summaryrefslogtreecommitdiff
path: root/include/linux/compiler.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/compiler.h')
-rw-r--r--include/linux/compiler.h266
1 files changed, 160 insertions, 106 deletions
diff --git a/include/linux/compiler.h b/include/linux/compiler.h
index cce2c92567b5..f09ebbf16562 100644
--- a/include/linux/compiler.h
+++ b/include/linux/compiler.h
@@ -120,12 +120,65 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
/* Annotate a C jump table to allow objtool to follow the code flow */
#define __annotate_jump_table __section(.rodata..c_jump_table)
+#ifdef CONFIG_DEBUG_ENTRY
+/* Begin/end of an instrumentation safe region */
+#define instrumentation_begin() ({ \
+ asm volatile("%c0:\n\t" \
+ ".pushsection .discard.instr_begin\n\t" \
+ ".long %c0b - .\n\t" \
+ ".popsection\n\t" : : "i" (__COUNTER__)); \
+})
+
+/*
+ * Because instrumentation_{begin,end}() can nest, objtool validation considers
+ * _begin() a +1 and _end() a -1 and computes a sum over the instructions.
+ * When the value is greater than 0, we consider instrumentation allowed.
+ *
+ * There is a problem with code like:
+ *
+ * noinstr void foo()
+ * {
+ * instrumentation_begin();
+ * ...
+ * if (cond) {
+ * instrumentation_begin();
+ * ...
+ * instrumentation_end();
+ * }
+ * bar();
+ * instrumentation_end();
+ * }
+ *
+ * If instrumentation_end() would be an empty label, like all the other
+ * annotations, the inner _end(), which is at the end of a conditional block,
+ * would land on the instruction after the block.
+ *
+ * If we then consider the sum of the !cond path, we'll see that the call to
+ * bar() is with a 0-value, even though, we meant it to happen with a positive
+ * value.
+ *
+ * To avoid this, have _end() be a NOP instruction, this ensures it will be
+ * part of the condition block and does not escape.
+ */
+#define instrumentation_end() ({ \
+ asm volatile("%c0: nop\n\t" \
+ ".pushsection .discard.instr_end\n\t" \
+ ".long %c0b - .\n\t" \
+ ".popsection\n\t" : : "i" (__COUNTER__)); \
+})
+#endif /* CONFIG_DEBUG_ENTRY */
+
#else
#define annotate_reachable()
#define annotate_unreachable()
#define __annotate_jump_table
#endif
+#ifndef instrumentation_begin
+#define instrumentation_begin() do { } while(0)
+#define instrumentation_end() do { } while(0)
+#endif
+
#ifndef ASM_UNREACHABLE
# define ASM_UNREACHABLE
#endif
@@ -177,28 +230,93 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
#endif
-#include <uapi/linux/types.h>
+/*
+ * Prevent the compiler from merging or refetching reads or writes. The
+ * compiler is also forbidden from reordering successive instances of
+ * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
+ * particular ordering. One way to make the compiler aware of ordering is to
+ * put the two invocations of READ_ONCE or WRITE_ONCE in different C
+ * statements.
+ *
+ * These two macros will also work on aggregate data types like structs or
+ * unions.
+ *
+ * Their two major use cases are: (1) Mediating communication between
+ * process-level code and irq/NMI handlers, all running on the same CPU,
+ * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
+ * mutilate accesses that either do not require ordering or that interact
+ * with an explicit memory barrier or atomic instruction that provides the
+ * required ordering.
+ */
+#include <asm/barrier.h>
+#include <linux/kasan-checks.h>
#include <linux/kcsan-checks.h>
-#define __READ_ONCE_SIZE \
+/**
+ * data_race - mark an expression as containing intentional data races
+ *
+ * This data_race() macro is useful for situations in which data races
+ * should be forgiven. One example is diagnostic code that accesses
+ * shared variables but is not a part of the core synchronization design.
+ *
+ * This macro *does not* affect normal code generation, but is a hint
+ * to tooling that data races here are to be ignored.
+ */
+#define data_race(expr) \
({ \
- switch (size) { \
- case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \
- case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \
- case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \
- case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \
- default: \
- barrier(); \
- __builtin_memcpy((void *)res, (const void *)p, size); \
- barrier(); \
- } \
+ __kcsan_disable_current(); \
+ ({ \
+ __unqual_scalar_typeof(({ expr; })) __v = ({ expr; }); \
+ __kcsan_enable_current(); \
+ __v; \
+ }); \
})
+/*
+ * Use __READ_ONCE() instead of READ_ONCE() if you do not require any
+ * atomicity or dependency ordering guarantees. Note that this may result
+ * in tears!
+ */
+#define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x))
+
+#define __READ_ONCE_SCALAR(x) \
+({ \
+ typeof(x) *__xp = &(x); \
+ __unqual_scalar_typeof(x) __x = data_race(__READ_ONCE(*__xp)); \
+ kcsan_check_atomic_read(__xp, sizeof(*__xp)); \
+ smp_read_barrier_depends(); \
+ (typeof(x))__x; \
+})
+
+#define READ_ONCE(x) \
+({ \
+ compiletime_assert_rwonce_type(x); \
+ __READ_ONCE_SCALAR(x); \
+})
+
+#define __WRITE_ONCE(x, val) \
+do { \
+ *(volatile typeof(x) *)&(x) = (val); \
+} while (0)
+
+#define __WRITE_ONCE_SCALAR(x, val) \
+do { \
+ typeof(x) *__xp = &(x); \
+ kcsan_check_atomic_write(__xp, sizeof(*__xp)); \
+ data_race(({ __WRITE_ONCE(*__xp, val); 0; })); \
+} while (0)
+
+#define WRITE_ONCE(x, val) \
+do { \
+ compiletime_assert_rwonce_type(x); \
+ __WRITE_ONCE_SCALAR(x, val); \
+} while (0)
+
#ifdef CONFIG_KASAN
/*
- * We can't declare function 'inline' because __no_sanitize_address confilcts
+ * We can't declare function 'inline' because __no_sanitize_address conflicts
* with inlining. Attempt to inline it may cause a build failure.
- * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
+ * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
* '__maybe_unused' allows us to avoid defined-but-not-used warnings.
*/
# define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused
@@ -225,78 +343,26 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
#define __no_sanitize_or_inline __always_inline
#endif
-static __no_kcsan_or_inline
-void __read_once_size(const volatile void *p, void *res, int size)
-{
- kcsan_check_atomic_read(p, size);
- __READ_ONCE_SIZE;
-}
-
static __no_sanitize_or_inline
-void __read_once_size_nocheck(const volatile void *p, void *res, int size)
+unsigned long __read_once_word_nocheck(const void *addr)
{
- __READ_ONCE_SIZE;
-}
-
-static __no_kcsan_or_inline
-void __write_once_size(volatile void *p, void *res, int size)
-{
- kcsan_check_atomic_write(p, size);
-
- switch (size) {
- case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
- case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
- case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
- case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
- default:
- barrier();
- __builtin_memcpy((void *)p, (const void *)res, size);
- barrier();
- }
+ return __READ_ONCE(*(unsigned long *)addr);
}
/*
- * Prevent the compiler from merging or refetching reads or writes. The
- * compiler is also forbidden from reordering successive instances of
- * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
- * particular ordering. One way to make the compiler aware of ordering is to
- * put the two invocations of READ_ONCE or WRITE_ONCE in different C
- * statements.
- *
- * These two macros will also work on aggregate data types like structs or
- * unions. If the size of the accessed data type exceeds the word size of
- * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
- * fall back to memcpy(). There's at least two memcpy()s: one for the
- * __builtin_memcpy() and then one for the macro doing the copy of variable
- * - '__u' allocated on the stack.
- *
- * Their two major use cases are: (1) Mediating communication between
- * process-level code and irq/NMI handlers, all running on the same CPU,
- * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
- * mutilate accesses that either do not require ordering or that interact
- * with an explicit memory barrier or atomic instruction that provides the
- * required ordering.
+ * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a
+ * word from memory atomically but without telling KASAN/KCSAN. This is
+ * usually used by unwinding code when walking the stack of a running process.
*/
-#include <asm/barrier.h>
-#include <linux/kasan-checks.h>
-
-#define __READ_ONCE(x, check) \
+#define READ_ONCE_NOCHECK(x) \
({ \
- union { typeof(x) __val; char __c[1]; } __u; \
- if (check) \
- __read_once_size(&(x), __u.__c, sizeof(x)); \
- else \
- __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \
- smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
- __u.__val; \
+ unsigned long __x; \
+ compiletime_assert(sizeof(x) == sizeof(__x), \
+ "Unsupported access size for READ_ONCE_NOCHECK()."); \
+ __x = __read_once_word_nocheck(&(x)); \
+ smp_read_barrier_depends(); \
+ (typeof(x))__x; \
})
-#define READ_ONCE(x) __READ_ONCE(x, 1)
-
-/*
- * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
- * to hide memory access from KASAN.
- */
-#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
static __no_kasan_or_inline
unsigned long read_word_at_a_time(const void *addr)
@@ -305,34 +371,6 @@ unsigned long read_word_at_a_time(const void *addr)
return *(unsigned long *)addr;
}
-#define WRITE_ONCE(x, val) \
-({ \
- union { typeof(x) __val; char __c[1]; } __u = \
- { .__val = (__force typeof(x)) (val) }; \
- __write_once_size(&(x), __u.__c, sizeof(x)); \
- __u.__val; \
-})
-
-/**
- * data_race - mark an expression as containing intentional data races
- *
- * This data_race() macro is useful for situations in which data races
- * should be forgiven. One example is diagnostic code that accesses
- * shared variables but is not a part of the core synchronization design.
- *
- * This macro *does not* affect normal code generation, but is a hint
- * to tooling that data races here are to be ignored.
- */
-#define data_race(expr) \
- ({ \
- typeof(({ expr; })) __val; \
- kcsan_disable_current(); \
- __val = ({ expr; }); \
- kcsan_enable_current(); \
- __val; \
- })
-#else
-
#endif /* __KERNEL__ */
/*
@@ -397,7 +435,23 @@ static inline void *offset_to_ptr(const int *off)
compiletime_assert(__native_word(t), \
"Need native word sized stores/loads for atomicity.")
+/*
+ * Yes, this permits 64-bit accesses on 32-bit architectures. These will
+ * actually be atomic in some cases (namely Armv7 + LPAE), but for others we
+ * rely on the access being split into 2x32-bit accesses for a 32-bit quantity
+ * (e.g. a virtual address) and a strong prevailing wind.
+ */
+#define compiletime_assert_rwonce_type(t) \
+ compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \
+ "Unsupported access size for {READ,WRITE}_ONCE().")
+
/* &a[0] degrades to a pointer: a different type from an array */
#define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
+/*
+ * This is needed in functions which generate the stack canary, see
+ * arch/x86/kernel/smpboot.c::start_secondary() for an example.
+ */
+#define prevent_tail_call_optimization() mb()
+
#endif /* __LINUX_COMPILER_H */