summaryrefslogtreecommitdiff
path: root/include/linux/compiler.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/compiler.h')
-rw-r--r--include/linux/compiler.h112
1 files changed, 80 insertions, 32 deletions
diff --git a/include/linux/compiler.h b/include/linux/compiler.h
index 5a4054f17cbc..b15911e201bf 100644
--- a/include/linux/compiler.h
+++ b/include/linux/compiler.h
@@ -109,35 +109,21 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
/* Unreachable code */
#ifdef CONFIG_OBJTOOL
-/*
- * These macros help objtool understand GCC code flow for unreachable code.
- * The __COUNTER__ based labels are a hack to make each instance of the macros
- * unique, to convince GCC not to merge duplicate inline asm statements.
- */
-#define __stringify_label(n) #n
-
-#define __annotate_unreachable(c) ({ \
- asm volatile(__stringify_label(c) ":\n\t" \
- ".pushsection .discard.unreachable\n\t" \
- ".long " __stringify_label(c) "b - .\n\t" \
- ".popsection\n\t" : : "i" (c)); \
-})
-#define annotate_unreachable() __annotate_unreachable(__COUNTER__)
-
/* Annotate a C jump table to allow objtool to follow the code flow */
-#define __annotate_jump_table __section(".rodata..c_jump_table")
-
+#define __annotate_jump_table __section(".data.rel.ro.c_jump_table")
#else /* !CONFIG_OBJTOOL */
-#define annotate_unreachable()
#define __annotate_jump_table
#endif /* CONFIG_OBJTOOL */
-#ifndef unreachable
-# define unreachable() do { \
- annotate_unreachable(); \
+/*
+ * Mark a position in code as unreachable. This can be used to
+ * suppress control flow warnings after asm blocks that transfer
+ * control elsewhere.
+ */
+#define unreachable() do { \
+ barrier_before_unreachable(); \
__builtin_unreachable(); \
} while (0)
-#endif
/*
* KENTRY - kernel entry point
@@ -177,10 +163,7 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
__asm__ ("" : "=r" (var) : "0" (var))
#endif
-/* Not-quite-unique ID. */
-#ifndef __UNIQUE_ID
-# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
-#endif
+#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
/**
* data_race - mark an expression as containing intentional data races
@@ -188,16 +171,22 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
* This data_race() macro is useful for situations in which data races
* should be forgiven. One example is diagnostic code that accesses
* shared variables but is not a part of the core synchronization design.
+ * For example, if accesses to a given variable are protected by a lock,
+ * except for diagnostic code, then the accesses under the lock should
+ * be plain C-language accesses and those in the diagnostic code should
+ * use data_race(). This way, KCSAN will complain if buggy lockless
+ * accesses to that variable are introduced, even if the buggy accesses
+ * are protected by READ_ONCE() or WRITE_ONCE().
*
* This macro *does not* affect normal code generation, but is a hint
- * to tooling that data races here are to be ignored.
+ * to tooling that data races here are to be ignored. If the access must
+ * be atomic *and* KCSAN should ignore the access, use both data_race()
+ * and READ_ONCE(), for example, data_race(READ_ONCE(x)).
*/
#define data_race(expr) \
({ \
- __unqual_scalar_typeof(({ expr; })) __v = ({ \
- __kcsan_disable_current(); \
- expr; \
- }); \
+ __kcsan_disable_current(); \
+ __auto_type __v = (expr); \
__kcsan_enable_current(); \
__v; \
})
@@ -229,7 +218,7 @@ static inline void *offset_to_ptr(const int *off)
*/
#define ___ADDRESSABLE(sym, __attrs) \
static void * __used __attrs \
- __UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)&sym;
+ __UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym;
#define __ADDRESSABLE(sym) \
___ADDRESSABLE(sym, __section(".discard.addressable"))
@@ -245,6 +234,56 @@ static inline void *offset_to_ptr(const int *off)
/* &a[0] degrades to a pointer: a different type from an array */
#define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
+/* Require C Strings (i.e. NUL-terminated) lack the "nonstring" attribute. */
+#define __must_be_cstr(p) BUILD_BUG_ON_ZERO(__annotated(p, nonstring))
+
+/*
+ * This returns a constant expression while determining if an argument is
+ * a constant expression, most importantly without evaluating the argument.
+ * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
+ *
+ * Details:
+ * - sizeof() return an integer constant expression, and does not evaluate
+ * the value of its operand; it only examines the type of its operand.
+ * - The results of comparing two integer constant expressions is also
+ * an integer constant expression.
+ * - The first literal "8" isn't important. It could be any literal value.
+ * - The second literal "8" is to avoid warnings about unaligned pointers;
+ * this could otherwise just be "1".
+ * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit
+ * architectures.
+ * - The C Standard defines "null pointer constant", "(void *)0", as
+ * distinct from other void pointers.
+ * - If (x) is an integer constant expression, then the "* 0l" resolves
+ * it into an integer constant expression of value 0. Since it is cast to
+ * "void *", this makes the second operand a null pointer constant.
+ * - If (x) is not an integer constant expression, then the second operand
+ * resolves to a void pointer (but not a null pointer constant: the value
+ * is not an integer constant 0).
+ * - The conditional operator's third operand, "(int *)8", is an object
+ * pointer (to type "int").
+ * - The behavior (including the return type) of the conditional operator
+ * ("operand1 ? operand2 : operand3") depends on the kind of expressions
+ * given for the second and third operands. This is the central mechanism
+ * of the macro:
+ * - When one operand is a null pointer constant (i.e. when x is an integer
+ * constant expression) and the other is an object pointer (i.e. our
+ * third operand), the conditional operator returns the type of the
+ * object pointer operand (i.e. "int *"). Here, within the sizeof(), we
+ * would then get:
+ * sizeof(*((int *)(...)) == sizeof(int) == 4
+ * - When one operand is a void pointer (i.e. when x is not an integer
+ * constant expression) and the other is an object pointer (i.e. our
+ * third operand), the conditional operator returns a "void *" type.
+ * Here, within the sizeof(), we would then get:
+ * sizeof(*((void *)(...)) == sizeof(void) == 1
+ * - The equality comparison to "sizeof(int)" therefore depends on (x):
+ * sizeof(int) == sizeof(int) (x) was a constant expression
+ * sizeof(int) != sizeof(void) (x) was not a constant expression
+ */
+#define __is_constexpr(x) \
+ (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
+
/*
* Whether 'type' is a signed type or an unsigned type. Supports scalar types,
* bool and also pointer types.
@@ -253,6 +292,15 @@ static inline void *offset_to_ptr(const int *off)
#define is_unsigned_type(type) (!is_signed_type(type))
/*
+ * Useful shorthand for "is this condition known at compile-time?"
+ *
+ * Note that the condition may involve non-constant values,
+ * but the compiler may know enough about the details of the
+ * values to determine that the condition is statically true.
+ */
+#define statically_true(x) (__builtin_constant_p(x) && (x))
+
+/*
* This is needed in functions which generate the stack canary, see
* arch/x86/kernel/smpboot.c::start_secondary() for an example.
*/