diff options
Diffstat (limited to 'include/uapi/misc/habanalabs.h')
-rw-r--r-- | include/uapi/misc/habanalabs.h | 541 |
1 files changed, 516 insertions, 25 deletions
diff --git a/include/uapi/misc/habanalabs.h b/include/uapi/misc/habanalabs.h index 52540d5b4fc9..5d06d5c74dd1 100644 --- a/include/uapi/misc/habanalabs.h +++ b/include/uapi/misc/habanalabs.h @@ -185,6 +185,285 @@ enum gaudi_queue_id { }; /* + * In GAUDI2 we have two modes of operation in regard to queues: + * 1. Legacy mode, where each QMAN exposes 4 streams to the user + * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues. + * + * When in legacy mode, the user sends the queue id per JOB according to + * enum gaudi2_queue_id below. + * + * When in F/W mode, the user sends a stream id per Command Submission. The + * stream id is a running number from 0 up to (N-1), where N is the number + * of streams the F/W exposes and is passed to the user in + * struct hl_info_hw_ip_info + */ + +enum gaudi2_queue_id { + GAUDI2_QUEUE_ID_PDMA_0_0 = 0, + GAUDI2_QUEUE_ID_PDMA_0_1 = 1, + GAUDI2_QUEUE_ID_PDMA_0_2 = 2, + GAUDI2_QUEUE_ID_PDMA_0_3 = 3, + GAUDI2_QUEUE_ID_PDMA_1_0 = 4, + GAUDI2_QUEUE_ID_PDMA_1_1 = 5, + GAUDI2_QUEUE_ID_PDMA_1_2 = 6, + GAUDI2_QUEUE_ID_PDMA_1_3 = 7, + GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8, + GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9, + GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10, + GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11, + GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12, + GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13, + GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14, + GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15, + GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16, + GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17, + GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18, + GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19, + GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20, + GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21, + GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22, + GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23, + GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24, + GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25, + GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26, + GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27, + GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28, + GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29, + GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30, + GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31, + GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32, + GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33, + GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34, + GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35, + GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36, + GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37, + GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38, + GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39, + GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40, + GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41, + GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42, + GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43, + GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44, + GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45, + GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46, + GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47, + GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48, + GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49, + GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50, + GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51, + GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52, + GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53, + GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54, + GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55, + GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56, + GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57, + GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58, + GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59, + GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60, + GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61, + GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62, + GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63, + GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64, + GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65, + GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66, + GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67, + GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68, + GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69, + GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70, + GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71, + GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72, + GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73, + GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74, + GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75, + GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76, + GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77, + GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78, + GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79, + GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80, + GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81, + GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82, + GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83, + GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84, + GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85, + GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86, + GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87, + GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88, + GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89, + GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90, + GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91, + GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92, + GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93, + GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94, + GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95, + GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96, + GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97, + GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98, + GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99, + GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100, + GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101, + GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102, + GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103, + GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104, + GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105, + GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106, + GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107, + GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108, + GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109, + GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110, + GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111, + GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112, + GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113, + GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114, + GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115, + GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116, + GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117, + GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118, + GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119, + GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120, + GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121, + GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122, + GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123, + GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124, + GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125, + GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126, + GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127, + GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128, + GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129, + GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130, + GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131, + GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132, + GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133, + GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134, + GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135, + GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136, + GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137, + GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138, + GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139, + GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140, + GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141, + GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142, + GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143, + GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144, + GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145, + GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146, + GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147, + GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148, + GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149, + GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150, + GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151, + GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152, + GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153, + GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154, + GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155, + GAUDI2_QUEUE_ID_NIC_0_0 = 156, + GAUDI2_QUEUE_ID_NIC_0_1 = 157, + GAUDI2_QUEUE_ID_NIC_0_2 = 158, + GAUDI2_QUEUE_ID_NIC_0_3 = 159, + GAUDI2_QUEUE_ID_NIC_1_0 = 160, + GAUDI2_QUEUE_ID_NIC_1_1 = 161, + GAUDI2_QUEUE_ID_NIC_1_2 = 162, + GAUDI2_QUEUE_ID_NIC_1_3 = 163, + GAUDI2_QUEUE_ID_NIC_2_0 = 164, + GAUDI2_QUEUE_ID_NIC_2_1 = 165, + GAUDI2_QUEUE_ID_NIC_2_2 = 166, + GAUDI2_QUEUE_ID_NIC_2_3 = 167, + GAUDI2_QUEUE_ID_NIC_3_0 = 168, + GAUDI2_QUEUE_ID_NIC_3_1 = 169, + GAUDI2_QUEUE_ID_NIC_3_2 = 170, + GAUDI2_QUEUE_ID_NIC_3_3 = 171, + GAUDI2_QUEUE_ID_NIC_4_0 = 172, + GAUDI2_QUEUE_ID_NIC_4_1 = 173, + GAUDI2_QUEUE_ID_NIC_4_2 = 174, + GAUDI2_QUEUE_ID_NIC_4_3 = 175, + GAUDI2_QUEUE_ID_NIC_5_0 = 176, + GAUDI2_QUEUE_ID_NIC_5_1 = 177, + GAUDI2_QUEUE_ID_NIC_5_2 = 178, + GAUDI2_QUEUE_ID_NIC_5_3 = 179, + GAUDI2_QUEUE_ID_NIC_6_0 = 180, + GAUDI2_QUEUE_ID_NIC_6_1 = 181, + GAUDI2_QUEUE_ID_NIC_6_2 = 182, + GAUDI2_QUEUE_ID_NIC_6_3 = 183, + GAUDI2_QUEUE_ID_NIC_7_0 = 184, + GAUDI2_QUEUE_ID_NIC_7_1 = 185, + GAUDI2_QUEUE_ID_NIC_7_2 = 186, + GAUDI2_QUEUE_ID_NIC_7_3 = 187, + GAUDI2_QUEUE_ID_NIC_8_0 = 188, + GAUDI2_QUEUE_ID_NIC_8_1 = 189, + GAUDI2_QUEUE_ID_NIC_8_2 = 190, + GAUDI2_QUEUE_ID_NIC_8_3 = 191, + GAUDI2_QUEUE_ID_NIC_9_0 = 192, + GAUDI2_QUEUE_ID_NIC_9_1 = 193, + GAUDI2_QUEUE_ID_NIC_9_2 = 194, + GAUDI2_QUEUE_ID_NIC_9_3 = 195, + GAUDI2_QUEUE_ID_NIC_10_0 = 196, + GAUDI2_QUEUE_ID_NIC_10_1 = 197, + GAUDI2_QUEUE_ID_NIC_10_2 = 198, + GAUDI2_QUEUE_ID_NIC_10_3 = 199, + GAUDI2_QUEUE_ID_NIC_11_0 = 200, + GAUDI2_QUEUE_ID_NIC_11_1 = 201, + GAUDI2_QUEUE_ID_NIC_11_2 = 202, + GAUDI2_QUEUE_ID_NIC_11_3 = 203, + GAUDI2_QUEUE_ID_NIC_12_0 = 204, + GAUDI2_QUEUE_ID_NIC_12_1 = 205, + GAUDI2_QUEUE_ID_NIC_12_2 = 206, + GAUDI2_QUEUE_ID_NIC_12_3 = 207, + GAUDI2_QUEUE_ID_NIC_13_0 = 208, + GAUDI2_QUEUE_ID_NIC_13_1 = 209, + GAUDI2_QUEUE_ID_NIC_13_2 = 210, + GAUDI2_QUEUE_ID_NIC_13_3 = 211, + GAUDI2_QUEUE_ID_NIC_14_0 = 212, + GAUDI2_QUEUE_ID_NIC_14_1 = 213, + GAUDI2_QUEUE_ID_NIC_14_2 = 214, + GAUDI2_QUEUE_ID_NIC_14_3 = 215, + GAUDI2_QUEUE_ID_NIC_15_0 = 216, + GAUDI2_QUEUE_ID_NIC_15_1 = 217, + GAUDI2_QUEUE_ID_NIC_15_2 = 218, + GAUDI2_QUEUE_ID_NIC_15_3 = 219, + GAUDI2_QUEUE_ID_NIC_16_0 = 220, + GAUDI2_QUEUE_ID_NIC_16_1 = 221, + GAUDI2_QUEUE_ID_NIC_16_2 = 222, + GAUDI2_QUEUE_ID_NIC_16_3 = 223, + GAUDI2_QUEUE_ID_NIC_17_0 = 224, + GAUDI2_QUEUE_ID_NIC_17_1 = 225, + GAUDI2_QUEUE_ID_NIC_17_2 = 226, + GAUDI2_QUEUE_ID_NIC_17_3 = 227, + GAUDI2_QUEUE_ID_NIC_18_0 = 228, + GAUDI2_QUEUE_ID_NIC_18_1 = 229, + GAUDI2_QUEUE_ID_NIC_18_2 = 230, + GAUDI2_QUEUE_ID_NIC_18_3 = 231, + GAUDI2_QUEUE_ID_NIC_19_0 = 232, + GAUDI2_QUEUE_ID_NIC_19_1 = 233, + GAUDI2_QUEUE_ID_NIC_19_2 = 234, + GAUDI2_QUEUE_ID_NIC_19_3 = 235, + GAUDI2_QUEUE_ID_NIC_20_0 = 236, + GAUDI2_QUEUE_ID_NIC_20_1 = 237, + GAUDI2_QUEUE_ID_NIC_20_2 = 238, + GAUDI2_QUEUE_ID_NIC_20_3 = 239, + GAUDI2_QUEUE_ID_NIC_21_0 = 240, + GAUDI2_QUEUE_ID_NIC_21_1 = 241, + GAUDI2_QUEUE_ID_NIC_21_2 = 242, + GAUDI2_QUEUE_ID_NIC_21_3 = 243, + GAUDI2_QUEUE_ID_NIC_22_0 = 244, + GAUDI2_QUEUE_ID_NIC_22_1 = 245, + GAUDI2_QUEUE_ID_NIC_22_2 = 246, + GAUDI2_QUEUE_ID_NIC_22_3 = 247, + GAUDI2_QUEUE_ID_NIC_23_0 = 248, + GAUDI2_QUEUE_ID_NIC_23_1 = 249, + GAUDI2_QUEUE_ID_NIC_23_2 = 250, + GAUDI2_QUEUE_ID_NIC_23_3 = 251, + GAUDI2_QUEUE_ID_ROT_0_0 = 252, + GAUDI2_QUEUE_ID_ROT_0_1 = 253, + GAUDI2_QUEUE_ID_ROT_0_2 = 254, + GAUDI2_QUEUE_ID_ROT_0_3 = 255, + GAUDI2_QUEUE_ID_ROT_1_0 = 256, + GAUDI2_QUEUE_ID_ROT_1_1 = 257, + GAUDI2_QUEUE_ID_ROT_1_2 = 258, + GAUDI2_QUEUE_ID_ROT_1_3 = 259, + GAUDI2_QUEUE_ID_CPU_PQ = 260, + GAUDI2_QUEUE_ID_SIZE +}; + +/* * Engine Numbering * * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle' @@ -242,6 +521,85 @@ enum gaudi_engine_id { GAUDI_ENGINE_ID_SIZE }; +enum gaudi2_engine_id { + GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0, + GAUDI2_DCORE0_ENGINE_ID_EDMA_1, + GAUDI2_DCORE0_ENGINE_ID_MME, + GAUDI2_DCORE0_ENGINE_ID_TPC_0, + GAUDI2_DCORE0_ENGINE_ID_TPC_1, + GAUDI2_DCORE0_ENGINE_ID_TPC_2, + GAUDI2_DCORE0_ENGINE_ID_TPC_3, + GAUDI2_DCORE0_ENGINE_ID_TPC_4, + GAUDI2_DCORE0_ENGINE_ID_TPC_5, + GAUDI2_DCORE0_ENGINE_ID_DEC_0, + GAUDI2_DCORE0_ENGINE_ID_DEC_1, + GAUDI2_DCORE1_ENGINE_ID_EDMA_0, + GAUDI2_DCORE1_ENGINE_ID_EDMA_1, + GAUDI2_DCORE1_ENGINE_ID_MME, + GAUDI2_DCORE1_ENGINE_ID_TPC_0, + GAUDI2_DCORE1_ENGINE_ID_TPC_1, + GAUDI2_DCORE1_ENGINE_ID_TPC_2, + GAUDI2_DCORE1_ENGINE_ID_TPC_3, + GAUDI2_DCORE1_ENGINE_ID_TPC_4, + GAUDI2_DCORE1_ENGINE_ID_TPC_5, + GAUDI2_DCORE1_ENGINE_ID_DEC_0, + GAUDI2_DCORE1_ENGINE_ID_DEC_1, + GAUDI2_DCORE2_ENGINE_ID_EDMA_0, + GAUDI2_DCORE2_ENGINE_ID_EDMA_1, + GAUDI2_DCORE2_ENGINE_ID_MME, + GAUDI2_DCORE2_ENGINE_ID_TPC_0, + GAUDI2_DCORE2_ENGINE_ID_TPC_1, + GAUDI2_DCORE2_ENGINE_ID_TPC_2, + GAUDI2_DCORE2_ENGINE_ID_TPC_3, + GAUDI2_DCORE2_ENGINE_ID_TPC_4, + GAUDI2_DCORE2_ENGINE_ID_TPC_5, + GAUDI2_DCORE2_ENGINE_ID_DEC_0, + GAUDI2_DCORE2_ENGINE_ID_DEC_1, + GAUDI2_DCORE3_ENGINE_ID_EDMA_0, + GAUDI2_DCORE3_ENGINE_ID_EDMA_1, + GAUDI2_DCORE3_ENGINE_ID_MME, + GAUDI2_DCORE3_ENGINE_ID_TPC_0, + GAUDI2_DCORE3_ENGINE_ID_TPC_1, + GAUDI2_DCORE3_ENGINE_ID_TPC_2, + GAUDI2_DCORE3_ENGINE_ID_TPC_3, + GAUDI2_DCORE3_ENGINE_ID_TPC_4, + GAUDI2_DCORE3_ENGINE_ID_TPC_5, + GAUDI2_DCORE3_ENGINE_ID_DEC_0, + GAUDI2_DCORE3_ENGINE_ID_DEC_1, + GAUDI2_DCORE0_ENGINE_ID_TPC_6, + GAUDI2_ENGINE_ID_PDMA_0, + GAUDI2_ENGINE_ID_PDMA_1, + GAUDI2_ENGINE_ID_ROT_0, + GAUDI2_ENGINE_ID_ROT_1, + GAUDI2_PCIE_ENGINE_ID_DEC_0, + GAUDI2_PCIE_ENGINE_ID_DEC_1, + GAUDI2_ENGINE_ID_NIC0_0, + GAUDI2_ENGINE_ID_NIC0_1, + GAUDI2_ENGINE_ID_NIC1_0, + GAUDI2_ENGINE_ID_NIC1_1, + GAUDI2_ENGINE_ID_NIC2_0, + GAUDI2_ENGINE_ID_NIC2_1, + GAUDI2_ENGINE_ID_NIC3_0, + GAUDI2_ENGINE_ID_NIC3_1, + GAUDI2_ENGINE_ID_NIC4_0, + GAUDI2_ENGINE_ID_NIC4_1, + GAUDI2_ENGINE_ID_NIC5_0, + GAUDI2_ENGINE_ID_NIC5_1, + GAUDI2_ENGINE_ID_NIC6_0, + GAUDI2_ENGINE_ID_NIC6_1, + GAUDI2_ENGINE_ID_NIC7_0, + GAUDI2_ENGINE_ID_NIC7_1, + GAUDI2_ENGINE_ID_NIC8_0, + GAUDI2_ENGINE_ID_NIC8_1, + GAUDI2_ENGINE_ID_NIC9_0, + GAUDI2_ENGINE_ID_NIC9_1, + GAUDI2_ENGINE_ID_NIC10_0, + GAUDI2_ENGINE_ID_NIC10_1, + GAUDI2_ENGINE_ID_NIC11_0, + GAUDI2_ENGINE_ID_NIC11_1, + GAUDI2_ENGINE_ID_SIZE +}; + /* * ASIC specific PLL index * @@ -275,6 +633,49 @@ enum hl_gaudi_pll_index { HL_GAUDI_PLL_MAX }; +enum hl_gaudi2_pll_index { + HL_GAUDI2_CPU_PLL = 0, + HL_GAUDI2_PCI_PLL, + HL_GAUDI2_SRAM_PLL, + HL_GAUDI2_HBM_PLL, + HL_GAUDI2_NIC_PLL, + HL_GAUDI2_DMA_PLL, + HL_GAUDI2_MESH_PLL, + HL_GAUDI2_MME_PLL, + HL_GAUDI2_TPC_PLL, + HL_GAUDI2_IF_PLL, + HL_GAUDI2_VID_PLL, + HL_GAUDI2_MSS_PLL, + HL_GAUDI2_PLL_MAX +}; + +/** + * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is + * submitted to the GOYA's DMA QMAN. This attribute is not relevant + * to the H/W but the kernel driver use it to parse the packet's + * addresses and patch/validate them. + * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR. + * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM. + * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM. + * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR. + * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory. + * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory. + * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR. + * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM. + * @HL_DMA_ENUM_MAX: number of values in enum + */ +enum hl_goya_dma_direction { + HL_DMA_HOST_TO_DRAM, + HL_DMA_HOST_TO_SRAM, + HL_DMA_DRAM_TO_SRAM, + HL_DMA_SRAM_TO_DRAM, + HL_DMA_SRAM_TO_HOST, + HL_DMA_DRAM_TO_HOST, + HL_DMA_DRAM_TO_DRAM, + HL_DMA_SRAM_TO_SRAM, + HL_DMA_ENUM_MAX +}; + /** * enum hl_device_status - Device status information. * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational. @@ -283,6 +684,8 @@ enum hl_gaudi_pll_index { * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled. * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in * progress. + * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was + * triggered because the user released the device * @HL_DEVICE_STATUS_LAST: Last status. */ enum hl_device_status { @@ -291,7 +694,8 @@ enum hl_device_status { HL_DEVICE_STATUS_MALFUNCTION, HL_DEVICE_STATUS_NEEDS_RESET, HL_DEVICE_STATUS_IN_DEVICE_CREATION, - HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_DEVICE_CREATION + HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE, + HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE }; enum hl_server_type { @@ -299,7 +703,8 @@ enum hl_server_type { HL_SERVER_GAUDI_HLS1 = 1, HL_SERVER_GAUDI_HLS1H = 2, HL_SERVER_GAUDI_TYPE1 = 3, - HL_SERVER_GAUDI_TYPE2 = 4 + HL_SERVER_GAUDI_TYPE2 = 4, + HL_SERVER_GAUDI2_HLS2 = 5 }; /* Opcode for management ioctl @@ -352,6 +757,7 @@ enum hl_server_type { * HL_INFO_REGISTER_EVENTFD - Register eventfd for event notifications. * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd * HL_INFO_GET_EVENTS - Retrieve the last occurred events + * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information. */ #define HL_INFO_HW_IP_INFO 0 #define HL_INFO_HW_EVENTS 1 @@ -380,6 +786,7 @@ enum hl_server_type { #define HL_INFO_REGISTER_EVENTFD 28 #define HL_INFO_UNREGISTER_EVENTFD 29 #define HL_INFO_GET_EVENTS 30 +#define HL_INFO_UNDEFINED_OPCODE_EVENT 31 #define HL_INFO_VERSION_MAX_LEN 128 #define HL_INFO_CARD_NAME_MAX_LEN 16 @@ -399,8 +806,10 @@ enum hl_server_type { * @device_id: PCI device ID of the ASIC. * @module_id: Module ID of the ASIC for mezzanine cards in servers * (From OCP spec). + * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled. * @first_available_interrupt_id: The first available interrupt ID for the user * to be used when it works with user interrupts. + * Relevant for Gaudi2 and later. * @server_type: Server type that the Gaudi ASIC is currently installed in. * The value is according to enum hl_server_type * @cpld_version: CPLD version on the board. @@ -412,9 +821,15 @@ enum hl_server_type { * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant * for Goya/Gaudi only. * @dram_enabled: Whether the DRAM is enabled. + * @mme_master_slave_mode: Indicate whether the MME is working in master/slave + * configuration. Relevant for Greco and later. * @cpucp_version: The CPUCP f/w version. * @card_name: The card name as passed by the f/w. + * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled. + * Relevant for Greco and later. * @dram_page_size: The DRAM physical page size. + * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled. + * Relevant for Gaudi2 and later. * @number_of_user_interrupts: The number of interrupts that are available to the userspace * application to use. Relevant for Gaudi2 and later. * @device_mem_alloc_default_page_size: default page size used in device memory allocation. @@ -427,7 +842,7 @@ struct hl_info_hw_ip_info { __u32 num_of_events; __u32 device_id; __u32 module_id; - __u32 reserved; + __u32 decoder_enabled_mask; __u16 first_available_interrupt_id; __u16 server_type; __u32 cpld_version; @@ -437,12 +852,13 @@ struct hl_info_hw_ip_info { __u32 psoc_pci_pll_div_factor; __u8 tpc_enabled_mask; __u8 dram_enabled; - __u8 pad[2]; + __u8 reserved; + __u8 mme_master_slave_mode; __u8 cpucp_version[HL_INFO_VERSION_MAX_LEN]; __u8 card_name[HL_INFO_CARD_NAME_MAX_LEN]; - __u64 reserved2; + __u64 tpc_enabled_mask_ext; __u64 dram_page_size; - __u32 reserved3; + __u32 edma_enabled_mask; __u16 number_of_user_interrupts; __u16 pad2; __u64 reserved4; @@ -656,6 +1072,34 @@ struct hl_info_razwi_event { __u8 pad[2]; }; +#define MAX_QMAN_STREAMS_INFO 4 +#define OPCODE_INFO_MAX_ADDR_SIZE 8 +/** + * struct hl_info_undefined_opcode_event - info about last undefined opcode error + * @timestamp: timestamp of the undefined opcode error + * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ + * entiers. In case all streams array entries are + * filled with values, it means the execution was in Lower-CP. + * @cq_addr: the address of the current handled command buffer + * @cq_size: the size of the current handled command buffer + * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array. + * should be equal to 1 incase of undefined opcode + * in Upper-CP (specific stream) and equal to 4 incase + * of undefined opcode in Lower-CP. + * @engine_id: engine-id that the error occurred on + * @stream_id: the stream id the error occurred on. In case the stream equals to + * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP. + */ +struct hl_info_undefined_opcode_event { + __s64 timestamp; + __u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE]; + __u64 cq_addr; + __u32 cq_size; + __u32 cb_addr_streams_len; + __u32 engine_id; + __u32 stream_id; +}; + /** * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information. * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size @@ -764,16 +1208,16 @@ union hl_cb_args { /* HL_CS_CHUNK_FLAGS_ values * * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB: - * Indicates if the CB was allocated and mapped by userspace. - * User allocated CB is a command buffer allocated by the user, via malloc - * (or similar). After allocating the CB, the user invokes “memory ioctl” - * to map the user memory into a device virtual address. The user provides - * this address via the cb_handle field. The interface provides the - * ability to create a large CBs, Which aren’t limited to - * “HL_MAX_CB_SIZE”. Therefore, it increases the PCI-DMA queues - * throughput. This CB allocation method also reduces the use of Linux - * DMA-able memory pool. Which are limited and used by other Linux - * sub-systems. + * Indicates if the CB was allocated and mapped by userspace + * (relevant to greco and above). User allocated CB is a command buffer, + * allocated by the user, via malloc (or similar). After allocating the + * CB, the user invokes - “memory ioctl” to map the user memory into a + * device virtual address. The user provides this address via the + * cb_handle field. The interface provides the ability to create a + * large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it + * increases the PCI-DMA queues throughput. This CB allocation method + * also reduces the use of Linux DMA-able memory pool. Which are limited + * and used by other Linux sub-systems. */ #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1 @@ -783,12 +1227,17 @@ union hl_cb_args { */ struct hl_cs_chunk { union { - /* For external queue, this represents a Handle of CB on the + /* Goya/Gaudi: + * For external queue, this represents a Handle of CB on the * Host. * For internal queue in Goya, this represents an SRAM or * a DRAM address of the internal CB. In Gaudi, this might also * represent a mapped host address of the CB. * + * Greco onwards: + * For H/W queue, this represents either a Handle of CB on the + * Host, or an SRAM, a DRAM, or a mapped host address of the CB. + * * A mapped host address is in the device address space, after * a host address was mapped by the device MMU. */ @@ -853,11 +1302,12 @@ struct hl_cs_chunk { __u32 pad[10]; }; -/* SIGNAL and WAIT/COLLECTIVE_WAIT flags are mutually exclusive */ +/* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */ #define HL_CS_FLAGS_FORCE_RESTORE 0x1 #define HL_CS_FLAGS_SIGNAL 0x2 #define HL_CS_FLAGS_WAIT 0x4 #define HL_CS_FLAGS_COLLECTIVE_WAIT 0x8 + #define HL_CS_FLAGS_TIMESTAMP 0x20 #define HL_CS_FLAGS_STAGED_SUBMISSION 0x40 #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST 0x80 @@ -949,6 +1399,7 @@ struct hl_cs_in { /* Context ID - Currently not in use */ __u32 ctx_id; + __u8 pad[4]; }; struct hl_cs_out { @@ -994,6 +1445,8 @@ union hl_cs_args { #define HL_WAIT_CS_FLAGS_INTERRUPT 0x2 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000 +#define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT 0xFFF00000 +#define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT 0xFFE00000 #define HL_WAIT_CS_FLAGS_MULTI_CS 0x4 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ 0x10 #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT 0x20 @@ -1043,8 +1496,13 @@ struct hl_wait_cs_in { /* HL_WAIT_CS_FLAGS_* * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include - * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK, in order - * not to specify an interrupt id ,set mask to all 1s. + * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK + * + * in order to wait for any CQ interrupt, set interrupt value to + * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT. + * + * in order to wait for any decoder interrupt, set interrupt value to + * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT. */ __u32 flags; @@ -1116,14 +1574,19 @@ union hl_wait_cs_args { /* Opcode to allocate device memory */ #define HL_MEM_OP_ALLOC 0 + /* Opcode to free previously allocated device memory */ #define HL_MEM_OP_FREE 1 + /* Opcode to map host and device memory */ #define HL_MEM_OP_MAP 2 + /* Opcode to unmap previously mapped host and device memory */ #define HL_MEM_OP_UNMAP 3 + /* Opcode to map a hw block */ #define HL_MEM_OP_MAP_BLOCK 4 + /* Opcode to create DMA-BUF object for an existing device memory allocation * and to export an FD of that DMA-BUF back to the caller */ @@ -1342,7 +1805,16 @@ struct hl_debug_params_bmon { /* Trace source ID */ __u32 id; - __u32 pad; + + /* Control register */ + __u32 control; + + /* Two more address ranges that the user can request to filter */ + __u64 start_addr2; + __u64 end_addr2; + + __u64 start_addr3; + __u64 end_addr3; }; struct hl_debug_params_spmu { @@ -1351,7 +1823,11 @@ struct hl_debug_params_spmu { /* Number of event types selection */ __u32 event_types_num; - __u32 pad; + + /* TRC configuration register values */ + __u32 pmtrc_val; + __u32 trc_ctrl_host_val; + __u32 trc_en_host_val; }; /* Opcode for ETR component */ @@ -1401,9 +1877,17 @@ struct hl_debug_args { /* * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command * - * HL_NOTIFIER_EVENT_TPC_ASSERT - Indicates TPC assert event + * HL_NOTIFIER_EVENT_TPC_ASSERT - Indicates TPC assert event + * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE - Indicates undefined operation code + * HL_NOTIFIER_EVENT_DEVICE_RESET - Indicates device requires a reset + * HL_NOTIFIER_EVENT_CS_TIMEOUT - Indicates CS timeout error + * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE - Indicates device is unavailable */ -#define HL_NOTIFIER_EVENT_TPC_ASSERT (1 << 0) +#define HL_NOTIFIER_EVENT_TPC_ASSERT (1ULL << 0) +#define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE (1ULL << 1) +#define HL_NOTIFIER_EVENT_DEVICE_RESET (1ULL << 2) +#define HL_NOTIFIER_EVENT_CS_TIMEOUT (1ULL << 3) +#define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE (1ULL << 4) /* * Various information operations such as: @@ -1458,16 +1942,23 @@ struct hl_debug_args { * (or if its the first CS for this context). The user can also order the * driver to run the "restore" phase explicitly * + * Goya/Gaudi: * There are two types of queues - external and internal. External queues * are DMA queues which transfer data from/to the Host. All other queues are * internal. The driver will get completion notifications from the device only * on JOBS which are enqueued in the external queues. * + * Greco onwards: + * There is a single type of queue for all types of engines, either DMA engines + * for transfers from/to the host or inside the device, or compute engines. + * The driver will get completion notifications from the device for all queues. + * * For jobs on external queues, the user needs to create command buffers * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on * internal queues, the user needs to prepare a "command buffer" with packets * on either the device SRAM/DRAM or the host, and give the device address of * that buffer to the CS ioctl. + * For jobs on H/W queues both options of command buffers are valid. * * This IOCTL is asynchronous in regard to the actual execution of the CS. This * means it returns immediately after ALL the JOBS were enqueued on their @@ -1476,7 +1967,7 @@ struct hl_debug_args { * * Upon successful enqueue, the IOCTL returns a sequence number which the user * can use with the "Wait for CS" IOCTL to check whether the handle's CS - * external JOBS have been completed. Note that if the CS has internal JOBS + * non-internal JOBS have been completed. Note that if the CS has internal JOBS * which can execute AFTER the external JOBS have finished, the driver might * report that the CS has finished executing BEFORE the internal JOBS have * actually finished executing. |