summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_file.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_file.c')
-rw-r--r--fs/xfs/xfs_file.c439
1 files changed, 249 insertions, 190 deletions
diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c
index 5b0f93f73837..68ca1b40d8c7 100644
--- a/fs/xfs/xfs_file.c
+++ b/fs/xfs/xfs_file.c
@@ -118,6 +118,54 @@ xfs_dir_fsync(
return xfs_log_force_inode(ip);
}
+static xfs_lsn_t
+xfs_fsync_lsn(
+ struct xfs_inode *ip,
+ bool datasync)
+{
+ if (!xfs_ipincount(ip))
+ return 0;
+ if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
+ return 0;
+ return ip->i_itemp->ili_last_lsn;
+}
+
+/*
+ * All metadata updates are logged, which means that we just have to flush the
+ * log up to the latest LSN that touched the inode.
+ *
+ * If we have concurrent fsync/fdatasync() calls, we need them to all block on
+ * the log force before we clear the ili_fsync_fields field. This ensures that
+ * we don't get a racing sync operation that does not wait for the metadata to
+ * hit the journal before returning. If we race with clearing ili_fsync_fields,
+ * then all that will happen is the log force will do nothing as the lsn will
+ * already be on disk. We can't race with setting ili_fsync_fields because that
+ * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
+ * shared until after the ili_fsync_fields is cleared.
+ */
+static int
+xfs_fsync_flush_log(
+ struct xfs_inode *ip,
+ bool datasync,
+ int *log_flushed)
+{
+ int error = 0;
+ xfs_lsn_t lsn;
+
+ xfs_ilock(ip, XFS_ILOCK_SHARED);
+ lsn = xfs_fsync_lsn(ip, datasync);
+ if (lsn) {
+ error = xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC,
+ log_flushed);
+
+ spin_lock(&ip->i_itemp->ili_lock);
+ ip->i_itemp->ili_fsync_fields = 0;
+ spin_unlock(&ip->i_itemp->ili_lock);
+ }
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ return error;
+}
+
STATIC int
xfs_file_fsync(
struct file *file,
@@ -125,13 +173,10 @@ xfs_file_fsync(
loff_t end,
int datasync)
{
- struct inode *inode = file->f_mapping->host;
- struct xfs_inode *ip = XFS_I(inode);
- struct xfs_inode_log_item *iip = ip->i_itemp;
+ struct xfs_inode *ip = XFS_I(file->f_mapping->host);
struct xfs_mount *mp = ip->i_mount;
int error = 0;
int log_flushed = 0;
- xfs_lsn_t lsn = 0;
trace_xfs_file_fsync(ip);
@@ -156,32 +201,13 @@ xfs_file_fsync(
xfs_blkdev_issue_flush(mp->m_ddev_targp);
/*
- * All metadata updates are logged, which means that we just have to
- * flush the log up to the latest LSN that touched the inode. If we have
- * concurrent fsync/fdatasync() calls, we need them to all block on the
- * log force before we clear the ili_fsync_fields field. This ensures
- * that we don't get a racing sync operation that does not wait for the
- * metadata to hit the journal before returning. If we race with
- * clearing the ili_fsync_fields, then all that will happen is the log
- * force will do nothing as the lsn will already be on disk. We can't
- * race with setting ili_fsync_fields because that is done under
- * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
- * until after the ili_fsync_fields is cleared.
+ * Any inode that has dirty modifications in the log is pinned. The
+ * racy check here for a pinned inode while not catch modifications
+ * that happen concurrently to the fsync call, but fsync semantics
+ * only require to sync previously completed I/O.
*/
- xfs_ilock(ip, XFS_ILOCK_SHARED);
- if (xfs_ipincount(ip)) {
- if (!datasync ||
- (iip->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
- lsn = iip->ili_last_lsn;
- }
-
- if (lsn) {
- error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
- spin_lock(&iip->ili_lock);
- iip->ili_fsync_fields = 0;
- spin_unlock(&iip->ili_lock);
- }
- xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ if (xfs_ipincount(ip))
+ error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
/*
* If we only have a single device, and the log force about was
@@ -197,30 +223,42 @@ xfs_file_fsync(
return error;
}
+static int
+xfs_ilock_iocb(
+ struct kiocb *iocb,
+ unsigned int lock_mode)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
+
+ if (iocb->ki_flags & IOCB_NOWAIT) {
+ if (!xfs_ilock_nowait(ip, lock_mode))
+ return -EAGAIN;
+ } else {
+ xfs_ilock(ip, lock_mode);
+ }
+
+ return 0;
+}
+
STATIC ssize_t
-xfs_file_dio_aio_read(
+xfs_file_dio_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
- size_t count = iov_iter_count(to);
ssize_t ret;
- trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
+ trace_xfs_file_direct_read(iocb, to);
- if (!count)
+ if (!iov_iter_count(to))
return 0; /* skip atime */
file_accessed(iocb->ki_filp);
- if (iocb->ki_flags & IOCB_NOWAIT) {
- if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
- return -EAGAIN;
- } else {
- xfs_ilock(ip, XFS_IOLOCK_SHARED);
- }
- ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
- is_sync_kiocb(iocb));
+ ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
+ if (ret)
+ return ret;
+ ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
@@ -232,21 +270,16 @@ xfs_file_dax_read(
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
- size_t count = iov_iter_count(to);
ssize_t ret = 0;
- trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
+ trace_xfs_file_dax_read(iocb, to);
- if (!count)
+ if (!iov_iter_count(to))
return 0; /* skip atime */
- if (iocb->ki_flags & IOCB_NOWAIT) {
- if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
- return -EAGAIN;
- } else {
- xfs_ilock(ip, XFS_IOLOCK_SHARED);
- }
-
+ ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
+ if (ret)
+ return ret;
ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
@@ -255,21 +288,18 @@ xfs_file_dax_read(
}
STATIC ssize_t
-xfs_file_buffered_aio_read(
+xfs_file_buffered_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
ssize_t ret;
- trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
+ trace_xfs_file_buffered_read(iocb, to);
- if (iocb->ki_flags & IOCB_NOWAIT) {
- if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
- return -EAGAIN;
- } else {
- xfs_ilock(ip, XFS_IOLOCK_SHARED);
- }
+ ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
+ if (ret)
+ return ret;
ret = generic_file_read_iter(iocb, to);
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
@@ -293,9 +323,9 @@ xfs_file_read_iter(
if (IS_DAX(inode))
ret = xfs_file_dax_read(iocb, to);
else if (iocb->ki_flags & IOCB_DIRECT)
- ret = xfs_file_dio_aio_read(iocb, to);
+ ret = xfs_file_dio_read(iocb, to);
else
- ret = xfs_file_buffered_aio_read(iocb, to);
+ ret = xfs_file_buffered_read(iocb, to);
if (ret > 0)
XFS_STATS_ADD(mp, xs_read_bytes, ret);
@@ -310,7 +340,7 @@ xfs_file_read_iter(
* if called for a direct write beyond i_size.
*/
STATIC ssize_t
-xfs_file_aio_write_checks(
+xfs_file_write_checks(
struct kiocb *iocb,
struct iov_iter *from,
int *iolock)
@@ -328,7 +358,14 @@ restart:
if (error <= 0)
return error;
- error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
+ if (iocb->ki_flags & IOCB_NOWAIT) {
+ error = break_layout(inode, false);
+ if (error == -EWOULDBLOCK)
+ error = -EAGAIN;
+ } else {
+ error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
+ }
+
if (error)
return error;
@@ -339,7 +376,11 @@ restart:
if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
xfs_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
- xfs_ilock(ip, *iolock);
+ error = xfs_ilock_iocb(iocb, *iolock);
+ if (error) {
+ *iolock = 0;
+ return error;
+ }
goto restart;
}
/*
@@ -361,6 +402,10 @@ restart:
isize = i_size_read(inode);
if (iocb->ki_pos > isize) {
spin_unlock(&ip->i_flags_lock);
+
+ if (iocb->ki_flags & IOCB_NOWAIT)
+ return -EAGAIN;
+
if (!drained_dio) {
if (*iolock == XFS_IOLOCK_SHARED) {
xfs_iunlock(ip, *iolock);
@@ -389,12 +434,6 @@ restart:
} else
spin_unlock(&ip->i_flags_lock);
- /*
- * Updating the timestamps will grab the ilock again from
- * xfs_fs_dirty_inode, so we have to call it after dropping the
- * lock above. Eventually we should look into a way to avoid
- * the pointless lock roundtrip.
- */
return file_modified(file);
}
@@ -480,122 +519,149 @@ static const struct iomap_dio_ops xfs_dio_write_ops = {
};
/*
- * xfs_file_dio_aio_write - handle direct IO writes
- *
- * Lock the inode appropriately to prepare for and issue a direct IO write.
- * By separating it from the buffered write path we remove all the tricky to
- * follow locking changes and looping.
- *
- * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
- * until we're sure the bytes at the new EOF have been zeroed and/or the cached
- * pages are flushed out.
- *
- * In most cases the direct IO writes will be done holding IOLOCK_SHARED
- * allowing them to be done in parallel with reads and other direct IO writes.
- * However, if the IO is not aligned to filesystem blocks, the direct IO layer
- * needs to do sub-block zeroing and that requires serialisation against other
- * direct IOs to the same block. In this case we need to serialise the
- * submission of the unaligned IOs so that we don't get racing block zeroing in
- * the dio layer. To avoid the problem with aio, we also need to wait for
- * outstanding IOs to complete so that unwritten extent conversion is completed
- * before we try to map the overlapping block. This is currently implemented by
- * hitting it with a big hammer (i.e. inode_dio_wait()).
- *
- * Returns with locks held indicated by @iolock and errors indicated by
- * negative return values.
+ * Handle block aligned direct I/O writes
*/
-STATIC ssize_t
-xfs_file_dio_aio_write(
+static noinline ssize_t
+xfs_file_dio_write_aligned(
+ struct xfs_inode *ip,
struct kiocb *iocb,
struct iov_iter *from)
{
- struct file *file = iocb->ki_filp;
- struct address_space *mapping = file->f_mapping;
- struct inode *inode = mapping->host;
- struct xfs_inode *ip = XFS_I(inode);
- struct xfs_mount *mp = ip->i_mount;
- ssize_t ret = 0;
- int unaligned_io = 0;
- int iolock;
- size_t count = iov_iter_count(from);
- struct xfs_buftarg *target = xfs_inode_buftarg(ip);
+ int iolock = XFS_IOLOCK_SHARED;
+ ssize_t ret;
- /* DIO must be aligned to device logical sector size */
- if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
- return -EINVAL;
+ ret = xfs_ilock_iocb(iocb, iolock);
+ if (ret)
+ return ret;
+ ret = xfs_file_write_checks(iocb, from, &iolock);
+ if (ret)
+ goto out_unlock;
/*
- * Don't take the exclusive iolock here unless the I/O is unaligned to
- * the file system block size. We don't need to consider the EOF
- * extension case here because xfs_file_aio_write_checks() will relock
- * the inode as necessary for EOF zeroing cases and fill out the new
- * inode size as appropriate.
+ * We don't need to hold the IOLOCK exclusively across the IO, so demote
+ * the iolock back to shared if we had to take the exclusive lock in
+ * xfs_file_write_checks() for other reasons.
*/
- if ((iocb->ki_pos & mp->m_blockmask) ||
- ((iocb->ki_pos + count) & mp->m_blockmask)) {
- unaligned_io = 1;
-
- /*
- * We can't properly handle unaligned direct I/O to reflink
- * files yet, as we can't unshare a partial block.
- */
- if (xfs_is_cow_inode(ip)) {
- trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
- return -ENOTBLK;
- }
- iolock = XFS_IOLOCK_EXCL;
- } else {
+ if (iolock == XFS_IOLOCK_EXCL) {
+ xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
iolock = XFS_IOLOCK_SHARED;
}
+ trace_xfs_file_direct_write(iocb, from);
+ ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
+ &xfs_dio_write_ops, 0);
+out_unlock:
+ if (iolock)
+ xfs_iunlock(ip, iolock);
+ return ret;
+}
- if (iocb->ki_flags & IOCB_NOWAIT) {
- /* unaligned dio always waits, bail */
- if (unaligned_io)
- return -EAGAIN;
- if (!xfs_ilock_nowait(ip, iolock))
+/*
+ * Handle block unaligned direct I/O writes
+ *
+ * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
+ * them to be done in parallel with reads and other direct I/O writes. However,
+ * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
+ * to do sub-block zeroing and that requires serialisation against other direct
+ * I/O to the same block. In this case we need to serialise the submission of
+ * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
+ * In the case where sub-block zeroing is not required, we can do concurrent
+ * sub-block dios to the same block successfully.
+ *
+ * Optimistically submit the I/O using the shared lock first, but use the
+ * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
+ * if block allocation or partial block zeroing would be required. In that case
+ * we try again with the exclusive lock.
+ */
+static noinline ssize_t
+xfs_file_dio_write_unaligned(
+ struct xfs_inode *ip,
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ size_t isize = i_size_read(VFS_I(ip));
+ size_t count = iov_iter_count(from);
+ int iolock = XFS_IOLOCK_SHARED;
+ unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
+ ssize_t ret;
+
+ /*
+ * Extending writes need exclusivity because of the sub-block zeroing
+ * that the DIO code always does for partial tail blocks beyond EOF, so
+ * don't even bother trying the fast path in this case.
+ */
+ if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
+retry_exclusive:
+ if (iocb->ki_flags & IOCB_NOWAIT)
return -EAGAIN;
- } else {
- xfs_ilock(ip, iolock);
+ iolock = XFS_IOLOCK_EXCL;
+ flags = IOMAP_DIO_FORCE_WAIT;
}
- ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+ ret = xfs_ilock_iocb(iocb, iolock);
if (ret)
- goto out;
- count = iov_iter_count(from);
+ return ret;
/*
- * If we are doing unaligned IO, we can't allow any other overlapping IO
- * in-flight at the same time or we risk data corruption. Wait for all
- * other IO to drain before we submit. If the IO is aligned, demote the
- * iolock if we had to take the exclusive lock in
- * xfs_file_aio_write_checks() for other reasons.
+ * We can't properly handle unaligned direct I/O to reflink files yet,
+ * as we can't unshare a partial block.
*/
- if (unaligned_io) {
- inode_dio_wait(inode);
- } else if (iolock == XFS_IOLOCK_EXCL) {
- xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
- iolock = XFS_IOLOCK_SHARED;
+ if (xfs_is_cow_inode(ip)) {
+ trace_xfs_reflink_bounce_dio_write(iocb, from);
+ ret = -ENOTBLK;
+ goto out_unlock;
}
- trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
+ ret = xfs_file_write_checks(iocb, from, &iolock);
+ if (ret)
+ goto out_unlock;
+
/*
- * If unaligned, this is the only IO in-flight. Wait on it before we
- * release the iolock to prevent subsequent overlapping IO.
+ * If we are doing exclusive unaligned I/O, this must be the only I/O
+ * in-flight. Otherwise we risk data corruption due to unwritten extent
+ * conversions from the AIO end_io handler. Wait for all other I/O to
+ * drain first.
*/
+ if (flags & IOMAP_DIO_FORCE_WAIT)
+ inode_dio_wait(VFS_I(ip));
+
+ trace_xfs_file_direct_write(iocb, from);
ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
- &xfs_dio_write_ops,
- is_sync_kiocb(iocb) || unaligned_io);
-out:
- xfs_iunlock(ip, iolock);
+ &xfs_dio_write_ops, flags);
/*
- * No fallback to buffered IO after short writes for XFS, direct I/O
- * will either complete fully or return an error.
+ * Retry unaligned I/O with exclusive blocking semantics if the DIO
+ * layer rejected it for mapping or locking reasons. If we are doing
+ * nonblocking user I/O, propagate the error.
*/
- ASSERT(ret < 0 || ret == count);
+ if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
+ ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
+ xfs_iunlock(ip, iolock);
+ goto retry_exclusive;
+ }
+
+out_unlock:
+ if (iolock)
+ xfs_iunlock(ip, iolock);
return ret;
}
+static ssize_t
+xfs_file_dio_write(
+ struct kiocb *iocb,
+ struct iov_iter *from)
+{
+ struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
+ struct xfs_buftarg *target = xfs_inode_buftarg(ip);
+ size_t count = iov_iter_count(from);
+
+ /* direct I/O must be aligned to device logical sector size */
+ if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
+ return -EINVAL;
+ if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
+ return xfs_file_dio_write_unaligned(ip, iocb, from);
+ return xfs_file_dio_write_aligned(ip, iocb, from);
+}
+
static noinline ssize_t
xfs_file_dax_write(
struct kiocb *iocb,
@@ -605,31 +671,26 @@ xfs_file_dax_write(
struct xfs_inode *ip = XFS_I(inode);
int iolock = XFS_IOLOCK_EXCL;
ssize_t ret, error = 0;
- size_t count;
loff_t pos;
- if (iocb->ki_flags & IOCB_NOWAIT) {
- if (!xfs_ilock_nowait(ip, iolock))
- return -EAGAIN;
- } else {
- xfs_ilock(ip, iolock);
- }
-
- ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+ ret = xfs_ilock_iocb(iocb, iolock);
+ if (ret)
+ return ret;
+ ret = xfs_file_write_checks(iocb, from, &iolock);
if (ret)
goto out;
pos = iocb->ki_pos;
- count = iov_iter_count(from);
- trace_xfs_file_dax_write(ip, count, pos);
+ trace_xfs_file_dax_write(iocb, from);
ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
i_size_write(inode, iocb->ki_pos);
error = xfs_setfilesize(ip, pos, ret);
}
out:
- xfs_iunlock(ip, iolock);
+ if (iolock)
+ xfs_iunlock(ip, iolock);
if (error)
return error;
@@ -643,7 +704,7 @@ out:
}
STATIC ssize_t
-xfs_file_buffered_aio_write(
+xfs_file_buffered_write(
struct kiocb *iocb,
struct iov_iter *from)
{
@@ -652,7 +713,7 @@ xfs_file_buffered_aio_write(
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
- int enospc = 0;
+ bool cleared_space = false;
int iolock;
if (iocb->ki_flags & IOCB_NOWAIT)
@@ -662,14 +723,14 @@ write_retry:
iolock = XFS_IOLOCK_EXCL;
xfs_ilock(ip, iolock);
- ret = xfs_file_aio_write_checks(iocb, from, &iolock);
+ ret = xfs_file_write_checks(iocb, from, &iolock);
if (ret)
goto out;
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
- trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
+ trace_xfs_file_buffered_write(iocb, from);
ret = iomap_file_buffered_write(iocb, from,
&xfs_buffered_write_iomap_ops);
if (likely(ret >= 0))
@@ -682,27 +743,23 @@ write_retry:
* metadata space. This reduces the chances that the eofblocks scan
* waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
* also behaves as a filter to prevent too many eofblocks scans from
- * running at the same time.
+ * running at the same time. Use a synchronous scan to increase the
+ * effectiveness of the scan.
*/
- if (ret == -EDQUOT && !enospc) {
+ if (ret == -EDQUOT && !cleared_space) {
xfs_iunlock(ip, iolock);
- enospc = xfs_inode_free_quota_eofblocks(ip);
- if (enospc)
- goto write_retry;
- enospc = xfs_inode_free_quota_cowblocks(ip);
- if (enospc)
- goto write_retry;
- iolock = 0;
- } else if (ret == -ENOSPC && !enospc) {
+ xfs_blockgc_free_quota(ip, XFS_EOF_FLAGS_SYNC);
+ cleared_space = true;
+ goto write_retry;
+ } else if (ret == -ENOSPC && !cleared_space) {
struct xfs_eofblocks eofb = {0};
- enospc = 1;
+ cleared_space = true;
xfs_flush_inodes(ip->i_mount);
xfs_iunlock(ip, iolock);
eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
- xfs_icache_free_eofblocks(ip->i_mount, &eofb);
- xfs_icache_free_cowblocks(ip->i_mount, &eofb);
+ xfs_blockgc_free_space(ip->i_mount, &eofb);
goto write_retry;
}
@@ -749,12 +806,12 @@ xfs_file_write_iter(
* CoW. In all other directio scenarios we do not
* allow an operation to fall back to buffered mode.
*/
- ret = xfs_file_dio_aio_write(iocb, from);
+ ret = xfs_file_dio_write(iocb, from);
if (ret != -ENOTBLK)
return ret;
}
- return xfs_file_buffered_aio_write(iocb, from);
+ return xfs_file_buffered_write(iocb, from);
}
static void
@@ -1319,17 +1376,19 @@ xfs_filemap_pfn_mkwrite(
return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
}
-static void
+static vm_fault_t
xfs_filemap_map_pages(
struct vm_fault *vmf,
pgoff_t start_pgoff,
pgoff_t end_pgoff)
{
struct inode *inode = file_inode(vmf->vma->vm_file);
+ vm_fault_t ret;
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
- filemap_map_pages(vmf, start_pgoff, end_pgoff);
+ ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
+ return ret;
}
static const struct vm_operations_struct xfs_file_vm_ops = {