diff options
Diffstat (limited to 'include/linux')
-rw-r--r-- | include/linux/bitops.h | 13 | ||||
-rw-r--r-- | include/linux/compiler-gcc.h | 5 | ||||
-rw-r--r-- | include/linux/cpuset.h | 6 | ||||
-rw-r--r-- | include/linux/dma-mapping.h | 18 | ||||
-rw-r--r-- | include/linux/gfp.h | 286 | ||||
-rw-r--r-- | include/linux/hugetlb_cgroup.h | 4 | ||||
-rw-r--r-- | include/linux/kernel.h | 2 | ||||
-rw-r--r-- | include/linux/mm.h | 82 | ||||
-rw-r--r-- | include/linux/mm_types.h | 40 | ||||
-rw-r--r-- | include/linux/mmzone.h | 101 | ||||
-rw-r--r-- | include/linux/moduleparam.h | 1 | ||||
-rw-r--r-- | include/linux/page-flags.h | 80 | ||||
-rw-r--r-- | include/linux/pageblock-flags.h | 2 | ||||
-rw-r--r-- | include/linux/pagemap.h | 7 | ||||
-rw-r--r-- | include/linux/rbtree.h | 12 | ||||
-rw-r--r-- | include/linux/sched.h | 28 | ||||
-rw-r--r-- | include/linux/skbuff.h | 6 | ||||
-rw-r--r-- | include/linux/zpool.h | 8 | ||||
-rw-r--r-- | include/linux/zsmalloc.h | 2 | ||||
-rw-r--r-- | include/linux/zutil.h | 4 |
20 files changed, 370 insertions, 337 deletions
diff --git a/include/linux/bitops.h b/include/linux/bitops.h index e63553386ae7..2b8ed123ad36 100644 --- a/include/linux/bitops.h +++ b/include/linux/bitops.h @@ -164,6 +164,8 @@ static inline __u8 ror8(__u8 word, unsigned int shift) * sign_extend32 - sign extend a 32-bit value using specified bit as sign-bit * @value: value to sign extend * @index: 0 based bit index (0<=index<32) to sign bit + * + * This is safe to use for 16- and 8-bit types as well. */ static inline __s32 sign_extend32(__u32 value, int index) { @@ -171,6 +173,17 @@ static inline __s32 sign_extend32(__u32 value, int index) return (__s32)(value << shift) >> shift; } +/** + * sign_extend64 - sign extend a 64-bit value using specified bit as sign-bit + * @value: value to sign extend + * @index: 0 based bit index (0<=index<64) to sign bit + */ +static inline __s64 sign_extend64(__u64 value, int index) +{ + __u8 shift = 63 - index; + return (__s64)(value << shift) >> shift; +} + static inline unsigned fls_long(unsigned long l) { if (sizeof(l) == 4) diff --git a/include/linux/compiler-gcc.h b/include/linux/compiler-gcc.h index 0e3110a0b771..22ab246feed3 100644 --- a/include/linux/compiler-gcc.h +++ b/include/linux/compiler-gcc.h @@ -205,7 +205,10 @@ #if GCC_VERSION >= 40600 /* - * Tell the optimizer that something else uses this function or variable. + * When used with Link Time Optimization, gcc can optimize away C functions or + * variables which are referenced only from assembly code. __visible tells the + * optimizer that something else uses this function or variable, thus preventing + * this. */ #define __visible __attribute__((externally_visible)) #endif diff --git a/include/linux/cpuset.h b/include/linux/cpuset.h index 5a1311942358..85a868ccb493 100644 --- a/include/linux/cpuset.h +++ b/include/linux/cpuset.h @@ -104,6 +104,9 @@ extern void cpuset_print_current_mems_allowed(void); */ static inline unsigned int read_mems_allowed_begin(void) { + if (!cpusets_enabled()) + return 0; + return read_seqcount_begin(¤t->mems_allowed_seq); } @@ -115,6 +118,9 @@ static inline unsigned int read_mems_allowed_begin(void) */ static inline bool read_mems_allowed_retry(unsigned int seq) { + if (!cpusets_enabled()) + return false; + return read_seqcount_retry(¤t->mems_allowed_seq, seq); } diff --git a/include/linux/dma-mapping.h b/include/linux/dma-mapping.h index ac07ff090919..2e551e2d2d03 100644 --- a/include/linux/dma-mapping.h +++ b/include/linux/dma-mapping.h @@ -1,6 +1,7 @@ #ifndef _LINUX_DMA_MAPPING_H #define _LINUX_DMA_MAPPING_H +#include <linux/sizes.h> #include <linux/string.h> #include <linux/device.h> #include <linux/err.h> @@ -145,7 +146,9 @@ static inline void arch_teardown_dma_ops(struct device *dev) { } static inline unsigned int dma_get_max_seg_size(struct device *dev) { - return dev->dma_parms ? dev->dma_parms->max_segment_size : 65536; + if (dev->dma_parms && dev->dma_parms->max_segment_size) + return dev->dma_parms->max_segment_size; + return SZ_64K; } static inline unsigned int dma_set_max_seg_size(struct device *dev, @@ -154,14 +157,15 @@ static inline unsigned int dma_set_max_seg_size(struct device *dev, if (dev->dma_parms) { dev->dma_parms->max_segment_size = size; return 0; - } else - return -EIO; + } + return -EIO; } static inline unsigned long dma_get_seg_boundary(struct device *dev) { - return dev->dma_parms ? - dev->dma_parms->segment_boundary_mask : 0xffffffff; + if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) + return dev->dma_parms->segment_boundary_mask; + return DMA_BIT_MASK(32); } static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) @@ -169,8 +173,8 @@ static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) if (dev->dma_parms) { dev->dma_parms->segment_boundary_mask = mask; return 0; - } else - return -EIO; + } + return -EIO; } #ifndef dma_max_pfn diff --git a/include/linux/gfp.h b/include/linux/gfp.h index f92cbd2f4450..6523109e136d 100644 --- a/include/linux/gfp.h +++ b/include/linux/gfp.h @@ -14,7 +14,7 @@ struct vm_area_struct; #define ___GFP_HIGHMEM 0x02u #define ___GFP_DMA32 0x04u #define ___GFP_MOVABLE 0x08u -#define ___GFP_WAIT 0x10u +#define ___GFP_RECLAIMABLE 0x10u #define ___GFP_HIGH 0x20u #define ___GFP_IO 0x40u #define ___GFP_FS 0x80u @@ -29,18 +29,17 @@ struct vm_area_struct; #define ___GFP_NOMEMALLOC 0x10000u #define ___GFP_HARDWALL 0x20000u #define ___GFP_THISNODE 0x40000u -#define ___GFP_RECLAIMABLE 0x80000u +#define ___GFP_ATOMIC 0x80000u #define ___GFP_NOACCOUNT 0x100000u #define ___GFP_NOTRACK 0x200000u -#define ___GFP_NO_KSWAPD 0x400000u +#define ___GFP_DIRECT_RECLAIM 0x400000u #define ___GFP_OTHER_NODE 0x800000u #define ___GFP_WRITE 0x1000000u +#define ___GFP_KSWAPD_RECLAIM 0x2000000u /* If the above are modified, __GFP_BITS_SHIFT may need updating */ /* - * GFP bitmasks.. - * - * Zone modifiers (see linux/mmzone.h - low three bits) + * Physical address zone modifiers (see linux/mmzone.h - low four bits) * * Do not put any conditional on these. If necessary modify the definitions * without the underscores and use them consistently. The definitions here may @@ -50,116 +49,229 @@ struct vm_area_struct; #define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) #define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) #define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* Page is movable */ +#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) + +/* + * Page mobility and placement hints + * + * These flags provide hints about how mobile the page is. Pages with similar + * mobility are placed within the same pageblocks to minimise problems due + * to external fragmentation. + * + * __GFP_MOVABLE (also a zone modifier) indicates that the page can be + * moved by page migration during memory compaction or can be reclaimed. + * + * __GFP_RECLAIMABLE is used for slab allocations that specify + * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. + * + * __GFP_WRITE indicates the caller intends to dirty the page. Where possible, + * these pages will be spread between local zones to avoid all the dirty + * pages being in one zone (fair zone allocation policy). + * + * __GFP_HARDWALL enforces the cpuset memory allocation policy. + * + * __GFP_THISNODE forces the allocation to be satisified from the requested + * node with no fallbacks or placement policy enforcements. + */ +#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) +#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) +#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) +#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) + /* - * Action modifiers - doesn't change the zoning + * Watermark modifiers -- controls access to emergency reserves + * + * __GFP_HIGH indicates that the caller is high-priority and that granting + * the request is necessary before the system can make forward progress. + * For example, creating an IO context to clean pages. + * + * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is + * high priority. Users are typically interrupt handlers. This may be + * used in conjunction with __GFP_HIGH + * + * __GFP_MEMALLOC allows access to all memory. This should only be used when + * the caller guarantees the allocation will allow more memory to be freed + * very shortly e.g. process exiting or swapping. Users either should + * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). + * + * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. + * This takes precedence over the __GFP_MEMALLOC flag if both are set. + * + * __GFP_NOACCOUNT ignores the accounting for kmemcg limit enforcement. + */ +#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) +#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) +#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) +#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) +#define __GFP_NOACCOUNT ((__force gfp_t)___GFP_NOACCOUNT) + +/* + * Reclaim modifiers + * + * __GFP_IO can start physical IO. + * + * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the + * allocator recursing into the filesystem which might already be holding + * locks. + * + * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. + * This flag can be cleared to avoid unnecessary delays when a fallback + * option is available. + * + * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when + * the low watermark is reached and have it reclaim pages until the high + * watermark is reached. A caller may wish to clear this flag when fallback + * options are available and the reclaim is likely to disrupt the system. The + * canonical example is THP allocation where a fallback is cheap but + * reclaim/compaction may cause indirect stalls. + * + * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. * * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt - * _might_ fail. This depends upon the particular VM implementation. + * _might_ fail. This depends upon the particular VM implementation. * * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller - * cannot handle allocation failures. New users should be evaluated carefully - * (and the flag should be used only when there is no reasonable failure policy) - * but it is definitely preferable to use the flag rather than opencode endless - * loop around allocator. + * cannot handle allocation failures. New users should be evaluated carefully + * (and the flag should be used only when there is no reasonable failure + * policy) but it is definitely preferable to use the flag rather than + * opencode endless loop around allocator. * * __GFP_NORETRY: The VM implementation must not retry indefinitely and will - * return NULL when direct reclaim and memory compaction have failed to allow - * the allocation to succeed. The OOM killer is not called with the current - * implementation. - * - * __GFP_MOVABLE: Flag that this page will be movable by the page migration - * mechanism or reclaimed + * return NULL when direct reclaim and memory compaction have failed to allow + * the allocation to succeed. The OOM killer is not called with the current + * implementation. */ -#define __GFP_WAIT ((__force gfp_t)___GFP_WAIT) /* Can wait and reschedule? */ -#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) /* Should access emergency pools? */ -#define __GFP_IO ((__force gfp_t)___GFP_IO) /* Can start physical IO? */ -#define __GFP_FS ((__force gfp_t)___GFP_FS) /* Can call down to low-level FS? */ -#define __GFP_COLD ((__force gfp_t)___GFP_COLD) /* Cache-cold page required */ -#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) /* Suppress page allocation failure warning */ -#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT) /* See above */ -#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) /* See above */ -#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) /* See above */ -#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)/* Allow access to emergency reserves */ -#define __GFP_COMP ((__force gfp_t)___GFP_COMP) /* Add compound page metadata */ -#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) /* Return zeroed page on success */ -#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) /* Don't use emergency reserves. - * This takes precedence over the - * __GFP_MEMALLOC flag if both are - * set - */ -#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) /* Enforce hardwall cpuset memory allocs */ -#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)/* No fallback, no policies */ -#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) /* Page is reclaimable */ -#define __GFP_NOACCOUNT ((__force gfp_t)___GFP_NOACCOUNT) /* Don't account to kmemcg */ -#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) /* Don't track with kmemcheck */ - -#define __GFP_NO_KSWAPD ((__force gfp_t)___GFP_NO_KSWAPD) -#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE) /* On behalf of other node */ -#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) /* Allocator intends to dirty page */ +#define __GFP_IO ((__force gfp_t)___GFP_IO) +#define __GFP_FS ((__force gfp_t)___GFP_FS) +#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ +#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ +#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) +#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT) +#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) +#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) /* - * This may seem redundant, but it's a way of annotating false positives vs. - * allocations that simply cannot be supported (e.g. page tables). + * Action modifiers + * + * __GFP_COLD indicates that the caller does not expect to be used in the near + * future. Where possible, a cache-cold page will be returned. + * + * __GFP_NOWARN suppresses allocation failure reports. + * + * __GFP_COMP address compound page metadata. + * + * __GFP_ZERO returns a zeroed page on success. + * + * __GFP_NOTRACK avoids tracking with kmemcheck. + * + * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of + * distinguishing in the source between false positives and allocations that + * cannot be supported (e.g. page tables). + * + * __GFP_OTHER_NODE is for allocations that are on a remote node but that + * should not be accounted for as a remote allocation in vmstat. A + * typical user would be khugepaged collapsing a huge page on a remote + * node. */ +#define __GFP_COLD ((__force gfp_t)___GFP_COLD) +#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) +#define __GFP_COMP ((__force gfp_t)___GFP_COMP) +#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) +#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK) +#define __GFP_OTHER_NODE ((__force gfp_t)___GFP_OTHER_NODE) -#define __GFP_BITS_SHIFT 25 /* Room for N __GFP_FOO bits */ +/* Room for N __GFP_FOO bits */ +#define __GFP_BITS_SHIFT 26 #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) -/* This equals 0, but use constants in case they ever change */ -#define GFP_NOWAIT (GFP_ATOMIC & ~__GFP_HIGH) -/* GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool */ -#define GFP_ATOMIC (__GFP_HIGH) -#define GFP_NOIO (__GFP_WAIT) -#define GFP_NOFS (__GFP_WAIT | __GFP_IO) -#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS) -#define GFP_TEMPORARY (__GFP_WAIT | __GFP_IO | __GFP_FS | \ +/* + * Useful GFP flag combinations that are commonly used. It is recommended + * that subsystems start with one of these combinations and then set/clear + * __GFP_FOO flags as necessary. + * + * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower + * watermark is applied to allow access to "atomic reserves" + * + * GFP_KERNEL is typical for kernel-internal allocations. The caller requires + * ZONE_NORMAL or a lower zone for direct access but can direct reclaim. + * + * GFP_NOWAIT is for kernel allocations that should not stall for direct + * reclaim, start physical IO or use any filesystem callback. + * + * GFP_NOIO will use direct reclaim to discard clean pages or slab pages + * that do not require the starting of any physical IO. + * + * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. + * + * GFP_USER is for userspace allocations that also need to be directly + * accessibly by the kernel or hardware. It is typically used by hardware + * for buffers that are mapped to userspace (e.g. graphics) that hardware + * still must DMA to. cpuset limits are enforced for these allocations. + * + * GFP_DMA exists for historical reasons and should be avoided where possible. + * The flags indicates that the caller requires that the lowest zone be + * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but + * it would require careful auditing as some users really require it and + * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the + * lowest zone as a type of emergency reserve. + * + * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit + * address. + * + * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, + * do not need to be directly accessible by the kernel but that cannot + * move once in use. An example may be a hardware allocation that maps + * data directly into userspace but has no addressing limitations. + * + * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not + * need direct access to but can use kmap() when access is required. They + * are expected to be movable via page reclaim or page migration. Typically, + * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE. + * + * GFP_TRANSHUGE is used for THP allocations. They are compound allocations + * that will fail quickly if memory is not available and will not wake + * kswapd on failure. + */ +#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) +#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) +#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) +#define GFP_NOIO (__GFP_RECLAIM) +#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) +#define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \ __GFP_RECLAIMABLE) -#define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL) +#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) +#define GFP_DMA __GFP_DMA +#define GFP_DMA32 __GFP_DMA32 #define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) #define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) -#define GFP_IOFS (__GFP_IO | __GFP_FS) -#define GFP_TRANSHUGE (GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ - __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | \ - __GFP_NO_KSWAPD) +#define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ + __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \ + ~__GFP_KSWAPD_RECLAIM) -/* This mask makes up all the page movable related flags */ +/* Convert GFP flags to their corresponding migrate type */ #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) +#define GFP_MOVABLE_SHIFT 3 -/* Control page allocator reclaim behavior */ -#define GFP_RECLAIM_MASK (__GFP_WAIT|__GFP_HIGH|__GFP_IO|__GFP_FS|\ - __GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\ - __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC) - -/* Control slab gfp mask during early boot */ -#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_WAIT|__GFP_IO|__GFP_FS)) - -/* Control allocation constraints */ -#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) - -/* Do not use these with a slab allocator */ -#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) - -/* Flag - indicates that the buffer will be suitable for DMA. Ignored on some - platforms, used as appropriate on others */ - -#define GFP_DMA __GFP_DMA - -/* 4GB DMA on some platforms */ -#define GFP_DMA32 __GFP_DMA32 - -/* Convert GFP flags to their corresponding migrate type */ static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) { - WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); + VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); + BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); + BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); if (unlikely(page_group_by_mobility_disabled)) return MIGRATE_UNMOVABLE; /* Group based on mobility */ - return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) | - ((gfp_flags & __GFP_RECLAIMABLE) != 0); + return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; +} +#undef GFP_MOVABLE_MASK +#undef GFP_MOVABLE_SHIFT + +static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) +{ + return gfp_flags & __GFP_DIRECT_RECLAIM; } #ifdef CONFIG_HIGHMEM diff --git a/include/linux/hugetlb_cgroup.h b/include/linux/hugetlb_cgroup.h index 7edd30515298..24154c26d469 100644 --- a/include/linux/hugetlb_cgroup.h +++ b/include/linux/hugetlb_cgroup.h @@ -32,7 +32,7 @@ static inline struct hugetlb_cgroup *hugetlb_cgroup_from_page(struct page *page) if (compound_order(page) < HUGETLB_CGROUP_MIN_ORDER) return NULL; - return (struct hugetlb_cgroup *)page[2].lru.next; + return (struct hugetlb_cgroup *)page[2].private; } static inline @@ -42,7 +42,7 @@ int set_hugetlb_cgroup(struct page *page, struct hugetlb_cgroup *h_cg) if (compound_order(page) < HUGETLB_CGROUP_MIN_ORDER) return -1; - page[2].lru.next = (void *)h_cg; + page[2].private = (unsigned long)h_cg; return 0; } diff --git a/include/linux/kernel.h b/include/linux/kernel.h index 5582410727cb..2c13f747ac2e 100644 --- a/include/linux/kernel.h +++ b/include/linux/kernel.h @@ -413,6 +413,8 @@ extern __printf(2, 3) char *kasprintf(gfp_t gfp, const char *fmt, ...); extern __printf(2, 0) char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); +extern __printf(2, 0) +const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); extern __scanf(2, 3) int sscanf(const char *, const char *, ...); diff --git a/include/linux/mm.h b/include/linux/mm.h index 906c46a05707..00bad7793788 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -430,46 +430,6 @@ static inline void compound_unlock_irqrestore(struct page *page, #endif } -static inline struct page *compound_head_by_tail(struct page *tail) -{ - struct page *head = tail->first_page; - - /* - * page->first_page may be a dangling pointer to an old - * compound page, so recheck that it is still a tail - * page before returning. - */ - smp_rmb(); - if (likely(PageTail(tail))) - return head; - return tail; -} - -/* - * Since either compound page could be dismantled asynchronously in THP - * or we access asynchronously arbitrary positioned struct page, there - * would be tail flag race. To handle this race, we should call - * smp_rmb() before checking tail flag. compound_head_by_tail() did it. - */ -static inline struct page *compound_head(struct page *page) -{ - if (unlikely(PageTail(page))) - return compound_head_by_tail(page); - return page; -} - -/* - * If we access compound page synchronously such as access to - * allocated page, there is no need to handle tail flag race, so we can - * check tail flag directly without any synchronization primitive. - */ -static inline struct page *compound_head_fast(struct page *page) -{ - if (unlikely(PageTail(page))) - return page->first_page; - return page; -} - /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test @@ -518,7 +478,7 @@ static inline void get_huge_page_tail(struct page *page) VM_BUG_ON_PAGE(!PageTail(page), page); VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); - if (compound_tail_refcounted(page->first_page)) + if (compound_tail_refcounted(compound_head(page))) atomic_inc(&page->_mapcount); } @@ -541,13 +501,7 @@ static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); - /* - * We don't need to worry about synchronization of tail flag - * when we call virt_to_head_page() since it is only called for - * already allocated page and this page won't be freed until - * this virt_to_head_page() is finished. So use _fast variant. - */ - return compound_head_fast(page); + return compound_head(page); } /* @@ -568,28 +522,42 @@ int split_free_page(struct page *page); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. - * These are _only_ valid on the head of a PG_compound page. + * These are _only_ valid on the head of a compound page. */ +typedef void compound_page_dtor(struct page *); + +/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ +enum compound_dtor_id { + NULL_COMPOUND_DTOR, + COMPOUND_PAGE_DTOR, +#ifdef CONFIG_HUGETLB_PAGE + HUGETLB_PAGE_DTOR, +#endif + NR_COMPOUND_DTORS, +}; +extern compound_page_dtor * const compound_page_dtors[]; static inline void set_compound_page_dtor(struct page *page, - compound_page_dtor *dtor) + enum compound_dtor_id compound_dtor) { - page[1].compound_dtor = dtor; + VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); + page[1].compound_dtor = compound_dtor; } static inline compound_page_dtor *get_compound_page_dtor(struct page *page) { - return page[1].compound_dtor; + VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); + return compound_page_dtors[page[1].compound_dtor]; } -static inline int compound_order(struct page *page) +static inline unsigned int compound_order(struct page *page) { if (!PageHead(page)) return 0; return page[1].compound_order; } -static inline void set_compound_order(struct page *page, unsigned long order) +static inline void set_compound_order(struct page *page, unsigned int order) { page[1].compound_order = order; } @@ -1572,8 +1540,7 @@ static inline bool ptlock_init(struct page *page) * with 0. Make sure nobody took it in use in between. * * It can happen if arch try to use slab for page table allocation: - * slab code uses page->slab_cache and page->first_page (for tail - * pages), which share storage with page->ptl. + * slab code uses page->slab_cache, which share storage with page->ptl. */ VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); if (!ptlock_alloc(page)) @@ -1843,7 +1810,8 @@ extern void si_meminfo(struct sysinfo * val); extern void si_meminfo_node(struct sysinfo *val, int nid); extern __printf(3, 4) -void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); +void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, + const char *fmt, ...); extern void setup_per_cpu_pageset(void); diff --git a/include/linux/mm_types.h b/include/linux/mm_types.h index 0a85da25a822..f8d1492a114f 100644 --- a/include/linux/mm_types.h +++ b/include/linux/mm_types.h @@ -28,8 +28,6 @@ struct mem_cgroup; IS_ENABLED(CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK)) #define ALLOC_SPLIT_PTLOCKS (SPINLOCK_SIZE > BITS_PER_LONG/8) -typedef void compound_page_dtor(struct page *); - /* * Each physical page in the system has a struct page associated with * it to keep track of whatever it is we are using the page for at the @@ -113,7 +111,13 @@ struct page { }; }; - /* Third double word block */ + /* + * Third double word block + * + * WARNING: bit 0 of the first word encode PageTail(). That means + * the rest users of the storage space MUST NOT use the bit to + * avoid collision and false-positive PageTail(). + */ union { struct list_head lru; /* Pageout list, eg. active_list * protected by zone->lru_lock ! @@ -131,18 +135,37 @@ struct page { #endif }; - struct slab *slab_page; /* slab fields */ struct rcu_head rcu_head; /* Used by SLAB * when destroying via RCU */ - /* First tail page of compound page */ + /* Tail pages of compound page */ struct { - compound_page_dtor *compound_dtor; - unsigned long compound_order; + unsigned long compound_head; /* If bit zero is set */ + + /* First tail page only */ +#ifdef CONFIG_64BIT + /* + * On 64 bit system we have enough space in struct page + * to encode compound_dtor and compound_order with + * unsigned int. It can help compiler generate better or + * smaller code on some archtectures. + */ + unsigned int compound_dtor; + unsigned int compound_order; +#else + unsigned short int compound_dtor; + unsigned short int compound_order; +#endif }; #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS - pgtable_t pmd_huge_pte; /* protected by page->ptl */ + struct { + unsigned long __pad; /* do not overlay pmd_huge_pte + * with compound_head to avoid + * possible bit 0 collision. + */ + pgtable_t pmd_huge_pte; /* protected by page->ptl */ + }; #endif }; @@ -163,7 +186,6 @@ struct page { #endif #endif struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */ - struct page *first_page; /* Compound tail pages */ }; #ifdef CONFIG_MEMCG diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h index 2d7e660cdefe..e23a9e704536 100644 --- a/include/linux/mmzone.h +++ b/include/linux/mmzone.h @@ -37,10 +37,10 @@ enum { MIGRATE_UNMOVABLE, - MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, + MIGRATE_RECLAIMABLE, MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ - MIGRATE_RESERVE = MIGRATE_PCPTYPES, + MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, #ifdef CONFIG_CMA /* * MIGRATE_CMA migration type is designed to mimic the way @@ -334,13 +334,16 @@ struct zone { /* zone watermarks, access with *_wmark_pages(zone) macros */ unsigned long watermark[NR_WMARK]; + unsigned long nr_reserved_highatomic; + /* - * We don't know if the memory that we're going to allocate will be freeable - * or/and it will be released eventually, so to avoid totally wasting several - * GB of ram we must reserve some of the lower zone memory (otherwise we risk - * to run OOM on the lower zones despite there's tons of freeable ram - * on the higher zones). This array is recalculated at runtime if the - * sysctl_lowmem_reserve_ratio sysctl changes. + * We don't know if the memory that we're going to allocate will be + * freeable or/and it will be released eventually, so to avoid totally + * wasting several GB of ram we must reserve some of the lower zone + * memory (otherwise we risk to run OOM on the lower zones despite + * there being tons of freeable ram on the higher zones). This array is + * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl + * changes. */ long lowmem_reserve[MAX_NR_ZONES]; @@ -429,12 +432,6 @@ struct zone { const char *name; - /* - * Number of MIGRATE_RESERVE page block. To maintain for just - * optimization. Protected by zone->lock. - */ - int nr_migrate_reserve_block; - #ifdef CONFIG_MEMORY_ISOLATION /* * Number of isolated pageblock. It is used to solve incorrect @@ -589,75 +586,8 @@ static inline bool zone_is_empty(struct zone *zone) * [1] : No fallback (__GFP_THISNODE) */ #define MAX_ZONELISTS 2 - - -/* - * We cache key information from each zonelist for smaller cache - * footprint when scanning for free pages in get_page_from_freelist(). - * - * 1) The BITMAP fullzones tracks which zones in a zonelist have come - * up short of free memory since the last time (last_fullzone_zap) - * we zero'd fullzones. - * 2) The array z_to_n[] maps each zone in the zonelist to its node - * id, so that we can efficiently evaluate whether that node is - * set in the current tasks mems_allowed. - * - * Both fullzones and z_to_n[] are one-to-one with the zonelist, - * indexed by a zones offset in the zonelist zones[] array. - * - * The get_page_from_freelist() routine does two scans. During the - * first scan, we skip zones whose corresponding bit in 'fullzones' - * is set or whose corresponding node in current->mems_allowed (which - * comes from cpusets) is not set. During the second scan, we bypass - * this zonelist_cache, to ensure we look methodically at each zone. - * - * Once per second, we zero out (zap) fullzones, forcing us to - * reconsider nodes that might have regained more free memory. - * The field last_full_zap is the time we last zapped fullzones. - * - * This mechanism reduces the amount of time we waste repeatedly - * reexaming zones for free memory when they just came up low on - * memory momentarilly ago. - * - * The zonelist_cache struct members logically belong in struct - * zonelist. However, the mempolicy zonelists constructed for - * MPOL_BIND are intentionally variable length (and usually much - * shorter). A general purpose mechanism for handling structs with - * multiple variable length members is more mechanism than we want - * here. We resort to some special case hackery instead. - * - * The MPOL_BIND zonelists don't need this zonelist_cache (in good - * part because they are shorter), so we put the fixed length stuff - * at the front of the zonelist struct, ending in a variable length - * zones[], as is needed by MPOL_BIND. - * - * Then we put the optional zonelist cache on the end of the zonelist - * struct. This optional stuff is found by a 'zlcache_ptr' pointer in - * the fixed length portion at the front of the struct. This pointer - * both enables us to find the zonelist cache, and in the case of - * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) - * to know that the zonelist cache is not there. - * - * The end result is that struct zonelists come in two flavors: - * 1) The full, fixed length version, shown below, and - * 2) The custom zonelists for MPOL_BIND. - * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. - * - * Even though there may be multiple CPU cores on a node modifying - * fullzones or last_full_zap in the same zonelist_cache at the same - * time, we don't lock it. This is just hint data - if it is wrong now - * and then, the allocator will still function, perhaps a bit slower. - */ - - -struct zonelist_cache { - unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ - DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ - unsigned long last_full_zap; /* when last zap'd (jiffies) */ -}; #else #define MAX_ZONELISTS 1 -struct zonelist_cache; #endif /* @@ -675,9 +605,6 @@ struct zoneref { * allocation, the other zones are fallback zones, in decreasing * priority. * - * If zlcache_ptr is not NULL, then it is just the address of zlcache, - * as explained above. If zlcache_ptr is NULL, there is no zlcache. - * * * To speed the reading of the zonelist, the zonerefs contain the zone index * of the entry being read. Helper functions to access information given * a struct zoneref are @@ -687,11 +614,7 @@ struct zoneref { * zonelist_node_idx() - Return the index of the node for an entry */ struct zonelist { - struct zonelist_cache *zlcache_ptr; // NULL or &zlcache struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; -#ifdef CONFIG_NUMA - struct zonelist_cache zlcache; // optional ... -#endif }; #ifndef CONFIG_DISCONTIGMEM @@ -817,7 +740,7 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, int classzone_idx, int alloc_flags); bool zone_watermark_ok_safe(struct zone *z, unsigned int order, - unsigned long mark, int classzone_idx, int alloc_flags); + unsigned long mark, int classzone_idx); enum memmap_context { MEMMAP_EARLY, MEMMAP_HOTPLUG, diff --git a/include/linux/moduleparam.h b/include/linux/moduleparam.h index c12f2147c350..52666d90ca94 100644 --- a/include/linux/moduleparam.h +++ b/include/linux/moduleparam.h @@ -386,6 +386,7 @@ extern int param_get_ullong(char *buffer, const struct kernel_param *kp); extern const struct kernel_param_ops param_ops_charp; extern int param_set_charp(const char *val, const struct kernel_param *kp); extern int param_get_charp(char *buffer, const struct kernel_param *kp); +extern void param_free_charp(void *arg); #define param_check_charp(name, p) __param_check(name, p, char *) /* We used to allow int as well as bool. We're taking that away! */ diff --git a/include/linux/page-flags.h b/include/linux/page-flags.h index a525e5067484..bb53c7b86315 100644 --- a/include/linux/page-flags.h +++ b/include/linux/page-flags.h @@ -86,12 +86,7 @@ enum pageflags { PG_private, /* If pagecache, has fs-private data */ PG_private_2, /* If pagecache, has fs aux data */ PG_writeback, /* Page is under writeback */ -#ifdef CONFIG_PAGEFLAGS_EXTENDED PG_head, /* A head page */ - PG_tail, /* A tail page */ -#else - PG_compound, /* A compound page */ -#endif PG_swapcache, /* Swap page: swp_entry_t in private */ PG_mappedtodisk, /* Has blocks allocated on-disk */ PG_reclaim, /* To be reclaimed asap */ @@ -398,85 +393,46 @@ static inline void set_page_writeback_keepwrite(struct page *page) test_set_page_writeback_keepwrite(page); } -#ifdef CONFIG_PAGEFLAGS_EXTENDED -/* - * System with lots of page flags available. This allows separate - * flags for PageHead() and PageTail() checks of compound pages so that bit - * tests can be used in performance sensitive paths. PageCompound is - * generally not used in hot code paths except arch/powerpc/mm/init_64.c - * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages - * and avoid handling those in real mode. - */ __PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head) -__PAGEFLAG(Tail, tail) -static inline int PageCompound(struct page *page) -{ - return page->flags & ((1L << PG_head) | (1L << PG_tail)); - -} -#ifdef CONFIG_TRANSPARENT_HUGEPAGE -static inline void ClearPageCompound(struct page *page) +static inline int PageTail(struct page *page) { - BUG_ON(!PageHead(page)); - ClearPageHead(page); + return READ_ONCE(page->compound_head) & 1; } -#endif - -#define PG_head_mask ((1L << PG_head)) -#else -/* - * Reduce page flag use as much as possible by overlapping - * compound page flags with the flags used for page cache pages. Possible - * because PageCompound is always set for compound pages and not for - * pages on the LRU and/or pagecache. - */ -TESTPAGEFLAG(Compound, compound) -__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound) - -/* - * PG_reclaim is used in combination with PG_compound to mark the - * head and tail of a compound page. This saves one page flag - * but makes it impossible to use compound pages for the page cache. - * The PG_reclaim bit would have to be used for reclaim or readahead - * if compound pages enter the page cache. - * - * PG_compound & PG_reclaim => Tail page - * PG_compound & ~PG_reclaim => Head page - */ -#define PG_head_mask ((1L << PG_compound)) -#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim)) - -static inline int PageHead(struct page *page) +static inline void set_compound_head(struct page *page, struct page *head) { - return ((page->flags & PG_head_tail_mask) == PG_head_mask); + WRITE_ONCE(page->compound_head, (unsigned long)head + 1); } -static inline int PageTail(struct page *page) +static inline void clear_compound_head(struct page *page) { - return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask); + WRITE_ONCE(page->compound_head, 0); } -static inline void __SetPageTail(struct page *page) +static inline struct page *compound_head(struct page *page) { - page->flags |= PG_head_tail_mask; + unsigned long head = READ_ONCE(page->compound_head); + + if (unlikely(head & 1)) + return (struct page *) (head - 1); + return page; } -static inline void __ClearPageTail(struct page *page) +static inline int PageCompound(struct page *page) { - page->flags &= ~PG_head_tail_mask; -} + return PageHead(page) || PageTail(page); +} #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void ClearPageCompound(struct page *page) { - BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound)); - clear_bit(PG_compound, &page->flags); + BUG_ON(!PageHead(page)); + ClearPageHead(page); } #endif -#endif /* !PAGEFLAGS_EXTENDED */ +#define PG_head_mask ((1L << PG_head)) #ifdef CONFIG_HUGETLB_PAGE int PageHuge(struct page *page); diff --git a/include/linux/pageblock-flags.h b/include/linux/pageblock-flags.h index 2baeee12f48e..e942558b3585 100644 --- a/include/linux/pageblock-flags.h +++ b/include/linux/pageblock-flags.h @@ -44,7 +44,7 @@ enum pageblock_bits { #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE /* Huge page sizes are variable */ -extern int pageblock_order; +extern unsigned int pageblock_order; #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ diff --git a/include/linux/pagemap.h b/include/linux/pagemap.h index a6c78e00ea96..26eabf5ec718 100644 --- a/include/linux/pagemap.h +++ b/include/linux/pagemap.h @@ -69,6 +69,13 @@ static inline gfp_t mapping_gfp_mask(struct address_space * mapping) return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; } +/* Restricts the given gfp_mask to what the mapping allows. */ +static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, + gfp_t gfp_mask) +{ + return mapping_gfp_mask(mapping) & gfp_mask; +} + /* * This is non-atomic. Only to be used before the mapping is activated. * Probably needs a barrier... diff --git a/include/linux/rbtree.h b/include/linux/rbtree.h index 830c4992088d..a5aa7ae671f4 100644 --- a/include/linux/rbtree.h +++ b/include/linux/rbtree.h @@ -101,13 +101,21 @@ static inline void rb_link_node_rcu(struct rb_node *node, struct rb_node *parent }) /** - * rbtree_postorder_for_each_entry_safe - iterate over rb_root in post order of - * given type safe against removal of rb_node entry + * rbtree_postorder_for_each_entry_safe - iterate in post-order over rb_root of + * given type allowing the backing memory of @pos to be invalidated * * @pos: the 'type *' to use as a loop cursor. * @n: another 'type *' to use as temporary storage * @root: 'rb_root *' of the rbtree. * @field: the name of the rb_node field within 'type'. + * + * rbtree_postorder_for_each_entry_safe() provides a similar guarantee as + * list_for_each_entry_safe() and allows the iteration to continue independent + * of changes to @pos by the body of the loop. + * + * Note, however, that it cannot handle other modifications that re-order the + * rbtree it is iterating over. This includes calling rb_erase() on @pos, as + * rb_erase() may rebalance the tree, causing us to miss some nodes. */ #define rbtree_postorder_for_each_entry_safe(pos, n, root, field) \ for (pos = rb_entry_safe(rb_first_postorder(root), typeof(*pos), field); \ diff --git a/include/linux/sched.h b/include/linux/sched.h index eeb5066a44fb..4069febaa34a 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -1570,9 +1570,7 @@ struct task_struct { unsigned long sas_ss_sp; size_t sas_ss_size; - int (*notifier)(void *priv); - void *notifier_data; - sigset_t *notifier_mask; + struct callback_head *task_works; struct audit_context *audit_context; @@ -2464,21 +2462,29 @@ extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); -static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) +static inline int kernel_dequeue_signal(siginfo_t *info) { - unsigned long flags; + struct task_struct *tsk = current; + siginfo_t __info; int ret; - spin_lock_irqsave(&tsk->sighand->siglock, flags); - ret = dequeue_signal(tsk, mask, info); - spin_unlock_irqrestore(&tsk->sighand->siglock, flags); + spin_lock_irq(&tsk->sighand->siglock); + ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); + spin_unlock_irq(&tsk->sighand->siglock); return ret; } -extern void block_all_signals(int (*notifier)(void *priv), void *priv, - sigset_t *mask); -extern void unblock_all_signals(void); +static inline void kernel_signal_stop(void) +{ + spin_lock_irq(¤t->sighand->siglock); + if (current->jobctl & JOBCTL_STOP_DEQUEUED) + __set_current_state(TASK_STOPPED); + spin_unlock_irq(¤t->sighand->siglock); + + schedule(); +} + extern void release_task(struct task_struct * p); extern int send_sig_info(int, struct siginfo *, struct task_struct *); extern int force_sigsegv(int, struct task_struct *); diff --git a/include/linux/skbuff.h b/include/linux/skbuff.h index 24f4dfd94c51..4355129fff91 100644 --- a/include/linux/skbuff.h +++ b/include/linux/skbuff.h @@ -1224,7 +1224,7 @@ static inline int skb_cloned(const struct sk_buff *skb) static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) { - might_sleep_if(pri & __GFP_WAIT); + might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) return pskb_expand_head(skb, 0, 0, pri); @@ -1308,7 +1308,7 @@ static inline int skb_shared(const struct sk_buff *skb) */ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) { - might_sleep_if(pri & __GFP_WAIT); + might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, pri); @@ -1344,7 +1344,7 @@ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) static inline struct sk_buff *skb_unshare(struct sk_buff *skb, gfp_t pri) { - might_sleep_if(pri & __GFP_WAIT); + might_sleep_if(gfpflags_allow_blocking(pri)); if (skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, pri); diff --git a/include/linux/zpool.h b/include/linux/zpool.h index 42f8ec992452..2e97b7707dff 100644 --- a/include/linux/zpool.h +++ b/include/linux/zpool.h @@ -38,10 +38,10 @@ enum zpool_mapmode { bool zpool_has_pool(char *type); -struct zpool *zpool_create_pool(char *type, char *name, +struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp, const struct zpool_ops *ops); -char *zpool_get_type(struct zpool *pool); +const char *zpool_get_type(struct zpool *pool); void zpool_destroy_pool(struct zpool *pool); @@ -83,7 +83,9 @@ struct zpool_driver { atomic_t refcount; struct list_head list; - void *(*create)(char *name, gfp_t gfp, const struct zpool_ops *ops, + void *(*create)(const char *name, + gfp_t gfp, + const struct zpool_ops *ops, struct zpool *zpool); void (*destroy)(void *pool); diff --git a/include/linux/zsmalloc.h b/include/linux/zsmalloc.h index 6398dfae53f1..34eb16098a33 100644 --- a/include/linux/zsmalloc.h +++ b/include/linux/zsmalloc.h @@ -41,7 +41,7 @@ struct zs_pool_stats { struct zs_pool; -struct zs_pool *zs_create_pool(char *name, gfp_t flags); +struct zs_pool *zs_create_pool(const char *name, gfp_t flags); void zs_destroy_pool(struct zs_pool *pool); unsigned long zs_malloc(struct zs_pool *pool, size_t size); diff --git a/include/linux/zutil.h b/include/linux/zutil.h index 6adfa9a6ffe9..663689521759 100644 --- a/include/linux/zutil.h +++ b/include/linux/zutil.h @@ -68,10 +68,10 @@ typedef uLong (*check_func) (uLong check, const Byte *buf, An Adler-32 checksum is almost as reliable as a CRC32 but can be computed much faster. Usage example: - uLong adler = adler32(0L, NULL, 0); + uLong adler = zlib_adler32(0L, NULL, 0); while (read_buffer(buffer, length) != EOF) { - adler = adler32(adler, buffer, length); + adler = zlib_adler32(adler, buffer, length); } if (adler != original_adler) error(); */ |