summaryrefslogtreecommitdiff
path: root/include/linux
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/devfreq.h9
-rw-r--r--include/linux/device.h5
-rw-r--r--include/linux/energy_model.h149
-rw-r--r--include/linux/pm_opp.h15
4 files changed, 116 insertions, 62 deletions
diff --git a/include/linux/devfreq.h b/include/linux/devfreq.h
index 57e871a559a9..12782fbb4c25 100644
--- a/include/linux/devfreq.h
+++ b/include/linux/devfreq.h
@@ -31,6 +31,13 @@
#define DEVFREQ_PRECHANGE (0)
#define DEVFREQ_POSTCHANGE (1)
+/* DEVFREQ work timers */
+enum devfreq_timer {
+ DEVFREQ_TIMER_DEFERRABLE = 0,
+ DEVFREQ_TIMER_DELAYED,
+ DEVFREQ_TIMER_NUM,
+};
+
struct devfreq;
struct devfreq_governor;
@@ -70,6 +77,7 @@ struct devfreq_dev_status {
* @initial_freq: The operating frequency when devfreq_add_device() is
* called.
* @polling_ms: The polling interval in ms. 0 disables polling.
+ * @timer: Timer type is either deferrable or delayed timer.
* @target: The device should set its operating frequency at
* freq or lowest-upper-than-freq value. If freq is
* higher than any operable frequency, set maximum.
@@ -96,6 +104,7 @@ struct devfreq_dev_status {
struct devfreq_dev_profile {
unsigned long initial_freq;
unsigned int polling_ms;
+ enum devfreq_timer timer;
int (*target)(struct device *dev, unsigned long *freq, u32 flags);
int (*get_dev_status)(struct device *dev,
diff --git a/include/linux/device.h b/include/linux/device.h
index 5efed864b387..4e2e9d3a2eda 100644
--- a/include/linux/device.h
+++ b/include/linux/device.h
@@ -13,6 +13,7 @@
#define _DEVICE_H_
#include <linux/dev_printk.h>
+#include <linux/energy_model.h>
#include <linux/ioport.h>
#include <linux/kobject.h>
#include <linux/klist.h>
@@ -560,6 +561,10 @@ struct device {
struct dev_pm_info power;
struct dev_pm_domain *pm_domain;
+#ifdef CONFIG_ENERGY_MODEL
+ struct em_perf_domain *em_pd;
+#endif
+
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
struct irq_domain *msi_domain;
#endif
diff --git a/include/linux/energy_model.h b/include/linux/energy_model.h
index ade6486a3382..b67a51c574b9 100644
--- a/include/linux/energy_model.h
+++ b/include/linux/energy_model.h
@@ -2,6 +2,7 @@
#ifndef _LINUX_ENERGY_MODEL_H
#define _LINUX_ENERGY_MODEL_H
#include <linux/cpumask.h>
+#include <linux/device.h>
#include <linux/jump_label.h>
#include <linux/kobject.h>
#include <linux/rcupdate.h>
@@ -10,13 +11,15 @@
#include <linux/types.h>
/**
- * em_cap_state - Capacity state of a performance domain
- * @frequency: The CPU frequency in KHz, for consistency with CPUFreq
- * @power: The power consumed by 1 CPU at this level, in milli-watts
+ * em_perf_state - Performance state of a performance domain
+ * @frequency: The frequency in KHz, for consistency with CPUFreq
+ * @power: The power consumed at this level, in milli-watts (by 1 CPU or
+ by a registered device). It can be a total power: static and
+ dynamic.
* @cost: The cost coefficient associated with this level, used during
* energy calculation. Equal to: power * max_frequency / frequency
*/
-struct em_cap_state {
+struct em_perf_state {
unsigned long frequency;
unsigned long power;
unsigned long cost;
@@ -24,102 +27,119 @@ struct em_cap_state {
/**
* em_perf_domain - Performance domain
- * @table: List of capacity states, in ascending order
- * @nr_cap_states: Number of capacity states
- * @cpus: Cpumask covering the CPUs of the domain
+ * @table: List of performance states, in ascending order
+ * @nr_perf_states: Number of performance states
+ * @cpus: Cpumask covering the CPUs of the domain. It's here
+ * for performance reasons to avoid potential cache
+ * misses during energy calculations in the scheduler
+ * and simplifies allocating/freeing that memory region.
*
- * A "performance domain" represents a group of CPUs whose performance is
- * scaled together. All CPUs of a performance domain must have the same
- * micro-architecture. Performance domains often have a 1-to-1 mapping with
- * CPUFreq policies.
+ * In case of CPU device, a "performance domain" represents a group of CPUs
+ * whose performance is scaled together. All CPUs of a performance domain
+ * must have the same micro-architecture. Performance domains often have
+ * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
+ * field is unused.
*/
struct em_perf_domain {
- struct em_cap_state *table;
- int nr_cap_states;
+ struct em_perf_state *table;
+ int nr_perf_states;
unsigned long cpus[];
};
+#define em_span_cpus(em) (to_cpumask((em)->cpus))
+
#ifdef CONFIG_ENERGY_MODEL
-#define EM_CPU_MAX_POWER 0xFFFF
+#define EM_MAX_POWER 0xFFFF
struct em_data_callback {
/**
- * active_power() - Provide power at the next capacity state of a CPU
- * @power : Active power at the capacity state in mW (modified)
- * @freq : Frequency at the capacity state in kHz (modified)
- * @cpu : CPU for which we do this operation
+ * active_power() - Provide power at the next performance state of
+ * a device
+ * @power : Active power at the performance state in mW
+ * (modified)
+ * @freq : Frequency at the performance state in kHz
+ * (modified)
+ * @dev : Device for which we do this operation (can be a CPU)
*
- * active_power() must find the lowest capacity state of 'cpu' above
+ * active_power() must find the lowest performance state of 'dev' above
* 'freq' and update 'power' and 'freq' to the matching active power
* and frequency.
*
- * The power is the one of a single CPU in the domain, expressed in
- * milli-watts. It is expected to fit in the [0, EM_CPU_MAX_POWER]
- * range.
+ * In case of CPUs, the power is the one of a single CPU in the domain,
+ * expressed in milli-watts. It is expected to fit in the
+ * [0, EM_MAX_POWER] range.
*
* Return 0 on success.
*/
- int (*active_power)(unsigned long *power, unsigned long *freq, int cpu);
+ int (*active_power)(unsigned long *power, unsigned long *freq,
+ struct device *dev);
};
#define EM_DATA_CB(_active_power_cb) { .active_power = &_active_power_cb }
struct em_perf_domain *em_cpu_get(int cpu);
-int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
- struct em_data_callback *cb);
+struct em_perf_domain *em_pd_get(struct device *dev);
+int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
+ struct em_data_callback *cb, cpumask_t *span);
+void em_dev_unregister_perf_domain(struct device *dev);
/**
- * em_pd_energy() - Estimates the energy consumed by the CPUs of a perf. domain
+ * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
+ performance domain
* @pd : performance domain for which energy has to be estimated
* @max_util : highest utilization among CPUs of the domain
* @sum_util : sum of the utilization of all CPUs in the domain
*
+ * This function must be used only for CPU devices. There is no validation,
+ * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
+ * the scheduler code quite frequently and that is why there is not checks.
+ *
* Return: the sum of the energy consumed by the CPUs of the domain assuming
* a capacity state satisfying the max utilization of the domain.
*/
-static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
+static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
unsigned long max_util, unsigned long sum_util)
{
unsigned long freq, scale_cpu;
- struct em_cap_state *cs;
+ struct em_perf_state *ps;
int i, cpu;
/*
- * In order to predict the capacity state, map the utilization of the
- * most utilized CPU of the performance domain to a requested frequency,
- * like schedutil.
+ * In order to predict the performance state, map the utilization of
+ * the most utilized CPU of the performance domain to a requested
+ * frequency, like schedutil.
*/
cpu = cpumask_first(to_cpumask(pd->cpus));
scale_cpu = arch_scale_cpu_capacity(cpu);
- cs = &pd->table[pd->nr_cap_states - 1];
- freq = map_util_freq(max_util, cs->frequency, scale_cpu);
+ ps = &pd->table[pd->nr_perf_states - 1];
+ freq = map_util_freq(max_util, ps->frequency, scale_cpu);
/*
- * Find the lowest capacity state of the Energy Model above the
+ * Find the lowest performance state of the Energy Model above the
* requested frequency.
*/
- for (i = 0; i < pd->nr_cap_states; i++) {
- cs = &pd->table[i];
- if (cs->frequency >= freq)
+ for (i = 0; i < pd->nr_perf_states; i++) {
+ ps = &pd->table[i];
+ if (ps->frequency >= freq)
break;
}
/*
- * The capacity of a CPU in the domain at that capacity state (cs)
+ * The capacity of a CPU in the domain at the performance state (ps)
* can be computed as:
*
- * cs->freq * scale_cpu
- * cs->cap = -------------------- (1)
+ * ps->freq * scale_cpu
+ * ps->cap = -------------------- (1)
* cpu_max_freq
*
* So, ignoring the costs of idle states (which are not available in
- * the EM), the energy consumed by this CPU at that capacity state is
- * estimated as:
+ * the EM), the energy consumed by this CPU at that performance state
+ * is estimated as:
*
- * cs->power * cpu_util
+ * ps->power * cpu_util
* cpu_nrg = -------------------- (2)
- * cs->cap
+ * ps->cap
*
- * since 'cpu_util / cs->cap' represents its percentage of busy time.
+ * since 'cpu_util / ps->cap' represents its percentage of busy time.
*
* NOTE: Although the result of this computation actually is in
* units of power, it can be manipulated as an energy value
@@ -129,55 +149,64 @@ static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
* By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
* of two terms:
*
- * cs->power * cpu_max_freq cpu_util
+ * ps->power * cpu_max_freq cpu_util
* cpu_nrg = ------------------------ * --------- (3)
- * cs->freq scale_cpu
+ * ps->freq scale_cpu
*
- * The first term is static, and is stored in the em_cap_state struct
- * as 'cs->cost'.
+ * The first term is static, and is stored in the em_perf_state struct
+ * as 'ps->cost'.
*
* Since all CPUs of the domain have the same micro-architecture, they
- * share the same 'cs->cost', and the same CPU capacity. Hence, the
+ * share the same 'ps->cost', and the same CPU capacity. Hence, the
* total energy of the domain (which is the simple sum of the energy of
* all of its CPUs) can be factorized as:
*
- * cs->cost * \Sum cpu_util
+ * ps->cost * \Sum cpu_util
* pd_nrg = ------------------------ (4)
* scale_cpu
*/
- return cs->cost * sum_util / scale_cpu;
+ return ps->cost * sum_util / scale_cpu;
}
/**
- * em_pd_nr_cap_states() - Get the number of capacity states of a perf. domain
+ * em_pd_nr_perf_states() - Get the number of performance states of a perf.
+ * domain
* @pd : performance domain for which this must be done
*
- * Return: the number of capacity states in the performance domain table
+ * Return: the number of performance states in the performance domain table
*/
-static inline int em_pd_nr_cap_states(struct em_perf_domain *pd)
+static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
{
- return pd->nr_cap_states;
+ return pd->nr_perf_states;
}
#else
struct em_data_callback {};
#define EM_DATA_CB(_active_power_cb) { }
-static inline int em_register_perf_domain(cpumask_t *span,
- unsigned int nr_states, struct em_data_callback *cb)
+static inline
+int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
+ struct em_data_callback *cb, cpumask_t *span)
{
return -EINVAL;
}
+static inline void em_dev_unregister_perf_domain(struct device *dev)
+{
+}
static inline struct em_perf_domain *em_cpu_get(int cpu)
{
return NULL;
}
-static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
+static inline struct em_perf_domain *em_pd_get(struct device *dev)
+{
+ return NULL;
+}
+static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
unsigned long max_util, unsigned long sum_util)
{
return 0;
}
-static inline int em_pd_nr_cap_states(struct em_perf_domain *pd)
+static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
{
return 0;
}
diff --git a/include/linux/pm_opp.h b/include/linux/pm_opp.h
index d5c4a329321d..ee34c553f6bf 100644
--- a/include/linux/pm_opp.h
+++ b/include/linux/pm_opp.h
@@ -11,6 +11,7 @@
#ifndef __LINUX_OPP_H__
#define __LINUX_OPP_H__
+#include <linux/energy_model.h>
#include <linux/err.h>
#include <linux/notifier.h>
@@ -373,7 +374,11 @@ struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev);
struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp);
int of_get_required_opp_performance_state(struct device_node *np, int index);
int dev_pm_opp_of_find_icc_paths(struct device *dev, struct opp_table *opp_table);
-void dev_pm_opp_of_register_em(struct cpumask *cpus);
+int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus);
+static inline void dev_pm_opp_of_unregister_em(struct device *dev)
+{
+ em_dev_unregister_perf_domain(dev);
+}
#else
static inline int dev_pm_opp_of_add_table(struct device *dev)
{
@@ -413,7 +418,13 @@ static inline struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
return NULL;
}
-static inline void dev_pm_opp_of_register_em(struct cpumask *cpus)
+static inline int dev_pm_opp_of_register_em(struct device *dev,
+ struct cpumask *cpus)
+{
+ return -ENOTSUPP;
+}
+
+static inline void dev_pm_opp_of_unregister_em(struct device *dev)
{
}