd_page(*pmd) != page)
+ goto out;
+ /*
+ * split_vma() may create temporary aliased mappings. There is
+ * no risk as long as all huge pmd are found and have their
+ * splitting bit set before __split_huge_page_refcount
+ * runs. Finding the same huge pmd more than once during the
+ * same rmap walk is not a problem.
+ */
+ if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
+ pmd_trans_splitting(*pmd))
+ goto out;
+ if (pmd_trans_huge(*pmd)) {
+ VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
+ !pmd_trans_splitting(*pmd));
+ ret = pmd;
+ }
+out:
+ return ret;
+}
+
+static int __split_huge_page_splitting(struct page *page,
+ struct vm_area_struct *vma,
+ unsigned long address)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ pmd_t *pmd;
+ int ret = 0;
+
+ spin_lock(&mm->page_table_lock);
+ pmd = page_check_address_pmd(page, mm, address,
+ PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
+ if (pmd) {
+ /*
+ * We can't temporarily set the pmd to null in order
+ * to split it, the pmd must remain marked huge at all
+ * times or the VM won't take the pmd_trans_huge paths
+ * and it won't wait on the anon_vma->root->lock to
+ * serialize against split_huge_page*.
+ */
+ pmdp_splitting_flush_notify(vma, address, pmd);
+ ret = 1;
+ }
+ spin_unlock(&mm->page_table_lock);
+
+ return ret;
+}
+
+static void __split_huge_page_refcount(struct page *page)
+{
+ int i;
+ unsigned long head_index = page->index;
+ struct zone *zone = page_zone(page);
+ int zonestat;
+
+ /* prevent PageLRU to go away from under us, and freeze lru stats */
+ spin_lock_irq(&zone->lru_lock);
+ compound_lock(page);
+
+ for (i = 1; i < HPAGE_PMD_NR; i++) {
+ struct page *page_tail = page + i;
+
+ /* tail_page->_count cannot change */
+ atomic_sub(atomic_read(&page_tail->_count), &page->_count);
+ BUG_ON(page_count(page) <= 0);
+ atomic_add(page_mapcount(page) + 1, &page_tail->_count);
+ BUG_ON(atomic_read(&page_tail->_count) <= 0);
+
+ /* after clearing PageTail the gup refcount can be released */
+ smp_mb();
+
+ page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
+ page_tail->flags |= (page->flags &
+ ((1L << PG_referenced) |
+ (1L << PG_swapbacked) |
+ (1L << PG_mlocked) |
+ (1L << PG_uptodate)));
+ page_tail->flags |= (1L << PG_dirty);
+
+ /*
+ * 1) clear PageTail before overwriting first_page
+ * 2) clear PageTail before clearing PageHead for VM_BUG_ON
+ */
+ smp_wmb();
+
+ /*
+ * __split_huge_page_splitting() already set the
+ * splitting bit in all pmd that could map this
+ * hugepage, that will ensure no CPU can alter the
+ * mapcount on the head page. The mapcount is only
+ * accounted in the head page and it has to be
+ * transferred to all tail pages in the below code. So
+ * for this code to be safe, the split the mapcount
+ * can't change. But that doesn't mean userland can't
+ * keep changing and reading the page contents while
+ * we transfer the mapcount, so the pmd splitting
+ * status is achieved setting a reserved bit in the
+ * pmd, not by clearing the present bit.
+ */
+ BUG_ON(page_mapcount(page_tail));
+ page_tail->_mapcount = page->_mapcount;
+
+ BUG_ON(page_tail->mapping);
+ page_tail->mapping = page->mapping;
+
+ page_tail->index = ++head_index;
+
+ BUG_ON(!PageAnon(page_tail));
+ BUG_ON(!PageUptodate(page_tail));
+ BUG_ON(!PageDirty(page_tail));
+ BUG_ON(!PageSwapBacked(page_tail));
+
+ lru_add_page_tail(zone, page, page_tail);
+ }
+
+ __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
+ __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
+
+ /*
+ * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
+ * so adjust those appropriately if this page is on the LRU.
+ */
+ if (PageLRU(page)) {
+ zonestat = NR_LRU_BASE + page_lru(page);
+ __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
+ }
+
+ ClearPageCompound(page);
+ compound_unlock(page);
+ spin_unlock_irq(&zone->lru_lock);
+
+ for (i = 1; i < HPAGE_PMD_NR; i++) {
+ struct page *page_tail = page + i;
+ BUG_ON(page_count(page_tail) <= 0);
+ /*
+ * Tail pages may be freed if there wasn't any mapping
+ * like if add_to_swap() is running on a lru page that
+ * had its mapping zapped. And freeing these pages
+ * requires taking the lru_lock so we do the put_page
+ * of the tail pages after the split is complete.
+ */
+ put_page(page_tail);
+ }
+
+ /*
+ * Only the head page (now become a regular page) is required
+ * to be pinned by the caller.
+ */
+ BUG_ON(page_count(page) <= 0);
+}
+
+static int __split_huge_page_map(struct page *page,
+ struct vm_area_struct *vma,
+ unsigned long address)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ pmd_t *pmd, _pmd;
+ int ret = 0, i;
+ pgtable_t pgtable;
+ unsigned long haddr;
+
+ spin_lock(&mm->page_table_lock);
+ pmd = page_check_address_pmd(page, mm, address,
+ PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
+ if (pmd) {
+ pgtable = get_pmd_huge_pte(mm);
+ pmd_populate(mm, &_pmd, pgtable);
+
+ for (i = 0, haddr = address; i < HPAGE_PMD_NR;
+ i++, haddr += PAGE_SIZE) {
+ pte_t *pte, entry;
+ BUG_ON(PageCompound(page+i));
+ entry = mk_pte(page + i, vma->vm_page_prot);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ if (!pmd_write(*pmd))
+ entry = pte_wrprotect(entry);
+ else
+ BUG_ON(page_mapcount(page) != 1);
+ if (!pmd_young(*pmd))
+ entry = pte_mkold(entry);
+ pte = pte_offset_map(&_pmd, haddr);
+ BUG_ON(!pte_none(*pte));
+ set_pte_at(mm, haddr, pte, entry);
+ pte_unmap(pte);
+ }
+
+ mm->nr_ptes++;
+ smp_wmb(); /* make pte visible before pmd */
+ /*
+ * Up to this point the pmd is present and huge and
+ * userland has the whole access to the hugepage
+ * during the split (which happens in place). If we
+ * overwrite the pmd with the not-huge version
+ * pointing to the pte here (which of course we could
+ * if all CPUs were bug free), userland could trigger
+ * a small page size TLB miss on the small sized TLB
+ * while the hugepage TLB entry is still established
+ * in the huge TLB. Some CPU doesn't like that. See
+ * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
+ * Erratum 383 on page 93. Intel should be safe but is
+ * also warns that it's only safe if the permission
+ * and cache attributes of the two entries loaded in
+ * the two TLB is identical (which should be the case
+ * here). But it is generally safer to never allow
+ * small and huge TLB entries for the same virtual
+ * address to be loaded simultaneously. So instead of
+ * doing "pmd_populate(); flush_tlb_range();" we first
+ * mark the current pmd notpresent (atomically because
+ * here the pmd_trans_huge and pmd_trans_splitting
+ * must remain set at all times on the pmd until the
+ * split is complete for this pmd), then we flush the
+ * SMP TLB and finally we write the non-huge version
+ * of the pmd entry with pmd_populate.
+ */
+ set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
+ flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
+ pmd_populate(mm, pmd, pgtable);
+ ret = 1;
+ }
+ spin_unlock(&mm->page_table_lock);
+
+ return ret;
+}
+
+/* must be called with anon_vma->root->lock hold */
+static void __split_huge_page(struct page *page,
+ struct anon_vma *anon_vma)
+{
+ int mapcount, mapcount2;
+ struct anon_vma_chain *avc;
+
+ BUG_ON(!PageHead(page));
+ BUG_ON(PageTail(page));
+
+ mapcount = 0;
+ list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
+ struct vm_area_struct *vma = avc->vma;
+ unsigned long addr = vma_address(page, vma);
+ BUG_ON(is_vma_temporary_stack(vma));
+ if (addr == -EFAULT)
+ continue;
+ mapcount += __split_huge_page_splitting(page, vma, addr);
+ }
+ /*
+ * It is critical that new vmas are added to the tail of the
+ * anon_vma list. This guarantes that if copy_huge_pmd() runs
+ * and establishes a child pmd before
+ * __split_huge_page_splitting() freezes the parent pmd (so if
+ * we fail to prevent copy_huge_pmd() from running until the
+ * whole __split_huge_page() is complete), we will still see
+ * the newly established pmd of the child later during the
+ * walk, to be able to set it as pmd_trans_splitting too.
+ */
+ if (mapcount != page_mapcount(page))
+ printk(KERN_ERR "mapcount %d page_mapcount %d\n",
+ mapcount, page_mapcount(page));
+ BUG_ON(mapcount != page_mapcount(page));
+
+ __split_huge_page_refcount(page);
+
+ mapcount2 = 0;
+ list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
+ struct vm_area_struct *vma = avc->vma;
+ unsigned long addr = vma_address(page, vma);
+ BUG_ON(is_vma_temporary_stack(vma));
+ if (addr == -EFAULT)
+ continue;
+ mapcount2 += __split_huge_page_map(page, vma, addr);
+ }
+ if (mapcount != mapcount2)
+ printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
+ mapcount, mapcount2, page_mapcount(page));
+ BUG_ON(mapcount != mapcount2);
+}
+
+int split_huge_page(struct page *page)
+{
+ struct anon_vma *anon_vma;
+ int ret = 1;
+
+ BUG_ON(!PageAnon(page));
+ anon_vma = page_lock_anon_vma(page);
+ if (!anon_vma)
+ goto out;
+ ret = 0;
+ if (!PageCompound(page))
+ goto out_unlock;
+
+ BUG_ON(!PageSwapBacked(page));
+ __split_huge_page(page, anon_vma);
+
+ BUG_ON(PageCompound(page));
+out_unlock:
+ page_unlock_anon_vma(anon_vma);
+out:
+ return ret;
+}
+
+int hugepage_madvise(struct vm_area_struct *vma,
+ unsigned long *vm_flags, int advice)
+{
+ switch (advice) {
+ case MADV_HUGEPAGE:
+ /*
+ * Be somewhat over-protective like KSM for now!
+ */
+ if (*vm_flags & (VM_HUGEPAGE |
+ VM_SHARED | VM_MAYSHARE |
+ VM_PFNMAP | VM_IO | VM_DONTEXPAND |
+ VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
+ VM_MIXEDMAP | VM_SAO))
+ return -EINVAL;
+ *vm_flags &= ~VM_NOHUGEPAGE;
+ *vm_flags |= VM_HUGEPAGE;
+ /*
+ * If the vma become good for khugepaged to scan,
+ * register it here without waiting a page fault that
+ * may not happen any time soon.
+ */
+ if (unlikely(khugepaged_enter_vma_merge(vma)))
+ return -ENOMEM;
+ break;
+ case MADV_NOHUGEPAGE:
+ /*
+ * Be somewhat over-protective like KSM for now!
+ */
+ if (*vm_flags & (VM_NOHUGEPAGE |
+ VM_SHARED | VM_MAYSHARE |
+ VM_PFNMAP | VM_IO | VM_DONTEXPAND |
+ VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
+ VM_MIXEDMAP | VM_SAO))
+ return -EINVAL;
+ *vm_flags &= ~VM_HUGEPAGE;
+ *vm_flags |= VM_NOHUGEPAGE;
+ /*
+ * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
+ * this vma even if we leave the mm registered in khugepaged if
+ * it got registered before VM_NOHUGEPAGE was set.
+ */
+ break;
+ }
+
+ return 0;
+}
+
+static int __init khugepaged_slab_init(void)
+{
+ mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
+ sizeof(struct mm_slot),
+ __alignof__(struct mm_slot), 0, NULL);
+ if (!mm_slot_cache)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static void __init khugepaged_slab_free(void)
+{
+ kmem_cache_destroy(mm_slot_cache);
+ mm_slot_cache = NULL;
+}
+
+static inline struct mm_slot *alloc_mm_slot(void)
+{
+ if (!mm_slot_cache) /* initialization failed */
+ return NULL;
+ return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
+}
+
+static inline void free_mm_slot(struct mm_slot *mm_slot)
+{
+ kmem_cache_free(mm_slot_cache, mm_slot);
+}
+
+static int __init mm_slots_hash_init(void)
+{
+ mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
+ GFP_KERNEL);
+ if (!mm_slots_hash)
+ return -ENOMEM;
+ return 0;
+}
+
+#if 0
+static void __init mm_slots_hash_free(void)
+{
+ kfree(mm_slots_hash);
+ mm_slots_hash = NULL;
+}
+#endif
+
+static struct mm_slot *get_mm_slot(struct mm_struct *mm)
+{
+ struct mm_slot *mm_slot;
+ struct hlist_head *bucket;
+ struct hlist_node *node;
+
+ bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
+ % MM_SLOTS_HASH_HEADS];
+ hlist_for_each_entry(mm_slot, node, bucket, hash) {
+ if (mm == mm_slot->mm)
+ return mm_slot;
+ }
+ return NULL;
+}
+
+static void insert_to_mm_slots_hash(struct mm_struct *mm,
+ struct mm_slot *mm_slot)
+{
+ struct hlist_head *bucket;
+
+ bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
+ % MM_SLOTS_HASH_HEADS];
+ mm_slot->mm = mm;
+ hlist_add_head(&mm_slot->hash, bucket);
+}
+
+static inline int khugepaged_test_exit(struct mm_struct *mm)
+{
+ return atomic_read(&mm->mm_users) == 0;
+}
+
+int __khugepaged_enter(struct mm_struct *mm)
+{
+ struct mm_slot *mm_slot;
+ int wakeup;
+
+ mm_slot = alloc_mm_slot();
+ if (!mm_slot)
+ return -ENOMEM;
+
+ /* __khugepaged_exit() must not run from under us */
+ VM_BUG_ON(khugepaged_test_exit(mm));
+ if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
+ free_mm_slot(mm_slot);
+ return 0;
+ }
+
+ spin_lock(&khugepaged_mm_lock);
+ insert_to_mm_slots_hash(mm, mm_slot);
+ /*
+ * Insert just behind the scanning cursor, to let the area settle
+ * down a little.
+ */
+ wakeup = list_empty(&khugepaged_scan.mm_head);
+ list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
+ spin_unlock(&khugepaged_mm_lock);
+
+ atomic_inc(&mm->mm_count);
+ if (wakeup)
+ wake_up_interruptible(&khugepaged_wait);
+
+ return 0;
+}
+
+int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
+{
+ unsigned long hstart, hend;
+ if (!vma->anon_vma)
+ /*
+ * Not yet faulted in so we will register later in the
+ * page fault if needed.
+ */
+ return 0;
+ if (vma->vm_file || vma->vm_ops)
+ /* khugepaged not yet working on file or special mappings */
+ return 0;
+ VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
+ hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
+ hend = vma->vm_end & HPAGE_PMD_MASK;
+ if (hstart < hend)
+ return khugepaged_enter(vma);
+ return 0;
+}
+
+void __khugepaged_exit(struct mm_struct *mm)
+{
+ struct mm_slot *mm_slot;
+ int free = 0;
+
+ spin_lock(&khugepaged_mm_lock);
+ mm_slot = get_mm_slot(mm);
+ if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
+ hlist_del(&mm_slot->hash);
+ list_del(&mm_slot->mm_node);
+ free = 1;
+ }
+
+ if (free) {
+ spin_unlock(&khugepaged_mm_lock);
+ clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
+ free_mm_slot(mm_slot);
+ mmdrop(mm);
+ } else if (mm_slot) {
+ spin_unlock(&khugepaged_mm_lock);
+ /*
+ * This is required to serialize against
+ * khugepaged_test_exit() (which is guaranteed to run
+ * under mmap sem read mode). Stop here (after we
+ * return all pagetables will be destroyed) until
+ * khugepaged has finished working on the pagetables
+ * under the mmap_sem.
+ */
+ down_write(&mm->mmap_sem);
+ up_write(&mm->mmap_sem);
+ } else
+ spin_unlock(&khugepaged_mm_lock);
+}
+
+static void release_pte_page(struct page *page)
+{
+ /* 0 stands for page_is_file_cache(page) == false */
+ dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
+ unlock_page(page);
+ putback_lru_page(page);
+}
+
+static void release_pte_pages(pte_t *pte, pte_t *_pte)
+{
+ while (--_pte >= pte) {
+ pte_t pteval = *_pte;
+ if (!pte_none(pteval))
+ release_pte_page(pte_page(pteval));
+ }
+}
+
+static void release_all_pte_pages(pte_t *pte)
+{
+ release_pte_pages(pte, pte + HPAGE_PMD_NR);
+}
+
+static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
+ unsigned long address,
+ pte_t *pte)
+{
+ struct page *page;
+ pte_t *_pte;
+ int referenced = 0, isolated = 0, none = 0;
+ for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
+ _pte++, address += PAGE_SIZE) {
+ pte_t pteval = *_pte;
+ if (pte_none(pteval)) {
+ if (++none <= khugepaged_max_ptes_none)
+ continue;
+ else {
+ release_pte_pages(pte, _pte);
+ goto out;
+ }
+ }
+ if (!pte_present(pteval) || !pte_write(pteval)) {
+ release_pte_pages(pte, _pte);
+ goto out;
+ }
+ page = vm_normal_page(vma, address, pteval);
+ if (unlikely(!page)) {
+ release_pte_pages(pte, _pte);
+ goto out;
+ }
+ VM_BUG_ON(PageCompound(page));
+ BUG_ON(!PageAnon(page));
+ VM_BUG_ON(!PageSwapBacked(page));
+
+ /* cannot use mapcount: can't collapse if there's a gup pin */
+ if (page_count(page) != 1) {
+ release_pte_pages(pte, _pte);
+ goto out;
+ }
+ /*
+ * We can do it before isolate_lru_page because the
+ * page can't be freed from under us. NOTE: PG_lock
+ * is needed to serialize against split_huge_page
+ * when invoked from the VM.
+ */
+ if (!trylock_page(page)) {
+ release_pte_pages(pte, _pte);
+ goto out;
+ }
+ /*
+ * Isolate the page to avoid collapsing an hugepage
+ * currently in use by the VM.
+ */
+ if (isolate_lru_page(page)) {
+ unlock_page(page);
+ release_pte_pages(pte, _pte);
+ goto out;
+ }
+ /* 0 stands for page_is_file_cache(page) == false */
+ inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
+ VM_BUG_ON(!PageLocked(page));
+ VM_BUG_ON(PageLRU(page));
+
+ /* If there is no mapped pte young don't collapse the page */
+ if (pte_young(pteval) || PageReferenced(page) ||
+ mmu_notifier_test_young(vma->vm_mm, address))
+ referenced = 1;
+ }
+ if (unlikely(!referenced))
+ release_all_pte_pages(pte);
+ else
+ isolated = 1;
+out:
+ return isolated;
+}
+
+static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
+ struct vm_area_struct *vma,
+ unsigned long address,
+ spinlock_t *ptl)
+{
+ pte_t *_pte;
+ for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
+ pte_t pteval = *_pte;
+ struct page *src_page;
+
+ if (pte_none(pteval)) {
+ clear_user_highpage(page, address);
+ add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
+ } else {
+ src_page = pte_page(pteval);
+ copy_user_highpage(page, src_page, address, vma);
+ VM_BUG_ON(page_mapcount(src_page) != 1);
+ VM_BUG_ON(page_count(src_page) != 2);
+ release_pte_page(src_page);
+ /*
+ * ptl mostly unnecessary, but preempt has to
+ * be disabled to update the per-cpu stats
+ * inside page_remove_rmap().
+ */
+ spin_lock(ptl);
+ /*
+ * paravirt calls inside pte_clear here are
+ * superfluous.
+ */
+ pte_clear(vma->vm_mm, address, _pte);
+ page_remove_rmap(src_page);
+ spin_unlock(ptl);
+ free_page_and_swap_cache(src_page);
+ }
+
+ address += PAGE_SIZE;
+ page++;
+ }
+}
+
+static void collapse_huge_page(struct mm_struct *mm,
+ unsigned long address,
+ struct page **hpage,
+ struct vm_area_struct *vma)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd, _pmd;
+ pte_t *pte;
+ pgtable_t pgtable;
+ struct page *new_page;
+ spinlock_t *ptl;
+ int isolated;
+ unsigned long hstart, hend;
+
+ VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+#ifndef CONFIG_NUMA
+ VM_BUG_ON(!*hpage);
+ new_page = *hpage;
+#else
+ VM_BUG_ON(*hpage);
+ /*
+ * Allocate the page while the vma is still valid and under
+ * the mmap_sem read mode so there is no memory allocation
+ * later when we take the mmap_sem in write mode. This is more
+ * friendly behavior (OTOH it may actually hide bugs) to
+ * filesystems in userland with daemons allocating memory in
+ * the userland I/O paths. Allocating memory with the
+ * mmap_sem in read mode is good idea also to allow greater
+ * scalability.
+ */
+ new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
+ if (unlikely(!new_page)) {
+ up_read(&mm->mmap_sem);
+ *hpage = ERR_PTR(-ENOMEM);
+ return;
+ }
+#endif
+ if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
+ up_read(&mm->mmap_sem);
+ put_page(new_page);
+ return;
+ }
+
+ /* after allocating the hugepage upgrade to mmap_sem write mode */
+ up_read(&mm->mmap_sem);
+
+ /*
+ * Prevent all access to pagetables with the exception of
+ * gup_fast later hanlded by the ptep_clear_flush and the VM
+ * handled by the anon_vma lock + PG_lock.
+ */
+ down_write(&mm->mmap_sem);
+ if (unlikely(khugepaged_test_exit(mm)))
+ goto out;
+
+ vma = find_vma(mm, address);
+ hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
+ hend = vma->vm_end & HPAGE_PMD_MASK;
+ if (address < hstart || address + HPAGE_PMD_SIZE > hend)
+ goto out;
+
+ if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
+ (vma->vm_flags & VM_NOHUGEPAGE))
+ goto out;
+
+ /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
+ if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
+ goto out;
+ VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
+
+ pgd = pgd_offset(mm, address);
+ if (!pgd_present(*pgd))
+ goto out;
+
+ pud = pud_offset(pgd, address);
+ if (!pud_present(*pud))
+ goto out;
+
+ pmd = pmd_offset(pud, address);
+ /* pmd can't go away or become huge under us */
+ if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
+ goto out;
+
+ anon_vma_lock(vma->anon_vma);
+
+ pte = pte_offset_map(pmd, address);
+ ptl = pte_lockptr(mm, pmd);
+
+ spin_lock(&mm->page_table_lock); /* probably unnecessary */
+ /*
+ * After this gup_fast can't run anymore. This also removes
+ * any huge TLB entry from the CPU so we won't allow
+ * huge and small TLB entries for the same virtual address
+ * to avoid the risk of CPU bugs in that area.
+ */
+ _pmd = pmdp_clear_flush_notify(vma, address, pmd);
+ spin_unlock(&mm->page_table_lock);
+
+ spin_lock(ptl);
+ isolated = __collapse_huge_page_isolate(vma, address, pte);
+ spin_unlock(ptl);
+ pte_unmap(pte);
+
+ if (unlikely(!isolated)) {
+ spin_lock(&mm->page_table_lock);
+ BUG_ON(!pmd_none(*pmd));
+ set_pmd_at(mm, address, pmd, _pmd);
+ spin_unlock(&mm->page_table_lock);
+ anon_vma_unlock(vma->anon_vma);
+ mem_cgroup_uncharge_page(new_page);
+ goto out;
+ }
+
+ /*
+ * All pages are isolated and locked so anon_vma rmap
+ * can't run anymore.
+ */
+ anon_vma_unlock(vma->anon_vma);
+
+ __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
+ __SetPageUptodate(new_page);
+ pgtable = pmd_pgtable(_pmd);
+ VM_BUG_ON(page_count(pgtable) != 1);
+ VM_BUG_ON(page_mapcount(pgtable) != 0);
+
+ _pmd = mk_pmd(new_page, vma->vm_page_prot);
+ _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
+ _pmd = pmd_mkhuge(_pmd);
+
+ /*
+ * spin_lock() below is not the equivalent of smp_wmb(), so
+ * this is needed to avoid the copy_huge_page writes to become
+ * visible after the set_pmd_at() write.
+ */
+ smp_wmb();
+
+ spin_lock(&mm->page_table_lock);
+ BUG_ON(!pmd_none(*pmd));
+ page_add_new_anon_rmap(new_page, vma, address);
+ set_pmd_at(mm, address, pmd, _pmd);
+ update_mmu_cache(vma, address, entry);
+ prepare_pmd_huge_pte(pgtable, mm);
+ mm->nr_ptes--;
+ spin_unlock(&mm->page_table_lock);
+
+#ifndef CONFIG_NUMA
+ *hpage = NULL;
+#endif
+ khugepaged_pages_collapsed++;
+out_up_write:
+ up_write(&mm->mmap_sem);
+ return;
+
+out:
+#ifdef CONFIG_NUMA
+ put_page(new_page);
+#endif
+ goto out_up_write;
+}
+
+static int khugepaged_scan_pmd(struct mm_struct *mm,
+ struct vm_area_struct *vma,
+ unsigned long address,
+ struct page **hpage)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte, *_pte;
+ int ret = 0, referenced = 0, none = 0;
+ struct page *page;
+ unsigned long _address;
+ spinlock_t *ptl;
+
+ VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+
+ pgd = pgd_offset(mm, address);
+ if (!pgd_present(*pgd))
+ goto out;
+
+ pud = pud_offset(pgd, address);
+ if (!pud_present(*pud))
+ goto out;
+
+ pmd = pmd_offset(pud, address);
+ if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
+ goto out;
+
+ pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+ for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
+ _pte++, _address += PAGE_SIZE) {
+ pte_t pteval = *_pte;
+ if (pte_none(pteval)) {
+ if (++none <= khugepaged_max_ptes_none)
+ continue;
+ else
+ goto out_unmap;
+ }
+ if (!pte_present(pteval) || !pte_write(pteval))
+ goto out_unmap;
+ page = vm_normal_page(vma, _address, pteval);
+ if (unlikely(!page))
+ goto out_unmap;
+ VM_BUG_ON(PageCompound(page));
+ if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
+ goto out_unmap;
+ /* cannot use mapcount: can't collapse if there's a gup pin */
+ if (page_count(page) != 1)
+ goto out_unmap;
+ if (pte_young(pteval) || PageReferenced(page) ||
+ mmu_notifier_test_young(vma->vm_mm, address))
+ referenced = 1;
+ }
+ if (referenced)
+ ret = 1;
+out_unmap:
+ pte_unmap_unlock(pte, ptl);
+ if (ret)
+ /* collapse_huge_page will return with the mmap_sem released */
+ collapse_huge_page(mm, address, hpage, vma);
+out:
+ return ret;
+}
+
+static void collect_mm_slot(struct mm_slot *mm_slot)
+{
+ struct mm_struct *mm = mm_slot->mm;
+
+ VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
+
+ if (khugepaged_test_exit(mm)) {
+ /* free mm_slot */
+ hlist_del(&mm_slot->hash);
+ list_del(&mm_slot->mm_node);
+
+ /*
+ * Not strictly needed because the mm exited already.
+ *
+ * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
+ */
+
+ /* khugepaged_mm_lock actually not necessary for the below */
+ free_mm_slot(mm_slot);
+ mmdrop(mm);
+ }
+}
+
+static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
+ struct page **hpage)
+{
+ struct mm_slot *mm_slot;
+ struct mm_struct *mm;
+ struct vm_area_struct *vma;
+ int progress = 0;
+
+ VM_BUG_ON(!pages);
+ VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
+
+ if (khugepaged_scan.mm_slot)
+ mm_slot = khugepaged_scan.mm_slot;
+ else {
+ mm_slot = list_entry(khugepaged_scan.mm_head.next,
+ struct mm_slot, mm_node);
+ khugepaged_scan.address = 0;
+ khugepaged_scan.mm_slot = mm_slot;
+ }
+ spin_unlock(&khugepaged_mm_lock);
+
+ mm = mm_slot->mm;
+ down_read(&mm->mmap_sem);
+ if (unlikely(khugepaged_test_exit(mm)))
+ vma = NULL;
+ else
+ vma = find_vma(mm, khugepaged_scan.address);
+
+ progress++;
+ for (; vma; vma = vma->vm_next) {
+ unsigned long hstart, hend;
+
+ cond_resched();
+ if (unlikely(khugepaged_test_exit(mm))) {
+ progress++;
+ break;
+ }
+
+ if ((!(vma->vm_flags & VM_HUGEPAGE) &&
+ !khugepaged_always()) ||
+ (vma->vm_flags & VM_NOHUGEPAGE)) {
+ progress++;
+ continue;
+ }
+
+ /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
+ if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
+ khugepaged_scan.address = vma->vm_end;
+ progress++;
+ continue;
+ }
+ VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
+
+ hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
+ hend = vma->vm_end & HPAGE_PMD_MASK;
+ if (hstart >= hend) {
+ progress++;
+ continue;
+ }
+ if (khugepaged_scan.address < hstart)
+ khugepaged_scan.address = hstart;
+ if (khugepaged_scan.address > hend) {
+ khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
+ progress++;
+ continue;
+ }
+ BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
+
+ while (khugepaged_scan.address < hend) {
+ int ret;
+ cond_resched();
+ if (unlikely(khugepaged_test_exit(mm)))
+ goto breakouterloop;
+
+ VM_BUG_ON(khugepaged_scan.address < hstart ||
+ khugepaged_scan.address + HPAGE_PMD_SIZE >
+ hend);
+ ret = khugepaged_scan_pmd(mm, vma,
+ khugepaged_scan.address,
+ hpage);
+ /* move to next address */
+ khugepaged_scan.address += HPAGE_PMD_SIZE;
+ progress += HPAGE_PMD_NR;
+ if (ret)
+ /* we released mmap_sem so break loop */
+ goto breakouterloop_mmap_sem;
+ if (progress >= pages)
+ goto breakouterloop;
+ }
+ }
+breakouterloop:
+ up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
+breakouterloop_mmap_sem:
+
+ spin_lock(&khugepaged_mm_lock);
+ BUG_ON(khugepaged_scan.mm_slot != mm_slot);
+ /*
+ * Release the current mm_slot if this mm is about to die, or
+ * if we scanned all vmas of this mm.
+ */
+ if (khugepaged_test_exit(mm) || !vma) {
+ /*
+ * Make sure that if mm_users is reaching zero while
+ * khugepaged runs here, khugepaged_exit will find
+ * mm_slot not pointing to the exiting mm.
+ */
+ if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
+ khugepaged_scan.mm_slot = list_entry(
+ mm_slot->mm_node.next,
+ struct mm_slot, mm_node);
+ khugepaged_scan.address = 0;
+ } else {
+ khugepaged_scan.mm_slot = NULL;
+ khugepaged_full_scans++;
+ }
+
+ collect_mm_slot(mm_slot);
+ }
+
+ return progress;
+}
+
+static int khugepaged_has_work(void)
+{
+ return !list_empty(&khugepaged_scan.mm_head) &&
+ khugepaged_enabled();
+}
+
+static int khugepaged_wait_event(void)
+{
+ return !list_empty(&khugepaged_scan.mm_head) ||
+ !khugepaged_enabled();
+}
+
+static void khugepaged_do_scan(struct page **hpage)
+{
+ unsigned int progress = 0, pass_through_head = 0;
+ unsigned int pages = khugepaged_pages_to_scan;
+
+ barrier(); /* write khugepaged_pages_to_scan to local stack */
+
+ while (progress < pages) {
+ cond_resched();
+
+#ifndef CONFIG_NUMA
+ if (!*hpage) {
+ *hpage = alloc_hugepage(khugepaged_defrag());
+ if (unlikely(!*hpage))
+ break;
+ }
+#else
+ if (IS_ERR(*hpage))
+ break;
+#endif
+
+ if (unlikely(kthread_should_stop() || freezing(current)))
+ break;
+
+ spin_lock(&khugepaged_mm_lock);
+ if (!khugepaged_scan.mm_slot)
+ pass_through_head++;
+ if (khugepaged_has_work() &&
+ pass_through_head < 2)
+ progress += khugepaged_scan_mm_slot(pages - progress,
+ hpage);
+ else
+ progress = pages;
+ spin_unlock(&khugepaged_mm_lock);
+ }
+}
+
+static void khugepaged_alloc_sleep(void)
+{
+ DEFINE_WAIT(wait);
+ add_wait_queue(&khugepaged_wait, &wait);
+ schedule_timeout_interruptible(
+ msecs_to_jiffies(
+ khugepaged_alloc_sleep_millisecs));
+ remove_wait_queue(&khugepaged_wait, &wait);
+}
+
+#ifndef CONFIG_NUMA
+static struct page *khugepaged_alloc_hugepage(void)
+{
+ struct page *hpage;
+
+ do {
+ hpage = alloc_hugepage(khugepaged_defrag());
+ if (!hpage)
+ khugepaged_alloc_sleep();
+ } while (unlikely(!hpage) &&
+ likely(khugepaged_enabled()));
+ return hpage;
+}
+#endif
+
+static void khugepaged_loop(void)
+{
+ struct page *hpage;
+
+#ifdef CONFIG_NUMA
+ hpage = NULL;
+#endif
+ while (likely(khugepaged_enabled())) {
+#ifndef CONFIG_NUMA
+ hpage = khugepaged_alloc_hugepage();
+ if (unlikely(!hpage))
+ break;
+#else
+ if (IS_ERR(hpage)) {
+ khugepaged_alloc_sleep();
+ hpage = NULL;
+ }
+#endif
+
+ khugepaged_do_scan(&hpage);
+#ifndef CONFIG_NUMA
+ if (hpage)
+ put_page(hpage);
+#endif
+ try_to_freeze();
+ if (unlikely(kthread_should_stop()))
+ break;
+ if (khugepaged_has_work()) {
+ DEFINE_WAIT(wait);
+ if (!khugepaged_scan_sleep_millisecs)
+ continue;
+ add_wait_queue(&khugepaged_wait, &wait);
+ schedule_timeout_interruptible(
+ msecs_to_jiffies(
+ khugepaged_scan_sleep_millisecs));
+ remove_wait_queue(&khugepaged_wait, &wait);
+ } else if (khugepaged_enabled())
+ wait_event_freezable(khugepaged_wait,
+ khugepaged_wait_event());
+ }
+}
+
+static int khugepaged(void *none)
+{
+ struct mm_slot *mm_slot;
+
+ set_freezable();
+ set_user_nice(current, 19);
+
+ /* serialize with start_khugepaged() */
+ mutex_lock(&khugepaged_mutex);
+
+ for (;;) {
+ mutex_unlock(&khugepaged_mutex);
+ BUG_ON(khugepaged_thread != current);
+ khugepaged_loop();
+ BUG_ON(khugepaged_thread != current);
+
+ mutex_lock(&khugepaged_mutex);
+ if (!khugepaged_enabled())
+ break;
+ if (unlikely(kthread_should_stop()))
+ break;
+ }
+
+ spin_lock(&khugepaged_mm_lock);
+ mm_slot = khugepaged_scan.mm_slot;
+ khugepaged_scan.mm_slot = NULL;
+ if (mm_slot)
+ collect_mm_slot(mm_slot);
+ spin_unlock(&khugepaged_mm_lock);
+
+ khugepaged_thread = NULL;
+ mutex_unlock(&khugepaged_mutex);
+
+ return 0;
+}
+
+void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
+{
+ struct page *page;
+
+ spin_lock(&mm->page_table_lock);
+ if (unlikely(!pmd_trans_huge(*pmd))) {
+ spin_unlock(&mm->page_table_lock);
+ return;
+ }
+ page = pmd_page(*pmd);
+ VM_BUG_ON(!page_count(page));
+ get_page(page);
+ spin_unlock(&mm->page_table_lock);
+
+ split_huge_page(page);
+
+ put_page(page);
+ BUG_ON(pmd_trans_huge(*pmd));
+}
+
+static void split_huge_page_address(struct mm_struct *mm,
+ unsigned long address)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
+
+ pgd = pgd_offset(mm, address);
+ if (!pgd_present(*pgd))
+ return;
+
+ pud = pud_offset(pgd, address);
+ if (!pud_present(*pud))
+ return;
+
+ pmd = pmd_offset(pud, address);
+ if (!pmd_present(*pmd))
+ return;
+ /*
+ * Caller holds the mmap_sem write mode, so a huge pmd cannot
+ * materialize from under us.
+ */
+ split_huge_page_pmd(mm, pmd);
+}
+
+void __vma_adjust_trans_huge(struct vm_area_struct *vma,
+ unsigned long start,
+ unsigned long end,
+ long adjust_next)
+{
+ /*
+ * If the new start address isn't hpage aligned and it could
+ * previously contain an hugepage: check if we need to split
+ * an huge pmd.
+ */
+ if (start & ~HPAGE_PMD_MASK &&
+ (start & HPAGE_PMD_MASK) >= vma->vm_start &&
+ (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
+ split_huge_page_address(vma->vm_mm, start);
+
+ /*
+ * If the new end address isn't hpage aligned and it could
+ * previously contain an hugepage: check if we need to split
+ * an huge pmd.
+ */
+ if (end & ~HPAGE_PMD_MASK &&
+ (end & HPAGE_PMD_MASK) >= vma->vm_start &&
+ (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
+ split_huge_page_address(vma->vm_mm, end);
+
+ /*
+ * If we're also updating the vma->vm_next->vm_start, if the new
+ * vm_next->vm_start isn't page aligned and it could previously
+ * contain an hugepage: check if we need to split an huge pmd.
+ */
+ if (adjust_next > 0) {
+ struct vm_area_struct *next = vma->vm_next;
+ unsigned long nstart = next->vm_start;
+ nstart += adjust_next << PAGE_SHIFT;
+ if (nstart & ~HPAGE_PMD_MASK &&
+ (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
+ (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
+ split_huge_page_address(next->vm_mm, nstart);
+ }
+}