summaryrefslogtreecommitdiff
path: root/fs/f2fs
diff options
context:
space:
mode:
Diffstat (limited to 'fs/f2fs')
-rw-r--r--fs/f2fs/Kconfig53
-rw-r--r--fs/f2fs/Makefile7
-rw-r--r--fs/f2fs/acl.c412
-rw-r--r--fs/f2fs/acl.h57
-rw-r--r--fs/f2fs/checkpoint.c784
-rw-r--r--fs/f2fs/data.c718
-rw-r--r--fs/f2fs/debug.c355
-rw-r--r--fs/f2fs/dir.c671
-rw-r--r--fs/f2fs/f2fs.h1113
-rw-r--r--fs/f2fs/file.c671
-rw-r--r--fs/f2fs/gc.c698
-rw-r--r--fs/f2fs/gc.h96
-rw-r--r--fs/f2fs/hash.c101
-rw-r--r--fs/f2fs/inode.c259
-rw-r--r--fs/f2fs/namei.c503
-rw-r--r--fs/f2fs/node.c1756
-rw-r--r--fs/f2fs/node.h353
-rw-r--r--fs/f2fs/recovery.c375
-rw-r--r--fs/f2fs/segment.c1770
-rw-r--r--fs/f2fs/segment.h618
-rw-r--r--fs/f2fs/super.c750
-rw-r--r--fs/f2fs/xattr.c443
-rw-r--r--fs/f2fs/xattr.h145
23 files changed, 12708 insertions, 0 deletions
diff --git a/fs/f2fs/Kconfig b/fs/f2fs/Kconfig
new file mode 100644
index 000000000000..fd27e7e6326e
--- /dev/null
+++ b/fs/f2fs/Kconfig
@@ -0,0 +1,53 @@
+config F2FS_FS
+ tristate "F2FS filesystem support (EXPERIMENTAL)"
+ depends on BLOCK
+ help
+ F2FS is based on Log-structured File System (LFS), which supports
+ versatile "flash-friendly" features. The design has been focused on
+ addressing the fundamental issues in LFS, which are snowball effect
+ of wandering tree and high cleaning overhead.
+
+ Since flash-based storages show different characteristics according to
+ the internal geometry or flash memory management schemes aka FTL, F2FS
+ and tools support various parameters not only for configuring on-disk
+ layout, but also for selecting allocation and cleaning algorithms.
+
+ If unsure, say N.
+
+config F2FS_STAT_FS
+ bool "F2FS Status Information"
+ depends on F2FS_FS && DEBUG_FS
+ default y
+ help
+ /sys/kernel/debug/f2fs/ contains information about all the partitions
+ mounted as f2fs. Each file shows the whole f2fs information.
+
+ /sys/kernel/debug/f2fs/status includes:
+ - major file system information managed by f2fs currently
+ - average SIT information about whole segments
+ - current memory footprint consumed by f2fs.
+
+config F2FS_FS_XATTR
+ bool "F2FS extended attributes"
+ depends on F2FS_FS
+ default y
+ help
+ Extended attributes are name:value pairs associated with inodes by
+ the kernel or by users (see the attr(5) manual page, or visit
+ <http://acl.bestbits.at/> for details).
+
+ If unsure, say N.
+
+config F2FS_FS_POSIX_ACL
+ bool "F2FS Access Control Lists"
+ depends on F2FS_FS_XATTR
+ select FS_POSIX_ACL
+ default y
+ help
+ Posix Access Control Lists (ACLs) support permissions for users and
+ gourps beyond the owner/group/world scheme.
+
+ To learn more about Access Control Lists, visit the POSIX ACLs for
+ Linux website <http://acl.bestbits.at/>.
+
+ If you don't know what Access Control Lists are, say N
diff --git a/fs/f2fs/Makefile b/fs/f2fs/Makefile
new file mode 100644
index 000000000000..27a0820340b9
--- /dev/null
+++ b/fs/f2fs/Makefile
@@ -0,0 +1,7 @@
+obj-$(CONFIG_F2FS_FS) += f2fs.o
+
+f2fs-y := dir.o file.o inode.o namei.o hash.o super.o
+f2fs-y += checkpoint.o gc.o data.o node.o segment.o recovery.o
+f2fs-$(CONFIG_F2FS_STAT_FS) += debug.o
+f2fs-$(CONFIG_F2FS_FS_XATTR) += xattr.o
+f2fs-$(CONFIG_F2FS_FS_POSIX_ACL) += acl.o
diff --git a/fs/f2fs/acl.c b/fs/f2fs/acl.c
new file mode 100644
index 000000000000..137af4255da6
--- /dev/null
+++ b/fs/f2fs/acl.c
@@ -0,0 +1,412 @@
+/*
+ * fs/f2fs/acl.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * Portions of this code from linux/fs/ext2/acl.c
+ *
+ * Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/f2fs_fs.h>
+#include "f2fs.h"
+#include "xattr.h"
+#include "acl.h"
+
+#define get_inode_mode(i) ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
+ (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
+
+static inline size_t f2fs_acl_size(int count)
+{
+ if (count <= 4) {
+ return sizeof(struct f2fs_acl_header) +
+ count * sizeof(struct f2fs_acl_entry_short);
+ } else {
+ return sizeof(struct f2fs_acl_header) +
+ 4 * sizeof(struct f2fs_acl_entry_short) +
+ (count - 4) * sizeof(struct f2fs_acl_entry);
+ }
+}
+
+static inline int f2fs_acl_count(size_t size)
+{
+ ssize_t s;
+ size -= sizeof(struct f2fs_acl_header);
+ s = size - 4 * sizeof(struct f2fs_acl_entry_short);
+ if (s < 0) {
+ if (size % sizeof(struct f2fs_acl_entry_short))
+ return -1;
+ return size / sizeof(struct f2fs_acl_entry_short);
+ } else {
+ if (s % sizeof(struct f2fs_acl_entry))
+ return -1;
+ return s / sizeof(struct f2fs_acl_entry) + 4;
+ }
+}
+
+static struct posix_acl *f2fs_acl_from_disk(const char *value, size_t size)
+{
+ int i, count;
+ struct posix_acl *acl;
+ struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value;
+ struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1);
+ const char *end = value + size;
+
+ if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION))
+ return ERR_PTR(-EINVAL);
+
+ count = f2fs_acl_count(size);
+ if (count < 0)
+ return ERR_PTR(-EINVAL);
+ if (count == 0)
+ return NULL;
+
+ acl = posix_acl_alloc(count, GFP_KERNEL);
+ if (!acl)
+ return ERR_PTR(-ENOMEM);
+
+ for (i = 0; i < count; i++) {
+
+ if ((char *)entry > end)
+ goto fail;
+
+ acl->a_entries[i].e_tag = le16_to_cpu(entry->e_tag);
+ acl->a_entries[i].e_perm = le16_to_cpu(entry->e_perm);
+
+ switch (acl->a_entries[i].e_tag) {
+ case ACL_USER_OBJ:
+ case ACL_GROUP_OBJ:
+ case ACL_MASK:
+ case ACL_OTHER:
+ entry = (struct f2fs_acl_entry *)((char *)entry +
+ sizeof(struct f2fs_acl_entry_short));
+ break;
+
+ case ACL_USER:
+ acl->a_entries[i].e_uid =
+ make_kuid(&init_user_ns,
+ le32_to_cpu(entry->e_id));
+ entry = (struct f2fs_acl_entry *)((char *)entry +
+ sizeof(struct f2fs_acl_entry));
+ break;
+ case ACL_GROUP:
+ acl->a_entries[i].e_gid =
+ make_kgid(&init_user_ns,
+ le32_to_cpu(entry->e_id));
+ entry = (struct f2fs_acl_entry *)((char *)entry +
+ sizeof(struct f2fs_acl_entry));
+ break;
+ default:
+ goto fail;
+ }
+ }
+ if ((char *)entry != end)
+ goto fail;
+ return acl;
+fail:
+ posix_acl_release(acl);
+ return ERR_PTR(-EINVAL);
+}
+
+static void *f2fs_acl_to_disk(const struct posix_acl *acl, size_t *size)
+{
+ struct f2fs_acl_header *f2fs_acl;
+ struct f2fs_acl_entry *entry;
+ int i;
+
+ f2fs_acl = kmalloc(sizeof(struct f2fs_acl_header) + acl->a_count *
+ sizeof(struct f2fs_acl_entry), GFP_KERNEL);
+ if (!f2fs_acl)
+ return ERR_PTR(-ENOMEM);
+
+ f2fs_acl->a_version = cpu_to_le32(F2FS_ACL_VERSION);
+ entry = (struct f2fs_acl_entry *)(f2fs_acl + 1);
+
+ for (i = 0; i < acl->a_count; i++) {
+
+ entry->e_tag = cpu_to_le16(acl->a_entries[i].e_tag);
+ entry->e_perm = cpu_to_le16(acl->a_entries[i].e_perm);
+
+ switch (acl->a_entries[i].e_tag) {
+ case ACL_USER:
+ entry->e_id = cpu_to_le32(
+ from_kuid(&init_user_ns,
+ acl->a_entries[i].e_uid));
+ entry = (struct f2fs_acl_entry *)((char *)entry +
+ sizeof(struct f2fs_acl_entry));
+ break;
+ case ACL_GROUP:
+ entry->e_id = cpu_to_le32(
+ from_kgid(&init_user_ns,
+ acl->a_entries[i].e_gid));
+ entry = (struct f2fs_acl_entry *)((char *)entry +
+ sizeof(struct f2fs_acl_entry));
+ break;
+ case ACL_USER_OBJ:
+ case ACL_GROUP_OBJ:
+ case ACL_MASK:
+ case ACL_OTHER:
+ entry = (struct f2fs_acl_entry *)((char *)entry +
+ sizeof(struct f2fs_acl_entry_short));
+ break;
+ default:
+ goto fail;
+ }
+ }
+ *size = f2fs_acl_size(acl->a_count);
+ return (void *)f2fs_acl;
+
+fail:
+ kfree(f2fs_acl);
+ return ERR_PTR(-EINVAL);
+}
+
+struct posix_acl *f2fs_get_acl(struct inode *inode, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ int name_index = F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT;
+ void *value = NULL;
+ struct posix_acl *acl;
+ int retval;
+
+ if (!test_opt(sbi, POSIX_ACL))
+ return NULL;
+
+ acl = get_cached_acl(inode, type);
+ if (acl != ACL_NOT_CACHED)
+ return acl;
+
+ if (type == ACL_TYPE_ACCESS)
+ name_index = F2FS_XATTR_INDEX_POSIX_ACL_ACCESS;
+
+ retval = f2fs_getxattr(inode, name_index, "", NULL, 0);
+ if (retval > 0) {
+ value = kmalloc(retval, GFP_KERNEL);
+ if (!value)
+ return ERR_PTR(-ENOMEM);
+ retval = f2fs_getxattr(inode, name_index, "", value, retval);
+ }
+
+ if (retval > 0)
+ acl = f2fs_acl_from_disk(value, retval);
+ else if (retval == -ENODATA)
+ acl = NULL;
+ else
+ acl = ERR_PTR(retval);
+ kfree(value);
+
+ if (!IS_ERR(acl))
+ set_cached_acl(inode, type, acl);
+
+ return acl;
+}
+
+static int f2fs_set_acl(struct inode *inode, int type, struct posix_acl *acl)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ int name_index;
+ void *value = NULL;
+ size_t size = 0;
+ int error;
+
+ if (!test_opt(sbi, POSIX_ACL))
+ return 0;
+ if (S_ISLNK(inode->i_mode))
+ return -EOPNOTSUPP;
+
+ switch (type) {
+ case ACL_TYPE_ACCESS:
+ name_index = F2FS_XATTR_INDEX_POSIX_ACL_ACCESS;
+ if (acl) {
+ error = posix_acl_equiv_mode(acl, &inode->i_mode);
+ if (error < 0)
+ return error;
+ set_acl_inode(fi, inode->i_mode);
+ if (error == 0)
+ acl = NULL;
+ }
+ break;
+
+ case ACL_TYPE_DEFAULT:
+ name_index = F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT;
+ if (!S_ISDIR(inode->i_mode))
+ return acl ? -EACCES : 0;
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ if (acl) {
+ value = f2fs_acl_to_disk(acl, &size);
+ if (IS_ERR(value)) {
+ cond_clear_inode_flag(fi, FI_ACL_MODE);
+ return (int)PTR_ERR(value);
+ }
+ }
+
+ error = f2fs_setxattr(inode, name_index, "", value, size);
+
+ kfree(value);
+ if (!error)
+ set_cached_acl(inode, type, acl);
+
+ cond_clear_inode_flag(fi, FI_ACL_MODE);
+ return error;
+}
+
+int f2fs_init_acl(struct inode *inode, struct inode *dir)
+{
+ struct posix_acl *acl = NULL;
+ struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
+ int error = 0;
+
+ if (!S_ISLNK(inode->i_mode)) {
+ if (test_opt(sbi, POSIX_ACL)) {
+ acl = f2fs_get_acl(dir, ACL_TYPE_DEFAULT);
+ if (IS_ERR(acl))
+ return PTR_ERR(acl);
+ }
+ if (!acl)
+ inode->i_mode &= ~current_umask();
+ }
+
+ if (test_opt(sbi, POSIX_ACL) && acl) {
+
+ if (S_ISDIR(inode->i_mode)) {
+ error = f2fs_set_acl(inode, ACL_TYPE_DEFAULT, acl);
+ if (error)
+ goto cleanup;
+ }
+ error = posix_acl_create(&acl, GFP_KERNEL, &inode->i_mode);
+ if (error < 0)
+ return error;
+ if (error > 0)
+ error = f2fs_set_acl(inode, ACL_TYPE_ACCESS, acl);
+ }
+cleanup:
+ posix_acl_release(acl);
+ return error;
+}
+
+int f2fs_acl_chmod(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct posix_acl *acl;
+ int error;
+ mode_t mode = get_inode_mode(inode);
+
+ if (!test_opt(sbi, POSIX_ACL))
+ return 0;
+ if (S_ISLNK(mode))
+ return -EOPNOTSUPP;
+
+ acl = f2fs_get_acl(inode, ACL_TYPE_ACCESS);
+ if (IS_ERR(acl) || !acl)
+ return PTR_ERR(acl);
+
+ error = posix_acl_chmod(&acl, GFP_KERNEL, mode);
+ if (error)
+ return error;
+ error = f2fs_set_acl(inode, ACL_TYPE_ACCESS, acl);
+ posix_acl_release(acl);
+ return error;
+}
+
+static size_t f2fs_xattr_list_acl(struct dentry *dentry, char *list,
+ size_t list_size, const char *name, size_t name_len, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
+ const char *xname = POSIX_ACL_XATTR_DEFAULT;
+ size_t size;
+
+ if (!test_opt(sbi, POSIX_ACL))
+ return 0;
+
+ if (type == ACL_TYPE_ACCESS)
+ xname = POSIX_ACL_XATTR_ACCESS;
+
+ size = strlen(xname) + 1;
+ if (list && size <= list_size)
+ memcpy(list, xname, size);
+ return size;
+}
+
+static int f2fs_xattr_get_acl(struct dentry *dentry, const char *name,
+ void *buffer, size_t size, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
+ struct posix_acl *acl;
+ int error;
+
+ if (strcmp(name, "") != 0)
+ return -EINVAL;
+ if (!test_opt(sbi, POSIX_ACL))
+ return -EOPNOTSUPP;
+
+ acl = f2fs_get_acl(dentry->d_inode, type);
+ if (IS_ERR(acl))
+ return PTR_ERR(acl);
+ if (!acl)
+ return -ENODATA;
+ error = posix_acl_to_xattr(&init_user_ns, acl, buffer, size);
+ posix_acl_release(acl);
+
+ return error;
+}
+
+static int f2fs_xattr_set_acl(struct dentry *dentry, const char *name,
+ const void *value, size_t size, int flags, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
+ struct inode *inode = dentry->d_inode;
+ struct posix_acl *acl = NULL;
+ int error;
+
+ if (strcmp(name, "") != 0)
+ return -EINVAL;
+ if (!test_opt(sbi, POSIX_ACL))
+ return -EOPNOTSUPP;
+ if (!inode_owner_or_capable(inode))
+ return -EPERM;
+
+ if (value) {
+ acl = posix_acl_from_xattr(&init_user_ns, value, size);
+ if (IS_ERR(acl))
+ return PTR_ERR(acl);
+ if (acl) {
+ error = posix_acl_valid(acl);
+ if (error)
+ goto release_and_out;
+ }
+ } else {
+ acl = NULL;
+ }
+
+ error = f2fs_set_acl(inode, type, acl);
+
+release_and_out:
+ posix_acl_release(acl);
+ return error;
+}
+
+const struct xattr_handler f2fs_xattr_acl_default_handler = {
+ .prefix = POSIX_ACL_XATTR_DEFAULT,
+ .flags = ACL_TYPE_DEFAULT,
+ .list = f2fs_xattr_list_acl,
+ .get = f2fs_xattr_get_acl,
+ .set = f2fs_xattr_set_acl,
+};
+
+const struct xattr_handler f2fs_xattr_acl_access_handler = {
+ .prefix = POSIX_ACL_XATTR_ACCESS,
+ .flags = ACL_TYPE_ACCESS,
+ .list = f2fs_xattr_list_acl,
+ .get = f2fs_xattr_get_acl,
+ .set = f2fs_xattr_set_acl,
+};
diff --git a/fs/f2fs/acl.h b/fs/f2fs/acl.h
new file mode 100644
index 000000000000..80f430674417
--- /dev/null
+++ b/fs/f2fs/acl.h
@@ -0,0 +1,57 @@
+/*
+ * fs/f2fs/acl.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * Portions of this code from linux/fs/ext2/acl.h
+ *
+ * Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef __F2FS_ACL_H__
+#define __F2FS_ACL_H__
+
+#include <linux/posix_acl_xattr.h>
+
+#define F2FS_ACL_VERSION 0x0001
+
+struct f2fs_acl_entry {
+ __le16 e_tag;
+ __le16 e_perm;
+ __le32 e_id;
+};
+
+struct f2fs_acl_entry_short {
+ __le16 e_tag;
+ __le16 e_perm;
+};
+
+struct f2fs_acl_header {
+ __le32 a_version;
+};
+
+#ifdef CONFIG_F2FS_FS_POSIX_ACL
+
+extern struct posix_acl *f2fs_get_acl(struct inode *inode, int type);
+extern int f2fs_acl_chmod(struct inode *inode);
+extern int f2fs_init_acl(struct inode *inode, struct inode *dir);
+#else
+#define f2fs_check_acl NULL
+#define f2fs_get_acl NULL
+#define f2fs_set_acl NULL
+
+static inline int f2fs_acl_chmod(struct inode *inode)
+{
+ return 0;
+}
+
+static inline int f2fs_init_acl(struct inode *inode, struct inode *dir)
+{
+ return 0;
+}
+#endif
+#endif /* __F2FS_ACL_H__ */
diff --git a/fs/f2fs/checkpoint.c b/fs/f2fs/checkpoint.c
new file mode 100644
index 000000000000..2b6fc131e2ce
--- /dev/null
+++ b/fs/f2fs/checkpoint.c
@@ -0,0 +1,784 @@
+/*
+ * fs/f2fs/checkpoint.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/bio.h>
+#include <linux/mpage.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/f2fs_fs.h>
+#include <linux/pagevec.h>
+#include <linux/swap.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+
+static struct kmem_cache *orphan_entry_slab;
+static struct kmem_cache *inode_entry_slab;
+
+/*
+ * We guarantee no failure on the returned page.
+ */
+struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
+{
+ struct address_space *mapping = sbi->meta_inode->i_mapping;
+ struct page *page = NULL;
+repeat:
+ page = grab_cache_page(mapping, index);
+ if (!page) {
+ cond_resched();
+ goto repeat;
+ }
+
+ /* We wait writeback only inside grab_meta_page() */
+ wait_on_page_writeback(page);
+ SetPageUptodate(page);
+ return page;
+}
+
+/*
+ * We guarantee no failure on the returned page.
+ */
+struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
+{
+ struct address_space *mapping = sbi->meta_inode->i_mapping;
+ struct page *page;
+repeat:
+ page = grab_cache_page(mapping, index);
+ if (!page) {
+ cond_resched();
+ goto repeat;
+ }
+ if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
+ f2fs_put_page(page, 1);
+ goto repeat;
+ }
+ mark_page_accessed(page);
+
+ /* We do not allow returning an errorneous page */
+ return page;
+}
+
+static int f2fs_write_meta_page(struct page *page,
+ struct writeback_control *wbc)
+{
+ struct inode *inode = page->mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+
+ /* Should not write any meta pages, if any IO error was occurred */
+ if (wbc->for_reclaim ||
+ is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
+ dec_page_count(sbi, F2FS_DIRTY_META);
+ wbc->pages_skipped++;
+ set_page_dirty(page);
+ return AOP_WRITEPAGE_ACTIVATE;
+ }
+
+ wait_on_page_writeback(page);
+
+ write_meta_page(sbi, page);
+ dec_page_count(sbi, F2FS_DIRTY_META);
+ unlock_page(page);
+ return 0;
+}
+
+static int f2fs_write_meta_pages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
+ struct block_device *bdev = sbi->sb->s_bdev;
+ long written;
+
+ if (wbc->for_kupdate)
+ return 0;
+
+ if (get_pages(sbi, F2FS_DIRTY_META) == 0)
+ return 0;
+
+ /* if mounting is failed, skip writing node pages */
+ mutex_lock(&sbi->cp_mutex);
+ written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
+ mutex_unlock(&sbi->cp_mutex);
+ wbc->nr_to_write -= written;
+ return 0;
+}
+
+long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
+ long nr_to_write)
+{
+ struct address_space *mapping = sbi->meta_inode->i_mapping;
+ pgoff_t index = 0, end = LONG_MAX;
+ struct pagevec pvec;
+ long nwritten = 0;
+ struct writeback_control wbc = {
+ .for_reclaim = 0,
+ };
+
+ pagevec_init(&pvec, 0);
+
+ while (index <= end) {
+ int i, nr_pages;
+ nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
+ PAGECACHE_TAG_DIRTY,
+ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
+ if (nr_pages == 0)
+ break;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+ lock_page(page);
+ BUG_ON(page->mapping != mapping);
+ BUG_ON(!PageDirty(page));
+ clear_page_dirty_for_io(page);
+ if (f2fs_write_meta_page(page, &wbc)) {
+ unlock_page(page);
+ break;
+ }
+ if (nwritten++ >= nr_to_write)
+ break;
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+ }
+
+ if (nwritten)
+ f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
+
+ return nwritten;
+}
+
+static int f2fs_set_meta_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page->mapping;
+ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
+
+ SetPageUptodate(page);
+ if (!PageDirty(page)) {
+ __set_page_dirty_nobuffers(page);
+ inc_page_count(sbi, F2FS_DIRTY_META);
+ return 1;
+ }
+ return 0;
+}
+
+const struct address_space_operations f2fs_meta_aops = {
+ .writepage = f2fs_write_meta_page,
+ .writepages = f2fs_write_meta_pages,
+ .set_page_dirty = f2fs_set_meta_page_dirty,
+};
+
+int check_orphan_space(struct f2fs_sb_info *sbi)
+{
+ unsigned int max_orphans;
+ int err = 0;
+
+ /*
+ * considering 512 blocks in a segment 5 blocks are needed for cp
+ * and log segment summaries. Remaining blocks are used to keep
+ * orphan entries with the limitation one reserved segment
+ * for cp pack we can have max 1020*507 orphan entries
+ */
+ max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
+ mutex_lock(&sbi->orphan_inode_mutex);
+ if (sbi->n_orphans >= max_orphans)
+ err = -ENOSPC;
+ mutex_unlock(&sbi->orphan_inode_mutex);
+ return err;
+}
+
+void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct list_head *head, *this;
+ struct orphan_inode_entry *new = NULL, *orphan = NULL;
+
+ mutex_lock(&sbi->orphan_inode_mutex);
+ head = &sbi->orphan_inode_list;
+ list_for_each(this, head) {
+ orphan = list_entry(this, struct orphan_inode_entry, list);
+ if (orphan->ino == ino)
+ goto out;
+ if (orphan->ino > ino)
+ break;
+ orphan = NULL;
+ }
+retry:
+ new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
+ if (!new) {
+ cond_resched();
+ goto retry;
+ }
+ new->ino = ino;
+
+ /* add new_oentry into list which is sorted by inode number */
+ if (orphan)
+ list_add(&new->list, this->prev);
+ else
+ list_add_tail(&new->list, head);
+
+ sbi->n_orphans++;
+out:
+ mutex_unlock(&sbi->orphan_inode_mutex);
+}
+
+void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct list_head *this, *next, *head;
+ struct orphan_inode_entry *orphan;
+
+ mutex_lock(&sbi->orphan_inode_mutex);
+ head = &sbi->orphan_inode_list;
+ list_for_each_safe(this, next, head) {
+ orphan = list_entry(this, struct orphan_inode_entry, list);
+ if (orphan->ino == ino) {
+ list_del(&orphan->list);
+ kmem_cache_free(orphan_entry_slab, orphan);
+ sbi->n_orphans--;
+ break;
+ }
+ }
+ mutex_unlock(&sbi->orphan_inode_mutex);
+}
+
+static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
+{
+ struct inode *inode = f2fs_iget(sbi->sb, ino);
+ BUG_ON(IS_ERR(inode));
+ clear_nlink(inode);
+
+ /* truncate all the data during iput */
+ iput(inode);
+}
+
+int recover_orphan_inodes(struct f2fs_sb_info *sbi)
+{
+ block_t start_blk, orphan_blkaddr, i, j;
+
+ if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
+ return 0;
+
+ sbi->por_doing = 1;
+ start_blk = __start_cp_addr(sbi) + 1;
+ orphan_blkaddr = __start_sum_addr(sbi) - 1;
+
+ for (i = 0; i < orphan_blkaddr; i++) {
+ struct page *page = get_meta_page(sbi, start_blk + i);
+ struct f2fs_orphan_block *orphan_blk;
+
+ orphan_blk = (struct f2fs_orphan_block *)page_address(page);
+ for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
+ nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
+ recover_orphan_inode(sbi, ino);
+ }
+ f2fs_put_page(page, 1);
+ }
+ /* clear Orphan Flag */
+ clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
+ sbi->por_doing = 0;
+ return 0;
+}
+
+static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
+{
+ struct list_head *head, *this, *next;
+ struct f2fs_orphan_block *orphan_blk = NULL;
+ struct page *page = NULL;
+ unsigned int nentries = 0;
+ unsigned short index = 1;
+ unsigned short orphan_blocks;
+
+ orphan_blocks = (unsigned short)((sbi->n_orphans +
+ (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
+
+ mutex_lock(&sbi->orphan_inode_mutex);
+ head = &sbi->orphan_inode_list;
+
+ /* loop for each orphan inode entry and write them in Jornal block */
+ list_for_each_safe(this, next, head) {
+ struct orphan_inode_entry *orphan;
+
+ orphan = list_entry(this, struct orphan_inode_entry, list);
+
+ if (nentries == F2FS_ORPHANS_PER_BLOCK) {
+ /*
+ * an orphan block is full of 1020 entries,
+ * then we need to flush current orphan blocks
+ * and bring another one in memory
+ */
+ orphan_blk->blk_addr = cpu_to_le16(index);
+ orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
+ orphan_blk->entry_count = cpu_to_le32(nentries);
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+ index++;
+ start_blk++;
+ nentries = 0;
+ page = NULL;
+ }
+ if (page)
+ goto page_exist;
+
+ page = grab_meta_page(sbi, start_blk);
+ orphan_blk = (struct f2fs_orphan_block *)page_address(page);
+ memset(orphan_blk, 0, sizeof(*orphan_blk));
+page_exist:
+ orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
+ }
+ if (!page)
+ goto end;
+
+ orphan_blk->blk_addr = cpu_to_le16(index);
+ orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
+ orphan_blk->entry_count = cpu_to_le32(nentries);
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+end:
+ mutex_unlock(&sbi->orphan_inode_mutex);
+}
+
+static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
+ block_t cp_addr, unsigned long long *version)
+{
+ struct page *cp_page_1, *cp_page_2 = NULL;
+ unsigned long blk_size = sbi->blocksize;
+ struct f2fs_checkpoint *cp_block;
+ unsigned long long cur_version = 0, pre_version = 0;
+ unsigned int crc = 0;
+ size_t crc_offset;
+
+ /* Read the 1st cp block in this CP pack */
+ cp_page_1 = get_meta_page(sbi, cp_addr);
+
+ /* get the version number */
+ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
+ crc_offset = le32_to_cpu(cp_block->checksum_offset);
+ if (crc_offset >= blk_size)
+ goto invalid_cp1;
+
+ crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
+ if (!f2fs_crc_valid(crc, cp_block, crc_offset))
+ goto invalid_cp1;
+
+ pre_version = le64_to_cpu(cp_block->checkpoint_ver);
+
+ /* Read the 2nd cp block in this CP pack */
+ cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
+ cp_page_2 = get_meta_page(sbi, cp_addr);
+
+ cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
+ crc_offset = le32_to_cpu(cp_block->checksum_offset);
+ if (crc_offset >= blk_size)
+ goto invalid_cp2;
+
+ crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
+ if (!f2fs_crc_valid(crc, cp_block, crc_offset))
+ goto invalid_cp2;
+
+ cur_version = le64_to_cpu(cp_block->checkpoint_ver);
+
+ if (cur_version == pre_version) {
+ *version = cur_version;
+ f2fs_put_page(cp_page_2, 1);
+ return cp_page_1;
+ }
+invalid_cp2:
+ f2fs_put_page(cp_page_2, 1);
+invalid_cp1:
+ f2fs_put_page(cp_page_1, 1);
+ return NULL;
+}
+
+int get_valid_checkpoint(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_checkpoint *cp_block;
+ struct f2fs_super_block *fsb = sbi->raw_super;
+ struct page *cp1, *cp2, *cur_page;
+ unsigned long blk_size = sbi->blocksize;
+ unsigned long long cp1_version = 0, cp2_version = 0;
+ unsigned long long cp_start_blk_no;
+
+ sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
+ if (!sbi->ckpt)
+ return -ENOMEM;
+ /*
+ * Finding out valid cp block involves read both
+ * sets( cp pack1 and cp pack 2)
+ */
+ cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
+ cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
+
+ /* The second checkpoint pack should start at the next segment */
+ cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
+ cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
+
+ if (cp1 && cp2) {
+ if (ver_after(cp2_version, cp1_version))
+ cur_page = cp2;
+ else
+ cur_page = cp1;
+ } else if (cp1) {
+ cur_page = cp1;
+ } else if (cp2) {
+ cur_page = cp2;
+ } else {
+ goto fail_no_cp;
+ }
+
+ cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
+ memcpy(sbi->ckpt, cp_block, blk_size);
+
+ f2fs_put_page(cp1, 1);
+ f2fs_put_page(cp2, 1);
+ return 0;
+
+fail_no_cp:
+ kfree(sbi->ckpt);
+ return -EINVAL;
+}
+
+void set_dirty_dir_page(struct inode *inode, struct page *page)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct list_head *head = &sbi->dir_inode_list;
+ struct dir_inode_entry *new;
+ struct list_head *this;
+
+ if (!S_ISDIR(inode->i_mode))
+ return;
+retry:
+ new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
+ if (!new) {
+ cond_resched();
+ goto retry;
+ }
+ new->inode = inode;
+ INIT_LIST_HEAD(&new->list);
+
+ spin_lock(&sbi->dir_inode_lock);
+ list_for_each(this, head) {
+ struct dir_inode_entry *entry;
+ entry = list_entry(this, struct dir_inode_entry, list);
+ if (entry->inode == inode) {
+ kmem_cache_free(inode_entry_slab, new);
+ goto out;
+ }
+ }
+ list_add_tail(&new->list, head);
+ sbi->n_dirty_dirs++;
+
+ BUG_ON(!S_ISDIR(inode->i_mode));
+out:
+ inc_page_count(sbi, F2FS_DIRTY_DENTS);
+ inode_inc_dirty_dents(inode);
+ SetPagePrivate(page);
+
+ spin_unlock(&sbi->dir_inode_lock);
+}
+
+void remove_dirty_dir_inode(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct list_head *head = &sbi->dir_inode_list;
+ struct list_head *this;
+
+ if (!S_ISDIR(inode->i_mode))
+ return;
+
+ spin_lock(&sbi->dir_inode_lock);
+ if (atomic_read(&F2FS_I(inode)->dirty_dents))
+ goto out;
+
+ list_for_each(this, head) {
+ struct dir_inode_entry *entry;
+ entry = list_entry(this, struct dir_inode_entry, list);
+ if (entry->inode == inode) {
+ list_del(&entry->list);
+ kmem_cache_free(inode_entry_slab, entry);
+ sbi->n_dirty_dirs--;
+ break;
+ }
+ }
+out:
+ spin_unlock(&sbi->dir_inode_lock);
+}
+
+void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
+{
+ struct list_head *head = &sbi->dir_inode_list;
+ struct dir_inode_entry *entry;
+ struct inode *inode;
+retry:
+ spin_lock(&sbi->dir_inode_lock);
+ if (list_empty(head)) {
+ spin_unlock(&sbi->dir_inode_lock);
+ return;
+ }
+ entry = list_entry(head->next, struct dir_inode_entry, list);
+ inode = igrab(entry->inode);
+ spin_unlock(&sbi->dir_inode_lock);
+ if (inode) {
+ filemap_flush(inode->i_mapping);
+ iput(inode);
+ } else {
+ /*
+ * We should submit bio, since it exists several
+ * wribacking dentry pages in the freeing inode.
+ */
+ f2fs_submit_bio(sbi, DATA, true);
+ }
+ goto retry;
+}
+
+/*
+ * Freeze all the FS-operations for checkpoint.
+ */
+static void block_operations(struct f2fs_sb_info *sbi)
+{
+ int t;
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_ALL,
+ .nr_to_write = LONG_MAX,
+ .for_reclaim = 0,
+ };
+
+ /* Stop renaming operation */
+ mutex_lock_op(sbi, RENAME);
+ mutex_lock_op(sbi, DENTRY_OPS);
+
+retry_dents:
+ /* write all the dirty dentry pages */
+ sync_dirty_dir_inodes(sbi);
+
+ mutex_lock_op(sbi, DATA_WRITE);
+ if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
+ mutex_unlock_op(sbi, DATA_WRITE);
+ goto retry_dents;
+ }
+
+ /* block all the operations */
+ for (t = DATA_NEW; t <= NODE_TRUNC; t++)
+ mutex_lock_op(sbi, t);
+
+ mutex_lock(&sbi->write_inode);
+
+ /*
+ * POR: we should ensure that there is no dirty node pages
+ * until finishing nat/sit flush.
+ */
+retry:
+ sync_node_pages(sbi, 0, &wbc);
+
+ mutex_lock_op(sbi, NODE_WRITE);
+
+ if (get_pages(sbi, F2FS_DIRTY_NODES)) {
+ mutex_unlock_op(sbi, NODE_WRITE);
+ goto retry;
+ }
+ mutex_unlock(&sbi->write_inode);
+}
+
+static void unblock_operations(struct f2fs_sb_info *sbi)
+{
+ int t;
+ for (t = NODE_WRITE; t >= RENAME; t--)
+ mutex_unlock_op(sbi, t);
+}
+
+static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ nid_t last_nid = 0;
+ block_t start_blk;
+ struct page *cp_page;
+ unsigned int data_sum_blocks, orphan_blocks;
+ unsigned int crc32 = 0;
+ void *kaddr;
+ int i;
+
+ /* Flush all the NAT/SIT pages */
+ while (get_pages(sbi, F2FS_DIRTY_META))
+ sync_meta_pages(sbi, META, LONG_MAX);
+
+ next_free_nid(sbi, &last_nid);
+
+ /*
+ * modify checkpoint
+ * version number is already updated
+ */
+ ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
+ ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
+ ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
+ for (i = 0; i < 3; i++) {
+ ckpt->cur_node_segno[i] =
+ cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
+ ckpt->cur_node_blkoff[i] =
+ cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
+ ckpt->alloc_type[i + CURSEG_HOT_NODE] =
+ curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
+ }
+ for (i = 0; i < 3; i++) {
+ ckpt->cur_data_segno[i] =
+ cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
+ ckpt->cur_data_blkoff[i] =
+ cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
+ ckpt->alloc_type[i + CURSEG_HOT_DATA] =
+ curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
+ }
+
+ ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
+ ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
+ ckpt->next_free_nid = cpu_to_le32(last_nid);
+
+ /* 2 cp + n data seg summary + orphan inode blocks */
+ data_sum_blocks = npages_for_summary_flush(sbi);
+ if (data_sum_blocks < 3)
+ set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
+ else
+ clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
+
+ orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
+ / F2FS_ORPHANS_PER_BLOCK;
+ ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
+
+ if (is_umount) {
+ set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
+ ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
+ data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
+ } else {
+ clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
+ ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
+ data_sum_blocks + orphan_blocks);
+ }
+
+ if (sbi->n_orphans)
+ set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
+ else
+ clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
+
+ /* update SIT/NAT bitmap */
+ get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
+ get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
+
+ crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
+ *(__le32 *)((unsigned char *)ckpt +
+ le32_to_cpu(ckpt->checksum_offset))
+ = cpu_to_le32(crc32);
+
+ start_blk = __start_cp_addr(sbi);
+
+ /* write out checkpoint buffer at block 0 */
+ cp_page = grab_meta_page(sbi, start_blk++);
+ kaddr = page_address(cp_page);
+ memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
+ set_page_dirty(cp_page);
+ f2fs_put_page(cp_page, 1);
+
+ if (sbi->n_orphans) {
+ write_orphan_inodes(sbi, start_blk);
+ start_blk += orphan_blocks;
+ }
+
+ write_data_summaries(sbi, start_blk);
+ start_blk += data_sum_blocks;
+ if (is_umount) {
+ write_node_summaries(sbi, start_blk);
+ start_blk += NR_CURSEG_NODE_TYPE;
+ }
+
+ /* writeout checkpoint block */
+ cp_page = grab_meta_page(sbi, start_blk);
+ kaddr = page_address(cp_page);
+ memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
+ set_page_dirty(cp_page);
+ f2fs_put_page(cp_page, 1);
+
+ /* wait for previous submitted node/meta pages writeback */
+ while (get_pages(sbi, F2FS_WRITEBACK))
+ congestion_wait(BLK_RW_ASYNC, HZ / 50);
+
+ filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
+ filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
+
+ /* update user_block_counts */
+ sbi->last_valid_block_count = sbi->total_valid_block_count;
+ sbi->alloc_valid_block_count = 0;
+
+ /* Here, we only have one bio having CP pack */
+ sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
+
+ if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
+ clear_prefree_segments(sbi);
+ F2FS_RESET_SB_DIRT(sbi);
+ }
+}
+
+/*
+ * We guarantee that this checkpoint procedure should not fail.
+ */
+void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ unsigned long long ckpt_ver;
+
+ mutex_lock(&sbi->cp_mutex);
+ block_operations(sbi);
+
+ f2fs_submit_bio(sbi, DATA, true);
+ f2fs_submit_bio(sbi, NODE, true);
+ f2fs_submit_bio(sbi, META, true);
+
+ /*
+ * update checkpoint pack index
+ * Increase the version number so that
+ * SIT entries and seg summaries are written at correct place
+ */
+ ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
+ ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
+
+ /* write cached NAT/SIT entries to NAT/SIT area */
+ flush_nat_entries(sbi);
+ flush_sit_entries(sbi);
+
+ reset_victim_segmap(sbi);
+
+ /* unlock all the fs_lock[] in do_checkpoint() */
+ do_checkpoint(sbi, is_umount);
+
+ unblock_operations(sbi);
+ mutex_unlock(&sbi->cp_mutex);
+}
+
+void init_orphan_info(struct f2fs_sb_info *sbi)
+{
+ mutex_init(&sbi->orphan_inode_mutex);
+ INIT_LIST_HEAD(&sbi->orphan_inode_list);
+ sbi->n_orphans = 0;
+}
+
+int __init create_checkpoint_caches(void)
+{
+ orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
+ sizeof(struct orphan_inode_entry), NULL);
+ if (unlikely(!orphan_entry_slab))
+ return -ENOMEM;
+ inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
+ sizeof(struct dir_inode_entry), NULL);
+ if (unlikely(!inode_entry_slab)) {
+ kmem_cache_destroy(orphan_entry_slab);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+void destroy_checkpoint_caches(void)
+{
+ kmem_cache_destroy(orphan_entry_slab);
+ kmem_cache_destroy(inode_entry_slab);
+}
diff --git a/fs/f2fs/data.c b/fs/f2fs/data.c
new file mode 100644
index 000000000000..7bd22a201125
--- /dev/null
+++ b/fs/f2fs/data.c
@@ -0,0 +1,718 @@
+/*
+ * fs/f2fs/data.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/buffer_head.h>
+#include <linux/mpage.h>
+#include <linux/writeback.h>
+#include <linux/backing-dev.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/prefetch.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+
+/*
+ * Lock ordering for the change of data block address:
+ * ->data_page
+ * ->node_page
+ * update block addresses in the node page
+ */
+static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
+{
+ struct f2fs_node *rn;
+ __le32 *addr_array;
+ struct page *node_page = dn->node_page;
+ unsigned int ofs_in_node = dn->ofs_in_node;
+
+ wait_on_page_writeback(node_page);
+
+ rn = (struct f2fs_node *)page_address(node_page);
+
+ /* Get physical address of data block */
+ addr_array = blkaddr_in_node(rn);
+ addr_array[ofs_in_node] = cpu_to_le32(new_addr);
+ set_page_dirty(node_page);
+}
+
+int reserve_new_block(struct dnode_of_data *dn)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+
+ if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
+ return -EPERM;
+ if (!inc_valid_block_count(sbi, dn->inode, 1))
+ return -ENOSPC;
+
+ __set_data_blkaddr(dn, NEW_ADDR);
+ dn->data_blkaddr = NEW_ADDR;
+ sync_inode_page(dn);
+ return 0;
+}
+
+static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
+ struct buffer_head *bh_result)
+{
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ pgoff_t start_fofs, end_fofs;
+ block_t start_blkaddr;
+
+ read_lock(&fi->ext.ext_lock);
+ if (fi->ext.len == 0) {
+ read_unlock(&fi->ext.ext_lock);
+ return 0;
+ }
+
+ sbi->total_hit_ext++;
+ start_fofs = fi->ext.fofs;
+ end_fofs = fi->ext.fofs + fi->ext.len - 1;
+ start_blkaddr = fi->ext.blk_addr;
+
+ if (pgofs >= start_fofs && pgofs <= end_fofs) {
+ unsigned int blkbits = inode->i_sb->s_blocksize_bits;
+ size_t count;
+
+ clear_buffer_new(bh_result);
+ map_bh(bh_result, inode->i_sb,
+ start_blkaddr + pgofs - start_fofs);
+ count = end_fofs - pgofs + 1;
+ if (count < (UINT_MAX >> blkbits))
+ bh_result->b_size = (count << blkbits);
+ else
+ bh_result->b_size = UINT_MAX;
+
+ sbi->read_hit_ext++;
+ read_unlock(&fi->ext.ext_lock);
+ return 1;
+ }
+ read_unlock(&fi->ext.ext_lock);
+ return 0;
+}
+
+void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
+{
+ struct f2fs_inode_info *fi = F2FS_I(dn->inode);
+ pgoff_t fofs, start_fofs, end_fofs;
+ block_t start_blkaddr, end_blkaddr;
+
+ BUG_ON(blk_addr == NEW_ADDR);
+ fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
+
+ /* Update the page address in the parent node */
+ __set_data_blkaddr(dn, blk_addr);
+
+ write_lock(&fi->ext.ext_lock);
+
+ start_fofs = fi->ext.fofs;
+ end_fofs = fi->ext.fofs + fi->ext.len - 1;
+ start_blkaddr = fi->ext.blk_addr;
+ end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
+
+ /* Drop and initialize the matched extent */
+ if (fi->ext.len == 1 && fofs == start_fofs)
+ fi->ext.len = 0;
+
+ /* Initial extent */
+ if (fi->ext.len == 0) {
+ if (blk_addr != NULL_ADDR) {
+ fi->ext.fofs = fofs;
+ fi->ext.blk_addr = blk_addr;
+ fi->ext.len = 1;
+ }
+ goto end_update;
+ }
+
+ /* Frone merge */
+ if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
+ fi->ext.fofs--;
+ fi->ext.blk_addr--;
+ fi->ext.len++;
+ goto end_update;
+ }
+
+ /* Back merge */
+ if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
+ fi->ext.len++;
+ goto end_update;
+ }
+
+ /* Split the existing extent */
+ if (fi->ext.len > 1 &&
+ fofs >= start_fofs && fofs <= end_fofs) {
+ if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
+ fi->ext.len = fofs - start_fofs;
+ } else {
+ fi->ext.fofs = fofs + 1;
+ fi->ext.blk_addr = start_blkaddr +
+ fofs - start_fofs + 1;
+ fi->ext.len -= fofs - start_fofs + 1;
+ }
+ goto end_update;
+ }
+ write_unlock(&fi->ext.ext_lock);
+ return;
+
+end_update:
+ write_unlock(&fi->ext.ext_lock);
+ sync_inode_page(dn);
+ return;
+}
+
+struct page *find_data_page(struct inode *inode, pgoff_t index)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct address_space *mapping = inode->i_mapping;
+ struct dnode_of_data dn;
+ struct page *page;
+ int err;
+
+ page = find_get_page(mapping, index);
+ if (page && PageUptodate(page))
+ return page;
+ f2fs_put_page(page, 0);
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, index, RDONLY_NODE);
+ if (err)
+ return ERR_PTR(err);
+ f2fs_put_dnode(&dn);
+
+ if (dn.data_blkaddr == NULL_ADDR)
+ return ERR_PTR(-ENOENT);
+
+ /* By fallocate(), there is no cached page, but with NEW_ADDR */
+ if (dn.data_blkaddr == NEW_ADDR)
+ return ERR_PTR(-EINVAL);
+
+ page = grab_cache_page(mapping, index);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
+ if (err) {
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+ }
+ unlock_page(page);
+ return page;
+}
+
+/*
+ * If it tries to access a hole, return an error.
+ * Because, the callers, functions in dir.c and GC, should be able to know
+ * whether this page exists or not.
+ */
+struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct address_space *mapping = inode->i_mapping;
+ struct dnode_of_data dn;
+ struct page *page;
+ int err;
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, index, RDONLY_NODE);
+ if (err)
+ return ERR_PTR(err);
+ f2fs_put_dnode(&dn);
+
+ if (dn.data_blkaddr == NULL_ADDR)
+ return ERR_PTR(-ENOENT);
+
+ page = grab_cache_page(mapping, index);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ if (PageUptodate(page))
+ return page;
+
+ BUG_ON(dn.data_blkaddr == NEW_ADDR);
+ BUG_ON(dn.data_blkaddr == NULL_ADDR);
+
+ err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
+ if (err) {
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+ }
+ return page;
+}
+
+/*
+ * Caller ensures that this data page is never allocated.
+ * A new zero-filled data page is allocated in the page cache.
+ */
+struct page *get_new_data_page(struct inode *inode, pgoff_t index,
+ bool new_i_size)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct address_space *mapping = inode->i_mapping;
+ struct page *page;
+ struct dnode_of_data dn;
+ int err;
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, index, 0);
+ if (err)
+ return ERR_PTR(err);
+
+ if (dn.data_blkaddr == NULL_ADDR) {
+ if (reserve_new_block(&dn)) {
+ f2fs_put_dnode(&dn);
+ return ERR_PTR(-ENOSPC);
+ }
+ }
+ f2fs_put_dnode(&dn);
+
+ page = grab_cache_page(mapping, index);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ if (PageUptodate(page))
+ return page;
+
+ if (dn.data_blkaddr == NEW_ADDR) {
+ zero_user_segment(page, 0, PAGE_CACHE_SIZE);
+ } else {
+ err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
+ if (err) {
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+ }
+ }
+ SetPageUptodate(page);
+
+ if (new_i_size &&
+ i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
+ i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
+ mark_inode_dirty_sync(inode);
+ }
+ return page;
+}
+
+static void read_end_io(struct bio *bio, int err)
+{
+ const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+ struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
+
+ do {
+ struct page *page = bvec->bv_page;
+
+ if (--bvec >= bio->bi_io_vec)
+ prefetchw(&bvec->bv_page->flags);
+
+ if (uptodate) {
+ SetPageUptodate(page);
+ } else {
+ ClearPageUptodate(page);
+ SetPageError(page);
+ }
+ unlock_page(page);
+ } while (bvec >= bio->bi_io_vec);
+ kfree(bio->bi_private);
+ bio_put(bio);
+}
+
+/*
+ * Fill the locked page with data located in the block address.
+ * Read operation is synchronous, and caller must unlock the page.
+ */
+int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
+ block_t blk_addr, int type)
+{
+ struct block_device *bdev = sbi->sb->s_bdev;
+ bool sync = (type == READ_SYNC);
+ struct bio *bio;
+
+ /* This page can be already read by other threads */
+ if (PageUptodate(page)) {
+ if (!sync)
+ unlock_page(page);
+ return 0;
+ }
+
+ down_read(&sbi->bio_sem);
+
+ /* Allocate a new bio */
+ bio = f2fs_bio_alloc(bdev, 1);
+
+ /* Initialize the bio */
+ bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
+ bio->bi_end_io = read_end_io;
+
+ if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
+ kfree(bio->bi_private);
+ bio_put(bio);
+ up_read(&sbi->bio_sem);
+ return -EFAULT;
+ }
+
+ submit_bio(type, bio);
+ up_read(&sbi->bio_sem);
+
+ /* wait for read completion if sync */
+ if (sync) {
+ lock_page(page);
+ if (PageError(page))
+ return -EIO;
+ }
+ return 0;
+}
+
+/*
+ * This function should be used by the data read flow only where it
+ * does not check the "create" flag that indicates block allocation.
+ * The reason for this special functionality is to exploit VFS readahead
+ * mechanism.
+ */
+static int get_data_block_ro(struct inode *inode, sector_t iblock,
+ struct buffer_head *bh_result, int create)
+{
+ unsigned int blkbits = inode->i_sb->s_blocksize_bits;
+ unsigned maxblocks = bh_result->b_size >> blkbits;
+ struct dnode_of_data dn;
+ pgoff_t pgofs;
+ int err;
+
+ /* Get the page offset from the block offset(iblock) */
+ pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
+
+ if (check_extent_cache(inode, pgofs, bh_result))
+ return 0;
+
+ /* When reading holes, we need its node page */
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, pgofs, RDONLY_NODE);
+ if (err)
+ return (err == -ENOENT) ? 0 : err;
+
+ /* It does not support data allocation */
+ BUG_ON(create);
+
+ if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
+ int i;
+ unsigned int end_offset;
+
+ end_offset = IS_INODE(dn.node_page) ?
+ ADDRS_PER_INODE :
+ ADDRS_PER_BLOCK;
+
+ clear_buffer_new(bh_result);
+
+ /* Give more consecutive addresses for the read ahead */
+ for (i = 0; i < end_offset - dn.ofs_in_node; i++)
+ if (((datablock_addr(dn.node_page,
+ dn.ofs_in_node + i))
+ != (dn.data_blkaddr + i)) || maxblocks == i)
+ break;
+ map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
+ bh_result->b_size = (i << blkbits);
+ }
+ f2fs_put_dnode(&dn);
+ return 0;
+}
+
+static int f2fs_read_data_page(struct file *file, struct page *page)
+{
+ return mpage_readpage(page, get_data_block_ro);
+}
+
+static int f2fs_read_data_pages(struct file *file,
+ struct address_space *mapping,
+ struct list_head *pages, unsigned nr_pages)
+{
+ return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
+}
+
+int do_write_data_page(struct page *page)
+{
+ struct inode *inode = page->mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ block_t old_blk_addr, new_blk_addr;
+ struct dnode_of_data dn;
+ int err = 0;
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, page->index, RDONLY_NODE);
+ if (err)
+ return err;
+
+ old_blk_addr = dn.data_blkaddr;
+
+ /* This page is already truncated */
+ if (old_blk_addr == NULL_ADDR)
+ goto out_writepage;
+
+ set_page_writeback(page);
+
+ /*
+ * If current allocation needs SSR,
+ * it had better in-place writes for updated data.
+ */
+ if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
+ need_inplace_update(inode)) {
+ rewrite_data_page(F2FS_SB(inode->i_sb), page,
+ old_blk_addr);
+ } else {
+ write_data_page(inode, page, &dn,
+ old_blk_addr, &new_blk_addr);
+ update_extent_cache(new_blk_addr, &dn);
+ F2FS_I(inode)->data_version =
+ le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
+ }
+out_writepage:
+ f2fs_put_dnode(&dn);
+ return err;
+}
+
+static int f2fs_write_data_page(struct page *page,
+ struct writeback_control *wbc)
+{
+ struct inode *inode = page->mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ loff_t i_size = i_size_read(inode);
+ const pgoff_t end_index = ((unsigned long long) i_size)
+ >> PAGE_CACHE_SHIFT;
+ unsigned offset;
+ int err = 0;
+
+ if (page->index < end_index)
+ goto out;
+
+ /*
+ * If the offset is out-of-range of file size,
+ * this page does not have to be written to disk.
+ */
+ offset = i_size & (PAGE_CACHE_SIZE - 1);
+ if ((page->index >= end_index + 1) || !offset) {
+ if (S_ISDIR(inode->i_mode)) {
+ dec_page_count(sbi, F2FS_DIRTY_DENTS);
+ inode_dec_dirty_dents(inode);
+ }
+ goto unlock_out;
+ }
+
+ zero_user_segment(page, offset, PAGE_CACHE_SIZE);
+out:
+ if (sbi->por_doing)
+ goto redirty_out;
+
+ if (wbc->for_reclaim && !S_ISDIR(inode->i_mode) && !is_cold_data(page))
+ goto redirty_out;
+
+ mutex_lock_op(sbi, DATA_WRITE);
+ if (S_ISDIR(inode->i_mode)) {
+ dec_page_count(sbi, F2FS_DIRTY_DENTS);
+ inode_dec_dirty_dents(inode);
+ }
+ err = do_write_data_page(page);
+ if (err && err != -ENOENT) {
+ wbc->pages_skipped++;
+ set_page_dirty(page);
+ }
+ mutex_unlock_op(sbi, DATA_WRITE);
+
+ if (wbc->for_reclaim)
+ f2fs_submit_bio(sbi, DATA, true);
+
+ if (err == -ENOENT)
+ goto unlock_out;
+
+ clear_cold_data(page);
+ unlock_page(page);
+
+ if (!wbc->for_reclaim && !S_ISDIR(inode->i_mode))
+ f2fs_balance_fs(sbi);
+ return 0;
+
+unlock_out:
+ unlock_page(page);
+ return (err == -ENOENT) ? 0 : err;
+
+redirty_out:
+ wbc->pages_skipped++;
+ set_page_dirty(page);
+ return AOP_WRITEPAGE_ACTIVATE;
+}
+
+#define MAX_DESIRED_PAGES_WP 4096
+
+static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
+ void *data)
+{
+ struct address_space *mapping = data;
+ int ret = mapping->a_ops->writepage(page, wbc);
+ mapping_set_error(mapping, ret);
+ return ret;
+}
+
+static int f2fs_write_data_pages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct inode *inode = mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ int ret;
+ long excess_nrtw = 0, desired_nrtw;
+
+ if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
+ desired_nrtw = MAX_DESIRED_PAGES_WP;
+ excess_nrtw = desired_nrtw - wbc->nr_to_write;
+ wbc->nr_to_write = desired_nrtw;
+ }
+
+ if (!S_ISDIR(inode->i_mode))
+ mutex_lock(&sbi->writepages);
+ ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
+ if (!S_ISDIR(inode->i_mode))
+ mutex_unlock(&sbi->writepages);
+ f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
+
+ remove_dirty_dir_inode(inode);
+
+ wbc->nr_to_write -= excess_nrtw;
+ return ret;
+}
+
+static int f2fs_write_begin(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata)
+{
+ struct inode *inode = mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct page *page;
+ pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
+ struct dnode_of_data dn;
+ int err = 0;
+
+ /* for nobh_write_end */
+ *fsdata = NULL;
+
+ f2fs_balance_fs(sbi);
+
+ page = grab_cache_page_write_begin(mapping, index, flags);
+ if (!page)
+ return -ENOMEM;
+ *pagep = page;
+
+ mutex_lock_op(sbi, DATA_NEW);
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, index, 0);
+ if (err) {
+ mutex_unlock_op(sbi, DATA_NEW);
+ f2fs_put_page(page, 1);
+ return err;
+ }
+
+ if (dn.data_blkaddr == NULL_ADDR) {
+ err = reserve_new_block(&dn);
+ if (err) {
+ f2fs_put_dnode(&dn);
+ mutex_unlock_op(sbi, DATA_NEW);
+ f2fs_put_page(page, 1);
+ return err;
+ }
+ }
+ f2fs_put_dnode(&dn);
+
+ mutex_unlock_op(sbi, DATA_NEW);
+
+ if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
+ return 0;
+
+ if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
+ unsigned start = pos & (PAGE_CACHE_SIZE - 1);
+ unsigned end = start + len;
+
+ /* Reading beyond i_size is simple: memset to zero */
+ zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
+ return 0;
+ }
+
+ if (dn.data_blkaddr == NEW_ADDR) {
+ zero_user_segment(page, 0, PAGE_CACHE_SIZE);
+ } else {
+ err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
+ if (err) {
+ f2fs_put_page(page, 1);
+ return err;
+ }
+ }
+ SetPageUptodate(page);
+ clear_cold_data(page);
+ return 0;
+}
+
+static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
+ const struct iovec *iov, loff_t offset, unsigned long nr_segs)
+{
+ struct file *file = iocb->ki_filp;
+ struct inode *inode = file->f_mapping->host;
+
+ if (rw == WRITE)
+ return 0;
+
+ /* Needs synchronization with the cleaner */
+ return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
+ get_data_block_ro);
+}
+
+static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
+{
+ struct inode *inode = page->mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
+ dec_page_count(sbi, F2FS_DIRTY_DENTS);
+ inode_dec_dirty_dents(inode);
+ }
+ ClearPagePrivate(page);
+}
+
+static int f2fs_release_data_page(struct page *page, gfp_t wait)
+{
+ ClearPagePrivate(page);
+ return 0;
+}
+
+static int f2fs_set_data_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page->mapping;
+ struct inode *inode = mapping->host;
+
+ SetPageUptodate(page);
+ if (!PageDirty(page)) {
+ __set_page_dirty_nobuffers(page);
+ set_dirty_dir_page(inode, page);
+ return 1;
+ }
+ return 0;
+}
+
+static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
+{
+ return generic_block_bmap(mapping, block, get_data_block_ro);
+}
+
+const struct address_space_operations f2fs_dblock_aops = {
+ .readpage = f2fs_read_data_page,
+ .readpages = f2fs_read_data_pages,
+ .writepage = f2fs_write_data_page,
+ .writepages = f2fs_write_data_pages,
+ .write_begin = f2fs_write_begin,
+ .write_end = nobh_write_end,
+ .set_page_dirty = f2fs_set_data_page_dirty,
+ .invalidatepage = f2fs_invalidate_data_page,
+ .releasepage = f2fs_release_data_page,
+ .direct_IO = f2fs_direct_IO,
+ .bmap = f2fs_bmap,
+};
diff --git a/fs/f2fs/debug.c b/fs/f2fs/debug.c
new file mode 100644
index 000000000000..025b9e2f935d
--- /dev/null
+++ b/fs/f2fs/debug.c
@@ -0,0 +1,355 @@
+/*
+ * f2fs debugging statistics
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ * Copyright (c) 2012 Linux Foundation
+ * Copyright (c) 2012 Greg Kroah-Hartman <gregkh@linuxfoundation.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/fs.h>
+#include <linux/backing-dev.h>
+#include <linux/proc_fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/blkdev.h>
+#include <linux/debugfs.h>
+#include <linux/seq_file.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+#include "gc.h"
+
+static LIST_HEAD(f2fs_stat_list);
+static struct dentry *debugfs_root;
+static DEFINE_MUTEX(f2fs_stat_mutex);
+
+static void update_general_status(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_stat_info *si = sbi->stat_info;
+ int i;
+
+ /* valid check of the segment numbers */
+ si->hit_ext = sbi->read_hit_ext;
+ si->total_ext = sbi->total_hit_ext;
+ si->ndirty_node = get_pages(sbi, F2FS_DIRTY_NODES);
+ si->ndirty_dent = get_pages(sbi, F2FS_DIRTY_DENTS);
+ si->ndirty_dirs = sbi->n_dirty_dirs;
+ si->ndirty_meta = get_pages(sbi, F2FS_DIRTY_META);
+ si->total_count = (int)sbi->user_block_count / sbi->blocks_per_seg;
+ si->rsvd_segs = reserved_segments(sbi);
+ si->overp_segs = overprovision_segments(sbi);
+ si->valid_count = valid_user_blocks(sbi);
+ si->valid_node_count = valid_node_count(sbi);
+ si->valid_inode_count = valid_inode_count(sbi);
+ si->utilization = utilization(sbi);
+
+ si->free_segs = free_segments(sbi);
+ si->free_secs = free_sections(sbi);
+ si->prefree_count = prefree_segments(sbi);
+ si->dirty_count = dirty_segments(sbi);
+ si->node_pages = sbi->node_inode->i_mapping->nrpages;
+ si->meta_pages = sbi->meta_inode->i_mapping->nrpages;
+ si->nats = NM_I(sbi)->nat_cnt;
+ si->sits = SIT_I(sbi)->dirty_sentries;
+ si->fnids = NM_I(sbi)->fcnt;
+ si->bg_gc = sbi->bg_gc;
+ si->util_free = (int)(free_user_blocks(sbi) >> sbi->log_blocks_per_seg)
+ * 100 / (int)(sbi->user_block_count >> sbi->log_blocks_per_seg)
+ / 2;
+ si->util_valid = (int)(written_block_count(sbi) >>
+ sbi->log_blocks_per_seg)
+ * 100 / (int)(sbi->user_block_count >> sbi->log_blocks_per_seg)
+ / 2;
+ si->util_invalid = 50 - si->util_free - si->util_valid;
+ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_NODE; i++) {
+ struct curseg_info *curseg = CURSEG_I(sbi, i);
+ si->curseg[i] = curseg->segno;
+ si->cursec[i] = curseg->segno / sbi->segs_per_sec;
+ si->curzone[i] = si->cursec[i] / sbi->secs_per_zone;
+ }
+
+ for (i = 0; i < 2; i++) {
+ si->segment_count[i] = sbi->segment_count[i];
+ si->block_count[i] = sbi->block_count[i];
+ }
+}
+
+/*
+ * This function calculates BDF of every segments
+ */
+static void update_sit_info(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_stat_info *si = sbi->stat_info;
+ unsigned int blks_per_sec, hblks_per_sec, total_vblocks, bimodal, dist;
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned int segno, vblocks;
+ int ndirty = 0;
+
+ bimodal = 0;
+ total_vblocks = 0;
+ blks_per_sec = sbi->segs_per_sec * (1 << sbi->log_blocks_per_seg);
+ hblks_per_sec = blks_per_sec / 2;
+ mutex_lock(&sit_i->sentry_lock);
+ for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
+ vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
+ dist = abs(vblocks - hblks_per_sec);
+ bimodal += dist * dist;
+
+ if (vblocks > 0 && vblocks < blks_per_sec) {
+ total_vblocks += vblocks;
+ ndirty++;
+ }
+ }
+ mutex_unlock(&sit_i->sentry_lock);
+ dist = sbi->total_sections * hblks_per_sec * hblks_per_sec / 100;
+ si->bimodal = bimodal / dist;
+ if (si->dirty_count)
+ si->avg_vblocks = total_vblocks / ndirty;
+ else
+ si->avg_vblocks = 0;
+}
+
+/*
+ * This function calculates memory footprint.
+ */
+static void update_mem_info(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_stat_info *si = sbi->stat_info;
+ unsigned npages;
+
+ if (si->base_mem)
+ goto get_cache;
+
+ si->base_mem = sizeof(struct f2fs_sb_info) + sbi->sb->s_blocksize;
+ si->base_mem += 2 * sizeof(struct f2fs_inode_info);
+ si->base_mem += sizeof(*sbi->ckpt);
+
+ /* build sm */
+ si->base_mem += sizeof(struct f2fs_sm_info);
+
+ /* build sit */
+ si->base_mem += sizeof(struct sit_info);
+ si->base_mem += TOTAL_SEGS(sbi) * sizeof(struct seg_entry);
+ si->base_mem += f2fs_bitmap_size(TOTAL_SEGS(sbi));
+ si->base_mem += 2 * SIT_VBLOCK_MAP_SIZE * TOTAL_SEGS(sbi);
+ if (sbi->segs_per_sec > 1)
+ si->base_mem += sbi->total_sections *
+ sizeof(struct sec_entry);
+ si->base_mem += __bitmap_size(sbi, SIT_BITMAP);
+
+ /* build free segmap */
+ si->base_mem += sizeof(struct free_segmap_info);
+ si->base_mem += f2fs_bitmap_size(TOTAL_SEGS(sbi));
+ si->base_mem += f2fs_bitmap_size(sbi->total_sections);
+
+ /* build curseg */
+ si->base_mem += sizeof(struct curseg_info) * NR_CURSEG_TYPE;
+ si->base_mem += PAGE_CACHE_SIZE * NR_CURSEG_TYPE;
+
+ /* build dirty segmap */
+ si->base_mem += sizeof(struct dirty_seglist_info);
+ si->base_mem += NR_DIRTY_TYPE * f2fs_bitmap_size(TOTAL_SEGS(sbi));
+ si->base_mem += 2 * f2fs_bitmap_size(TOTAL_SEGS(sbi));
+
+ /* buld nm */
+ si->base_mem += sizeof(struct f2fs_nm_info);
+ si->base_mem += __bitmap_size(sbi, NAT_BITMAP);
+
+ /* build gc */
+ si->base_mem += sizeof(struct f2fs_gc_kthread);
+
+get_cache:
+ /* free nids */
+ si->cache_mem = NM_I(sbi)->fcnt;
+ si->cache_mem += NM_I(sbi)->nat_cnt;
+ npages = sbi->node_inode->i_mapping->nrpages;
+ si->cache_mem += npages << PAGE_CACHE_SHIFT;
+ npages = sbi->meta_inode->i_mapping->nrpages;
+ si->cache_mem += npages << PAGE_CACHE_SHIFT;
+ si->cache_mem += sbi->n_orphans * sizeof(struct orphan_inode_entry);
+ si->cache_mem += sbi->n_dirty_dirs * sizeof(struct dir_inode_entry);
+}
+
+static int stat_show(struct seq_file *s, void *v)
+{
+ struct f2fs_stat_info *si, *next;
+ int i = 0;
+ int j;
+
+ mutex_lock(&f2fs_stat_mutex);
+ list_for_each_entry_safe(si, next, &f2fs_stat_list, stat_list) {
+ char devname[BDEVNAME_SIZE];
+
+ update_general_status(si->sbi);
+
+ seq_printf(s, "\n=====[ partition info(%s). #%d ]=====\n",
+ bdevname(si->sbi->sb->s_bdev, devname), i++);
+ seq_printf(s, "[SB: 1] [CP: 2] [SIT: %d] [NAT: %d] ",
+ si->sit_area_segs, si->nat_area_segs);
+ seq_printf(s, "[SSA: %d] [MAIN: %d",
+ si->ssa_area_segs, si->main_area_segs);
+ seq_printf(s, "(OverProv:%d Resv:%d)]\n\n",
+ si->overp_segs, si->rsvd_segs);
+ seq_printf(s, "Utilization: %d%% (%d valid blocks)\n",
+ si->utilization, si->valid_count);
+ seq_printf(s, " - Node: %u (Inode: %u, ",
+ si->valid_node_count, si->valid_inode_count);
+ seq_printf(s, "Other: %u)\n - Data: %u\n",
+ si->valid_node_count - si->valid_inode_count,
+ si->valid_count - si->valid_node_count);
+ seq_printf(s, "\nMain area: %d segs, %d secs %d zones\n",
+ si->main_area_segs, si->main_area_sections,
+ si->main_area_zones);
+ seq_printf(s, " - COLD data: %d, %d, %d\n",
+ si->curseg[CURSEG_COLD_DATA],
+ si->cursec[CURSEG_COLD_DATA],
+ si->curzone[CURSEG_COLD_DATA]);
+ seq_printf(s, " - WARM data: %d, %d, %d\n",
+ si->curseg[CURSEG_WARM_DATA],
+ si->cursec[CURSEG_WARM_DATA],
+ si->curzone[CURSEG_WARM_DATA]);
+ seq_printf(s, " - HOT data: %d, %d, %d\n",
+ si->curseg[CURSEG_HOT_DATA],
+ si->cursec[CURSEG_HOT_DATA],
+ si->curzone[CURSEG_HOT_DATA]);
+ seq_printf(s, " - Dir dnode: %d, %d, %d\n",
+ si->curseg[CURSEG_HOT_NODE],
+ si->cursec[CURSEG_HOT_NODE],
+ si->curzone[CURSEG_HOT_NODE]);
+ seq_printf(s, " - File dnode: %d, %d, %d\n",
+ si->curseg[CURSEG_WARM_NODE],
+ si->cursec[CURSEG_WARM_NODE],
+ si->curzone[CURSEG_WARM_NODE]);
+ seq_printf(s, " - Indir nodes: %d, %d, %d\n",
+ si->curseg[CURSEG_COLD_NODE],
+ si->cursec[CURSEG_COLD_NODE],
+ si->curzone[CURSEG_COLD_NODE]);
+ seq_printf(s, "\n - Valid: %d\n - Dirty: %d\n",
+ si->main_area_segs - si->dirty_count -
+ si->prefree_count - si->free_segs,
+ si->dirty_count);
+ seq_printf(s, " - Prefree: %d\n - Free: %d (%d)\n\n",
+ si->prefree_count, si->free_segs, si->free_secs);
+ seq_printf(s, "GC calls: %d (BG: %d)\n",
+ si->call_count, si->bg_gc);
+ seq_printf(s, " - data segments : %d\n", si->data_segs);
+ seq_printf(s, " - node segments : %d\n", si->node_segs);
+ seq_printf(s, "Try to move %d blocks\n", si->tot_blks);
+ seq_printf(s, " - data blocks : %d\n", si->data_blks);
+ seq_printf(s, " - node blocks : %d\n", si->node_blks);
+ seq_printf(s, "\nExtent Hit Ratio: %d / %d\n",
+ si->hit_ext, si->total_ext);
+ seq_printf(s, "\nBalancing F2FS Async:\n");
+ seq_printf(s, " - nodes %4d in %4d\n",
+ si->ndirty_node, si->node_pages);
+ seq_printf(s, " - dents %4d in dirs:%4d\n",
+ si->ndirty_dent, si->ndirty_dirs);
+ seq_printf(s, " - meta %4d in %4d\n",
+ si->ndirty_meta, si->meta_pages);
+ seq_printf(s, " - NATs %5d > %lu\n",
+ si->nats, NM_WOUT_THRESHOLD);
+ seq_printf(s, " - SITs: %5d\n - free_nids: %5d\n",
+ si->sits, si->fnids);
+ seq_printf(s, "\nDistribution of User Blocks:");
+ seq_printf(s, " [ valid | invalid | free ]\n");
+ seq_printf(s, " [");
+
+ for (j = 0; j < si->util_valid; j++)
+ seq_printf(s, "-");
+ seq_printf(s, "|");
+
+ for (j = 0; j < si->util_invalid; j++)
+ seq_printf(s, "-");
+ seq_printf(s, "|");
+
+ for (j = 0; j < si->util_free; j++)
+ seq_printf(s, "-");
+ seq_printf(s, "]\n\n");
+ seq_printf(s, "SSR: %u blocks in %u segments\n",
+ si->block_count[SSR], si->segment_count[SSR]);
+ seq_printf(s, "LFS: %u blocks in %u segments\n",
+ si->block_count[LFS], si->segment_count[LFS]);
+
+ /* segment usage info */
+ update_sit_info(si->sbi);
+ seq_printf(s, "\nBDF: %u, avg. vblocks: %u\n",
+ si->bimodal, si->avg_vblocks);
+
+ /* memory footprint */
+ update_mem_info(si->sbi);
+ seq_printf(s, "\nMemory: %u KB = static: %u + cached: %u\n",
+ (si->base_mem + si->cache_mem) >> 10,
+ si->base_mem >> 10, si->cache_mem >> 10);
+ }
+ mutex_unlock(&f2fs_stat_mutex);
+ return 0;
+}
+
+static int stat_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, stat_show, inode->i_private);
+}
+
+static const struct file_operations stat_fops = {
+ .open = stat_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+int f2fs_build_stats(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
+ struct f2fs_stat_info *si;
+
+ sbi->stat_info = kzalloc(sizeof(struct f2fs_stat_info), GFP_KERNEL);
+ if (!sbi->stat_info)
+ return -ENOMEM;
+
+ si = sbi->stat_info;
+ si->all_area_segs = le32_to_cpu(raw_super->segment_count);
+ si->sit_area_segs = le32_to_cpu(raw_super->segment_count_sit);
+ si->nat_area_segs = le32_to_cpu(raw_super->segment_count_nat);
+ si->ssa_area_segs = le32_to_cpu(raw_super->segment_count_ssa);
+ si->main_area_segs = le32_to_cpu(raw_super->segment_count_main);
+ si->main_area_sections = le32_to_cpu(raw_super->section_count);
+ si->main_area_zones = si->main_area_sections /
+ le32_to_cpu(raw_super->secs_per_zone);
+ si->sbi = sbi;
+
+ mutex_lock(&f2fs_stat_mutex);
+ list_add_tail(&si->stat_list, &f2fs_stat_list);
+ mutex_unlock(&f2fs_stat_mutex);
+
+ return 0;
+}
+
+void f2fs_destroy_stats(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_stat_info *si = sbi->stat_info;
+
+ mutex_lock(&f2fs_stat_mutex);
+ list_del(&si->stat_list);
+ mutex_unlock(&f2fs_stat_mutex);
+
+ kfree(sbi->stat_info);
+}
+
+void __init f2fs_create_root_stats(void)
+{
+ debugfs_root = debugfs_create_dir("f2fs", NULL);
+ if (debugfs_root)
+ debugfs_create_file("status", S_IRUGO, debugfs_root,
+ NULL, &stat_fops);
+}
+
+void f2fs_destroy_root_stats(void)
+{
+ debugfs_remove_recursive(debugfs_root);
+ debugfs_root = NULL;
+}
diff --git a/fs/f2fs/dir.c b/fs/f2fs/dir.c
new file mode 100644
index 000000000000..a1f38443ecee
--- /dev/null
+++ b/fs/f2fs/dir.c
@@ -0,0 +1,671 @@
+/*
+ * fs/f2fs/dir.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include "f2fs.h"
+#include "node.h"
+#include "acl.h"
+
+static unsigned long dir_blocks(struct inode *inode)
+{
+ return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
+ >> PAGE_CACHE_SHIFT;
+}
+
+static unsigned int dir_buckets(unsigned int level)
+{
+ if (level < MAX_DIR_HASH_DEPTH / 2)
+ return 1 << level;
+ else
+ return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1);
+}
+
+static unsigned int bucket_blocks(unsigned int level)
+{
+ if (level < MAX_DIR_HASH_DEPTH / 2)
+ return 2;
+ else
+ return 4;
+}
+
+static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
+ [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
+ [F2FS_FT_REG_FILE] = DT_REG,
+ [F2FS_FT_DIR] = DT_DIR,
+ [F2FS_FT_CHRDEV] = DT_CHR,
+ [F2FS_FT_BLKDEV] = DT_BLK,
+ [F2FS_FT_FIFO] = DT_FIFO,
+ [F2FS_FT_SOCK] = DT_SOCK,
+ [F2FS_FT_SYMLINK] = DT_LNK,
+};
+
+#define S_SHIFT 12
+static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
+ [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
+ [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
+ [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
+ [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
+ [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
+ [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
+ [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
+};
+
+static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode)
+{
+ mode_t mode = inode->i_mode;
+ de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
+}
+
+static unsigned long dir_block_index(unsigned int level, unsigned int idx)
+{
+ unsigned long i;
+ unsigned long bidx = 0;
+
+ for (i = 0; i < level; i++)
+ bidx += dir_buckets(i) * bucket_blocks(i);
+ bidx += idx * bucket_blocks(level);
+ return bidx;
+}
+
+static bool early_match_name(const char *name, size_t namelen,
+ f2fs_hash_t namehash, struct f2fs_dir_entry *de)
+{
+ if (le16_to_cpu(de->name_len) != namelen)
+ return false;
+
+ if (de->hash_code != namehash)
+ return false;
+
+ return true;
+}
+
+static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
+ const char *name, size_t namelen, int *max_slots,
+ f2fs_hash_t namehash, struct page **res_page)
+{
+ struct f2fs_dir_entry *de;
+ unsigned long bit_pos, end_pos, next_pos;
+ struct f2fs_dentry_block *dentry_blk = kmap(dentry_page);
+ int slots;
+
+ bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
+ NR_DENTRY_IN_BLOCK, 0);
+ while (bit_pos < NR_DENTRY_IN_BLOCK) {
+ de = &dentry_blk->dentry[bit_pos];
+ slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
+
+ if (early_match_name(name, namelen, namehash, de)) {
+ if (!memcmp(dentry_blk->filename[bit_pos],
+ name, namelen)) {
+ *res_page = dentry_page;
+ goto found;
+ }
+ }
+ next_pos = bit_pos + slots;
+ bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
+ NR_DENTRY_IN_BLOCK, next_pos);
+ if (bit_pos >= NR_DENTRY_IN_BLOCK)
+ end_pos = NR_DENTRY_IN_BLOCK;
+ else
+ end_pos = bit_pos;
+ if (*max_slots < end_pos - next_pos)
+ *max_slots = end_pos - next_pos;
+ }
+
+ de = NULL;
+ kunmap(dentry_page);
+found:
+ return de;
+}
+
+static struct f2fs_dir_entry *find_in_level(struct inode *dir,
+ unsigned int level, const char *name, size_t namelen,
+ f2fs_hash_t namehash, struct page **res_page)
+{
+ int s = GET_DENTRY_SLOTS(namelen);
+ unsigned int nbucket, nblock;
+ unsigned int bidx, end_block;
+ struct page *dentry_page;
+ struct f2fs_dir_entry *de = NULL;
+ bool room = false;
+ int max_slots = 0;
+
+ BUG_ON(level > MAX_DIR_HASH_DEPTH);
+
+ nbucket = dir_buckets(level);
+ nblock = bucket_blocks(level);
+
+ bidx = dir_block_index(level, le32_to_cpu(namehash) % nbucket);
+ end_block = bidx + nblock;
+
+ for (; bidx < end_block; bidx++) {
+ /* no need to allocate new dentry pages to all the indices */
+ dentry_page = find_data_page(dir, bidx);
+ if (IS_ERR(dentry_page)) {
+ room = true;
+ continue;
+ }
+
+ de = find_in_block(dentry_page, name, namelen,
+ &max_slots, namehash, res_page);
+ if (de)
+ break;
+
+ if (max_slots >= s)
+ room = true;
+ f2fs_put_page(dentry_page, 0);
+ }
+
+ if (!de && room && F2FS_I(dir)->chash != namehash) {
+ F2FS_I(dir)->chash = namehash;
+ F2FS_I(dir)->clevel = level;
+ }
+
+ return de;
+}
+
+/*
+ * Find an entry in the specified directory with the wanted name.
+ * It returns the page where the entry was found (as a parameter - res_page),
+ * and the entry itself. Page is returned mapped and unlocked.
+ * Entry is guaranteed to be valid.
+ */
+struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
+ struct qstr *child, struct page **res_page)
+{
+ const char *name = child->name;
+ size_t namelen = child->len;
+ unsigned long npages = dir_blocks(dir);
+ struct f2fs_dir_entry *de = NULL;
+ f2fs_hash_t name_hash;
+ unsigned int max_depth;
+ unsigned int level;
+
+ if (npages == 0)
+ return NULL;
+
+ *res_page = NULL;
+
+ name_hash = f2fs_dentry_hash(name, namelen);
+ max_depth = F2FS_I(dir)->i_current_depth;
+
+ for (level = 0; level < max_depth; level++) {
+ de = find_in_level(dir, level, name,
+ namelen, name_hash, res_page);
+ if (de)
+ break;
+ }
+ if (!de && F2FS_I(dir)->chash != name_hash) {
+ F2FS_I(dir)->chash = name_hash;
+ F2FS_I(dir)->clevel = level - 1;
+ }
+ return de;
+}
+
+struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
+{
+ struct page *page = NULL;
+ struct f2fs_dir_entry *de = NULL;
+ struct f2fs_dentry_block *dentry_blk = NULL;
+
+ page = get_lock_data_page(dir, 0);
+ if (IS_ERR(page))
+ return NULL;
+
+ dentry_blk = kmap(page);
+ de = &dentry_blk->dentry[1];
+ *p = page;
+ unlock_page(page);
+ return de;
+}
+
+ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr)
+{
+ ino_t res = 0;
+ struct f2fs_dir_entry *de;
+ struct page *page;
+
+ de = f2fs_find_entry(dir, qstr, &page);
+ if (de) {
+ res = le32_to_cpu(de->ino);
+ kunmap(page);
+ f2fs_put_page(page, 0);
+ }
+
+ return res;
+}
+
+void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
+ struct page *page, struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
+
+ mutex_lock_op(sbi, DENTRY_OPS);
+ lock_page(page);
+ wait_on_page_writeback(page);
+ de->ino = cpu_to_le32(inode->i_ino);
+ set_de_type(de, inode);
+ kunmap(page);
+ set_page_dirty(page);
+ dir->i_mtime = dir->i_ctime = CURRENT_TIME;
+ mark_inode_dirty(dir);
+
+ /* update parent inode number before releasing dentry page */
+ F2FS_I(inode)->i_pino = dir->i_ino;
+
+ f2fs_put_page(page, 1);
+ mutex_unlock_op(sbi, DENTRY_OPS);
+}
+
+void init_dent_inode(const struct qstr *name, struct page *ipage)
+{
+ struct f2fs_node *rn;
+
+ if (IS_ERR(ipage))
+ return;
+
+ wait_on_page_writeback(ipage);
+
+ /* copy name info. to this inode page */
+ rn = (struct f2fs_node *)page_address(ipage);
+ rn->i.i_namelen = cpu_to_le32(name->len);
+ memcpy(rn->i.i_name, name->name, name->len);
+ set_page_dirty(ipage);
+}
+
+static int init_inode_metadata(struct inode *inode,
+ struct inode *dir, const struct qstr *name)
+{
+ if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
+ int err;
+ err = new_inode_page(inode, name);
+ if (err)
+ return err;
+
+ if (S_ISDIR(inode->i_mode)) {
+ err = f2fs_make_empty(inode, dir);
+ if (err) {
+ remove_inode_page(inode);
+ return err;
+ }
+ }
+
+ err = f2fs_init_acl(inode, dir);
+ if (err) {
+ remove_inode_page(inode);
+ return err;
+ }
+ } else {
+ struct page *ipage;
+ ipage = get_node_page(F2FS_SB(dir->i_sb), inode->i_ino);
+ if (IS_ERR(ipage))
+ return PTR_ERR(ipage);
+ set_cold_node(inode, ipage);
+ init_dent_inode(name, ipage);
+ f2fs_put_page(ipage, 1);
+ }
+ if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) {
+ inc_nlink(inode);
+ f2fs_write_inode(inode, NULL);
+ }
+ return 0;
+}
+
+static void update_parent_metadata(struct inode *dir, struct inode *inode,
+ unsigned int current_depth)
+{
+ bool need_dir_update = false;
+
+ if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
+ if (S_ISDIR(inode->i_mode)) {
+ inc_nlink(dir);
+ need_dir_update = true;
+ }
+ clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
+ }
+ dir->i_mtime = dir->i_ctime = CURRENT_TIME;
+ if (F2FS_I(dir)->i_current_depth != current_depth) {
+ F2FS_I(dir)->i_current_depth = current_depth;
+ need_dir_update = true;
+ }
+
+ if (need_dir_update)
+ f2fs_write_inode(dir, NULL);
+ else
+ mark_inode_dirty(dir);
+
+ if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK))
+ clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
+}
+
+static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots)
+{
+ int bit_start = 0;
+ int zero_start, zero_end;
+next:
+ zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap,
+ NR_DENTRY_IN_BLOCK,
+ bit_start);
+ if (zero_start >= NR_DENTRY_IN_BLOCK)
+ return NR_DENTRY_IN_BLOCK;
+
+ zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap,
+ NR_DENTRY_IN_BLOCK,
+ zero_start);
+ if (zero_end - zero_start >= slots)
+ return zero_start;
+
+ bit_start = zero_end + 1;
+
+ if (zero_end + 1 >= NR_DENTRY_IN_BLOCK)
+ return NR_DENTRY_IN_BLOCK;
+ goto next;
+}
+
+int __f2fs_add_link(struct inode *dir, const struct qstr *name, struct inode *inode)
+{
+ unsigned int bit_pos;
+ unsigned int level;
+ unsigned int current_depth;
+ unsigned long bidx, block;
+ f2fs_hash_t dentry_hash;
+ struct f2fs_dir_entry *de;
+ unsigned int nbucket, nblock;
+ struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
+ size_t namelen = name->len;
+ struct page *dentry_page = NULL;
+ struct f2fs_dentry_block *dentry_blk = NULL;
+ int slots = GET_DENTRY_SLOTS(namelen);
+ int err = 0;
+ int i;
+
+ dentry_hash = f2fs_dentry_hash(name->name, name->len);
+ level = 0;
+ current_depth = F2FS_I(dir)->i_current_depth;
+ if (F2FS_I(dir)->chash == dentry_hash) {
+ level = F2FS_I(dir)->clevel;
+ F2FS_I(dir)->chash = 0;
+ }
+
+start:
+ if (current_depth == MAX_DIR_HASH_DEPTH)
+ return -ENOSPC;
+
+ /* Increase the depth, if required */
+ if (level == current_depth)
+ ++current_depth;
+
+ nbucket = dir_buckets(level);
+ nblock = bucket_blocks(level);
+
+ bidx = dir_block_index(level, (le32_to_cpu(dentry_hash) % nbucket));
+
+ for (block = bidx; block <= (bidx + nblock - 1); block++) {
+ mutex_lock_op(sbi, DENTRY_OPS);
+ dentry_page = get_new_data_page(dir, block, true);
+ if (IS_ERR(dentry_page)) {
+ mutex_unlock_op(sbi, DENTRY_OPS);
+ return PTR_ERR(dentry_page);
+ }
+
+ dentry_blk = kmap(dentry_page);
+ bit_pos = room_for_filename(dentry_blk, slots);
+ if (bit_pos < NR_DENTRY_IN_BLOCK)
+ goto add_dentry;
+
+ kunmap(dentry_page);
+ f2fs_put_page(dentry_page, 1);
+ mutex_unlock_op(sbi, DENTRY_OPS);
+ }
+
+ /* Move to next level to find the empty slot for new dentry */
+ ++level;
+ goto start;
+add_dentry:
+ err = init_inode_metadata(inode, dir, name);
+ if (err)
+ goto fail;
+
+ wait_on_page_writeback(dentry_page);
+
+ de = &dentry_blk->dentry[bit_pos];
+ de->hash_code = dentry_hash;
+ de->name_len = cpu_to_le16(namelen);
+ memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
+ de->ino = cpu_to_le32(inode->i_ino);
+ set_de_type(de, inode);
+ for (i = 0; i < slots; i++)
+ test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
+ set_page_dirty(dentry_page);
+
+ update_parent_metadata(dir, inode, current_depth);
+
+ /* update parent inode number before releasing dentry page */
+ F2FS_I(inode)->i_pino = dir->i_ino;
+fail:
+ kunmap(dentry_page);
+ f2fs_put_page(dentry_page, 1);
+ mutex_unlock_op(sbi, DENTRY_OPS);
+ return err;
+}
+
+/*
+ * It only removes the dentry from the dentry page,corresponding name
+ * entry in name page does not need to be touched during deletion.
+ */
+void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
+ struct inode *inode)
+{
+ struct f2fs_dentry_block *dentry_blk;
+ unsigned int bit_pos;
+ struct address_space *mapping = page->mapping;
+ struct inode *dir = mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
+ int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
+ void *kaddr = page_address(page);
+ int i;
+
+ mutex_lock_op(sbi, DENTRY_OPS);
+
+ lock_page(page);
+ wait_on_page_writeback(page);
+
+ dentry_blk = (struct f2fs_dentry_block *)kaddr;
+ bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry;
+ for (i = 0; i < slots; i++)
+ test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
+
+ /* Let's check and deallocate this dentry page */
+ bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
+ NR_DENTRY_IN_BLOCK,
+ 0);
+ kunmap(page); /* kunmap - pair of f2fs_find_entry */
+ set_page_dirty(page);
+
+ dir->i_ctime = dir->i_mtime = CURRENT_TIME;
+
+ if (inode && S_ISDIR(inode->i_mode)) {
+ drop_nlink(dir);
+ f2fs_write_inode(dir, NULL);
+ } else {
+ mark_inode_dirty(dir);
+ }
+
+ if (inode) {
+ inode->i_ctime = CURRENT_TIME;
+ drop_nlink(inode);
+ if (S_ISDIR(inode->i_mode)) {
+ drop_nlink(inode);
+ i_size_write(inode, 0);
+ }
+ f2fs_write_inode(inode, NULL);
+ if (inode->i_nlink == 0)
+ add_orphan_inode(sbi, inode->i_ino);
+ }
+
+ if (bit_pos == NR_DENTRY_IN_BLOCK) {
+ truncate_hole(dir, page->index, page->index + 1);
+ clear_page_dirty_for_io(page);
+ ClearPageUptodate(page);
+ dec_page_count(sbi, F2FS_DIRTY_DENTS);
+ inode_dec_dirty_dents(dir);
+ }
+ f2fs_put_page(page, 1);
+
+ mutex_unlock_op(sbi, DENTRY_OPS);
+}
+
+int f2fs_make_empty(struct inode *inode, struct inode *parent)
+{
+ struct page *dentry_page;
+ struct f2fs_dentry_block *dentry_blk;
+ struct f2fs_dir_entry *de;
+ void *kaddr;
+
+ dentry_page = get_new_data_page(inode, 0, true);
+ if (IS_ERR(dentry_page))
+ return PTR_ERR(dentry_page);
+
+ kaddr = kmap_atomic(dentry_page);
+ dentry_blk = (struct f2fs_dentry_block *)kaddr;
+
+ de = &dentry_blk->dentry[0];
+ de->name_len = cpu_to_le16(1);
+ de->hash_code = f2fs_dentry_hash(".", 1);
+ de->ino = cpu_to_le32(inode->i_ino);
+ memcpy(dentry_blk->filename[0], ".", 1);
+ set_de_type(de, inode);
+
+ de = &dentry_blk->dentry[1];
+ de->hash_code = f2fs_dentry_hash("..", 2);
+ de->name_len = cpu_to_le16(2);
+ de->ino = cpu_to_le32(parent->i_ino);
+ memcpy(dentry_blk->filename[1], "..", 2);
+ set_de_type(de, inode);
+
+ test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
+ test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
+ kunmap_atomic(kaddr);
+
+ set_page_dirty(dentry_page);
+ f2fs_put_page(dentry_page, 1);
+ return 0;
+}
+
+bool f2fs_empty_dir(struct inode *dir)
+{
+ unsigned long bidx;
+ struct page *dentry_page;
+ unsigned int bit_pos;
+ struct f2fs_dentry_block *dentry_blk;
+ unsigned long nblock = dir_blocks(dir);
+
+ for (bidx = 0; bidx < nblock; bidx++) {
+ void *kaddr;
+ dentry_page = get_lock_data_page(dir, bidx);
+ if (IS_ERR(dentry_page)) {
+ if (PTR_ERR(dentry_page) == -ENOENT)
+ continue;
+ else
+ return false;
+ }
+
+ kaddr = kmap_atomic(dentry_page);
+ dentry_blk = (struct f2fs_dentry_block *)kaddr;
+ if (bidx == 0)
+ bit_pos = 2;
+ else
+ bit_pos = 0;
+ bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
+ NR_DENTRY_IN_BLOCK,
+ bit_pos);
+ kunmap_atomic(kaddr);
+
+ f2fs_put_page(dentry_page, 1);
+
+ if (bit_pos < NR_DENTRY_IN_BLOCK)
+ return false;
+ }
+ return true;
+}
+
+static int f2fs_readdir(struct file *file, void *dirent, filldir_t filldir)
+{
+ unsigned long pos = file->f_pos;
+ struct inode *inode = file_inode(file);
+ unsigned long npages = dir_blocks(inode);
+ unsigned char *types = NULL;
+ unsigned int bit_pos = 0, start_bit_pos = 0;
+ int over = 0;
+ struct f2fs_dentry_block *dentry_blk = NULL;
+ struct f2fs_dir_entry *de = NULL;
+ struct page *dentry_page = NULL;
+ unsigned int n = 0;
+ unsigned char d_type = DT_UNKNOWN;
+ int slots;
+
+ types = f2fs_filetype_table;
+ bit_pos = (pos % NR_DENTRY_IN_BLOCK);
+ n = (pos / NR_DENTRY_IN_BLOCK);
+
+ for ( ; n < npages; n++) {
+ dentry_page = get_lock_data_page(inode, n);
+ if (IS_ERR(dentry_page))
+ continue;
+
+ start_bit_pos = bit_pos;
+ dentry_blk = kmap(dentry_page);
+ while (bit_pos < NR_DENTRY_IN_BLOCK) {
+ d_type = DT_UNKNOWN;
+ bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
+ NR_DENTRY_IN_BLOCK,
+ bit_pos);
+ if (bit_pos >= NR_DENTRY_IN_BLOCK)
+ break;
+
+ de = &dentry_blk->dentry[bit_pos];
+ if (types && de->file_type < F2FS_FT_MAX)
+ d_type = types[de->file_type];
+
+ over = filldir(dirent,
+ dentry_blk->filename[bit_pos],
+ le16_to_cpu(de->name_len),
+ (n * NR_DENTRY_IN_BLOCK) + bit_pos,
+ le32_to_cpu(de->ino), d_type);
+ if (over) {
+ file->f_pos += bit_pos - start_bit_pos;
+ goto success;
+ }
+ slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
+ bit_pos += slots;
+ }
+ bit_pos = 0;
+ file->f_pos = (n + 1) * NR_DENTRY_IN_BLOCK;
+ kunmap(dentry_page);
+ f2fs_put_page(dentry_page, 1);
+ dentry_page = NULL;
+ }
+success:
+ if (dentry_page && !IS_ERR(dentry_page)) {
+ kunmap(dentry_page);
+ f2fs_put_page(dentry_page, 1);
+ }
+
+ return 0;
+}
+
+const struct file_operations f2fs_dir_operations = {
+ .llseek = generic_file_llseek,
+ .read = generic_read_dir,
+ .readdir = f2fs_readdir,
+ .fsync = f2fs_sync_file,
+ .unlocked_ioctl = f2fs_ioctl,
+};
diff --git a/fs/f2fs/f2fs.h b/fs/f2fs/f2fs.h
new file mode 100644
index 000000000000..cc2213afdcc7
--- /dev/null
+++ b/fs/f2fs/f2fs.h
@@ -0,0 +1,1113 @@
+/*
+ * fs/f2fs/f2fs.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef _LINUX_F2FS_H
+#define _LINUX_F2FS_H
+
+#include <linux/types.h>
+#include <linux/page-flags.h>
+#include <linux/buffer_head.h>
+#include <linux/slab.h>
+#include <linux/crc32.h>
+#include <linux/magic.h>
+
+/*
+ * For mount options
+ */
+#define F2FS_MOUNT_BG_GC 0x00000001
+#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
+#define F2FS_MOUNT_DISCARD 0x00000004
+#define F2FS_MOUNT_NOHEAP 0x00000008
+#define F2FS_MOUNT_XATTR_USER 0x00000010
+#define F2FS_MOUNT_POSIX_ACL 0x00000020
+#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
+
+#define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
+#define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
+#define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
+
+#define ver_after(a, b) (typecheck(unsigned long long, a) && \
+ typecheck(unsigned long long, b) && \
+ ((long long)((a) - (b)) > 0))
+
+typedef u64 block_t;
+typedef u32 nid_t;
+
+struct f2fs_mount_info {
+ unsigned int opt;
+};
+
+static inline __u32 f2fs_crc32(void *buff, size_t len)
+{
+ return crc32_le(F2FS_SUPER_MAGIC, buff, len);
+}
+
+static inline bool f2fs_crc_valid(__u32 blk_crc, void *buff, size_t buff_size)
+{
+ return f2fs_crc32(buff, buff_size) == blk_crc;
+}
+
+/*
+ * For checkpoint manager
+ */
+enum {
+ NAT_BITMAP,
+ SIT_BITMAP
+};
+
+/* for the list of orphan inodes */
+struct orphan_inode_entry {
+ struct list_head list; /* list head */
+ nid_t ino; /* inode number */
+};
+
+/* for the list of directory inodes */
+struct dir_inode_entry {
+ struct list_head list; /* list head */
+ struct inode *inode; /* vfs inode pointer */
+};
+
+/* for the list of fsync inodes, used only during recovery */
+struct fsync_inode_entry {
+ struct list_head list; /* list head */
+ struct inode *inode; /* vfs inode pointer */
+ block_t blkaddr; /* block address locating the last inode */
+};
+
+#define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
+#define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
+
+#define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
+#define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
+#define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
+#define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
+
+static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
+{
+ int before = nats_in_cursum(rs);
+ rs->n_nats = cpu_to_le16(before + i);
+ return before;
+}
+
+static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
+{
+ int before = sits_in_cursum(rs);
+ rs->n_sits = cpu_to_le16(before + i);
+ return before;
+}
+
+/*
+ * ioctl commands
+ */
+#define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
+#define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
+
+#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
+/*
+ * ioctl commands in 32 bit emulation
+ */
+#define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
+#define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
+#endif
+
+/*
+ * For INODE and NODE manager
+ */
+#define XATTR_NODE_OFFSET (-1) /*
+ * store xattrs to one node block per
+ * file keeping -1 as its node offset to
+ * distinguish from index node blocks.
+ */
+#define RDONLY_NODE 1 /*
+ * specify a read-only mode when getting
+ * a node block. 0 is read-write mode.
+ * used by get_dnode_of_data().
+ */
+#define F2FS_LINK_MAX 32000 /* maximum link count per file */
+
+/* for in-memory extent cache entry */
+struct extent_info {
+ rwlock_t ext_lock; /* rwlock for consistency */
+ unsigned int fofs; /* start offset in a file */
+ u32 blk_addr; /* start block address of the extent */
+ unsigned int len; /* lenth of the extent */
+};
+
+/*
+ * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
+ */
+#define FADVISE_COLD_BIT 0x01
+
+struct f2fs_inode_info {
+ struct inode vfs_inode; /* serve a vfs inode */
+ unsigned long i_flags; /* keep an inode flags for ioctl */
+ unsigned char i_advise; /* use to give file attribute hints */
+ unsigned int i_current_depth; /* use only in directory structure */
+ unsigned int i_pino; /* parent inode number */
+ umode_t i_acl_mode; /* keep file acl mode temporarily */
+
+ /* Use below internally in f2fs*/
+ unsigned long flags; /* use to pass per-file flags */
+ unsigned long long data_version;/* latest version of data for fsync */
+ atomic_t dirty_dents; /* # of dirty dentry pages */
+ f2fs_hash_t chash; /* hash value of given file name */
+ unsigned int clevel; /* maximum level of given file name */
+ nid_t i_xattr_nid; /* node id that contains xattrs */
+ struct extent_info ext; /* in-memory extent cache entry */
+};
+
+static inline void get_extent_info(struct extent_info *ext,
+ struct f2fs_extent i_ext)
+{
+ write_lock(&ext->ext_lock);
+ ext->fofs = le32_to_cpu(i_ext.fofs);
+ ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
+ ext->len = le32_to_cpu(i_ext.len);
+ write_unlock(&ext->ext_lock);
+}
+
+static inline void set_raw_extent(struct extent_info *ext,
+ struct f2fs_extent *i_ext)
+{
+ read_lock(&ext->ext_lock);
+ i_ext->fofs = cpu_to_le32(ext->fofs);
+ i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
+ i_ext->len = cpu_to_le32(ext->len);
+ read_unlock(&ext->ext_lock);
+}
+
+struct f2fs_nm_info {
+ block_t nat_blkaddr; /* base disk address of NAT */
+ nid_t max_nid; /* maximum possible node ids */
+ nid_t init_scan_nid; /* the first nid to be scanned */
+ nid_t next_scan_nid; /* the next nid to be scanned */
+
+ /* NAT cache management */
+ struct radix_tree_root nat_root;/* root of the nat entry cache */
+ rwlock_t nat_tree_lock; /* protect nat_tree_lock */
+ unsigned int nat_cnt; /* the # of cached nat entries */
+ struct list_head nat_entries; /* cached nat entry list (clean) */
+ struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
+
+ /* free node ids management */
+ struct list_head free_nid_list; /* a list for free nids */
+ spinlock_t free_nid_list_lock; /* protect free nid list */
+ unsigned int fcnt; /* the number of free node id */
+ struct mutex build_lock; /* lock for build free nids */
+
+ /* for checkpoint */
+ char *nat_bitmap; /* NAT bitmap pointer */
+ int bitmap_size; /* bitmap size */
+};
+
+/*
+ * this structure is used as one of function parameters.
+ * all the information are dedicated to a given direct node block determined
+ * by the data offset in a file.
+ */
+struct dnode_of_data {
+ struct inode *inode; /* vfs inode pointer */
+ struct page *inode_page; /* its inode page, NULL is possible */
+ struct page *node_page; /* cached direct node page */
+ nid_t nid; /* node id of the direct node block */
+ unsigned int ofs_in_node; /* data offset in the node page */
+ bool inode_page_locked; /* inode page is locked or not */
+ block_t data_blkaddr; /* block address of the node block */
+};
+
+static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
+ struct page *ipage, struct page *npage, nid_t nid)
+{
+ memset(dn, 0, sizeof(*dn));
+ dn->inode = inode;
+ dn->inode_page = ipage;
+ dn->node_page = npage;
+ dn->nid = nid;
+}
+
+/*
+ * For SIT manager
+ *
+ * By default, there are 6 active log areas across the whole main area.
+ * When considering hot and cold data separation to reduce cleaning overhead,
+ * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
+ * respectively.
+ * In the current design, you should not change the numbers intentionally.
+ * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
+ * logs individually according to the underlying devices. (default: 6)
+ * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
+ * data and 8 for node logs.
+ */
+#define NR_CURSEG_DATA_TYPE (3)
+#define NR_CURSEG_NODE_TYPE (3)
+#define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
+
+enum {
+ CURSEG_HOT_DATA = 0, /* directory entry blocks */
+ CURSEG_WARM_DATA, /* data blocks */
+ CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
+ CURSEG_HOT_NODE, /* direct node blocks of directory files */
+ CURSEG_WARM_NODE, /* direct node blocks of normal files */
+ CURSEG_COLD_NODE, /* indirect node blocks */
+ NO_CHECK_TYPE
+};
+
+struct f2fs_sm_info {
+ struct sit_info *sit_info; /* whole segment information */
+ struct free_segmap_info *free_info; /* free segment information */
+ struct dirty_seglist_info *dirty_info; /* dirty segment information */
+ struct curseg_info *curseg_array; /* active segment information */
+
+ struct list_head wblist_head; /* list of under-writeback pages */
+ spinlock_t wblist_lock; /* lock for checkpoint */
+
+ block_t seg0_blkaddr; /* block address of 0'th segment */
+ block_t main_blkaddr; /* start block address of main area */
+ block_t ssa_blkaddr; /* start block address of SSA area */
+
+ unsigned int segment_count; /* total # of segments */
+ unsigned int main_segments; /* # of segments in main area */
+ unsigned int reserved_segments; /* # of reserved segments */
+ unsigned int ovp_segments; /* # of overprovision segments */
+};
+
+/*
+ * For directory operation
+ */
+#define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1)
+#define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2)
+#define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3)
+#define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4)
+#define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5)
+
+/*
+ * For superblock
+ */
+/*
+ * COUNT_TYPE for monitoring
+ *
+ * f2fs monitors the number of several block types such as on-writeback,
+ * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
+ */
+enum count_type {
+ F2FS_WRITEBACK,
+ F2FS_DIRTY_DENTS,
+ F2FS_DIRTY_NODES,
+ F2FS_DIRTY_META,
+ NR_COUNT_TYPE,
+};
+
+/*
+ * FS_LOCK nesting subclasses for the lock validator:
+ *
+ * The locking order between these classes is
+ * RENAME -> DENTRY_OPS -> DATA_WRITE -> DATA_NEW
+ * -> DATA_TRUNC -> NODE_WRITE -> NODE_NEW -> NODE_TRUNC
+ */
+enum lock_type {
+ RENAME, /* for renaming operations */
+ DENTRY_OPS, /* for directory operations */
+ DATA_WRITE, /* for data write */
+ DATA_NEW, /* for data allocation */
+ DATA_TRUNC, /* for data truncate */
+ NODE_NEW, /* for node allocation */
+ NODE_TRUNC, /* for node truncate */
+ NODE_WRITE, /* for node write */
+ NR_LOCK_TYPE,
+};
+
+/*
+ * The below are the page types of bios used in submti_bio().
+ * The available types are:
+ * DATA User data pages. It operates as async mode.
+ * NODE Node pages. It operates as async mode.
+ * META FS metadata pages such as SIT, NAT, CP.
+ * NR_PAGE_TYPE The number of page types.
+ * META_FLUSH Make sure the previous pages are written
+ * with waiting the bio's completion
+ * ... Only can be used with META.
+ */
+enum page_type {
+ DATA,
+ NODE,
+ META,
+ NR_PAGE_TYPE,
+ META_FLUSH,
+};
+
+struct f2fs_sb_info {
+ struct super_block *sb; /* pointer to VFS super block */
+ struct buffer_head *raw_super_buf; /* buffer head of raw sb */
+ struct f2fs_super_block *raw_super; /* raw super block pointer */
+ int s_dirty; /* dirty flag for checkpoint */
+
+ /* for node-related operations */
+ struct f2fs_nm_info *nm_info; /* node manager */
+ struct inode *node_inode; /* cache node blocks */
+
+ /* for segment-related operations */
+ struct f2fs_sm_info *sm_info; /* segment manager */
+ struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */
+ sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */
+ struct rw_semaphore bio_sem; /* IO semaphore */
+
+ /* for checkpoint */
+ struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
+ struct inode *meta_inode; /* cache meta blocks */
+ struct mutex cp_mutex; /* for checkpoint procedure */
+ struct mutex fs_lock[NR_LOCK_TYPE]; /* for blocking FS operations */
+ struct mutex write_inode; /* mutex for write inode */
+ struct mutex writepages; /* mutex for writepages() */
+ int por_doing; /* recovery is doing or not */
+
+ /* for orphan inode management */
+ struct list_head orphan_inode_list; /* orphan inode list */
+ struct mutex orphan_inode_mutex; /* for orphan inode list */
+ unsigned int n_orphans; /* # of orphan inodes */
+
+ /* for directory inode management */
+ struct list_head dir_inode_list; /* dir inode list */
+ spinlock_t dir_inode_lock; /* for dir inode list lock */
+ unsigned int n_dirty_dirs; /* # of dir inodes */
+
+ /* basic file system units */
+ unsigned int log_sectors_per_block; /* log2 sectors per block */
+ unsigned int log_blocksize; /* log2 block size */
+ unsigned int blocksize; /* block size */
+ unsigned int root_ino_num; /* root inode number*/
+ unsigned int node_ino_num; /* node inode number*/
+ unsigned int meta_ino_num; /* meta inode number*/
+ unsigned int log_blocks_per_seg; /* log2 blocks per segment */
+ unsigned int blocks_per_seg; /* blocks per segment */
+ unsigned int segs_per_sec; /* segments per section */
+ unsigned int secs_per_zone; /* sections per zone */
+ unsigned int total_sections; /* total section count */
+ unsigned int total_node_count; /* total node block count */
+ unsigned int total_valid_node_count; /* valid node block count */
+ unsigned int total_valid_inode_count; /* valid inode count */
+ int active_logs; /* # of active logs */
+
+ block_t user_block_count; /* # of user blocks */
+ block_t total_valid_block_count; /* # of valid blocks */
+ block_t alloc_valid_block_count; /* # of allocated blocks */
+ block_t last_valid_block_count; /* for recovery */
+ u32 s_next_generation; /* for NFS support */
+ atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
+
+ struct f2fs_mount_info mount_opt; /* mount options */
+
+ /* for cleaning operations */
+ struct mutex gc_mutex; /* mutex for GC */
+ struct f2fs_gc_kthread *gc_thread; /* GC thread */
+
+ /*
+ * for stat information.
+ * one is for the LFS mode, and the other is for the SSR mode.
+ */
+ struct f2fs_stat_info *stat_info; /* FS status information */
+ unsigned int segment_count[2]; /* # of allocated segments */
+ unsigned int block_count[2]; /* # of allocated blocks */
+ unsigned int last_victim[2]; /* last victim segment # */
+ int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
+ int bg_gc; /* background gc calls */
+ spinlock_t stat_lock; /* lock for stat operations */
+};
+
+/*
+ * Inline functions
+ */
+static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
+{
+ return container_of(inode, struct f2fs_inode_info, vfs_inode);
+}
+
+static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
+{
+ return sb->s_fs_info;
+}
+
+static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
+{
+ return (struct f2fs_super_block *)(sbi->raw_super);
+}
+
+static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
+{
+ return (struct f2fs_checkpoint *)(sbi->ckpt);
+}
+
+static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
+{
+ return (struct f2fs_nm_info *)(sbi->nm_info);
+}
+
+static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
+{
+ return (struct f2fs_sm_info *)(sbi->sm_info);
+}
+
+static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
+{
+ return (struct sit_info *)(SM_I(sbi)->sit_info);
+}
+
+static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
+{
+ return (struct free_segmap_info *)(SM_I(sbi)->free_info);
+}
+
+static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
+{
+ return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
+}
+
+static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
+{
+ sbi->s_dirty = 1;
+}
+
+static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
+{
+ sbi->s_dirty = 0;
+}
+
+static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
+{
+ unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
+ return ckpt_flags & f;
+}
+
+static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
+{
+ unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
+ ckpt_flags |= f;
+ cp->ckpt_flags = cpu_to_le32(ckpt_flags);
+}
+
+static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
+{
+ unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
+ ckpt_flags &= (~f);
+ cp->ckpt_flags = cpu_to_le32(ckpt_flags);
+}
+
+static inline void mutex_lock_op(struct f2fs_sb_info *sbi, enum lock_type t)
+{
+ mutex_lock_nested(&sbi->fs_lock[t], t);
+}
+
+static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, enum lock_type t)
+{
+ mutex_unlock(&sbi->fs_lock[t]);
+}
+
+/*
+ * Check whether the given nid is within node id range.
+ */
+static inline void check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ BUG_ON((nid >= NM_I(sbi)->max_nid));
+}
+
+#define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
+
+/*
+ * Check whether the inode has blocks or not
+ */
+static inline int F2FS_HAS_BLOCKS(struct inode *inode)
+{
+ if (F2FS_I(inode)->i_xattr_nid)
+ return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1);
+ else
+ return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS);
+}
+
+static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
+ struct inode *inode, blkcnt_t count)
+{
+ block_t valid_block_count;
+
+ spin_lock(&sbi->stat_lock);
+ valid_block_count =
+ sbi->total_valid_block_count + (block_t)count;
+ if (valid_block_count > sbi->user_block_count) {
+ spin_unlock(&sbi->stat_lock);
+ return false;
+ }
+ inode->i_blocks += count;
+ sbi->total_valid_block_count = valid_block_count;
+ sbi->alloc_valid_block_count += (block_t)count;
+ spin_unlock(&sbi->stat_lock);
+ return true;
+}
+
+static inline int dec_valid_block_count(struct f2fs_sb_info *sbi,
+ struct inode *inode,
+ blkcnt_t count)
+{
+ spin_lock(&sbi->stat_lock);
+ BUG_ON(sbi->total_valid_block_count < (block_t) count);
+ BUG_ON(inode->i_blocks < count);
+ inode->i_blocks -= count;
+ sbi->total_valid_block_count -= (block_t)count;
+ spin_unlock(&sbi->stat_lock);
+ return 0;
+}
+
+static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
+{
+ atomic_inc(&sbi->nr_pages[count_type]);
+ F2FS_SET_SB_DIRT(sbi);
+}
+
+static inline void inode_inc_dirty_dents(struct inode *inode)
+{
+ atomic_inc(&F2FS_I(inode)->dirty_dents);
+}
+
+static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
+{
+ atomic_dec(&sbi->nr_pages[count_type]);
+}
+
+static inline void inode_dec_dirty_dents(struct inode *inode)
+{
+ atomic_dec(&F2FS_I(inode)->dirty_dents);
+}
+
+static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
+{
+ return atomic_read(&sbi->nr_pages[count_type]);
+}
+
+static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
+{
+ unsigned int pages_per_sec = sbi->segs_per_sec *
+ (1 << sbi->log_blocks_per_seg);
+ return ((get_pages(sbi, block_type) + pages_per_sec - 1)
+ >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
+}
+
+static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
+{
+ block_t ret;
+ spin_lock(&sbi->stat_lock);
+ ret = sbi->total_valid_block_count;
+ spin_unlock(&sbi->stat_lock);
+ return ret;
+}
+
+static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+
+ /* return NAT or SIT bitmap */
+ if (flag == NAT_BITMAP)
+ return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
+ else if (flag == SIT_BITMAP)
+ return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
+
+ return 0;
+}
+
+static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ int offset = (flag == NAT_BITMAP) ?
+ le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
+ return &ckpt->sit_nat_version_bitmap + offset;
+}
+
+static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
+{
+ block_t start_addr;
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver);
+
+ start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
+
+ /*
+ * odd numbered checkpoint should at cp segment 0
+ * and even segent must be at cp segment 1
+ */
+ if (!(ckpt_version & 1))
+ start_addr += sbi->blocks_per_seg;
+
+ return start_addr;
+}
+
+static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
+{
+ return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
+}
+
+static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
+ struct inode *inode,
+ unsigned int count)
+{
+ block_t valid_block_count;
+ unsigned int valid_node_count;
+
+ spin_lock(&sbi->stat_lock);
+
+ valid_block_count = sbi->total_valid_block_count + (block_t)count;
+ sbi->alloc_valid_block_count += (block_t)count;
+ valid_node_count = sbi->total_valid_node_count + count;
+
+ if (valid_block_count > sbi->user_block_count) {
+ spin_unlock(&sbi->stat_lock);
+ return false;
+ }
+
+ if (valid_node_count > sbi->total_node_count) {
+ spin_unlock(&sbi->stat_lock);
+ return false;
+ }
+
+ if (inode)
+ inode->i_blocks += count;
+ sbi->total_valid_node_count = valid_node_count;
+ sbi->total_valid_block_count = valid_block_count;
+ spin_unlock(&sbi->stat_lock);
+
+ return true;
+}
+
+static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
+ struct inode *inode,
+ unsigned int count)
+{
+ spin_lock(&sbi->stat_lock);
+
+ BUG_ON(sbi->total_valid_block_count < count);
+ BUG_ON(sbi->total_valid_node_count < count);
+ BUG_ON(inode->i_blocks < count);
+
+ inode->i_blocks -= count;
+ sbi->total_valid_node_count -= count;
+ sbi->total_valid_block_count -= (block_t)count;
+
+ spin_unlock(&sbi->stat_lock);
+}
+
+static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
+{
+ unsigned int ret;
+ spin_lock(&sbi->stat_lock);
+ ret = sbi->total_valid_node_count;
+ spin_unlock(&sbi->stat_lock);
+ return ret;
+}
+
+static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
+{
+ spin_lock(&sbi->stat_lock);
+ BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count);
+ sbi->total_valid_inode_count++;
+ spin_unlock(&sbi->stat_lock);
+}
+
+static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi)
+{
+ spin_lock(&sbi->stat_lock);
+ BUG_ON(!sbi->total_valid_inode_count);
+ sbi->total_valid_inode_count--;
+ spin_unlock(&sbi->stat_lock);
+ return 0;
+}
+
+static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
+{
+ unsigned int ret;
+ spin_lock(&sbi->stat_lock);
+ ret = sbi->total_valid_inode_count;
+ spin_unlock(&sbi->stat_lock);
+ return ret;
+}
+
+static inline void f2fs_put_page(struct page *page, int unlock)
+{
+ if (!page || IS_ERR(page))
+ return;
+
+ if (unlock) {
+ BUG_ON(!PageLocked(page));
+ unlock_page(page);
+ }
+ page_cache_release(page);
+}
+
+static inline void f2fs_put_dnode(struct dnode_of_data *dn)
+{
+ if (dn->node_page)
+ f2fs_put_page(dn->node_page, 1);
+ if (dn->inode_page && dn->node_page != dn->inode_page)
+ f2fs_put_page(dn->inode_page, 0);
+ dn->node_page = NULL;
+ dn->inode_page = NULL;
+}
+
+static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
+ size_t size, void (*ctor)(void *))
+{
+ return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor);
+}
+
+#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
+
+static inline bool IS_INODE(struct page *page)
+{
+ struct f2fs_node *p = (struct f2fs_node *)page_address(page);
+ return RAW_IS_INODE(p);
+}
+
+static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
+{
+ return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
+}
+
+static inline block_t datablock_addr(struct page *node_page,
+ unsigned int offset)
+{
+ struct f2fs_node *raw_node;
+ __le32 *addr_array;
+ raw_node = (struct f2fs_node *)page_address(node_page);
+ addr_array = blkaddr_in_node(raw_node);
+ return le32_to_cpu(addr_array[offset]);
+}
+
+static inline int f2fs_test_bit(unsigned int nr, char *addr)
+{
+ int mask;
+
+ addr += (nr >> 3);
+ mask = 1 << (7 - (nr & 0x07));
+ return mask & *addr;
+}
+
+static inline int f2fs_set_bit(unsigned int nr, char *addr)
+{
+ int mask;
+ int ret;
+
+ addr += (nr >> 3);
+ mask = 1 << (7 - (nr & 0x07));
+ ret = mask & *addr;
+ *addr |= mask;
+ return ret;
+}
+
+static inline int f2fs_clear_bit(unsigned int nr, char *addr)
+{
+ int mask;
+ int ret;
+
+ addr += (nr >> 3);
+ mask = 1 << (7 - (nr & 0x07));
+ ret = mask & *addr;
+ *addr &= ~mask;
+ return ret;
+}
+
+/* used for f2fs_inode_info->flags */
+enum {
+ FI_NEW_INODE, /* indicate newly allocated inode */
+ FI_NEED_CP, /* need to do checkpoint during fsync */
+ FI_INC_LINK, /* need to increment i_nlink */
+ FI_ACL_MODE, /* indicate acl mode */
+ FI_NO_ALLOC, /* should not allocate any blocks */
+};
+
+static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
+{
+ set_bit(flag, &fi->flags);
+}
+
+static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
+{
+ return test_bit(flag, &fi->flags);
+}
+
+static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
+{
+ clear_bit(flag, &fi->flags);
+}
+
+static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
+{
+ fi->i_acl_mode = mode;
+ set_inode_flag(fi, FI_ACL_MODE);
+}
+
+static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
+{
+ if (is_inode_flag_set(fi, FI_ACL_MODE)) {
+ clear_inode_flag(fi, FI_ACL_MODE);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * file.c
+ */
+int f2fs_sync_file(struct file *, loff_t, loff_t, int);
+void truncate_data_blocks(struct dnode_of_data *);
+void f2fs_truncate(struct inode *);
+int f2fs_setattr(struct dentry *, struct iattr *);
+int truncate_hole(struct inode *, pgoff_t, pgoff_t);
+long f2fs_ioctl(struct file *, unsigned int, unsigned long);
+long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
+
+/*
+ * inode.c
+ */
+void f2fs_set_inode_flags(struct inode *);
+struct inode *f2fs_iget(struct super_block *, unsigned long);
+void update_inode(struct inode *, struct page *);
+int f2fs_write_inode(struct inode *, struct writeback_control *);
+void f2fs_evict_inode(struct inode *);
+
+/*
+ * namei.c
+ */
+struct dentry *f2fs_get_parent(struct dentry *child);
+
+/*
+ * dir.c
+ */
+struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
+ struct page **);
+struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
+ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
+void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
+ struct page *, struct inode *);
+void init_dent_inode(const struct qstr *, struct page *);
+int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
+void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
+int f2fs_make_empty(struct inode *, struct inode *);
+bool f2fs_empty_dir(struct inode *);
+
+static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
+{
+ return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
+ inode);
+}
+
+/*
+ * super.c
+ */
+int f2fs_sync_fs(struct super_block *, int);
+extern __printf(3, 4)
+void f2fs_msg(struct super_block *, const char *, const char *, ...);
+
+/*
+ * hash.c
+ */
+f2fs_hash_t f2fs_dentry_hash(const char *, size_t);
+
+/*
+ * node.c
+ */
+struct dnode_of_data;
+struct node_info;
+
+int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
+void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
+int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
+int truncate_inode_blocks(struct inode *, pgoff_t);
+int remove_inode_page(struct inode *);
+int new_inode_page(struct inode *, const struct qstr *);
+struct page *new_node_page(struct dnode_of_data *, unsigned int);
+void ra_node_page(struct f2fs_sb_info *, nid_t);
+struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
+struct page *get_node_page_ra(struct page *, int);
+void sync_inode_page(struct dnode_of_data *);
+int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
+bool alloc_nid(struct f2fs_sb_info *, nid_t *);
+void alloc_nid_done(struct f2fs_sb_info *, nid_t);
+void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
+void recover_node_page(struct f2fs_sb_info *, struct page *,
+ struct f2fs_summary *, struct node_info *, block_t);
+int recover_inode_page(struct f2fs_sb_info *, struct page *);
+int restore_node_summary(struct f2fs_sb_info *, unsigned int,
+ struct f2fs_summary_block *);
+void flush_nat_entries(struct f2fs_sb_info *);
+int build_node_manager(struct f2fs_sb_info *);
+void destroy_node_manager(struct f2fs_sb_info *);
+int __init create_node_manager_caches(void);
+void destroy_node_manager_caches(void);
+
+/*
+ * segment.c
+ */
+void f2fs_balance_fs(struct f2fs_sb_info *);
+void invalidate_blocks(struct f2fs_sb_info *, block_t);
+void locate_dirty_segment(struct f2fs_sb_info *, unsigned int);
+void clear_prefree_segments(struct f2fs_sb_info *);
+int npages_for_summary_flush(struct f2fs_sb_info *);
+void allocate_new_segments(struct f2fs_sb_info *);
+struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
+struct bio *f2fs_bio_alloc(struct block_device *, int);
+void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync);
+void write_meta_page(struct f2fs_sb_info *, struct page *);
+void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int,
+ block_t, block_t *);
+void write_data_page(struct inode *, struct page *, struct dnode_of_data*,
+ block_t, block_t *);
+void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t);
+void recover_data_page(struct f2fs_sb_info *, struct page *,
+ struct f2fs_summary *, block_t, block_t);
+void rewrite_node_page(struct f2fs_sb_info *, struct page *,
+ struct f2fs_summary *, block_t, block_t);
+void write_data_summaries(struct f2fs_sb_info *, block_t);
+void write_node_summaries(struct f2fs_sb_info *, block_t);
+int lookup_journal_in_cursum(struct f2fs_summary_block *,
+ int, unsigned int, int);
+void flush_sit_entries(struct f2fs_sb_info *);
+int build_segment_manager(struct f2fs_sb_info *);
+void reset_victim_segmap(struct f2fs_sb_info *);
+void destroy_segment_manager(struct f2fs_sb_info *);
+
+/*
+ * checkpoint.c
+ */
+struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
+struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
+long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
+int check_orphan_space(struct f2fs_sb_info *);
+void add_orphan_inode(struct f2fs_sb_info *, nid_t);
+void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
+int recover_orphan_inodes(struct f2fs_sb_info *);
+int get_valid_checkpoint(struct f2fs_sb_info *);
+void set_dirty_dir_page(struct inode *, struct page *);
+void remove_dirty_dir_inode(struct inode *);
+void sync_dirty_dir_inodes(struct f2fs_sb_info *);
+void write_checkpoint(struct f2fs_sb_info *, bool);
+void init_orphan_info(struct f2fs_sb_info *);
+int __init create_checkpoint_caches(void);
+void destroy_checkpoint_caches(void);
+
+/*
+ * data.c
+ */
+int reserve_new_block(struct dnode_of_data *);
+void update_extent_cache(block_t, struct dnode_of_data *);
+struct page *find_data_page(struct inode *, pgoff_t);
+struct page *get_lock_data_page(struct inode *, pgoff_t);
+struct page *get_new_data_page(struct inode *, pgoff_t, bool);
+int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int);
+int do_write_data_page(struct page *);
+
+/*
+ * gc.c
+ */
+int start_gc_thread(struct f2fs_sb_info *);
+void stop_gc_thread(struct f2fs_sb_info *);
+block_t start_bidx_of_node(unsigned int);
+int f2fs_gc(struct f2fs_sb_info *);
+void build_gc_manager(struct f2fs_sb_info *);
+int __init create_gc_caches(void);
+void destroy_gc_caches(void);
+
+/*
+ * recovery.c
+ */
+void recover_fsync_data(struct f2fs_sb_info *);
+bool space_for_roll_forward(struct f2fs_sb_info *);
+
+/*
+ * debug.c
+ */
+#ifdef CONFIG_F2FS_STAT_FS
+struct f2fs_stat_info {
+ struct list_head stat_list;
+ struct f2fs_sb_info *sbi;
+ struct mutex stat_lock;
+ int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
+ int main_area_segs, main_area_sections, main_area_zones;
+ int hit_ext, total_ext;
+ int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
+ int nats, sits, fnids;
+ int total_count, utilization;
+ int bg_gc;
+ unsigned int valid_count, valid_node_count, valid_inode_count;
+ unsigned int bimodal, avg_vblocks;
+ int util_free, util_valid, util_invalid;
+ int rsvd_segs, overp_segs;
+ int dirty_count, node_pages, meta_pages;
+ int prefree_count, call_count;
+ int tot_segs, node_segs, data_segs, free_segs, free_secs;
+ int tot_blks, data_blks, node_blks;
+ int curseg[NR_CURSEG_TYPE];
+ int cursec[NR_CURSEG_TYPE];
+ int curzone[NR_CURSEG_TYPE];
+
+ unsigned int segment_count[2];
+ unsigned int block_count[2];
+ unsigned base_mem, cache_mem;
+};
+
+#define stat_inc_call_count(si) ((si)->call_count++)
+
+#define stat_inc_seg_count(sbi, type) \
+ do { \
+ struct f2fs_stat_info *si = sbi->stat_info; \
+ (si)->tot_segs++; \
+ if (type == SUM_TYPE_DATA) \
+ si->data_segs++; \
+ else \
+ si->node_segs++; \
+ } while (0)
+
+#define stat_inc_tot_blk_count(si, blks) \
+ (si->tot_blks += (blks))
+
+#define stat_inc_data_blk_count(sbi, blks) \
+ do { \
+ struct f2fs_stat_info *si = sbi->stat_info; \
+ stat_inc_tot_blk_count(si, blks); \
+ si->data_blks += (blks); \
+ } while (0)
+
+#define stat_inc_node_blk_count(sbi, blks) \
+ do { \
+ struct f2fs_stat_info *si = sbi->stat_info; \
+ stat_inc_tot_blk_count(si, blks); \
+ si->node_blks += (blks); \
+ } while (0)
+
+int f2fs_build_stats(struct f2fs_sb_info *);
+void f2fs_destroy_stats(struct f2fs_sb_info *);
+void __init f2fs_create_root_stats(void);
+void f2fs_destroy_root_stats(void);
+#else
+#define stat_inc_call_count(si)
+#define stat_inc_seg_count(si, type)
+#define stat_inc_tot_blk_count(si, blks)
+#define stat_inc_data_blk_count(si, blks)
+#define stat_inc_node_blk_count(sbi, blks)
+
+static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
+static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
+static inline void __init f2fs_create_root_stats(void) { }
+static inline void f2fs_destroy_root_stats(void) { }
+#endif
+
+extern const struct file_operations f2fs_dir_operations;
+extern const struct file_operations f2fs_file_operations;
+extern const struct inode_operations f2fs_file_inode_operations;
+extern const struct address_space_operations f2fs_dblock_aops;
+extern const struct address_space_operations f2fs_node_aops;
+extern const struct address_space_operations f2fs_meta_aops;
+extern const struct inode_operations f2fs_dir_inode_operations;
+extern const struct inode_operations f2fs_symlink_inode_operations;
+extern const struct inode_operations f2fs_special_inode_operations;
+#endif
diff --git a/fs/f2fs/file.c b/fs/f2fs/file.c
new file mode 100644
index 000000000000..958a46da19ae
--- /dev/null
+++ b/fs/f2fs/file.c
@@ -0,0 +1,671 @@
+/*
+ * fs/f2fs/file.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/stat.h>
+#include <linux/buffer_head.h>
+#include <linux/writeback.h>
+#include <linux/falloc.h>
+#include <linux/types.h>
+#include <linux/compat.h>
+#include <linux/uaccess.h>
+#include <linux/mount.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+#include "xattr.h"
+#include "acl.h"
+
+static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
+ struct vm_fault *vmf)
+{
+ struct page *page = vmf->page;
+ struct inode *inode = file_inode(vma->vm_file);
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ block_t old_blk_addr;
+ struct dnode_of_data dn;
+ int err;
+
+ f2fs_balance_fs(sbi);
+
+ sb_start_pagefault(inode->i_sb);
+
+ mutex_lock_op(sbi, DATA_NEW);
+
+ /* block allocation */
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, page->index, 0);
+ if (err) {
+ mutex_unlock_op(sbi, DATA_NEW);
+ goto out;
+ }
+
+ old_blk_addr = dn.data_blkaddr;
+
+ if (old_blk_addr == NULL_ADDR) {
+ err = reserve_new_block(&dn);
+ if (err) {
+ f2fs_put_dnode(&dn);
+ mutex_unlock_op(sbi, DATA_NEW);
+ goto out;
+ }
+ }
+ f2fs_put_dnode(&dn);
+
+ mutex_unlock_op(sbi, DATA_NEW);
+
+ lock_page(page);
+ if (page->mapping != inode->i_mapping ||
+ page_offset(page) >= i_size_read(inode) ||
+ !PageUptodate(page)) {
+ unlock_page(page);
+ err = -EFAULT;
+ goto out;
+ }
+
+ /*
+ * check to see if the page is mapped already (no holes)
+ */
+ if (PageMappedToDisk(page))
+ goto out;
+
+ /* fill the page */
+ wait_on_page_writeback(page);
+
+ /* page is wholly or partially inside EOF */
+ if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
+ unsigned offset;
+ offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
+ zero_user_segment(page, offset, PAGE_CACHE_SIZE);
+ }
+ set_page_dirty(page);
+ SetPageUptodate(page);
+
+ file_update_time(vma->vm_file);
+out:
+ sb_end_pagefault(inode->i_sb);
+ return block_page_mkwrite_return(err);
+}
+
+static const struct vm_operations_struct f2fs_file_vm_ops = {
+ .fault = filemap_fault,
+ .page_mkwrite = f2fs_vm_page_mkwrite,
+ .remap_pages = generic_file_remap_pages,
+};
+
+static int need_to_sync_dir(struct f2fs_sb_info *sbi, struct inode *inode)
+{
+ struct dentry *dentry;
+ nid_t pino;
+
+ inode = igrab(inode);
+ dentry = d_find_any_alias(inode);
+ if (!dentry) {
+ iput(inode);
+ return 0;
+ }
+ pino = dentry->d_parent->d_inode->i_ino;
+ dput(dentry);
+ iput(inode);
+ return !is_checkpointed_node(sbi, pino);
+}
+
+int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
+{
+ struct inode *inode = file->f_mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ unsigned long long cur_version;
+ int ret = 0;
+ bool need_cp = false;
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_ALL,
+ .nr_to_write = LONG_MAX,
+ .for_reclaim = 0,
+ };
+
+ if (inode->i_sb->s_flags & MS_RDONLY)
+ return 0;
+
+ ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
+ if (ret)
+ return ret;
+
+ /* guarantee free sections for fsync */
+ f2fs_balance_fs(sbi);
+
+ mutex_lock(&inode->i_mutex);
+
+ if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
+ goto out;
+
+ mutex_lock(&sbi->cp_mutex);
+ cur_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver);
+ mutex_unlock(&sbi->cp_mutex);
+
+ if (F2FS_I(inode)->data_version != cur_version &&
+ !(inode->i_state & I_DIRTY))
+ goto out;
+ F2FS_I(inode)->data_version--;
+
+ if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
+ need_cp = true;
+ else if (is_inode_flag_set(F2FS_I(inode), FI_NEED_CP))
+ need_cp = true;
+ else if (!space_for_roll_forward(sbi))
+ need_cp = true;
+ else if (need_to_sync_dir(sbi, inode))
+ need_cp = true;
+
+ if (need_cp) {
+ /* all the dirty node pages should be flushed for POR */
+ ret = f2fs_sync_fs(inode->i_sb, 1);
+ clear_inode_flag(F2FS_I(inode), FI_NEED_CP);
+ } else {
+ /* if there is no written node page, write its inode page */
+ while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
+ ret = f2fs_write_inode(inode, NULL);
+ if (ret)
+ goto out;
+ }
+ filemap_fdatawait_range(sbi->node_inode->i_mapping,
+ 0, LONG_MAX);
+ }
+out:
+ mutex_unlock(&inode->i_mutex);
+ return ret;
+}
+
+static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
+{
+ file_accessed(file);
+ vma->vm_ops = &f2fs_file_vm_ops;
+ return 0;
+}
+
+static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
+{
+ int nr_free = 0, ofs = dn->ofs_in_node;
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+ struct f2fs_node *raw_node;
+ __le32 *addr;
+
+ raw_node = page_address(dn->node_page);
+ addr = blkaddr_in_node(raw_node) + ofs;
+
+ for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
+ block_t blkaddr = le32_to_cpu(*addr);
+ if (blkaddr == NULL_ADDR)
+ continue;
+
+ update_extent_cache(NULL_ADDR, dn);
+ invalidate_blocks(sbi, blkaddr);
+ dec_valid_block_count(sbi, dn->inode, 1);
+ nr_free++;
+ }
+ if (nr_free) {
+ set_page_dirty(dn->node_page);
+ sync_inode_page(dn);
+ }
+ dn->ofs_in_node = ofs;
+ return nr_free;
+}
+
+void truncate_data_blocks(struct dnode_of_data *dn)
+{
+ truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
+}
+
+static void truncate_partial_data_page(struct inode *inode, u64 from)
+{
+ unsigned offset = from & (PAGE_CACHE_SIZE - 1);
+ struct page *page;
+
+ if (!offset)
+ return;
+
+ page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
+ if (IS_ERR(page))
+ return;
+
+ lock_page(page);
+ wait_on_page_writeback(page);
+ zero_user(page, offset, PAGE_CACHE_SIZE - offset);
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+}
+
+static int truncate_blocks(struct inode *inode, u64 from)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ unsigned int blocksize = inode->i_sb->s_blocksize;
+ struct dnode_of_data dn;
+ pgoff_t free_from;
+ int count = 0;
+ int err;
+
+ free_from = (pgoff_t)
+ ((from + blocksize - 1) >> (sbi->log_blocksize));
+
+ mutex_lock_op(sbi, DATA_TRUNC);
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, free_from, RDONLY_NODE);
+ if (err) {
+ if (err == -ENOENT)
+ goto free_next;
+ mutex_unlock_op(sbi, DATA_TRUNC);
+ return err;
+ }
+
+ if (IS_INODE(dn.node_page))
+ count = ADDRS_PER_INODE;
+ else
+ count = ADDRS_PER_BLOCK;
+
+ count -= dn.ofs_in_node;
+ BUG_ON(count < 0);
+ if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
+ truncate_data_blocks_range(&dn, count);
+ free_from += count;
+ }
+
+ f2fs_put_dnode(&dn);
+free_next:
+ err = truncate_inode_blocks(inode, free_from);
+ mutex_unlock_op(sbi, DATA_TRUNC);
+
+ /* lastly zero out the first data page */
+ truncate_partial_data_page(inode, from);
+
+ return err;
+}
+
+void f2fs_truncate(struct inode *inode)
+{
+ if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
+ S_ISLNK(inode->i_mode)))
+ return;
+
+ if (!truncate_blocks(inode, i_size_read(inode))) {
+ inode->i_mtime = inode->i_ctime = CURRENT_TIME;
+ mark_inode_dirty(inode);
+ }
+}
+
+static int f2fs_getattr(struct vfsmount *mnt,
+ struct dentry *dentry, struct kstat *stat)
+{
+ struct inode *inode = dentry->d_inode;
+ generic_fillattr(inode, stat);
+ stat->blocks <<= 3;
+ return 0;
+}
+
+#ifdef CONFIG_F2FS_FS_POSIX_ACL
+static void __setattr_copy(struct inode *inode, const struct iattr *attr)
+{
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ unsigned int ia_valid = attr->ia_valid;
+
+ if (ia_valid & ATTR_UID)
+ inode->i_uid = attr->ia_uid;
+ if (ia_valid & ATTR_GID)
+ inode->i_gid = attr->ia_gid;
+ if (ia_valid & ATTR_ATIME)
+ inode->i_atime = timespec_trunc(attr->ia_atime,
+ inode->i_sb->s_time_gran);
+ if (ia_valid & ATTR_MTIME)
+ inode->i_mtime = timespec_trunc(attr->ia_mtime,
+ inode->i_sb->s_time_gran);
+ if (ia_valid & ATTR_CTIME)
+ inode->i_ctime = timespec_trunc(attr->ia_ctime,
+ inode->i_sb->s_time_gran);
+ if (ia_valid & ATTR_MODE) {
+ umode_t mode = attr->ia_mode;
+
+ if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
+ mode &= ~S_ISGID;
+ set_acl_inode(fi, mode);
+ }
+}
+#else
+#define __setattr_copy setattr_copy
+#endif
+
+int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
+{
+ struct inode *inode = dentry->d_inode;
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ int err;
+
+ err = inode_change_ok(inode, attr);
+ if (err)
+ return err;
+
+ if ((attr->ia_valid & ATTR_SIZE) &&
+ attr->ia_size != i_size_read(inode)) {
+ truncate_setsize(inode, attr->ia_size);
+ f2fs_truncate(inode);
+ f2fs_balance_fs(F2FS_SB(inode->i_sb));
+ }
+
+ __setattr_copy(inode, attr);
+
+ if (attr->ia_valid & ATTR_MODE) {
+ err = f2fs_acl_chmod(inode);
+ if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
+ inode->i_mode = fi->i_acl_mode;
+ clear_inode_flag(fi, FI_ACL_MODE);
+ }
+ }
+
+ mark_inode_dirty(inode);
+ return err;
+}
+
+const struct inode_operations f2fs_file_inode_operations = {
+ .getattr = f2fs_getattr,
+ .setattr = f2fs_setattr,
+ .get_acl = f2fs_get_acl,
+#ifdef CONFIG_F2FS_FS_XATTR
+ .setxattr = generic_setxattr,
+ .getxattr = generic_getxattr,
+ .listxattr = f2fs_listxattr,
+ .removexattr = generic_removexattr,
+#endif
+};
+
+static void fill_zero(struct inode *inode, pgoff_t index,
+ loff_t start, loff_t len)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct page *page;
+
+ if (!len)
+ return;
+
+ f2fs_balance_fs(sbi);
+
+ mutex_lock_op(sbi, DATA_NEW);
+ page = get_new_data_page(inode, index, false);
+ mutex_unlock_op(sbi, DATA_NEW);
+
+ if (!IS_ERR(page)) {
+ wait_on_page_writeback(page);
+ zero_user(page, start, len);
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+ }
+}
+
+int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
+{
+ pgoff_t index;
+ int err;
+
+ for (index = pg_start; index < pg_end; index++) {
+ struct dnode_of_data dn;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+
+ f2fs_balance_fs(sbi);
+
+ mutex_lock_op(sbi, DATA_TRUNC);
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ err = get_dnode_of_data(&dn, index, RDONLY_NODE);
+ if (err) {
+ mutex_unlock_op(sbi, DATA_TRUNC);
+ if (err == -ENOENT)
+ continue;
+ return err;
+ }
+
+ if (dn.data_blkaddr != NULL_ADDR)
+ truncate_data_blocks_range(&dn, 1);
+ f2fs_put_dnode(&dn);
+ mutex_unlock_op(sbi, DATA_TRUNC);
+ }
+ return 0;
+}
+
+static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
+{
+ pgoff_t pg_start, pg_end;
+ loff_t off_start, off_end;
+ int ret = 0;
+
+ pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
+ pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
+
+ off_start = offset & (PAGE_CACHE_SIZE - 1);
+ off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
+
+ if (pg_start == pg_end) {
+ fill_zero(inode, pg_start, off_start,
+ off_end - off_start);
+ } else {
+ if (off_start)
+ fill_zero(inode, pg_start++, off_start,
+ PAGE_CACHE_SIZE - off_start);
+ if (off_end)
+ fill_zero(inode, pg_end, 0, off_end);
+
+ if (pg_start < pg_end) {
+ struct address_space *mapping = inode->i_mapping;
+ loff_t blk_start, blk_end;
+
+ blk_start = pg_start << PAGE_CACHE_SHIFT;
+ blk_end = pg_end << PAGE_CACHE_SHIFT;
+ truncate_inode_pages_range(mapping, blk_start,
+ blk_end - 1);
+ ret = truncate_hole(inode, pg_start, pg_end);
+ }
+ }
+
+ if (!(mode & FALLOC_FL_KEEP_SIZE) &&
+ i_size_read(inode) <= (offset + len)) {
+ i_size_write(inode, offset);
+ mark_inode_dirty(inode);
+ }
+
+ return ret;
+}
+
+static int expand_inode_data(struct inode *inode, loff_t offset,
+ loff_t len, int mode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ pgoff_t index, pg_start, pg_end;
+ loff_t new_size = i_size_read(inode);
+ loff_t off_start, off_end;
+ int ret = 0;
+
+ ret = inode_newsize_ok(inode, (len + offset));
+ if (ret)
+ return ret;
+
+ pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
+ pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
+
+ off_start = offset & (PAGE_CACHE_SIZE - 1);
+ off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
+
+ for (index = pg_start; index <= pg_end; index++) {
+ struct dnode_of_data dn;
+
+ mutex_lock_op(sbi, DATA_NEW);
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ ret = get_dnode_of_data(&dn, index, 0);
+ if (ret) {
+ mutex_unlock_op(sbi, DATA_NEW);
+ break;
+ }
+
+ if (dn.data_blkaddr == NULL_ADDR) {
+ ret = reserve_new_block(&dn);
+ if (ret) {
+ f2fs_put_dnode(&dn);
+ mutex_unlock_op(sbi, DATA_NEW);
+ break;
+ }
+ }
+ f2fs_put_dnode(&dn);
+
+ mutex_unlock_op(sbi, DATA_NEW);
+
+ if (pg_start == pg_end)
+ new_size = offset + len;
+ else if (index == pg_start && off_start)
+ new_size = (index + 1) << PAGE_CACHE_SHIFT;
+ else if (index == pg_end)
+ new_size = (index << PAGE_CACHE_SHIFT) + off_end;
+ else
+ new_size += PAGE_CACHE_SIZE;
+ }
+
+ if (!(mode & FALLOC_FL_KEEP_SIZE) &&
+ i_size_read(inode) < new_size) {
+ i_size_write(inode, new_size);
+ mark_inode_dirty(inode);
+ }
+
+ return ret;
+}
+
+static long f2fs_fallocate(struct file *file, int mode,
+ loff_t offset, loff_t len)
+{
+ struct inode *inode = file_inode(file);
+ long ret;
+
+ if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
+ return -EOPNOTSUPP;
+
+ if (mode & FALLOC_FL_PUNCH_HOLE)
+ ret = punch_hole(inode, offset, len, mode);
+ else
+ ret = expand_inode_data(inode, offset, len, mode);
+
+ if (!ret) {
+ inode->i_mtime = inode->i_ctime = CURRENT_TIME;
+ mark_inode_dirty(inode);
+ }
+ return ret;
+}
+
+#define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
+#define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
+
+static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
+{
+ if (S_ISDIR(mode))
+ return flags;
+ else if (S_ISREG(mode))
+ return flags & F2FS_REG_FLMASK;
+ else
+ return flags & F2FS_OTHER_FLMASK;
+}
+
+long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
+{
+ struct inode *inode = file_inode(filp);
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ unsigned int flags;
+ int ret;
+
+ switch (cmd) {
+ case FS_IOC_GETFLAGS:
+ flags = fi->i_flags & FS_FL_USER_VISIBLE;
+ return put_user(flags, (int __user *) arg);
+ case FS_IOC_SETFLAGS:
+ {
+ unsigned int oldflags;
+
+ ret = mnt_want_write(filp->f_path.mnt);
+ if (ret)
+ return ret;
+
+ if (!inode_owner_or_capable(inode)) {
+ ret = -EACCES;
+ goto out;
+ }
+
+ if (get_user(flags, (int __user *) arg)) {
+ ret = -EFAULT;
+ goto out;
+ }
+
+ flags = f2fs_mask_flags(inode->i_mode, flags);
+
+ mutex_lock(&inode->i_mutex);
+
+ oldflags = fi->i_flags;
+
+ if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
+ if (!capable(CAP_LINUX_IMMUTABLE)) {
+ mutex_unlock(&inode->i_mutex);
+ ret = -EPERM;
+ goto out;
+ }
+ }
+
+ flags = flags & FS_FL_USER_MODIFIABLE;
+ flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
+ fi->i_flags = flags;
+ mutex_unlock(&inode->i_mutex);
+
+ f2fs_set_inode_flags(inode);
+ inode->i_ctime = CURRENT_TIME;
+ mark_inode_dirty(inode);
+out:
+ mnt_drop_write(filp->f_path.mnt);
+ return ret;
+ }
+ default:
+ return -ENOTTY;
+ }
+}
+
+#ifdef CONFIG_COMPAT
+long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
+{
+ switch (cmd) {
+ case F2FS_IOC32_GETFLAGS:
+ cmd = F2FS_IOC_GETFLAGS;
+ break;
+ case F2FS_IOC32_SETFLAGS:
+ cmd = F2FS_IOC_SETFLAGS;
+ break;
+ default:
+ return -ENOIOCTLCMD;
+ }
+ return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
+}
+#endif
+
+const struct file_operations f2fs_file_operations = {
+ .llseek = generic_file_llseek,
+ .read = do_sync_read,
+ .write = do_sync_write,
+ .aio_read = generic_file_aio_read,
+ .aio_write = generic_file_aio_write,
+ .open = generic_file_open,
+ .mmap = f2fs_file_mmap,
+ .fsync = f2fs_sync_file,
+ .fallocate = f2fs_fallocate,
+ .unlocked_ioctl = f2fs_ioctl,
+#ifdef CONFIG_COMPAT
+ .compat_ioctl = f2fs_compat_ioctl,
+#endif
+ .splice_read = generic_file_splice_read,
+ .splice_write = generic_file_splice_write,
+};
diff --git a/fs/f2fs/gc.c b/fs/f2fs/gc.c
new file mode 100644
index 000000000000..94b8a0c48453
--- /dev/null
+++ b/fs/f2fs/gc.c
@@ -0,0 +1,698 @@
+/*
+ * fs/f2fs/gc.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/module.h>
+#include <linux/backing-dev.h>
+#include <linux/proc_fs.h>
+#include <linux/init.h>
+#include <linux/f2fs_fs.h>
+#include <linux/kthread.h>
+#include <linux/delay.h>
+#include <linux/freezer.h>
+#include <linux/blkdev.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+#include "gc.h"
+
+static struct kmem_cache *winode_slab;
+
+static int gc_thread_func(void *data)
+{
+ struct f2fs_sb_info *sbi = data;
+ wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
+ long wait_ms;
+
+ wait_ms = GC_THREAD_MIN_SLEEP_TIME;
+
+ do {
+ if (try_to_freeze())
+ continue;
+ else
+ wait_event_interruptible_timeout(*wq,
+ kthread_should_stop(),
+ msecs_to_jiffies(wait_ms));
+ if (kthread_should_stop())
+ break;
+
+ if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
+ wait_ms = GC_THREAD_MAX_SLEEP_TIME;
+ continue;
+ }
+
+ /*
+ * [GC triggering condition]
+ * 0. GC is not conducted currently.
+ * 1. There are enough dirty segments.
+ * 2. IO subsystem is idle by checking the # of writeback pages.
+ * 3. IO subsystem is idle by checking the # of requests in
+ * bdev's request list.
+ *
+ * Note) We have to avoid triggering GCs too much frequently.
+ * Because it is possible that some segments can be
+ * invalidated soon after by user update or deletion.
+ * So, I'd like to wait some time to collect dirty segments.
+ */
+ if (!mutex_trylock(&sbi->gc_mutex))
+ continue;
+
+ if (!is_idle(sbi)) {
+ wait_ms = increase_sleep_time(wait_ms);
+ mutex_unlock(&sbi->gc_mutex);
+ continue;
+ }
+
+ if (has_enough_invalid_blocks(sbi))
+ wait_ms = decrease_sleep_time(wait_ms);
+ else
+ wait_ms = increase_sleep_time(wait_ms);
+
+ sbi->bg_gc++;
+
+ /* if return value is not zero, no victim was selected */
+ if (f2fs_gc(sbi))
+ wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
+ else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME)
+ wait_ms = GC_THREAD_MAX_SLEEP_TIME;
+
+ } while (!kthread_should_stop());
+ return 0;
+}
+
+int start_gc_thread(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_gc_kthread *gc_th;
+ dev_t dev = sbi->sb->s_bdev->bd_dev;
+
+ if (!test_opt(sbi, BG_GC))
+ return 0;
+ gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
+ if (!gc_th)
+ return -ENOMEM;
+
+ sbi->gc_thread = gc_th;
+ init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
+ sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
+ "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
+ if (IS_ERR(gc_th->f2fs_gc_task)) {
+ kfree(gc_th);
+ sbi->gc_thread = NULL;
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+void stop_gc_thread(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
+ if (!gc_th)
+ return;
+ kthread_stop(gc_th->f2fs_gc_task);
+ kfree(gc_th);
+ sbi->gc_thread = NULL;
+}
+
+static int select_gc_type(int gc_type)
+{
+ return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
+}
+
+static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
+ int type, struct victim_sel_policy *p)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+
+ if (p->alloc_mode) {
+ p->gc_mode = GC_GREEDY;
+ p->dirty_segmap = dirty_i->dirty_segmap[type];
+ p->ofs_unit = 1;
+ } else {
+ p->gc_mode = select_gc_type(gc_type);
+ p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
+ p->ofs_unit = sbi->segs_per_sec;
+ }
+ p->offset = sbi->last_victim[p->gc_mode];
+}
+
+static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
+ struct victim_sel_policy *p)
+{
+ /* SSR allocates in a segment unit */
+ if (p->alloc_mode == SSR)
+ return 1 << sbi->log_blocks_per_seg;
+ if (p->gc_mode == GC_GREEDY)
+ return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
+ else if (p->gc_mode == GC_CB)
+ return UINT_MAX;
+ else /* No other gc_mode */
+ return 0;
+}
+
+static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ unsigned int segno;
+
+ /*
+ * If the gc_type is FG_GC, we can select victim segments
+ * selected by background GC before.
+ * Those segments guarantee they have small valid blocks.
+ */
+ segno = find_next_bit(dirty_i->victim_segmap[BG_GC],
+ TOTAL_SEGS(sbi), 0);
+ if (segno < TOTAL_SEGS(sbi)) {
+ clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
+ return segno;
+ }
+ return NULL_SEGNO;
+}
+
+static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned int secno = GET_SECNO(sbi, segno);
+ unsigned int start = secno * sbi->segs_per_sec;
+ unsigned long long mtime = 0;
+ unsigned int vblocks;
+ unsigned char age = 0;
+ unsigned char u;
+ unsigned int i;
+
+ for (i = 0; i < sbi->segs_per_sec; i++)
+ mtime += get_seg_entry(sbi, start + i)->mtime;
+ vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
+
+ mtime = div_u64(mtime, sbi->segs_per_sec);
+ vblocks = div_u64(vblocks, sbi->segs_per_sec);
+
+ u = (vblocks * 100) >> sbi->log_blocks_per_seg;
+
+ /* Handle if the system time is changed by user */
+ if (mtime < sit_i->min_mtime)
+ sit_i->min_mtime = mtime;
+ if (mtime > sit_i->max_mtime)
+ sit_i->max_mtime = mtime;
+ if (sit_i->max_mtime != sit_i->min_mtime)
+ age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
+ sit_i->max_mtime - sit_i->min_mtime);
+
+ return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
+}
+
+static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno,
+ struct victim_sel_policy *p)
+{
+ if (p->alloc_mode == SSR)
+ return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
+
+ /* alloc_mode == LFS */
+ if (p->gc_mode == GC_GREEDY)
+ return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
+ else
+ return get_cb_cost(sbi, segno);
+}
+
+/*
+ * This function is called from two pathes.
+ * One is garbage collection and the other is SSR segment selection.
+ * When it is called during GC, it just gets a victim segment
+ * and it does not remove it from dirty seglist.
+ * When it is called from SSR segment selection, it finds a segment
+ * which has minimum valid blocks and removes it from dirty seglist.
+ */
+static int get_victim_by_default(struct f2fs_sb_info *sbi,
+ unsigned int *result, int gc_type, int type, char alloc_mode)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ struct victim_sel_policy p;
+ unsigned int segno;
+ int nsearched = 0;
+
+ p.alloc_mode = alloc_mode;
+ select_policy(sbi, gc_type, type, &p);
+
+ p.min_segno = NULL_SEGNO;
+ p.min_cost = get_max_cost(sbi, &p);
+
+ mutex_lock(&dirty_i->seglist_lock);
+
+ if (p.alloc_mode == LFS && gc_type == FG_GC) {
+ p.min_segno = check_bg_victims(sbi);
+ if (p.min_segno != NULL_SEGNO)
+ goto got_it;
+ }
+
+ while (1) {
+ unsigned long cost;
+
+ segno = find_next_bit(p.dirty_segmap,
+ TOTAL_SEGS(sbi), p.offset);
+ if (segno >= TOTAL_SEGS(sbi)) {
+ if (sbi->last_victim[p.gc_mode]) {
+ sbi->last_victim[p.gc_mode] = 0;
+ p.offset = 0;
+ continue;
+ }
+ break;
+ }
+ p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit;
+
+ if (test_bit(segno, dirty_i->victim_segmap[FG_GC]))
+ continue;
+ if (gc_type == BG_GC &&
+ test_bit(segno, dirty_i->victim_segmap[BG_GC]))
+ continue;
+ if (IS_CURSEC(sbi, GET_SECNO(sbi, segno)))
+ continue;
+
+ cost = get_gc_cost(sbi, segno, &p);
+
+ if (p.min_cost > cost) {
+ p.min_segno = segno;
+ p.min_cost = cost;
+ }
+
+ if (cost == get_max_cost(sbi, &p))
+ continue;
+
+ if (nsearched++ >= MAX_VICTIM_SEARCH) {
+ sbi->last_victim[p.gc_mode] = segno;
+ break;
+ }
+ }
+got_it:
+ if (p.min_segno != NULL_SEGNO) {
+ *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
+ if (p.alloc_mode == LFS) {
+ int i;
+ for (i = 0; i < p.ofs_unit; i++)
+ set_bit(*result + i,
+ dirty_i->victim_segmap[gc_type]);
+ }
+ }
+ mutex_unlock(&dirty_i->seglist_lock);
+
+ return (p.min_segno == NULL_SEGNO) ? 0 : 1;
+}
+
+static const struct victim_selection default_v_ops = {
+ .get_victim = get_victim_by_default,
+};
+
+static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
+{
+ struct list_head *this;
+ struct inode_entry *ie;
+
+ list_for_each(this, ilist) {
+ ie = list_entry(this, struct inode_entry, list);
+ if (ie->inode->i_ino == ino)
+ return ie->inode;
+ }
+ return NULL;
+}
+
+static void add_gc_inode(struct inode *inode, struct list_head *ilist)
+{
+ struct list_head *this;
+ struct inode_entry *new_ie, *ie;
+
+ list_for_each(this, ilist) {
+ ie = list_entry(this, struct inode_entry, list);
+ if (ie->inode == inode) {
+ iput(inode);
+ return;
+ }
+ }
+repeat:
+ new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS);
+ if (!new_ie) {
+ cond_resched();
+ goto repeat;
+ }
+ new_ie->inode = inode;
+ list_add_tail(&new_ie->list, ilist);
+}
+
+static void put_gc_inode(struct list_head *ilist)
+{
+ struct inode_entry *ie, *next_ie;
+ list_for_each_entry_safe(ie, next_ie, ilist, list) {
+ iput(ie->inode);
+ list_del(&ie->list);
+ kmem_cache_free(winode_slab, ie);
+ }
+}
+
+static int check_valid_map(struct f2fs_sb_info *sbi,
+ unsigned int segno, int offset)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ struct seg_entry *sentry;
+ int ret;
+
+ mutex_lock(&sit_i->sentry_lock);
+ sentry = get_seg_entry(sbi, segno);
+ ret = f2fs_test_bit(offset, sentry->cur_valid_map);
+ mutex_unlock(&sit_i->sentry_lock);
+ return ret;
+}
+
+/*
+ * This function compares node address got in summary with that in NAT.
+ * On validity, copy that node with cold status, otherwise (invalid node)
+ * ignore that.
+ */
+static void gc_node_segment(struct f2fs_sb_info *sbi,
+ struct f2fs_summary *sum, unsigned int segno, int gc_type)
+{
+ bool initial = true;
+ struct f2fs_summary *entry;
+ int off;
+
+next_step:
+ entry = sum;
+ for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
+ nid_t nid = le32_to_cpu(entry->nid);
+ struct page *node_page;
+
+ /* stop BG_GC if there is not enough free sections. */
+ if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
+ return;
+
+ if (check_valid_map(sbi, segno, off) == 0)
+ continue;
+
+ if (initial) {
+ ra_node_page(sbi, nid);
+ continue;
+ }
+ node_page = get_node_page(sbi, nid);
+ if (IS_ERR(node_page))
+ continue;
+
+ /* set page dirty and write it */
+ if (!PageWriteback(node_page))
+ set_page_dirty(node_page);
+ f2fs_put_page(node_page, 1);
+ stat_inc_node_blk_count(sbi, 1);
+ }
+ if (initial) {
+ initial = false;
+ goto next_step;
+ }
+
+ if (gc_type == FG_GC) {
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_ALL,
+ .nr_to_write = LONG_MAX,
+ .for_reclaim = 0,
+ };
+ sync_node_pages(sbi, 0, &wbc);
+ }
+}
+
+/*
+ * Calculate start block index indicating the given node offset.
+ * Be careful, caller should give this node offset only indicating direct node
+ * blocks. If any node offsets, which point the other types of node blocks such
+ * as indirect or double indirect node blocks, are given, it must be a caller's
+ * bug.
+ */
+block_t start_bidx_of_node(unsigned int node_ofs)
+{
+ unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
+ unsigned int bidx;
+
+ if (node_ofs == 0)
+ return 0;
+
+ if (node_ofs <= 2) {
+ bidx = node_ofs - 1;
+ } else if (node_ofs <= indirect_blks) {
+ int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
+ bidx = node_ofs - 2 - dec;
+ } else {
+ int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
+ bidx = node_ofs - 5 - dec;
+ }
+ return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
+}
+
+static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
+ struct node_info *dni, block_t blkaddr, unsigned int *nofs)
+{
+ struct page *node_page;
+ nid_t nid;
+ unsigned int ofs_in_node;
+ block_t source_blkaddr;
+
+ nid = le32_to_cpu(sum->nid);
+ ofs_in_node = le16_to_cpu(sum->ofs_in_node);
+
+ node_page = get_node_page(sbi, nid);
+ if (IS_ERR(node_page))
+ return 0;
+
+ get_node_info(sbi, nid, dni);
+
+ if (sum->version != dni->version) {
+ f2fs_put_page(node_page, 1);
+ return 0;
+ }
+
+ *nofs = ofs_of_node(node_page);
+ source_blkaddr = datablock_addr(node_page, ofs_in_node);
+ f2fs_put_page(node_page, 1);
+
+ if (source_blkaddr != blkaddr)
+ return 0;
+ return 1;
+}
+
+static void move_data_page(struct inode *inode, struct page *page, int gc_type)
+{
+ if (page->mapping != inode->i_mapping)
+ goto out;
+
+ if (inode != page->mapping->host)
+ goto out;
+
+ if (PageWriteback(page))
+ goto out;
+
+ if (gc_type == BG_GC) {
+ set_page_dirty(page);
+ set_cold_data(page);
+ } else {
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ mutex_lock_op(sbi, DATA_WRITE);
+ if (clear_page_dirty_for_io(page) &&
+ S_ISDIR(inode->i_mode)) {
+ dec_page_count(sbi, F2FS_DIRTY_DENTS);
+ inode_dec_dirty_dents(inode);
+ }
+ set_cold_data(page);
+ do_write_data_page(page);
+ mutex_unlock_op(sbi, DATA_WRITE);
+ clear_cold_data(page);
+ }
+out:
+ f2fs_put_page(page, 1);
+}
+
+/*
+ * This function tries to get parent node of victim data block, and identifies
+ * data block validity. If the block is valid, copy that with cold status and
+ * modify parent node.
+ * If the parent node is not valid or the data block address is different,
+ * the victim data block is ignored.
+ */
+static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
+ struct list_head *ilist, unsigned int segno, int gc_type)
+{
+ struct super_block *sb = sbi->sb;
+ struct f2fs_summary *entry;
+ block_t start_addr;
+ int off;
+ int phase = 0;
+
+ start_addr = START_BLOCK(sbi, segno);
+
+next_step:
+ entry = sum;
+ for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
+ struct page *data_page;
+ struct inode *inode;
+ struct node_info dni; /* dnode info for the data */
+ unsigned int ofs_in_node, nofs;
+ block_t start_bidx;
+
+ /* stop BG_GC if there is not enough free sections. */
+ if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0))
+ return;
+
+ if (check_valid_map(sbi, segno, off) == 0)
+ continue;
+
+ if (phase == 0) {
+ ra_node_page(sbi, le32_to_cpu(entry->nid));
+ continue;
+ }
+
+ /* Get an inode by ino with checking validity */
+ if (check_dnode(sbi, entry, &dni, start_addr + off, &nofs) == 0)
+ continue;
+
+ if (phase == 1) {
+ ra_node_page(sbi, dni.ino);
+ continue;
+ }
+
+ start_bidx = start_bidx_of_node(nofs);
+ ofs_in_node = le16_to_cpu(entry->ofs_in_node);
+
+ if (phase == 2) {
+ inode = f2fs_iget(sb, dni.ino);
+ if (IS_ERR(inode))
+ continue;
+
+ data_page = find_data_page(inode,
+ start_bidx + ofs_in_node);
+ if (IS_ERR(data_page))
+ goto next_iput;
+
+ f2fs_put_page(data_page, 0);
+ add_gc_inode(inode, ilist);
+ } else {
+ inode = find_gc_inode(dni.ino, ilist);
+ if (inode) {
+ data_page = get_lock_data_page(inode,
+ start_bidx + ofs_in_node);
+ if (IS_ERR(data_page))
+ continue;
+ move_data_page(inode, data_page, gc_type);
+ stat_inc_data_blk_count(sbi, 1);
+ }
+ }
+ continue;
+next_iput:
+ iput(inode);
+ }
+ if (++phase < 4)
+ goto next_step;
+
+ if (gc_type == FG_GC)
+ f2fs_submit_bio(sbi, DATA, true);
+}
+
+static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
+ int gc_type, int type)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ int ret;
+ mutex_lock(&sit_i->sentry_lock);
+ ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
+ mutex_unlock(&sit_i->sentry_lock);
+ return ret;
+}
+
+static void do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
+ struct list_head *ilist, int gc_type)
+{
+ struct page *sum_page;
+ struct f2fs_summary_block *sum;
+
+ /* read segment summary of victim */
+ sum_page = get_sum_page(sbi, segno);
+ if (IS_ERR(sum_page))
+ return;
+
+ /*
+ * CP needs to lock sum_page. In this time, we don't need
+ * to lock this page, because this summary page is not gone anywhere.
+ * Also, this page is not gonna be updated before GC is done.
+ */
+ unlock_page(sum_page);
+ sum = page_address(sum_page);
+
+ switch (GET_SUM_TYPE((&sum->footer))) {
+ case SUM_TYPE_NODE:
+ gc_node_segment(sbi, sum->entries, segno, gc_type);
+ break;
+ case SUM_TYPE_DATA:
+ gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
+ break;
+ }
+ stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
+ stat_inc_call_count(sbi->stat_info);
+
+ f2fs_put_page(sum_page, 0);
+}
+
+int f2fs_gc(struct f2fs_sb_info *sbi)
+{
+ struct list_head ilist;
+ unsigned int segno, i;
+ int gc_type = BG_GC;
+ int nfree = 0;
+ int ret = -1;
+
+ INIT_LIST_HEAD(&ilist);
+gc_more:
+ if (!(sbi->sb->s_flags & MS_ACTIVE))
+ goto stop;
+
+ if (gc_type == BG_GC && has_not_enough_free_secs(sbi, nfree))
+ gc_type = FG_GC;
+
+ if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
+ goto stop;
+ ret = 0;
+
+ for (i = 0; i < sbi->segs_per_sec; i++)
+ do_garbage_collect(sbi, segno + i, &ilist, gc_type);
+
+ if (gc_type == FG_GC &&
+ get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
+ nfree++;
+
+ if (has_not_enough_free_secs(sbi, nfree))
+ goto gc_more;
+
+ if (gc_type == FG_GC)
+ write_checkpoint(sbi, false);
+stop:
+ mutex_unlock(&sbi->gc_mutex);
+
+ put_gc_inode(&ilist);
+ return ret;
+}
+
+void build_gc_manager(struct f2fs_sb_info *sbi)
+{
+ DIRTY_I(sbi)->v_ops = &default_v_ops;
+}
+
+int __init create_gc_caches(void)
+{
+ winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
+ sizeof(struct inode_entry), NULL);
+ if (!winode_slab)
+ return -ENOMEM;
+ return 0;
+}
+
+void destroy_gc_caches(void)
+{
+ kmem_cache_destroy(winode_slab);
+}
diff --git a/fs/f2fs/gc.h b/fs/f2fs/gc.h
new file mode 100644
index 000000000000..30b2db003acd
--- /dev/null
+++ b/fs/f2fs/gc.h
@@ -0,0 +1,96 @@
+/*
+ * fs/f2fs/gc.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#define GC_THREAD_MIN_WB_PAGES 1 /*
+ * a threshold to determine
+ * whether IO subsystem is idle
+ * or not
+ */
+#define GC_THREAD_MIN_SLEEP_TIME 10000 /* milliseconds */
+#define GC_THREAD_MAX_SLEEP_TIME 30000
+#define GC_THREAD_NOGC_SLEEP_TIME 10000
+#define LIMIT_INVALID_BLOCK 40 /* percentage over total user space */
+#define LIMIT_FREE_BLOCK 40 /* percentage over invalid + free space */
+
+/* Search max. number of dirty segments to select a victim segment */
+#define MAX_VICTIM_SEARCH 20
+
+struct f2fs_gc_kthread {
+ struct task_struct *f2fs_gc_task;
+ wait_queue_head_t gc_wait_queue_head;
+};
+
+struct inode_entry {
+ struct list_head list;
+ struct inode *inode;
+};
+
+/*
+ * inline functions
+ */
+static inline block_t free_user_blocks(struct f2fs_sb_info *sbi)
+{
+ if (free_segments(sbi) < overprovision_segments(sbi))
+ return 0;
+ else
+ return (free_segments(sbi) - overprovision_segments(sbi))
+ << sbi->log_blocks_per_seg;
+}
+
+static inline block_t limit_invalid_user_blocks(struct f2fs_sb_info *sbi)
+{
+ return (long)(sbi->user_block_count * LIMIT_INVALID_BLOCK) / 100;
+}
+
+static inline block_t limit_free_user_blocks(struct f2fs_sb_info *sbi)
+{
+ block_t reclaimable_user_blocks = sbi->user_block_count -
+ written_block_count(sbi);
+ return (long)(reclaimable_user_blocks * LIMIT_FREE_BLOCK) / 100;
+}
+
+static inline long increase_sleep_time(long wait)
+{
+ wait += GC_THREAD_MIN_SLEEP_TIME;
+ if (wait > GC_THREAD_MAX_SLEEP_TIME)
+ wait = GC_THREAD_MAX_SLEEP_TIME;
+ return wait;
+}
+
+static inline long decrease_sleep_time(long wait)
+{
+ wait -= GC_THREAD_MIN_SLEEP_TIME;
+ if (wait <= GC_THREAD_MIN_SLEEP_TIME)
+ wait = GC_THREAD_MIN_SLEEP_TIME;
+ return wait;
+}
+
+static inline bool has_enough_invalid_blocks(struct f2fs_sb_info *sbi)
+{
+ block_t invalid_user_blocks = sbi->user_block_count -
+ written_block_count(sbi);
+ /*
+ * Background GC is triggered with the following condition.
+ * 1. There are a number of invalid blocks.
+ * 2. There is not enough free space.
+ */
+ if (invalid_user_blocks > limit_invalid_user_blocks(sbi) &&
+ free_user_blocks(sbi) < limit_free_user_blocks(sbi))
+ return true;
+ return false;
+}
+
+static inline int is_idle(struct f2fs_sb_info *sbi)
+{
+ struct block_device *bdev = sbi->sb->s_bdev;
+ struct request_queue *q = bdev_get_queue(bdev);
+ struct request_list *rl = &q->root_rl;
+ return !(rl->count[BLK_RW_SYNC]) && !(rl->count[BLK_RW_ASYNC]);
+}
diff --git a/fs/f2fs/hash.c b/fs/f2fs/hash.c
new file mode 100644
index 000000000000..6eb8d269b53b
--- /dev/null
+++ b/fs/f2fs/hash.c
@@ -0,0 +1,101 @@
+/*
+ * fs/f2fs/hash.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * Portions of this code from linux/fs/ext3/hash.c
+ *
+ * Copyright (C) 2002 by Theodore Ts'o
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/types.h>
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/cryptohash.h>
+#include <linux/pagemap.h>
+
+#include "f2fs.h"
+
+/*
+ * Hashing code copied from ext3
+ */
+#define DELTA 0x9E3779B9
+
+static void TEA_transform(unsigned int buf[4], unsigned int const in[])
+{
+ __u32 sum = 0;
+ __u32 b0 = buf[0], b1 = buf[1];
+ __u32 a = in[0], b = in[1], c = in[2], d = in[3];
+ int n = 16;
+
+ do {
+ sum += DELTA;
+ b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b);
+ b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d);
+ } while (--n);
+
+ buf[0] += b0;
+ buf[1] += b1;
+}
+
+static void str2hashbuf(const char *msg, size_t len, unsigned int *buf, int num)
+{
+ unsigned pad, val;
+ int i;
+
+ pad = (__u32)len | ((__u32)len << 8);
+ pad |= pad << 16;
+
+ val = pad;
+ if (len > num * 4)
+ len = num * 4;
+ for (i = 0; i < len; i++) {
+ if ((i % 4) == 0)
+ val = pad;
+ val = msg[i] + (val << 8);
+ if ((i % 4) == 3) {
+ *buf++ = val;
+ val = pad;
+ num--;
+ }
+ }
+ if (--num >= 0)
+ *buf++ = val;
+ while (--num >= 0)
+ *buf++ = pad;
+}
+
+f2fs_hash_t f2fs_dentry_hash(const char *name, size_t len)
+{
+ __u32 hash;
+ f2fs_hash_t f2fs_hash;
+ const char *p;
+ __u32 in[8], buf[4];
+
+ if ((len <= 2) && (name[0] == '.') &&
+ (name[1] == '.' || name[1] == '\0'))
+ return 0;
+
+ /* Initialize the default seed for the hash checksum functions */
+ buf[0] = 0x67452301;
+ buf[1] = 0xefcdab89;
+ buf[2] = 0x98badcfe;
+ buf[3] = 0x10325476;
+
+ p = name;
+ while (1) {
+ str2hashbuf(p, len, in, 4);
+ TEA_transform(buf, in);
+ p += 16;
+ if (len <= 16)
+ break;
+ len -= 16;
+ }
+ hash = buf[0];
+ f2fs_hash = cpu_to_le32(hash & ~F2FS_HASH_COL_BIT);
+ return f2fs_hash;
+}
diff --git a/fs/f2fs/inode.c b/fs/f2fs/inode.c
new file mode 100644
index 000000000000..ddae412d30c8
--- /dev/null
+++ b/fs/f2fs/inode.c
@@ -0,0 +1,259 @@
+/*
+ * fs/f2fs/inode.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/buffer_head.h>
+#include <linux/writeback.h>
+
+#include "f2fs.h"
+#include "node.h"
+
+void f2fs_set_inode_flags(struct inode *inode)
+{
+ unsigned int flags = F2FS_I(inode)->i_flags;
+
+ inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
+ S_NOATIME | S_DIRSYNC);
+
+ if (flags & FS_SYNC_FL)
+ inode->i_flags |= S_SYNC;
+ if (flags & FS_APPEND_FL)
+ inode->i_flags |= S_APPEND;
+ if (flags & FS_IMMUTABLE_FL)
+ inode->i_flags |= S_IMMUTABLE;
+ if (flags & FS_NOATIME_FL)
+ inode->i_flags |= S_NOATIME;
+ if (flags & FS_DIRSYNC_FL)
+ inode->i_flags |= S_DIRSYNC;
+}
+
+static int do_read_inode(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ struct page *node_page;
+ struct f2fs_node *rn;
+ struct f2fs_inode *ri;
+
+ /* Check if ino is within scope */
+ check_nid_range(sbi, inode->i_ino);
+
+ node_page = get_node_page(sbi, inode->i_ino);
+ if (IS_ERR(node_page))
+ return PTR_ERR(node_page);
+
+ rn = page_address(node_page);
+ ri = &(rn->i);
+
+ inode->i_mode = le16_to_cpu(ri->i_mode);
+ i_uid_write(inode, le32_to_cpu(ri->i_uid));
+ i_gid_write(inode, le32_to_cpu(ri->i_gid));
+ set_nlink(inode, le32_to_cpu(ri->i_links));
+ inode->i_size = le64_to_cpu(ri->i_size);
+ inode->i_blocks = le64_to_cpu(ri->i_blocks);
+
+ inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
+ inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
+ inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
+ inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
+ inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
+ inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
+ inode->i_generation = le32_to_cpu(ri->i_generation);
+ if (ri->i_addr[0])
+ inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0]));
+ else
+ inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1]));
+
+ fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
+ fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
+ fi->i_flags = le32_to_cpu(ri->i_flags);
+ fi->flags = 0;
+ fi->data_version = le64_to_cpu(F2FS_CKPT(sbi)->checkpoint_ver) - 1;
+ fi->i_advise = ri->i_advise;
+ fi->i_pino = le32_to_cpu(ri->i_pino);
+ get_extent_info(&fi->ext, ri->i_ext);
+ f2fs_put_page(node_page, 1);
+ return 0;
+}
+
+struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ struct inode *inode;
+ int ret;
+
+ inode = iget_locked(sb, ino);
+ if (!inode)
+ return ERR_PTR(-ENOMEM);
+ if (!(inode->i_state & I_NEW))
+ return inode;
+ if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
+ goto make_now;
+
+ ret = do_read_inode(inode);
+ if (ret)
+ goto bad_inode;
+
+ if (!sbi->por_doing && inode->i_nlink == 0) {
+ ret = -ENOENT;
+ goto bad_inode;
+ }
+
+make_now:
+ if (ino == F2FS_NODE_INO(sbi)) {
+ inode->i_mapping->a_ops = &f2fs_node_aops;
+ mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
+ } else if (ino == F2FS_META_INO(sbi)) {
+ inode->i_mapping->a_ops = &f2fs_meta_aops;
+ mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
+ } else if (S_ISREG(inode->i_mode)) {
+ inode->i_op = &f2fs_file_inode_operations;
+ inode->i_fop = &f2fs_file_operations;
+ inode->i_mapping->a_ops = &f2fs_dblock_aops;
+ } else if (S_ISDIR(inode->i_mode)) {
+ inode->i_op = &f2fs_dir_inode_operations;
+ inode->i_fop = &f2fs_dir_operations;
+ inode->i_mapping->a_ops = &f2fs_dblock_aops;
+ mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE |
+ __GFP_ZERO);
+ } else if (S_ISLNK(inode->i_mode)) {
+ inode->i_op = &f2fs_symlink_inode_operations;
+ inode->i_mapping->a_ops = &f2fs_dblock_aops;
+ } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
+ S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
+ inode->i_op = &f2fs_special_inode_operations;
+ init_special_inode(inode, inode->i_mode, inode->i_rdev);
+ } else {
+ ret = -EIO;
+ goto bad_inode;
+ }
+ unlock_new_inode(inode);
+
+ return inode;
+
+bad_inode:
+ iget_failed(inode);
+ return ERR_PTR(ret);
+}
+
+void update_inode(struct inode *inode, struct page *node_page)
+{
+ struct f2fs_node *rn;
+ struct f2fs_inode *ri;
+
+ wait_on_page_writeback(node_page);
+
+ rn = page_address(node_page);
+ ri = &(rn->i);
+
+ ri->i_mode = cpu_to_le16(inode->i_mode);
+ ri->i_advise = F2FS_I(inode)->i_advise;
+ ri->i_uid = cpu_to_le32(i_uid_read(inode));
+ ri->i_gid = cpu_to_le32(i_gid_read(inode));
+ ri->i_links = cpu_to_le32(inode->i_nlink);
+ ri->i_size = cpu_to_le64(i_size_read(inode));
+ ri->i_blocks = cpu_to_le64(inode->i_blocks);
+ set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
+
+ ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
+ ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
+ ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
+ ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
+ ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
+ ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
+ ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
+ ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
+ ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
+ ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
+ ri->i_generation = cpu_to_le32(inode->i_generation);
+
+ if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
+ if (old_valid_dev(inode->i_rdev)) {
+ ri->i_addr[0] =
+ cpu_to_le32(old_encode_dev(inode->i_rdev));
+ ri->i_addr[1] = 0;
+ } else {
+ ri->i_addr[0] = 0;
+ ri->i_addr[1] =
+ cpu_to_le32(new_encode_dev(inode->i_rdev));
+ ri->i_addr[2] = 0;
+ }
+ }
+
+ set_cold_node(inode, node_page);
+ set_page_dirty(node_page);
+}
+
+int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct page *node_page;
+ bool need_lock = false;
+
+ if (inode->i_ino == F2FS_NODE_INO(sbi) ||
+ inode->i_ino == F2FS_META_INO(sbi))
+ return 0;
+
+ if (wbc)
+ f2fs_balance_fs(sbi);
+
+ node_page = get_node_page(sbi, inode->i_ino);
+ if (IS_ERR(node_page))
+ return PTR_ERR(node_page);
+
+ if (!PageDirty(node_page)) {
+ need_lock = true;
+ f2fs_put_page(node_page, 1);
+ mutex_lock(&sbi->write_inode);
+ node_page = get_node_page(sbi, inode->i_ino);
+ if (IS_ERR(node_page)) {
+ mutex_unlock(&sbi->write_inode);
+ return PTR_ERR(node_page);
+ }
+ }
+ update_inode(inode, node_page);
+ f2fs_put_page(node_page, 1);
+ if (need_lock)
+ mutex_unlock(&sbi->write_inode);
+ return 0;
+}
+
+/*
+ * Called at the last iput() if i_nlink is zero
+ */
+void f2fs_evict_inode(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+
+ truncate_inode_pages(&inode->i_data, 0);
+
+ if (inode->i_ino == F2FS_NODE_INO(sbi) ||
+ inode->i_ino == F2FS_META_INO(sbi))
+ goto no_delete;
+
+ BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
+ remove_dirty_dir_inode(inode);
+
+ if (inode->i_nlink || is_bad_inode(inode))
+ goto no_delete;
+
+ sb_start_intwrite(inode->i_sb);
+ set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
+ i_size_write(inode, 0);
+
+ if (F2FS_HAS_BLOCKS(inode))
+ f2fs_truncate(inode);
+
+ remove_inode_page(inode);
+ sb_end_intwrite(inode->i_sb);
+no_delete:
+ clear_inode(inode);
+}
diff --git a/fs/f2fs/namei.c b/fs/f2fs/namei.c
new file mode 100644
index 000000000000..1a49b881bac0
--- /dev/null
+++ b/fs/f2fs/namei.c
@@ -0,0 +1,503 @@
+/*
+ * fs/f2fs/namei.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/pagemap.h>
+#include <linux/sched.h>
+#include <linux/ctype.h>
+
+#include "f2fs.h"
+#include "xattr.h"
+#include "acl.h"
+
+static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
+{
+ struct super_block *sb = dir->i_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ nid_t ino;
+ struct inode *inode;
+ bool nid_free = false;
+ int err;
+
+ inode = new_inode(sb);
+ if (!inode)
+ return ERR_PTR(-ENOMEM);
+
+ mutex_lock_op(sbi, NODE_NEW);
+ if (!alloc_nid(sbi, &ino)) {
+ mutex_unlock_op(sbi, NODE_NEW);
+ err = -ENOSPC;
+ goto fail;
+ }
+ mutex_unlock_op(sbi, NODE_NEW);
+
+ inode->i_uid = current_fsuid();
+
+ if (dir->i_mode & S_ISGID) {
+ inode->i_gid = dir->i_gid;
+ if (S_ISDIR(mode))
+ mode |= S_ISGID;
+ } else {
+ inode->i_gid = current_fsgid();
+ }
+
+ inode->i_ino = ino;
+ inode->i_mode = mode;
+ inode->i_blocks = 0;
+ inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
+ inode->i_generation = sbi->s_next_generation++;
+
+ err = insert_inode_locked(inode);
+ if (err) {
+ err = -EINVAL;
+ nid_free = true;
+ goto out;
+ }
+
+ mark_inode_dirty(inode);
+ return inode;
+
+out:
+ clear_nlink(inode);
+ unlock_new_inode(inode);
+fail:
+ iput(inode);
+ if (nid_free)
+ alloc_nid_failed(sbi, ino);
+ return ERR_PTR(err);
+}
+
+static int is_multimedia_file(const unsigned char *s, const char *sub)
+{
+ size_t slen = strlen(s);
+ size_t sublen = strlen(sub);
+ int ret;
+
+ if (sublen > slen)
+ return 1;
+
+ ret = memcmp(s + slen - sublen, sub, sublen);
+ if (ret) { /* compare upper case */
+ int i;
+ char upper_sub[8];
+ for (i = 0; i < sublen && i < sizeof(upper_sub); i++)
+ upper_sub[i] = toupper(sub[i]);
+ return memcmp(s + slen - sublen, upper_sub, sublen);
+ }
+
+ return ret;
+}
+
+/*
+ * Set multimedia files as cold files for hot/cold data separation
+ */
+static inline void set_cold_file(struct f2fs_sb_info *sbi, struct inode *inode,
+ const unsigned char *name)
+{
+ int i;
+ __u8 (*extlist)[8] = sbi->raw_super->extension_list;
+
+ int count = le32_to_cpu(sbi->raw_super->extension_count);
+ for (i = 0; i < count; i++) {
+ if (!is_multimedia_file(name, extlist[i])) {
+ F2FS_I(inode)->i_advise |= FADVISE_COLD_BIT;
+ break;
+ }
+ }
+}
+
+static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
+ bool excl)
+{
+ struct super_block *sb = dir->i_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ struct inode *inode;
+ nid_t ino = 0;
+ int err;
+
+ f2fs_balance_fs(sbi);
+
+ inode = f2fs_new_inode(dir, mode);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ if (!test_opt(sbi, DISABLE_EXT_IDENTIFY))
+ set_cold_file(sbi, inode, dentry->d_name.name);
+
+ inode->i_op = &f2fs_file_inode_operations;
+ inode->i_fop = &f2fs_file_operations;
+ inode->i_mapping->a_ops = &f2fs_dblock_aops;
+ ino = inode->i_ino;
+
+ err = f2fs_add_link(dentry, inode);
+ if (err)
+ goto out;
+
+ alloc_nid_done(sbi, ino);
+
+ if (!sbi->por_doing)
+ d_instantiate(dentry, inode);
+ unlock_new_inode(inode);
+ return 0;
+out:
+ clear_nlink(inode);
+ unlock_new_inode(inode);
+ iput(inode);
+ alloc_nid_failed(sbi, ino);
+ return err;
+}
+
+static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
+ struct dentry *dentry)
+{
+ struct inode *inode = old_dentry->d_inode;
+ struct super_block *sb = dir->i_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ int err;
+
+ f2fs_balance_fs(sbi);
+
+ inode->i_ctime = CURRENT_TIME;
+ atomic_inc(&inode->i_count);
+
+ set_inode_flag(F2FS_I(inode), FI_INC_LINK);
+ err = f2fs_add_link(dentry, inode);
+ if (err)
+ goto out;
+
+ d_instantiate(dentry, inode);
+ return 0;
+out:
+ clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
+ iput(inode);
+ return err;
+}
+
+struct dentry *f2fs_get_parent(struct dentry *child)
+{
+ struct qstr dotdot = QSTR_INIT("..", 2);
+ unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot);
+ if (!ino)
+ return ERR_PTR(-ENOENT);
+ return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino));
+}
+
+static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
+ unsigned int flags)
+{
+ struct inode *inode = NULL;
+ struct f2fs_dir_entry *de;
+ struct page *page;
+
+ if (dentry->d_name.len > F2FS_MAX_NAME_LEN)
+ return ERR_PTR(-ENAMETOOLONG);
+
+ de = f2fs_find_entry(dir, &dentry->d_name, &page);
+ if (de) {
+ nid_t ino = le32_to_cpu(de->ino);
+ kunmap(page);
+ f2fs_put_page(page, 0);
+
+ inode = f2fs_iget(dir->i_sb, ino);
+ if (IS_ERR(inode))
+ return ERR_CAST(inode);
+ }
+
+ return d_splice_alias(inode, dentry);
+}
+
+static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
+{
+ struct super_block *sb = dir->i_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ struct inode *inode = dentry->d_inode;
+ struct f2fs_dir_entry *de;
+ struct page *page;
+ int err = -ENOENT;
+
+ f2fs_balance_fs(sbi);
+
+ de = f2fs_find_entry(dir, &dentry->d_name, &page);
+ if (!de)
+ goto fail;
+
+ err = check_orphan_space(sbi);
+ if (err) {
+ kunmap(page);
+ f2fs_put_page(page, 0);
+ goto fail;
+ }
+
+ f2fs_delete_entry(de, page, inode);
+
+ /* In order to evict this inode, we set it dirty */
+ mark_inode_dirty(inode);
+fail:
+ return err;
+}
+
+static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
+ const char *symname)
+{
+ struct super_block *sb = dir->i_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ struct inode *inode;
+ size_t symlen = strlen(symname) + 1;
+ int err;
+
+ f2fs_balance_fs(sbi);
+
+ inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ inode->i_op = &f2fs_symlink_inode_operations;
+ inode->i_mapping->a_ops = &f2fs_dblock_aops;
+
+ err = f2fs_add_link(dentry, inode);
+ if (err)
+ goto out;
+
+ err = page_symlink(inode, symname, symlen);
+ alloc_nid_done(sbi, inode->i_ino);
+
+ d_instantiate(dentry, inode);
+ unlock_new_inode(inode);
+ return err;
+out:
+ clear_nlink(inode);
+ unlock_new_inode(inode);
+ iput(inode);
+ alloc_nid_failed(sbi, inode->i_ino);
+ return err;
+}
+
+static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
+ struct inode *inode;
+ int err;
+
+ f2fs_balance_fs(sbi);
+
+ inode = f2fs_new_inode(dir, S_IFDIR | mode);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ inode->i_op = &f2fs_dir_inode_operations;
+ inode->i_fop = &f2fs_dir_operations;
+ inode->i_mapping->a_ops = &f2fs_dblock_aops;
+ mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
+
+ set_inode_flag(F2FS_I(inode), FI_INC_LINK);
+ err = f2fs_add_link(dentry, inode);
+ if (err)
+ goto out_fail;
+
+ alloc_nid_done(sbi, inode->i_ino);
+
+ d_instantiate(dentry, inode);
+ unlock_new_inode(inode);
+
+ return 0;
+
+out_fail:
+ clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
+ clear_nlink(inode);
+ unlock_new_inode(inode);
+ iput(inode);
+ alloc_nid_failed(sbi, inode->i_ino);
+ return err;
+}
+
+static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
+{
+ struct inode *inode = dentry->d_inode;
+ if (f2fs_empty_dir(inode))
+ return f2fs_unlink(dir, dentry);
+ return -ENOTEMPTY;
+}
+
+static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
+ umode_t mode, dev_t rdev)
+{
+ struct super_block *sb = dir->i_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ struct inode *inode;
+ int err = 0;
+
+ if (!new_valid_dev(rdev))
+ return -EINVAL;
+
+ f2fs_balance_fs(sbi);
+
+ inode = f2fs_new_inode(dir, mode);
+ if (IS_ERR(inode))
+ return PTR_ERR(inode);
+
+ init_special_inode(inode, inode->i_mode, rdev);
+ inode->i_op = &f2fs_special_inode_operations;
+
+ err = f2fs_add_link(dentry, inode);
+ if (err)
+ goto out;
+
+ alloc_nid_done(sbi, inode->i_ino);
+ d_instantiate(dentry, inode);
+ unlock_new_inode(inode);
+ return 0;
+out:
+ clear_nlink(inode);
+ unlock_new_inode(inode);
+ iput(inode);
+ alloc_nid_failed(sbi, inode->i_ino);
+ return err;
+}
+
+static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
+ struct inode *new_dir, struct dentry *new_dentry)
+{
+ struct super_block *sb = old_dir->i_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ struct inode *old_inode = old_dentry->d_inode;
+ struct inode *new_inode = new_dentry->d_inode;
+ struct page *old_dir_page;
+ struct page *old_page;
+ struct f2fs_dir_entry *old_dir_entry = NULL;
+ struct f2fs_dir_entry *old_entry;
+ struct f2fs_dir_entry *new_entry;
+ int err = -ENOENT;
+
+ f2fs_balance_fs(sbi);
+
+ old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
+ if (!old_entry)
+ goto out;
+
+ if (S_ISDIR(old_inode->i_mode)) {
+ err = -EIO;
+ old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
+ if (!old_dir_entry)
+ goto out_old;
+ }
+
+ mutex_lock_op(sbi, RENAME);
+
+ if (new_inode) {
+ struct page *new_page;
+
+ err = -ENOTEMPTY;
+ if (old_dir_entry && !f2fs_empty_dir(new_inode))
+ goto out_dir;
+
+ err = -ENOENT;
+ new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
+ &new_page);
+ if (!new_entry)
+ goto out_dir;
+
+ f2fs_set_link(new_dir, new_entry, new_page, old_inode);
+
+ new_inode->i_ctime = CURRENT_TIME;
+ if (old_dir_entry)
+ drop_nlink(new_inode);
+ drop_nlink(new_inode);
+ if (!new_inode->i_nlink)
+ add_orphan_inode(sbi, new_inode->i_ino);
+ f2fs_write_inode(new_inode, NULL);
+ } else {
+ err = f2fs_add_link(new_dentry, old_inode);
+ if (err)
+ goto out_dir;
+
+ if (old_dir_entry) {
+ inc_nlink(new_dir);
+ f2fs_write_inode(new_dir, NULL);
+ }
+ }
+
+ old_inode->i_ctime = CURRENT_TIME;
+ set_inode_flag(F2FS_I(old_inode), FI_NEED_CP);
+ mark_inode_dirty(old_inode);
+
+ f2fs_delete_entry(old_entry, old_page, NULL);
+
+ if (old_dir_entry) {
+ if (old_dir != new_dir) {
+ f2fs_set_link(old_inode, old_dir_entry,
+ old_dir_page, new_dir);
+ } else {
+ kunmap(old_dir_page);
+ f2fs_put_page(old_dir_page, 0);
+ }
+ drop_nlink(old_dir);
+ f2fs_write_inode(old_dir, NULL);
+ }
+
+ mutex_unlock_op(sbi, RENAME);
+ return 0;
+
+out_dir:
+ if (old_dir_entry) {
+ kunmap(old_dir_page);
+ f2fs_put_page(old_dir_page, 0);
+ }
+ mutex_unlock_op(sbi, RENAME);
+out_old:
+ kunmap(old_page);
+ f2fs_put_page(old_page, 0);
+out:
+ return err;
+}
+
+const struct inode_operations f2fs_dir_inode_operations = {
+ .create = f2fs_create,
+ .lookup = f2fs_lookup,
+ .link = f2fs_link,
+ .unlink = f2fs_unlink,
+ .symlink = f2fs_symlink,
+ .mkdir = f2fs_mkdir,
+ .rmdir = f2fs_rmdir,
+ .mknod = f2fs_mknod,
+ .rename = f2fs_rename,
+ .setattr = f2fs_setattr,
+ .get_acl = f2fs_get_acl,
+#ifdef CONFIG_F2FS_FS_XATTR
+ .setxattr = generic_setxattr,
+ .getxattr = generic_getxattr,
+ .listxattr = f2fs_listxattr,
+ .removexattr = generic_removexattr,
+#endif
+};
+
+const struct inode_operations f2fs_symlink_inode_operations = {
+ .readlink = generic_readlink,
+ .follow_link = page_follow_link_light,
+ .put_link = page_put_link,
+ .setattr = f2fs_setattr,
+#ifdef CONFIG_F2FS_FS_XATTR
+ .setxattr = generic_setxattr,
+ .getxattr = generic_getxattr,
+ .listxattr = f2fs_listxattr,
+ .removexattr = generic_removexattr,
+#endif
+};
+
+const struct inode_operations f2fs_special_inode_operations = {
+ .setattr = f2fs_setattr,
+ .get_acl = f2fs_get_acl,
+#ifdef CONFIG_F2FS_FS_XATTR
+ .setxattr = generic_setxattr,
+ .getxattr = generic_getxattr,
+ .listxattr = f2fs_listxattr,
+ .removexattr = generic_removexattr,
+#endif
+};
diff --git a/fs/f2fs/node.c b/fs/f2fs/node.c
new file mode 100644
index 000000000000..e275218904ed
--- /dev/null
+++ b/fs/f2fs/node.c
@@ -0,0 +1,1756 @@
+/*
+ * fs/f2fs/node.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/mpage.h>
+#include <linux/backing-dev.h>
+#include <linux/blkdev.h>
+#include <linux/pagevec.h>
+#include <linux/swap.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+
+static struct kmem_cache *nat_entry_slab;
+static struct kmem_cache *free_nid_slab;
+
+static void clear_node_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page->mapping;
+ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
+ unsigned int long flags;
+
+ if (PageDirty(page)) {
+ spin_lock_irqsave(&mapping->tree_lock, flags);
+ radix_tree_tag_clear(&mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_DIRTY);
+ spin_unlock_irqrestore(&mapping->tree_lock, flags);
+
+ clear_page_dirty_for_io(page);
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ }
+ ClearPageUptodate(page);
+}
+
+static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ pgoff_t index = current_nat_addr(sbi, nid);
+ return get_meta_page(sbi, index);
+}
+
+static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct page *src_page;
+ struct page *dst_page;
+ pgoff_t src_off;
+ pgoff_t dst_off;
+ void *src_addr;
+ void *dst_addr;
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ src_off = current_nat_addr(sbi, nid);
+ dst_off = next_nat_addr(sbi, src_off);
+
+ /* get current nat block page with lock */
+ src_page = get_meta_page(sbi, src_off);
+
+ /* Dirty src_page means that it is already the new target NAT page. */
+ if (PageDirty(src_page))
+ return src_page;
+
+ dst_page = grab_meta_page(sbi, dst_off);
+
+ src_addr = page_address(src_page);
+ dst_addr = page_address(dst_page);
+ memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
+ set_page_dirty(dst_page);
+ f2fs_put_page(src_page, 1);
+
+ set_to_next_nat(nm_i, nid);
+
+ return dst_page;
+}
+
+/*
+ * Readahead NAT pages
+ */
+static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
+{
+ struct address_space *mapping = sbi->meta_inode->i_mapping;
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct page *page;
+ pgoff_t index;
+ int i;
+
+ for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
+ if (nid >= nm_i->max_nid)
+ nid = 0;
+ index = current_nat_addr(sbi, nid);
+
+ page = grab_cache_page(mapping, index);
+ if (!page)
+ continue;
+ if (f2fs_readpage(sbi, page, index, READ)) {
+ f2fs_put_page(page, 1);
+ continue;
+ }
+ f2fs_put_page(page, 0);
+ }
+}
+
+static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
+{
+ return radix_tree_lookup(&nm_i->nat_root, n);
+}
+
+static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
+ nid_t start, unsigned int nr, struct nat_entry **ep)
+{
+ return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
+}
+
+static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
+{
+ list_del(&e->list);
+ radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
+ nm_i->nat_cnt--;
+ kmem_cache_free(nat_entry_slab, e);
+}
+
+int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+ int is_cp = 1;
+
+ read_lock(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (e && !e->checkpointed)
+ is_cp = 0;
+ read_unlock(&nm_i->nat_tree_lock);
+ return is_cp;
+}
+
+static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
+{
+ struct nat_entry *new;
+
+ new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
+ if (!new)
+ return NULL;
+ if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
+ kmem_cache_free(nat_entry_slab, new);
+ return NULL;
+ }
+ memset(new, 0, sizeof(struct nat_entry));
+ nat_set_nid(new, nid);
+ list_add_tail(&new->list, &nm_i->nat_entries);
+ nm_i->nat_cnt++;
+ return new;
+}
+
+static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
+ struct f2fs_nat_entry *ne)
+{
+ struct nat_entry *e;
+retry:
+ write_lock(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (!e) {
+ e = grab_nat_entry(nm_i, nid);
+ if (!e) {
+ write_unlock(&nm_i->nat_tree_lock);
+ goto retry;
+ }
+ nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
+ nat_set_ino(e, le32_to_cpu(ne->ino));
+ nat_set_version(e, ne->version);
+ e->checkpointed = true;
+ }
+ write_unlock(&nm_i->nat_tree_lock);
+}
+
+static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
+ block_t new_blkaddr)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct nat_entry *e;
+retry:
+ write_lock(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, ni->nid);
+ if (!e) {
+ e = grab_nat_entry(nm_i, ni->nid);
+ if (!e) {
+ write_unlock(&nm_i->nat_tree_lock);
+ goto retry;
+ }
+ e->ni = *ni;
+ e->checkpointed = true;
+ BUG_ON(ni->blk_addr == NEW_ADDR);
+ } else if (new_blkaddr == NEW_ADDR) {
+ /*
+ * when nid is reallocated,
+ * previous nat entry can be remained in nat cache.
+ * So, reinitialize it with new information.
+ */
+ e->ni = *ni;
+ BUG_ON(ni->blk_addr != NULL_ADDR);
+ }
+
+ if (new_blkaddr == NEW_ADDR)
+ e->checkpointed = false;
+
+ /* sanity check */
+ BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
+ BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
+ new_blkaddr == NULL_ADDR);
+ BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
+ new_blkaddr == NEW_ADDR);
+ BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
+ nat_get_blkaddr(e) != NULL_ADDR &&
+ new_blkaddr == NEW_ADDR);
+
+ /* increament version no as node is removed */
+ if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
+ unsigned char version = nat_get_version(e);
+ nat_set_version(e, inc_node_version(version));
+ }
+
+ /* change address */
+ nat_set_blkaddr(e, new_blkaddr);
+ __set_nat_cache_dirty(nm_i, e);
+ write_unlock(&nm_i->nat_tree_lock);
+}
+
+static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
+ return 0;
+
+ write_lock(&nm_i->nat_tree_lock);
+ while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
+ struct nat_entry *ne;
+ ne = list_first_entry(&nm_i->nat_entries,
+ struct nat_entry, list);
+ __del_from_nat_cache(nm_i, ne);
+ nr_shrink--;
+ }
+ write_unlock(&nm_i->nat_tree_lock);
+ return nr_shrink;
+}
+
+/*
+ * This function returns always success
+ */
+void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ nid_t start_nid = START_NID(nid);
+ struct f2fs_nat_block *nat_blk;
+ struct page *page = NULL;
+ struct f2fs_nat_entry ne;
+ struct nat_entry *e;
+ int i;
+
+ memset(&ne, 0, sizeof(struct f2fs_nat_entry));
+ ni->nid = nid;
+
+ /* Check nat cache */
+ read_lock(&nm_i->nat_tree_lock);
+ e = __lookup_nat_cache(nm_i, nid);
+ if (e) {
+ ni->ino = nat_get_ino(e);
+ ni->blk_addr = nat_get_blkaddr(e);
+ ni->version = nat_get_version(e);
+ }
+ read_unlock(&nm_i->nat_tree_lock);
+ if (e)
+ return;
+
+ /* Check current segment summary */
+ mutex_lock(&curseg->curseg_mutex);
+ i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
+ if (i >= 0) {
+ ne = nat_in_journal(sum, i);
+ node_info_from_raw_nat(ni, &ne);
+ }
+ mutex_unlock(&curseg->curseg_mutex);
+ if (i >= 0)
+ goto cache;
+
+ /* Fill node_info from nat page */
+ page = get_current_nat_page(sbi, start_nid);
+ nat_blk = (struct f2fs_nat_block *)page_address(page);
+ ne = nat_blk->entries[nid - start_nid];
+ node_info_from_raw_nat(ni, &ne);
+ f2fs_put_page(page, 1);
+cache:
+ /* cache nat entry */
+ cache_nat_entry(NM_I(sbi), nid, &ne);
+}
+
+/*
+ * The maximum depth is four.
+ * Offset[0] will have raw inode offset.
+ */
+static int get_node_path(long block, int offset[4], unsigned int noffset[4])
+{
+ const long direct_index = ADDRS_PER_INODE;
+ const long direct_blks = ADDRS_PER_BLOCK;
+ const long dptrs_per_blk = NIDS_PER_BLOCK;
+ const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
+ const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
+ int n = 0;
+ int level = 0;
+
+ noffset[0] = 0;
+
+ if (block < direct_index) {
+ offset[n++] = block;
+ level = 0;
+ goto got;
+ }
+ block -= direct_index;
+ if (block < direct_blks) {
+ offset[n++] = NODE_DIR1_BLOCK;
+ noffset[n] = 1;
+ offset[n++] = block;
+ level = 1;
+ goto got;
+ }
+ block -= direct_blks;
+ if (block < direct_blks) {
+ offset[n++] = NODE_DIR2_BLOCK;
+ noffset[n] = 2;
+ offset[n++] = block;
+ level = 1;
+ goto got;
+ }
+ block -= direct_blks;
+ if (block < indirect_blks) {
+ offset[n++] = NODE_IND1_BLOCK;
+ noffset[n] = 3;
+ offset[n++] = block / direct_blks;
+ noffset[n] = 4 + offset[n - 1];
+ offset[n++] = block % direct_blks;
+ level = 2;
+ goto got;
+ }
+ block -= indirect_blks;
+ if (block < indirect_blks) {
+ offset[n++] = NODE_IND2_BLOCK;
+ noffset[n] = 4 + dptrs_per_blk;
+ offset[n++] = block / direct_blks;
+ noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
+ offset[n++] = block % direct_blks;
+ level = 2;
+ goto got;
+ }
+ block -= indirect_blks;
+ if (block < dindirect_blks) {
+ offset[n++] = NODE_DIND_BLOCK;
+ noffset[n] = 5 + (dptrs_per_blk * 2);
+ offset[n++] = block / indirect_blks;
+ noffset[n] = 6 + (dptrs_per_blk * 2) +
+ offset[n - 1] * (dptrs_per_blk + 1);
+ offset[n++] = (block / direct_blks) % dptrs_per_blk;
+ noffset[n] = 7 + (dptrs_per_blk * 2) +
+ offset[n - 2] * (dptrs_per_blk + 1) +
+ offset[n - 1];
+ offset[n++] = block % direct_blks;
+ level = 3;
+ goto got;
+ } else {
+ BUG();
+ }
+got:
+ return level;
+}
+
+/*
+ * Caller should call f2fs_put_dnode(dn).
+ */
+int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+ struct page *npage[4];
+ struct page *parent;
+ int offset[4];
+ unsigned int noffset[4];
+ nid_t nids[4];
+ int level, i;
+ int err = 0;
+
+ level = get_node_path(index, offset, noffset);
+
+ nids[0] = dn->inode->i_ino;
+ npage[0] = get_node_page(sbi, nids[0]);
+ if (IS_ERR(npage[0]))
+ return PTR_ERR(npage[0]);
+
+ parent = npage[0];
+ nids[1] = get_nid(parent, offset[0], true);
+ dn->inode_page = npage[0];
+ dn->inode_page_locked = true;
+
+ /* get indirect or direct nodes */
+ for (i = 1; i <= level; i++) {
+ bool done = false;
+
+ if (!nids[i] && !ro) {
+ mutex_lock_op(sbi, NODE_NEW);
+
+ /* alloc new node */
+ if (!alloc_nid(sbi, &(nids[i]))) {
+ mutex_unlock_op(sbi, NODE_NEW);
+ err = -ENOSPC;
+ goto release_pages;
+ }
+
+ dn->nid = nids[i];
+ npage[i] = new_node_page(dn, noffset[i]);
+ if (IS_ERR(npage[i])) {
+ alloc_nid_failed(sbi, nids[i]);
+ mutex_unlock_op(sbi, NODE_NEW);
+ err = PTR_ERR(npage[i]);
+ goto release_pages;
+ }
+
+ set_nid(parent, offset[i - 1], nids[i], i == 1);
+ alloc_nid_done(sbi, nids[i]);
+ mutex_unlock_op(sbi, NODE_NEW);
+ done = true;
+ } else if (ro && i == level && level > 1) {
+ npage[i] = get_node_page_ra(parent, offset[i - 1]);
+ if (IS_ERR(npage[i])) {
+ err = PTR_ERR(npage[i]);
+ goto release_pages;
+ }
+ done = true;
+ }
+ if (i == 1) {
+ dn->inode_page_locked = false;
+ unlock_page(parent);
+ } else {
+ f2fs_put_page(parent, 1);
+ }
+
+ if (!done) {
+ npage[i] = get_node_page(sbi, nids[i]);
+ if (IS_ERR(npage[i])) {
+ err = PTR_ERR(npage[i]);
+ f2fs_put_page(npage[0], 0);
+ goto release_out;
+ }
+ }
+ if (i < level) {
+ parent = npage[i];
+ nids[i + 1] = get_nid(parent, offset[i], false);
+ }
+ }
+ dn->nid = nids[level];
+ dn->ofs_in_node = offset[level];
+ dn->node_page = npage[level];
+ dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
+ return 0;
+
+release_pages:
+ f2fs_put_page(parent, 1);
+ if (i > 1)
+ f2fs_put_page(npage[0], 0);
+release_out:
+ dn->inode_page = NULL;
+ dn->node_page = NULL;
+ return err;
+}
+
+static void truncate_node(struct dnode_of_data *dn)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+ struct node_info ni;
+
+ get_node_info(sbi, dn->nid, &ni);
+ if (dn->inode->i_blocks == 0) {
+ BUG_ON(ni.blk_addr != NULL_ADDR);
+ goto invalidate;
+ }
+ BUG_ON(ni.blk_addr == NULL_ADDR);
+
+ /* Deallocate node address */
+ invalidate_blocks(sbi, ni.blk_addr);
+ dec_valid_node_count(sbi, dn->inode, 1);
+ set_node_addr(sbi, &ni, NULL_ADDR);
+
+ if (dn->nid == dn->inode->i_ino) {
+ remove_orphan_inode(sbi, dn->nid);
+ dec_valid_inode_count(sbi);
+ } else {
+ sync_inode_page(dn);
+ }
+invalidate:
+ clear_node_page_dirty(dn->node_page);
+ F2FS_SET_SB_DIRT(sbi);
+
+ f2fs_put_page(dn->node_page, 1);
+ dn->node_page = NULL;
+}
+
+static int truncate_dnode(struct dnode_of_data *dn)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+ struct page *page;
+
+ if (dn->nid == 0)
+ return 1;
+
+ /* get direct node */
+ page = get_node_page(sbi, dn->nid);
+ if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
+ return 1;
+ else if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ /* Make dnode_of_data for parameter */
+ dn->node_page = page;
+ dn->ofs_in_node = 0;
+ truncate_data_blocks(dn);
+ truncate_node(dn);
+ return 1;
+}
+
+static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
+ int ofs, int depth)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+ struct dnode_of_data rdn = *dn;
+ struct page *page;
+ struct f2fs_node *rn;
+ nid_t child_nid;
+ unsigned int child_nofs;
+ int freed = 0;
+ int i, ret;
+
+ if (dn->nid == 0)
+ return NIDS_PER_BLOCK + 1;
+
+ page = get_node_page(sbi, dn->nid);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ rn = (struct f2fs_node *)page_address(page);
+ if (depth < 3) {
+ for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
+ child_nid = le32_to_cpu(rn->in.nid[i]);
+ if (child_nid == 0)
+ continue;
+ rdn.nid = child_nid;
+ ret = truncate_dnode(&rdn);
+ if (ret < 0)
+ goto out_err;
+ set_nid(page, i, 0, false);
+ }
+ } else {
+ child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
+ for (i = ofs; i < NIDS_PER_BLOCK; i++) {
+ child_nid = le32_to_cpu(rn->in.nid[i]);
+ if (child_nid == 0) {
+ child_nofs += NIDS_PER_BLOCK + 1;
+ continue;
+ }
+ rdn.nid = child_nid;
+ ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
+ if (ret == (NIDS_PER_BLOCK + 1)) {
+ set_nid(page, i, 0, false);
+ child_nofs += ret;
+ } else if (ret < 0 && ret != -ENOENT) {
+ goto out_err;
+ }
+ }
+ freed = child_nofs;
+ }
+
+ if (!ofs) {
+ /* remove current indirect node */
+ dn->node_page = page;
+ truncate_node(dn);
+ freed++;
+ } else {
+ f2fs_put_page(page, 1);
+ }
+ return freed;
+
+out_err:
+ f2fs_put_page(page, 1);
+ return ret;
+}
+
+static int truncate_partial_nodes(struct dnode_of_data *dn,
+ struct f2fs_inode *ri, int *offset, int depth)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+ struct page *pages[2];
+ nid_t nid[3];
+ nid_t child_nid;
+ int err = 0;
+ int i;
+ int idx = depth - 2;
+
+ nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
+ if (!nid[0])
+ return 0;
+
+ /* get indirect nodes in the path */
+ for (i = 0; i < depth - 1; i++) {
+ /* refernece count'll be increased */
+ pages[i] = get_node_page(sbi, nid[i]);
+ if (IS_ERR(pages[i])) {
+ depth = i + 1;
+ err = PTR_ERR(pages[i]);
+ goto fail;
+ }
+ nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
+ }
+
+ /* free direct nodes linked to a partial indirect node */
+ for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
+ child_nid = get_nid(pages[idx], i, false);
+ if (!child_nid)
+ continue;
+ dn->nid = child_nid;
+ err = truncate_dnode(dn);
+ if (err < 0)
+ goto fail;
+ set_nid(pages[idx], i, 0, false);
+ }
+
+ if (offset[depth - 1] == 0) {
+ dn->node_page = pages[idx];
+ dn->nid = nid[idx];
+ truncate_node(dn);
+ } else {
+ f2fs_put_page(pages[idx], 1);
+ }
+ offset[idx]++;
+ offset[depth - 1] = 0;
+fail:
+ for (i = depth - 3; i >= 0; i--)
+ f2fs_put_page(pages[i], 1);
+ return err;
+}
+
+/*
+ * All the block addresses of data and nodes should be nullified.
+ */
+int truncate_inode_blocks(struct inode *inode, pgoff_t from)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ int err = 0, cont = 1;
+ int level, offset[4], noffset[4];
+ unsigned int nofs = 0;
+ struct f2fs_node *rn;
+ struct dnode_of_data dn;
+ struct page *page;
+
+ level = get_node_path(from, offset, noffset);
+
+ page = get_node_page(sbi, inode->i_ino);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+
+ set_new_dnode(&dn, inode, page, NULL, 0);
+ unlock_page(page);
+
+ rn = page_address(page);
+ switch (level) {
+ case 0:
+ case 1:
+ nofs = noffset[1];
+ break;
+ case 2:
+ nofs = noffset[1];
+ if (!offset[level - 1])
+ goto skip_partial;
+ err = truncate_partial_nodes(&dn, &rn->i, offset, level);
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ nofs += 1 + NIDS_PER_BLOCK;
+ break;
+ case 3:
+ nofs = 5 + 2 * NIDS_PER_BLOCK;
+ if (!offset[level - 1])
+ goto skip_partial;
+ err = truncate_partial_nodes(&dn, &rn->i, offset, level);
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ break;
+ default:
+ BUG();
+ }
+
+skip_partial:
+ while (cont) {
+ dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
+ switch (offset[0]) {
+ case NODE_DIR1_BLOCK:
+ case NODE_DIR2_BLOCK:
+ err = truncate_dnode(&dn);
+ break;
+
+ case NODE_IND1_BLOCK:
+ case NODE_IND2_BLOCK:
+ err = truncate_nodes(&dn, nofs, offset[1], 2);
+ break;
+
+ case NODE_DIND_BLOCK:
+ err = truncate_nodes(&dn, nofs, offset[1], 3);
+ cont = 0;
+ break;
+
+ default:
+ BUG();
+ }
+ if (err < 0 && err != -ENOENT)
+ goto fail;
+ if (offset[1] == 0 &&
+ rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
+ lock_page(page);
+ wait_on_page_writeback(page);
+ rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
+ set_page_dirty(page);
+ unlock_page(page);
+ }
+ offset[1] = 0;
+ offset[0]++;
+ nofs += err;
+ }
+fail:
+ f2fs_put_page(page, 0);
+ return err > 0 ? 0 : err;
+}
+
+int remove_inode_page(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct page *page;
+ nid_t ino = inode->i_ino;
+ struct dnode_of_data dn;
+
+ mutex_lock_op(sbi, NODE_TRUNC);
+ page = get_node_page(sbi, ino);
+ if (IS_ERR(page)) {
+ mutex_unlock_op(sbi, NODE_TRUNC);
+ return PTR_ERR(page);
+ }
+
+ if (F2FS_I(inode)->i_xattr_nid) {
+ nid_t nid = F2FS_I(inode)->i_xattr_nid;
+ struct page *npage = get_node_page(sbi, nid);
+
+ if (IS_ERR(npage)) {
+ mutex_unlock_op(sbi, NODE_TRUNC);
+ return PTR_ERR(npage);
+ }
+
+ F2FS_I(inode)->i_xattr_nid = 0;
+ set_new_dnode(&dn, inode, page, npage, nid);
+ dn.inode_page_locked = 1;
+ truncate_node(&dn);
+ }
+
+ /* 0 is possible, after f2fs_new_inode() is failed */
+ BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
+ set_new_dnode(&dn, inode, page, page, ino);
+ truncate_node(&dn);
+
+ mutex_unlock_op(sbi, NODE_TRUNC);
+ return 0;
+}
+
+int new_inode_page(struct inode *inode, const struct qstr *name)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct page *page;
+ struct dnode_of_data dn;
+
+ /* allocate inode page for new inode */
+ set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
+ mutex_lock_op(sbi, NODE_NEW);
+ page = new_node_page(&dn, 0);
+ init_dent_inode(name, page);
+ mutex_unlock_op(sbi, NODE_NEW);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+ f2fs_put_page(page, 1);
+ return 0;
+}
+
+struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
+ struct address_space *mapping = sbi->node_inode->i_mapping;
+ struct node_info old_ni, new_ni;
+ struct page *page;
+ int err;
+
+ if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
+ return ERR_PTR(-EPERM);
+
+ page = grab_cache_page(mapping, dn->nid);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ get_node_info(sbi, dn->nid, &old_ni);
+
+ SetPageUptodate(page);
+ fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
+
+ /* Reinitialize old_ni with new node page */
+ BUG_ON(old_ni.blk_addr != NULL_ADDR);
+ new_ni = old_ni;
+ new_ni.ino = dn->inode->i_ino;
+
+ if (!inc_valid_node_count(sbi, dn->inode, 1)) {
+ err = -ENOSPC;
+ goto fail;
+ }
+ set_node_addr(sbi, &new_ni, NEW_ADDR);
+ set_cold_node(dn->inode, page);
+
+ dn->node_page = page;
+ sync_inode_page(dn);
+ set_page_dirty(page);
+ if (ofs == 0)
+ inc_valid_inode_count(sbi);
+
+ return page;
+
+fail:
+ clear_node_page_dirty(page);
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+}
+
+static int read_node_page(struct page *page, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
+ struct node_info ni;
+
+ get_node_info(sbi, page->index, &ni);
+
+ if (ni.blk_addr == NULL_ADDR)
+ return -ENOENT;
+ return f2fs_readpage(sbi, page, ni.blk_addr, type);
+}
+
+/*
+ * Readahead a node page
+ */
+void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct address_space *mapping = sbi->node_inode->i_mapping;
+ struct page *apage;
+
+ apage = find_get_page(mapping, nid);
+ if (apage && PageUptodate(apage))
+ goto release_out;
+ f2fs_put_page(apage, 0);
+
+ apage = grab_cache_page(mapping, nid);
+ if (!apage)
+ return;
+
+ if (read_node_page(apage, READA))
+ unlock_page(apage);
+
+release_out:
+ f2fs_put_page(apage, 0);
+ return;
+}
+
+struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
+{
+ int err;
+ struct page *page;
+ struct address_space *mapping = sbi->node_inode->i_mapping;
+
+ page = grab_cache_page(mapping, nid);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ err = read_node_page(page, READ_SYNC);
+ if (err) {
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+ }
+
+ BUG_ON(nid != nid_of_node(page));
+ mark_page_accessed(page);
+ return page;
+}
+
+/*
+ * Return a locked page for the desired node page.
+ * And, readahead MAX_RA_NODE number of node pages.
+ */
+struct page *get_node_page_ra(struct page *parent, int start)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
+ struct address_space *mapping = sbi->node_inode->i_mapping;
+ int i, end;
+ int err = 0;
+ nid_t nid;
+ struct page *page;
+
+ /* First, try getting the desired direct node. */
+ nid = get_nid(parent, start, false);
+ if (!nid)
+ return ERR_PTR(-ENOENT);
+
+ page = find_get_page(mapping, nid);
+ if (page && PageUptodate(page))
+ goto page_hit;
+ f2fs_put_page(page, 0);
+
+repeat:
+ page = grab_cache_page(mapping, nid);
+ if (!page)
+ return ERR_PTR(-ENOMEM);
+
+ err = read_node_page(page, READA);
+ if (err) {
+ f2fs_put_page(page, 1);
+ return ERR_PTR(err);
+ }
+
+ /* Then, try readahead for siblings of the desired node */
+ end = start + MAX_RA_NODE;
+ end = min(end, NIDS_PER_BLOCK);
+ for (i = start + 1; i < end; i++) {
+ nid = get_nid(parent, i, false);
+ if (!nid)
+ continue;
+ ra_node_page(sbi, nid);
+ }
+
+page_hit:
+ lock_page(page);
+ if (PageError(page)) {
+ f2fs_put_page(page, 1);
+ return ERR_PTR(-EIO);
+ }
+
+ /* Has the page been truncated? */
+ if (page->mapping != mapping) {
+ f2fs_put_page(page, 1);
+ goto repeat;
+ }
+ return page;
+}
+
+void sync_inode_page(struct dnode_of_data *dn)
+{
+ if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
+ update_inode(dn->inode, dn->node_page);
+ } else if (dn->inode_page) {
+ if (!dn->inode_page_locked)
+ lock_page(dn->inode_page);
+ update_inode(dn->inode, dn->inode_page);
+ if (!dn->inode_page_locked)
+ unlock_page(dn->inode_page);
+ } else {
+ f2fs_write_inode(dn->inode, NULL);
+ }
+}
+
+int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
+ struct writeback_control *wbc)
+{
+ struct address_space *mapping = sbi->node_inode->i_mapping;
+ pgoff_t index, end;
+ struct pagevec pvec;
+ int step = ino ? 2 : 0;
+ int nwritten = 0, wrote = 0;
+
+ pagevec_init(&pvec, 0);
+
+next_step:
+ index = 0;
+ end = LONG_MAX;
+
+ while (index <= end) {
+ int i, nr_pages;
+ nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
+ PAGECACHE_TAG_DIRTY,
+ min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
+ if (nr_pages == 0)
+ break;
+
+ for (i = 0; i < nr_pages; i++) {
+ struct page *page = pvec.pages[i];
+
+ /*
+ * flushing sequence with step:
+ * 0. indirect nodes
+ * 1. dentry dnodes
+ * 2. file dnodes
+ */
+ if (step == 0 && IS_DNODE(page))
+ continue;
+ if (step == 1 && (!IS_DNODE(page) ||
+ is_cold_node(page)))
+ continue;
+ if (step == 2 && (!IS_DNODE(page) ||
+ !is_cold_node(page)))
+ continue;
+
+ /*
+ * If an fsync mode,
+ * we should not skip writing node pages.
+ */
+ if (ino && ino_of_node(page) == ino)
+ lock_page(page);
+ else if (!trylock_page(page))
+ continue;
+
+ if (unlikely(page->mapping != mapping)) {
+continue_unlock:
+ unlock_page(page);
+ continue;
+ }
+ if (ino && ino_of_node(page) != ino)
+ goto continue_unlock;
+
+ if (!PageDirty(page)) {
+ /* someone wrote it for us */
+ goto continue_unlock;
+ }
+
+ if (!clear_page_dirty_for_io(page))
+ goto continue_unlock;
+
+ /* called by fsync() */
+ if (ino && IS_DNODE(page)) {
+ int mark = !is_checkpointed_node(sbi, ino);
+ set_fsync_mark(page, 1);
+ if (IS_INODE(page))
+ set_dentry_mark(page, mark);
+ nwritten++;
+ } else {
+ set_fsync_mark(page, 0);
+ set_dentry_mark(page, 0);
+ }
+ mapping->a_ops->writepage(page, wbc);
+ wrote++;
+
+ if (--wbc->nr_to_write == 0)
+ break;
+ }
+ pagevec_release(&pvec);
+ cond_resched();
+
+ if (wbc->nr_to_write == 0) {
+ step = 2;
+ break;
+ }
+ }
+
+ if (step < 2) {
+ step++;
+ goto next_step;
+ }
+
+ if (wrote)
+ f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
+
+ return nwritten;
+}
+
+static int f2fs_write_node_page(struct page *page,
+ struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
+ nid_t nid;
+ block_t new_addr;
+ struct node_info ni;
+
+ if (wbc->for_reclaim) {
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ wbc->pages_skipped++;
+ set_page_dirty(page);
+ return AOP_WRITEPAGE_ACTIVATE;
+ }
+
+ wait_on_page_writeback(page);
+
+ mutex_lock_op(sbi, NODE_WRITE);
+
+ /* get old block addr of this node page */
+ nid = nid_of_node(page);
+ BUG_ON(page->index != nid);
+
+ get_node_info(sbi, nid, &ni);
+
+ /* This page is already truncated */
+ if (ni.blk_addr == NULL_ADDR)
+ return 0;
+
+ set_page_writeback(page);
+
+ /* insert node offset */
+ write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
+ set_node_addr(sbi, &ni, new_addr);
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+
+ mutex_unlock_op(sbi, NODE_WRITE);
+ unlock_page(page);
+ return 0;
+}
+
+/*
+ * It is very important to gather dirty pages and write at once, so that we can
+ * submit a big bio without interfering other data writes.
+ * Be default, 512 pages (2MB), a segment size, is quite reasonable.
+ */
+#define COLLECT_DIRTY_NODES 512
+static int f2fs_write_node_pages(struct address_space *mapping,
+ struct writeback_control *wbc)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
+ struct block_device *bdev = sbi->sb->s_bdev;
+ long nr_to_write = wbc->nr_to_write;
+
+ /* First check balancing cached NAT entries */
+ if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
+ write_checkpoint(sbi, false);
+ return 0;
+ }
+
+ /* collect a number of dirty node pages and write together */
+ if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
+ return 0;
+
+ /* if mounting is failed, skip writing node pages */
+ wbc->nr_to_write = bio_get_nr_vecs(bdev);
+ sync_node_pages(sbi, 0, wbc);
+ wbc->nr_to_write = nr_to_write -
+ (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
+ return 0;
+}
+
+static int f2fs_set_node_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page->mapping;
+ struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
+
+ SetPageUptodate(page);
+ if (!PageDirty(page)) {
+ __set_page_dirty_nobuffers(page);
+ inc_page_count(sbi, F2FS_DIRTY_NODES);
+ SetPagePrivate(page);
+ return 1;
+ }
+ return 0;
+}
+
+static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
+{
+ struct inode *inode = page->mapping->host;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ if (PageDirty(page))
+ dec_page_count(sbi, F2FS_DIRTY_NODES);
+ ClearPagePrivate(page);
+}
+
+static int f2fs_release_node_page(struct page *page, gfp_t wait)
+{
+ ClearPagePrivate(page);
+ return 0;
+}
+
+/*
+ * Structure of the f2fs node operations
+ */
+const struct address_space_operations f2fs_node_aops = {
+ .writepage = f2fs_write_node_page,
+ .writepages = f2fs_write_node_pages,
+ .set_page_dirty = f2fs_set_node_page_dirty,
+ .invalidatepage = f2fs_invalidate_node_page,
+ .releasepage = f2fs_release_node_page,
+};
+
+static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
+{
+ struct list_head *this;
+ struct free_nid *i = NULL;
+ list_for_each(this, head) {
+ i = list_entry(this, struct free_nid, list);
+ if (i->nid == n)
+ break;
+ i = NULL;
+ }
+ return i;
+}
+
+static void __del_from_free_nid_list(struct free_nid *i)
+{
+ list_del(&i->list);
+ kmem_cache_free(free_nid_slab, i);
+}
+
+static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
+{
+ struct free_nid *i;
+
+ if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
+ return 0;
+retry:
+ i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
+ if (!i) {
+ cond_resched();
+ goto retry;
+ }
+ i->nid = nid;
+ i->state = NID_NEW;
+
+ spin_lock(&nm_i->free_nid_list_lock);
+ if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
+ spin_unlock(&nm_i->free_nid_list_lock);
+ kmem_cache_free(free_nid_slab, i);
+ return 0;
+ }
+ list_add_tail(&i->list, &nm_i->free_nid_list);
+ nm_i->fcnt++;
+ spin_unlock(&nm_i->free_nid_list_lock);
+ return 1;
+}
+
+static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
+{
+ struct free_nid *i;
+ spin_lock(&nm_i->free_nid_list_lock);
+ i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
+ if (i && i->state == NID_NEW) {
+ __del_from_free_nid_list(i);
+ nm_i->fcnt--;
+ }
+ spin_unlock(&nm_i->free_nid_list_lock);
+}
+
+static int scan_nat_page(struct f2fs_nm_info *nm_i,
+ struct page *nat_page, nid_t start_nid)
+{
+ struct f2fs_nat_block *nat_blk = page_address(nat_page);
+ block_t blk_addr;
+ int fcnt = 0;
+ int i;
+
+ /* 0 nid should not be used */
+ if (start_nid == 0)
+ ++start_nid;
+
+ i = start_nid % NAT_ENTRY_PER_BLOCK;
+
+ for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
+ blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
+ BUG_ON(blk_addr == NEW_ADDR);
+ if (blk_addr == NULL_ADDR)
+ fcnt += add_free_nid(nm_i, start_nid);
+ }
+ return fcnt;
+}
+
+static void build_free_nids(struct f2fs_sb_info *sbi)
+{
+ struct free_nid *fnid, *next_fnid;
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ nid_t nid = 0;
+ bool is_cycled = false;
+ int fcnt = 0;
+ int i;
+
+ nid = nm_i->next_scan_nid;
+ nm_i->init_scan_nid = nid;
+
+ ra_nat_pages(sbi, nid);
+
+ while (1) {
+ struct page *page = get_current_nat_page(sbi, nid);
+
+ fcnt += scan_nat_page(nm_i, page, nid);
+ f2fs_put_page(page, 1);
+
+ nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
+
+ if (nid >= nm_i->max_nid) {
+ nid = 0;
+ is_cycled = true;
+ }
+ if (fcnt > MAX_FREE_NIDS)
+ break;
+ if (is_cycled && nm_i->init_scan_nid <= nid)
+ break;
+ }
+
+ nm_i->next_scan_nid = nid;
+
+ /* find free nids from current sum_pages */
+ mutex_lock(&curseg->curseg_mutex);
+ for (i = 0; i < nats_in_cursum(sum); i++) {
+ block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
+ nid = le32_to_cpu(nid_in_journal(sum, i));
+ if (addr == NULL_ADDR)
+ add_free_nid(nm_i, nid);
+ else
+ remove_free_nid(nm_i, nid);
+ }
+ mutex_unlock(&curseg->curseg_mutex);
+
+ /* remove the free nids from current allocated nids */
+ list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
+ struct nat_entry *ne;
+
+ read_lock(&nm_i->nat_tree_lock);
+ ne = __lookup_nat_cache(nm_i, fnid->nid);
+ if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
+ remove_free_nid(nm_i, fnid->nid);
+ read_unlock(&nm_i->nat_tree_lock);
+ }
+}
+
+/*
+ * If this function returns success, caller can obtain a new nid
+ * from second parameter of this function.
+ * The returned nid could be used ino as well as nid when inode is created.
+ */
+bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i = NULL;
+ struct list_head *this;
+retry:
+ mutex_lock(&nm_i->build_lock);
+ if (!nm_i->fcnt) {
+ /* scan NAT in order to build free nid list */
+ build_free_nids(sbi);
+ if (!nm_i->fcnt) {
+ mutex_unlock(&nm_i->build_lock);
+ return false;
+ }
+ }
+ mutex_unlock(&nm_i->build_lock);
+
+ /*
+ * We check fcnt again since previous check is racy as
+ * we didn't hold free_nid_list_lock. So other thread
+ * could consume all of free nids.
+ */
+ spin_lock(&nm_i->free_nid_list_lock);
+ if (!nm_i->fcnt) {
+ spin_unlock(&nm_i->free_nid_list_lock);
+ goto retry;
+ }
+
+ BUG_ON(list_empty(&nm_i->free_nid_list));
+ list_for_each(this, &nm_i->free_nid_list) {
+ i = list_entry(this, struct free_nid, list);
+ if (i->state == NID_NEW)
+ break;
+ }
+
+ BUG_ON(i->state != NID_NEW);
+ *nid = i->nid;
+ i->state = NID_ALLOC;
+ nm_i->fcnt--;
+ spin_unlock(&nm_i->free_nid_list_lock);
+ return true;
+}
+
+/*
+ * alloc_nid() should be called prior to this function.
+ */
+void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i;
+
+ spin_lock(&nm_i->free_nid_list_lock);
+ i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
+ if (i) {
+ BUG_ON(i->state != NID_ALLOC);
+ __del_from_free_nid_list(i);
+ }
+ spin_unlock(&nm_i->free_nid_list_lock);
+}
+
+/*
+ * alloc_nid() should be called prior to this function.
+ */
+void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
+{
+ alloc_nid_done(sbi, nid);
+ add_free_nid(NM_I(sbi), nid);
+}
+
+void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
+ struct f2fs_summary *sum, struct node_info *ni,
+ block_t new_blkaddr)
+{
+ rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
+ set_node_addr(sbi, ni, new_blkaddr);
+ clear_node_page_dirty(page);
+}
+
+int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
+{
+ struct address_space *mapping = sbi->node_inode->i_mapping;
+ struct f2fs_node *src, *dst;
+ nid_t ino = ino_of_node(page);
+ struct node_info old_ni, new_ni;
+ struct page *ipage;
+
+ ipage = grab_cache_page(mapping, ino);
+ if (!ipage)
+ return -ENOMEM;
+
+ /* Should not use this inode from free nid list */
+ remove_free_nid(NM_I(sbi), ino);
+
+ get_node_info(sbi, ino, &old_ni);
+ SetPageUptodate(ipage);
+ fill_node_footer(ipage, ino, ino, 0, true);
+
+ src = (struct f2fs_node *)page_address(page);
+ dst = (struct f2fs_node *)page_address(ipage);
+
+ memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
+ dst->i.i_size = 0;
+ dst->i.i_blocks = cpu_to_le64(1);
+ dst->i.i_links = cpu_to_le32(1);
+ dst->i.i_xattr_nid = 0;
+
+ new_ni = old_ni;
+ new_ni.ino = ino;
+
+ set_node_addr(sbi, &new_ni, NEW_ADDR);
+ inc_valid_inode_count(sbi);
+
+ f2fs_put_page(ipage, 1);
+ return 0;
+}
+
+int restore_node_summary(struct f2fs_sb_info *sbi,
+ unsigned int segno, struct f2fs_summary_block *sum)
+{
+ struct f2fs_node *rn;
+ struct f2fs_summary *sum_entry;
+ struct page *page;
+ block_t addr;
+ int i, last_offset;
+
+ /* alloc temporal page for read node */
+ page = alloc_page(GFP_NOFS | __GFP_ZERO);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+ lock_page(page);
+
+ /* scan the node segment */
+ last_offset = sbi->blocks_per_seg;
+ addr = START_BLOCK(sbi, segno);
+ sum_entry = &sum->entries[0];
+
+ for (i = 0; i < last_offset; i++, sum_entry++) {
+ if (f2fs_readpage(sbi, page, addr, READ_SYNC))
+ goto out;
+
+ rn = (struct f2fs_node *)page_address(page);
+ sum_entry->nid = rn->footer.nid;
+ sum_entry->version = 0;
+ sum_entry->ofs_in_node = 0;
+ addr++;
+
+ /*
+ * In order to read next node page,
+ * we must clear PageUptodate flag.
+ */
+ ClearPageUptodate(page);
+ }
+out:
+ unlock_page(page);
+ __free_pages(page, 0);
+ return 0;
+}
+
+static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ int i;
+
+ mutex_lock(&curseg->curseg_mutex);
+
+ if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
+ mutex_unlock(&curseg->curseg_mutex);
+ return false;
+ }
+
+ for (i = 0; i < nats_in_cursum(sum); i++) {
+ struct nat_entry *ne;
+ struct f2fs_nat_entry raw_ne;
+ nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
+
+ raw_ne = nat_in_journal(sum, i);
+retry:
+ write_lock(&nm_i->nat_tree_lock);
+ ne = __lookup_nat_cache(nm_i, nid);
+ if (ne) {
+ __set_nat_cache_dirty(nm_i, ne);
+ write_unlock(&nm_i->nat_tree_lock);
+ continue;
+ }
+ ne = grab_nat_entry(nm_i, nid);
+ if (!ne) {
+ write_unlock(&nm_i->nat_tree_lock);
+ goto retry;
+ }
+ nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
+ nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
+ nat_set_version(ne, raw_ne.version);
+ __set_nat_cache_dirty(nm_i, ne);
+ write_unlock(&nm_i->nat_tree_lock);
+ }
+ update_nats_in_cursum(sum, -i);
+ mutex_unlock(&curseg->curseg_mutex);
+ return true;
+}
+
+/*
+ * This function is called during the checkpointing process.
+ */
+void flush_nat_entries(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ struct list_head *cur, *n;
+ struct page *page = NULL;
+ struct f2fs_nat_block *nat_blk = NULL;
+ nid_t start_nid = 0, end_nid = 0;
+ bool flushed;
+
+ flushed = flush_nats_in_journal(sbi);
+
+ if (!flushed)
+ mutex_lock(&curseg->curseg_mutex);
+
+ /* 1) flush dirty nat caches */
+ list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
+ struct nat_entry *ne;
+ nid_t nid;
+ struct f2fs_nat_entry raw_ne;
+ int offset = -1;
+ block_t new_blkaddr;
+
+ ne = list_entry(cur, struct nat_entry, list);
+ nid = nat_get_nid(ne);
+
+ if (nat_get_blkaddr(ne) == NEW_ADDR)
+ continue;
+ if (flushed)
+ goto to_nat_page;
+
+ /* if there is room for nat enries in curseg->sumpage */
+ offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
+ if (offset >= 0) {
+ raw_ne = nat_in_journal(sum, offset);
+ goto flush_now;
+ }
+to_nat_page:
+ if (!page || (start_nid > nid || nid > end_nid)) {
+ if (page) {
+ f2fs_put_page(page, 1);
+ page = NULL;
+ }
+ start_nid = START_NID(nid);
+ end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
+
+ /*
+ * get nat block with dirty flag, increased reference
+ * count, mapped and lock
+ */
+ page = get_next_nat_page(sbi, start_nid);
+ nat_blk = page_address(page);
+ }
+
+ BUG_ON(!nat_blk);
+ raw_ne = nat_blk->entries[nid - start_nid];
+flush_now:
+ new_blkaddr = nat_get_blkaddr(ne);
+
+ raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
+ raw_ne.block_addr = cpu_to_le32(new_blkaddr);
+ raw_ne.version = nat_get_version(ne);
+
+ if (offset < 0) {
+ nat_blk->entries[nid - start_nid] = raw_ne;
+ } else {
+ nat_in_journal(sum, offset) = raw_ne;
+ nid_in_journal(sum, offset) = cpu_to_le32(nid);
+ }
+
+ if (nat_get_blkaddr(ne) == NULL_ADDR) {
+ write_lock(&nm_i->nat_tree_lock);
+ __del_from_nat_cache(nm_i, ne);
+ write_unlock(&nm_i->nat_tree_lock);
+
+ /* We can reuse this freed nid at this point */
+ add_free_nid(NM_I(sbi), nid);
+ } else {
+ write_lock(&nm_i->nat_tree_lock);
+ __clear_nat_cache_dirty(nm_i, ne);
+ ne->checkpointed = true;
+ write_unlock(&nm_i->nat_tree_lock);
+ }
+ }
+ if (!flushed)
+ mutex_unlock(&curseg->curseg_mutex);
+ f2fs_put_page(page, 1);
+
+ /* 2) shrink nat caches if necessary */
+ try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
+}
+
+static int init_node_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ unsigned char *version_bitmap;
+ unsigned int nat_segs, nat_blocks;
+
+ nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
+
+ /* segment_count_nat includes pair segment so divide to 2. */
+ nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
+ nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
+ nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
+ nm_i->fcnt = 0;
+ nm_i->nat_cnt = 0;
+
+ INIT_LIST_HEAD(&nm_i->free_nid_list);
+ INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
+ INIT_LIST_HEAD(&nm_i->nat_entries);
+ INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
+
+ mutex_init(&nm_i->build_lock);
+ spin_lock_init(&nm_i->free_nid_list_lock);
+ rwlock_init(&nm_i->nat_tree_lock);
+
+ nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
+ nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
+ nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
+
+ nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
+ if (!nm_i->nat_bitmap)
+ return -ENOMEM;
+ version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
+ if (!version_bitmap)
+ return -EFAULT;
+
+ /* copy version bitmap */
+ memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
+ return 0;
+}
+
+int build_node_manager(struct f2fs_sb_info *sbi)
+{
+ int err;
+
+ sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
+ if (!sbi->nm_info)
+ return -ENOMEM;
+
+ err = init_node_manager(sbi);
+ if (err)
+ return err;
+
+ build_free_nids(sbi);
+ return 0;
+}
+
+void destroy_node_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *i, *next_i;
+ struct nat_entry *natvec[NATVEC_SIZE];
+ nid_t nid = 0;
+ unsigned int found;
+
+ if (!nm_i)
+ return;
+
+ /* destroy free nid list */
+ spin_lock(&nm_i->free_nid_list_lock);
+ list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
+ BUG_ON(i->state == NID_ALLOC);
+ __del_from_free_nid_list(i);
+ nm_i->fcnt--;
+ }
+ BUG_ON(nm_i->fcnt);
+ spin_unlock(&nm_i->free_nid_list_lock);
+
+ /* destroy nat cache */
+ write_lock(&nm_i->nat_tree_lock);
+ while ((found = __gang_lookup_nat_cache(nm_i,
+ nid, NATVEC_SIZE, natvec))) {
+ unsigned idx;
+ for (idx = 0; idx < found; idx++) {
+ struct nat_entry *e = natvec[idx];
+ nid = nat_get_nid(e) + 1;
+ __del_from_nat_cache(nm_i, e);
+ }
+ }
+ BUG_ON(nm_i->nat_cnt);
+ write_unlock(&nm_i->nat_tree_lock);
+
+ kfree(nm_i->nat_bitmap);
+ sbi->nm_info = NULL;
+ kfree(nm_i);
+}
+
+int __init create_node_manager_caches(void)
+{
+ nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
+ sizeof(struct nat_entry), NULL);
+ if (!nat_entry_slab)
+ return -ENOMEM;
+
+ free_nid_slab = f2fs_kmem_cache_create("free_nid",
+ sizeof(struct free_nid), NULL);
+ if (!free_nid_slab) {
+ kmem_cache_destroy(nat_entry_slab);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+void destroy_node_manager_caches(void)
+{
+ kmem_cache_destroy(free_nid_slab);
+ kmem_cache_destroy(nat_entry_slab);
+}
diff --git a/fs/f2fs/node.h b/fs/f2fs/node.h
new file mode 100644
index 000000000000..afdb130f782e
--- /dev/null
+++ b/fs/f2fs/node.h
@@ -0,0 +1,353 @@
+/*
+ * fs/f2fs/node.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+/* start node id of a node block dedicated to the given node id */
+#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
+
+/* node block offset on the NAT area dedicated to the given start node id */
+#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
+
+/* # of pages to perform readahead before building free nids */
+#define FREE_NID_PAGES 4
+
+/* maximum # of free node ids to produce during build_free_nids */
+#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
+
+/* maximum readahead size for node during getting data blocks */
+#define MAX_RA_NODE 128
+
+/* maximum cached nat entries to manage memory footprint */
+#define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
+
+/* vector size for gang look-up from nat cache that consists of radix tree */
+#define NATVEC_SIZE 64
+
+/*
+ * For node information
+ */
+struct node_info {
+ nid_t nid; /* node id */
+ nid_t ino; /* inode number of the node's owner */
+ block_t blk_addr; /* block address of the node */
+ unsigned char version; /* version of the node */
+};
+
+struct nat_entry {
+ struct list_head list; /* for clean or dirty nat list */
+ bool checkpointed; /* whether it is checkpointed or not */
+ struct node_info ni; /* in-memory node information */
+};
+
+#define nat_get_nid(nat) (nat->ni.nid)
+#define nat_set_nid(nat, n) (nat->ni.nid = n)
+#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
+#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
+#define nat_get_ino(nat) (nat->ni.ino)
+#define nat_set_ino(nat, i) (nat->ni.ino = i)
+#define nat_get_version(nat) (nat->ni.version)
+#define nat_set_version(nat, v) (nat->ni.version = v)
+
+#define __set_nat_cache_dirty(nm_i, ne) \
+ list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
+#define __clear_nat_cache_dirty(nm_i, ne) \
+ list_move_tail(&ne->list, &nm_i->nat_entries);
+#define inc_node_version(version) (++version)
+
+static inline void node_info_from_raw_nat(struct node_info *ni,
+ struct f2fs_nat_entry *raw_ne)
+{
+ ni->ino = le32_to_cpu(raw_ne->ino);
+ ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
+ ni->version = raw_ne->version;
+}
+
+/*
+ * For free nid mangement
+ */
+enum nid_state {
+ NID_NEW, /* newly added to free nid list */
+ NID_ALLOC /* it is allocated */
+};
+
+struct free_nid {
+ struct list_head list; /* for free node id list */
+ nid_t nid; /* node id */
+ int state; /* in use or not: NID_NEW or NID_ALLOC */
+};
+
+static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ struct free_nid *fnid;
+
+ if (nm_i->fcnt <= 0)
+ return -1;
+ spin_lock(&nm_i->free_nid_list_lock);
+ fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
+ *nid = fnid->nid;
+ spin_unlock(&nm_i->free_nid_list_lock);
+ return 0;
+}
+
+/*
+ * inline functions
+ */
+static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
+}
+
+static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+ pgoff_t block_off;
+ pgoff_t block_addr;
+ int seg_off;
+
+ block_off = NAT_BLOCK_OFFSET(start);
+ seg_off = block_off >> sbi->log_blocks_per_seg;
+
+ block_addr = (pgoff_t)(nm_i->nat_blkaddr +
+ (seg_off << sbi->log_blocks_per_seg << 1) +
+ (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
+
+ if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
+ block_addr += sbi->blocks_per_seg;
+
+ return block_addr;
+}
+
+static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
+ pgoff_t block_addr)
+{
+ struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+ block_addr -= nm_i->nat_blkaddr;
+ if ((block_addr >> sbi->log_blocks_per_seg) % 2)
+ block_addr -= sbi->blocks_per_seg;
+ else
+ block_addr += sbi->blocks_per_seg;
+
+ return block_addr + nm_i->nat_blkaddr;
+}
+
+static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
+{
+ unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
+
+ if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
+ f2fs_clear_bit(block_off, nm_i->nat_bitmap);
+ else
+ f2fs_set_bit(block_off, nm_i->nat_bitmap);
+}
+
+static inline void fill_node_footer(struct page *page, nid_t nid,
+ nid_t ino, unsigned int ofs, bool reset)
+{
+ void *kaddr = page_address(page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ if (reset)
+ memset(rn, 0, sizeof(*rn));
+ rn->footer.nid = cpu_to_le32(nid);
+ rn->footer.ino = cpu_to_le32(ino);
+ rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
+}
+
+static inline void copy_node_footer(struct page *dst, struct page *src)
+{
+ void *src_addr = page_address(src);
+ void *dst_addr = page_address(dst);
+ struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
+ struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
+ memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
+}
+
+static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ void *kaddr = page_address(page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ rn->footer.cp_ver = ckpt->checkpoint_ver;
+ rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
+}
+
+static inline nid_t ino_of_node(struct page *node_page)
+{
+ void *kaddr = page_address(node_page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ return le32_to_cpu(rn->footer.ino);
+}
+
+static inline nid_t nid_of_node(struct page *node_page)
+{
+ void *kaddr = page_address(node_page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ return le32_to_cpu(rn->footer.nid);
+}
+
+static inline unsigned int ofs_of_node(struct page *node_page)
+{
+ void *kaddr = page_address(node_page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ unsigned flag = le32_to_cpu(rn->footer.flag);
+ return flag >> OFFSET_BIT_SHIFT;
+}
+
+static inline unsigned long long cpver_of_node(struct page *node_page)
+{
+ void *kaddr = page_address(node_page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ return le64_to_cpu(rn->footer.cp_ver);
+}
+
+static inline block_t next_blkaddr_of_node(struct page *node_page)
+{
+ void *kaddr = page_address(node_page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ return le32_to_cpu(rn->footer.next_blkaddr);
+}
+
+/*
+ * f2fs assigns the following node offsets described as (num).
+ * N = NIDS_PER_BLOCK
+ *
+ * Inode block (0)
+ * |- direct node (1)
+ * |- direct node (2)
+ * |- indirect node (3)
+ * | `- direct node (4 => 4 + N - 1)
+ * |- indirect node (4 + N)
+ * | `- direct node (5 + N => 5 + 2N - 1)
+ * `- double indirect node (5 + 2N)
+ * `- indirect node (6 + 2N)
+ * `- direct node (x(N + 1))
+ */
+static inline bool IS_DNODE(struct page *node_page)
+{
+ unsigned int ofs = ofs_of_node(node_page);
+ if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
+ ofs == 5 + 2 * NIDS_PER_BLOCK)
+ return false;
+ if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
+ ofs -= 6 + 2 * NIDS_PER_BLOCK;
+ if ((long int)ofs % (NIDS_PER_BLOCK + 1))
+ return false;
+ }
+ return true;
+}
+
+static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
+{
+ struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
+
+ wait_on_page_writeback(p);
+
+ if (i)
+ rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
+ else
+ rn->in.nid[off] = cpu_to_le32(nid);
+ set_page_dirty(p);
+}
+
+static inline nid_t get_nid(struct page *p, int off, bool i)
+{
+ struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
+ if (i)
+ return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
+ return le32_to_cpu(rn->in.nid[off]);
+}
+
+/*
+ * Coldness identification:
+ * - Mark cold files in f2fs_inode_info
+ * - Mark cold node blocks in their node footer
+ * - Mark cold data pages in page cache
+ */
+static inline int is_cold_file(struct inode *inode)
+{
+ return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
+}
+
+static inline int is_cold_data(struct page *page)
+{
+ return PageChecked(page);
+}
+
+static inline void set_cold_data(struct page *page)
+{
+ SetPageChecked(page);
+}
+
+static inline void clear_cold_data(struct page *page)
+{
+ ClearPageChecked(page);
+}
+
+static inline int is_cold_node(struct page *page)
+{
+ void *kaddr = page_address(page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ unsigned int flag = le32_to_cpu(rn->footer.flag);
+ return flag & (0x1 << COLD_BIT_SHIFT);
+}
+
+static inline unsigned char is_fsync_dnode(struct page *page)
+{
+ void *kaddr = page_address(page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ unsigned int flag = le32_to_cpu(rn->footer.flag);
+ return flag & (0x1 << FSYNC_BIT_SHIFT);
+}
+
+static inline unsigned char is_dent_dnode(struct page *page)
+{
+ void *kaddr = page_address(page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ unsigned int flag = le32_to_cpu(rn->footer.flag);
+ return flag & (0x1 << DENT_BIT_SHIFT);
+}
+
+static inline void set_cold_node(struct inode *inode, struct page *page)
+{
+ struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
+ unsigned int flag = le32_to_cpu(rn->footer.flag);
+
+ if (S_ISDIR(inode->i_mode))
+ flag &= ~(0x1 << COLD_BIT_SHIFT);
+ else
+ flag |= (0x1 << COLD_BIT_SHIFT);
+ rn->footer.flag = cpu_to_le32(flag);
+}
+
+static inline void set_fsync_mark(struct page *page, int mark)
+{
+ void *kaddr = page_address(page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ unsigned int flag = le32_to_cpu(rn->footer.flag);
+ if (mark)
+ flag |= (0x1 << FSYNC_BIT_SHIFT);
+ else
+ flag &= ~(0x1 << FSYNC_BIT_SHIFT);
+ rn->footer.flag = cpu_to_le32(flag);
+}
+
+static inline void set_dentry_mark(struct page *page, int mark)
+{
+ void *kaddr = page_address(page);
+ struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+ unsigned int flag = le32_to_cpu(rn->footer.flag);
+ if (mark)
+ flag |= (0x1 << DENT_BIT_SHIFT);
+ else
+ flag &= ~(0x1 << DENT_BIT_SHIFT);
+ rn->footer.flag = cpu_to_le32(flag);
+}
diff --git a/fs/f2fs/recovery.c b/fs/f2fs/recovery.c
new file mode 100644
index 000000000000..b235215ac138
--- /dev/null
+++ b/fs/f2fs/recovery.c
@@ -0,0 +1,375 @@
+/*
+ * fs/f2fs/recovery.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include "f2fs.h"
+#include "node.h"
+#include "segment.h"
+
+static struct kmem_cache *fsync_entry_slab;
+
+bool space_for_roll_forward(struct f2fs_sb_info *sbi)
+{
+ if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
+ > sbi->user_block_count)
+ return false;
+ return true;
+}
+
+static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
+ nid_t ino)
+{
+ struct list_head *this;
+ struct fsync_inode_entry *entry;
+
+ list_for_each(this, head) {
+ entry = list_entry(this, struct fsync_inode_entry, list);
+ if (entry->inode->i_ino == ino)
+ return entry;
+ }
+ return NULL;
+}
+
+static int recover_dentry(struct page *ipage, struct inode *inode)
+{
+ struct f2fs_node *raw_node = (struct f2fs_node *)kmap(ipage);
+ struct f2fs_inode *raw_inode = &(raw_node->i);
+ struct qstr name;
+ struct f2fs_dir_entry *de;
+ struct page *page;
+ struct inode *dir;
+ int err = 0;
+
+ if (!is_dent_dnode(ipage))
+ goto out;
+
+ dir = f2fs_iget(inode->i_sb, le32_to_cpu(raw_inode->i_pino));
+ if (IS_ERR(dir)) {
+ err = -EINVAL;
+ goto out;
+ }
+
+ name.len = le32_to_cpu(raw_inode->i_namelen);
+ name.name = raw_inode->i_name;
+
+ de = f2fs_find_entry(dir, &name, &page);
+ if (de) {
+ kunmap(page);
+ f2fs_put_page(page, 0);
+ } else {
+ err = __f2fs_add_link(dir, &name, inode);
+ }
+ iput(dir);
+out:
+ kunmap(ipage);
+ return err;
+}
+
+static int recover_inode(struct inode *inode, struct page *node_page)
+{
+ void *kaddr = page_address(node_page);
+ struct f2fs_node *raw_node = (struct f2fs_node *)kaddr;
+ struct f2fs_inode *raw_inode = &(raw_node->i);
+
+ inode->i_mode = le16_to_cpu(raw_inode->i_mode);
+ i_size_write(inode, le64_to_cpu(raw_inode->i_size));
+ inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
+ inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
+ inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
+ inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
+ inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
+ inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
+
+ return recover_dentry(node_page, inode);
+}
+
+static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
+{
+ unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
+ struct curseg_info *curseg;
+ struct page *page;
+ block_t blkaddr;
+ int err = 0;
+
+ /* get node pages in the current segment */
+ curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
+ blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
+
+ /* read node page */
+ page = alloc_page(GFP_F2FS_ZERO);
+ if (IS_ERR(page))
+ return PTR_ERR(page);
+ lock_page(page);
+
+ while (1) {
+ struct fsync_inode_entry *entry;
+
+ if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
+ goto out;
+
+ if (cp_ver != cpver_of_node(page))
+ goto out;
+
+ if (!is_fsync_dnode(page))
+ goto next;
+
+ entry = get_fsync_inode(head, ino_of_node(page));
+ if (entry) {
+ entry->blkaddr = blkaddr;
+ if (IS_INODE(page) && is_dent_dnode(page))
+ set_inode_flag(F2FS_I(entry->inode),
+ FI_INC_LINK);
+ } else {
+ if (IS_INODE(page) && is_dent_dnode(page)) {
+ if (recover_inode_page(sbi, page)) {
+ err = -ENOMEM;
+ goto out;
+ }
+ }
+
+ /* add this fsync inode to the list */
+ entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
+ if (!entry) {
+ err = -ENOMEM;
+ goto out;
+ }
+
+ entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
+ if (IS_ERR(entry->inode)) {
+ err = PTR_ERR(entry->inode);
+ kmem_cache_free(fsync_entry_slab, entry);
+ goto out;
+ }
+
+ list_add_tail(&entry->list, head);
+ entry->blkaddr = blkaddr;
+ }
+ if (IS_INODE(page)) {
+ err = recover_inode(entry->inode, page);
+ if (err)
+ goto out;
+ }
+next:
+ /* check next segment */
+ blkaddr = next_blkaddr_of_node(page);
+ ClearPageUptodate(page);
+ }
+out:
+ unlock_page(page);
+ __free_pages(page, 0);
+ return err;
+}
+
+static void destroy_fsync_dnodes(struct f2fs_sb_info *sbi,
+ struct list_head *head)
+{
+ struct fsync_inode_entry *entry, *tmp;
+
+ list_for_each_entry_safe(entry, tmp, head, list) {
+ iput(entry->inode);
+ list_del(&entry->list);
+ kmem_cache_free(fsync_entry_slab, entry);
+ }
+}
+
+static void check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
+ block_t blkaddr)
+{
+ struct seg_entry *sentry;
+ unsigned int segno = GET_SEGNO(sbi, blkaddr);
+ unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
+ (sbi->blocks_per_seg - 1);
+ struct f2fs_summary sum;
+ nid_t ino;
+ void *kaddr;
+ struct inode *inode;
+ struct page *node_page;
+ block_t bidx;
+ int i;
+
+ sentry = get_seg_entry(sbi, segno);
+ if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
+ return;
+
+ /* Get the previous summary */
+ for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
+ struct curseg_info *curseg = CURSEG_I(sbi, i);
+ if (curseg->segno == segno) {
+ sum = curseg->sum_blk->entries[blkoff];
+ break;
+ }
+ }
+ if (i > CURSEG_COLD_DATA) {
+ struct page *sum_page = get_sum_page(sbi, segno);
+ struct f2fs_summary_block *sum_node;
+ kaddr = page_address(sum_page);
+ sum_node = (struct f2fs_summary_block *)kaddr;
+ sum = sum_node->entries[blkoff];
+ f2fs_put_page(sum_page, 1);
+ }
+
+ /* Get the node page */
+ node_page = get_node_page(sbi, le32_to_cpu(sum.nid));
+ bidx = start_bidx_of_node(ofs_of_node(node_page)) +
+ le16_to_cpu(sum.ofs_in_node);
+ ino = ino_of_node(node_page);
+ f2fs_put_page(node_page, 1);
+
+ /* Deallocate previous index in the node page */
+ inode = f2fs_iget(sbi->sb, ino);
+ if (IS_ERR(inode))
+ return;
+
+ truncate_hole(inode, bidx, bidx + 1);
+ iput(inode);
+}
+
+static void do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
+ struct page *page, block_t blkaddr)
+{
+ unsigned int start, end;
+ struct dnode_of_data dn;
+ struct f2fs_summary sum;
+ struct node_info ni;
+
+ start = start_bidx_of_node(ofs_of_node(page));
+ if (IS_INODE(page))
+ end = start + ADDRS_PER_INODE;
+ else
+ end = start + ADDRS_PER_BLOCK;
+
+ set_new_dnode(&dn, inode, NULL, NULL, 0);
+ if (get_dnode_of_data(&dn, start, 0))
+ return;
+
+ wait_on_page_writeback(dn.node_page);
+
+ get_node_info(sbi, dn.nid, &ni);
+ BUG_ON(ni.ino != ino_of_node(page));
+ BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
+
+ for (; start < end; start++) {
+ block_t src, dest;
+
+ src = datablock_addr(dn.node_page, dn.ofs_in_node);
+ dest = datablock_addr(page, dn.ofs_in_node);
+
+ if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
+ if (src == NULL_ADDR) {
+ int err = reserve_new_block(&dn);
+ /* We should not get -ENOSPC */
+ BUG_ON(err);
+ }
+
+ /* Check the previous node page having this index */
+ check_index_in_prev_nodes(sbi, dest);
+
+ set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
+
+ /* write dummy data page */
+ recover_data_page(sbi, NULL, &sum, src, dest);
+ update_extent_cache(dest, &dn);
+ }
+ dn.ofs_in_node++;
+ }
+
+ /* write node page in place */
+ set_summary(&sum, dn.nid, 0, 0);
+ if (IS_INODE(dn.node_page))
+ sync_inode_page(&dn);
+
+ copy_node_footer(dn.node_page, page);
+ fill_node_footer(dn.node_page, dn.nid, ni.ino,
+ ofs_of_node(page), false);
+ set_page_dirty(dn.node_page);
+
+ recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
+ f2fs_put_dnode(&dn);
+}
+
+static void recover_data(struct f2fs_sb_info *sbi,
+ struct list_head *head, int type)
+{
+ unsigned long long cp_ver = le64_to_cpu(sbi->ckpt->checkpoint_ver);
+ struct curseg_info *curseg;
+ struct page *page;
+ block_t blkaddr;
+
+ /* get node pages in the current segment */
+ curseg = CURSEG_I(sbi, type);
+ blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
+
+ /* read node page */
+ page = alloc_page(GFP_NOFS | __GFP_ZERO);
+ if (IS_ERR(page))
+ return;
+ lock_page(page);
+
+ while (1) {
+ struct fsync_inode_entry *entry;
+
+ if (f2fs_readpage(sbi, page, blkaddr, READ_SYNC))
+ goto out;
+
+ if (cp_ver != cpver_of_node(page))
+ goto out;
+
+ entry = get_fsync_inode(head, ino_of_node(page));
+ if (!entry)
+ goto next;
+
+ do_recover_data(sbi, entry->inode, page, blkaddr);
+
+ if (entry->blkaddr == blkaddr) {
+ iput(entry->inode);
+ list_del(&entry->list);
+ kmem_cache_free(fsync_entry_slab, entry);
+ }
+next:
+ /* check next segment */
+ blkaddr = next_blkaddr_of_node(page);
+ ClearPageUptodate(page);
+ }
+out:
+ unlock_page(page);
+ __free_pages(page, 0);
+
+ allocate_new_segments(sbi);
+}
+
+void recover_fsync_data(struct f2fs_sb_info *sbi)
+{
+ struct list_head inode_list;
+
+ fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
+ sizeof(struct fsync_inode_entry), NULL);
+ if (unlikely(!fsync_entry_slab))
+ return;
+
+ INIT_LIST_HEAD(&inode_list);
+
+ /* step #1: find fsynced inode numbers */
+ if (find_fsync_dnodes(sbi, &inode_list))
+ goto out;
+
+ if (list_empty(&inode_list))
+ goto out;
+
+ /* step #2: recover data */
+ sbi->por_doing = 1;
+ recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
+ sbi->por_doing = 0;
+ BUG_ON(!list_empty(&inode_list));
+out:
+ destroy_fsync_dnodes(sbi, &inode_list);
+ kmem_cache_destroy(fsync_entry_slab);
+ write_checkpoint(sbi, false);
+}
diff --git a/fs/f2fs/segment.c b/fs/f2fs/segment.c
new file mode 100644
index 000000000000..777f17e496e6
--- /dev/null
+++ b/fs/f2fs/segment.c
@@ -0,0 +1,1770 @@
+/*
+ * fs/f2fs/segment.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/fs.h>
+#include <linux/f2fs_fs.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/prefetch.h>
+#include <linux/vmalloc.h>
+
+#include "f2fs.h"
+#include "segment.h"
+#include "node.h"
+
+/*
+ * This function balances dirty node and dentry pages.
+ * In addition, it controls garbage collection.
+ */
+void f2fs_balance_fs(struct f2fs_sb_info *sbi)
+{
+ /*
+ * We should do GC or end up with checkpoint, if there are so many dirty
+ * dir/node pages without enough free segments.
+ */
+ if (has_not_enough_free_secs(sbi, 0)) {
+ mutex_lock(&sbi->gc_mutex);
+ f2fs_gc(sbi);
+ }
+}
+
+static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
+ enum dirty_type dirty_type)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+
+ /* need not be added */
+ if (IS_CURSEG(sbi, segno))
+ return;
+
+ if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
+ dirty_i->nr_dirty[dirty_type]++;
+
+ if (dirty_type == DIRTY) {
+ struct seg_entry *sentry = get_seg_entry(sbi, segno);
+ dirty_type = sentry->type;
+ if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
+ dirty_i->nr_dirty[dirty_type]++;
+ }
+}
+
+static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
+ enum dirty_type dirty_type)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+
+ if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
+ dirty_i->nr_dirty[dirty_type]--;
+
+ if (dirty_type == DIRTY) {
+ struct seg_entry *sentry = get_seg_entry(sbi, segno);
+ dirty_type = sentry->type;
+ if (test_and_clear_bit(segno,
+ dirty_i->dirty_segmap[dirty_type]))
+ dirty_i->nr_dirty[dirty_type]--;
+ clear_bit(segno, dirty_i->victim_segmap[FG_GC]);
+ clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
+ }
+}
+
+/*
+ * Should not occur error such as -ENOMEM.
+ * Adding dirty entry into seglist is not critical operation.
+ * If a given segment is one of current working segments, it won't be added.
+ */
+void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ unsigned short valid_blocks;
+
+ if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
+ return;
+
+ mutex_lock(&dirty_i->seglist_lock);
+
+ valid_blocks = get_valid_blocks(sbi, segno, 0);
+
+ if (valid_blocks == 0) {
+ __locate_dirty_segment(sbi, segno, PRE);
+ __remove_dirty_segment(sbi, segno, DIRTY);
+ } else if (valid_blocks < sbi->blocks_per_seg) {
+ __locate_dirty_segment(sbi, segno, DIRTY);
+ } else {
+ /* Recovery routine with SSR needs this */
+ __remove_dirty_segment(sbi, segno, DIRTY);
+ }
+
+ mutex_unlock(&dirty_i->seglist_lock);
+ return;
+}
+
+/*
+ * Should call clear_prefree_segments after checkpoint is done.
+ */
+static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ unsigned int segno, offset = 0;
+ unsigned int total_segs = TOTAL_SEGS(sbi);
+
+ mutex_lock(&dirty_i->seglist_lock);
+ while (1) {
+ segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
+ offset);
+ if (segno >= total_segs)
+ break;
+ __set_test_and_free(sbi, segno);
+ offset = segno + 1;
+ }
+ mutex_unlock(&dirty_i->seglist_lock);
+}
+
+void clear_prefree_segments(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ unsigned int segno, offset = 0;
+ unsigned int total_segs = TOTAL_SEGS(sbi);
+
+ mutex_lock(&dirty_i->seglist_lock);
+ while (1) {
+ segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
+ offset);
+ if (segno >= total_segs)
+ break;
+
+ offset = segno + 1;
+ if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
+ dirty_i->nr_dirty[PRE]--;
+
+ /* Let's use trim */
+ if (test_opt(sbi, DISCARD))
+ blkdev_issue_discard(sbi->sb->s_bdev,
+ START_BLOCK(sbi, segno) <<
+ sbi->log_sectors_per_block,
+ 1 << (sbi->log_sectors_per_block +
+ sbi->log_blocks_per_seg),
+ GFP_NOFS, 0);
+ }
+ mutex_unlock(&dirty_i->seglist_lock);
+}
+
+static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
+ sit_i->dirty_sentries++;
+}
+
+static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
+ unsigned int segno, int modified)
+{
+ struct seg_entry *se = get_seg_entry(sbi, segno);
+ se->type = type;
+ if (modified)
+ __mark_sit_entry_dirty(sbi, segno);
+}
+
+static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
+{
+ struct seg_entry *se;
+ unsigned int segno, offset;
+ long int new_vblocks;
+
+ segno = GET_SEGNO(sbi, blkaddr);
+
+ se = get_seg_entry(sbi, segno);
+ new_vblocks = se->valid_blocks + del;
+ offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
+
+ BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
+ (new_vblocks > sbi->blocks_per_seg)));
+
+ se->valid_blocks = new_vblocks;
+ se->mtime = get_mtime(sbi);
+ SIT_I(sbi)->max_mtime = se->mtime;
+
+ /* Update valid block bitmap */
+ if (del > 0) {
+ if (f2fs_set_bit(offset, se->cur_valid_map))
+ BUG();
+ } else {
+ if (!f2fs_clear_bit(offset, se->cur_valid_map))
+ BUG();
+ }
+ if (!f2fs_test_bit(offset, se->ckpt_valid_map))
+ se->ckpt_valid_blocks += del;
+
+ __mark_sit_entry_dirty(sbi, segno);
+
+ /* update total number of valid blocks to be written in ckpt area */
+ SIT_I(sbi)->written_valid_blocks += del;
+
+ if (sbi->segs_per_sec > 1)
+ get_sec_entry(sbi, segno)->valid_blocks += del;
+}
+
+static void refresh_sit_entry(struct f2fs_sb_info *sbi,
+ block_t old_blkaddr, block_t new_blkaddr)
+{
+ update_sit_entry(sbi, new_blkaddr, 1);
+ if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
+ update_sit_entry(sbi, old_blkaddr, -1);
+}
+
+void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
+{
+ unsigned int segno = GET_SEGNO(sbi, addr);
+ struct sit_info *sit_i = SIT_I(sbi);
+
+ BUG_ON(addr == NULL_ADDR);
+ if (addr == NEW_ADDR)
+ return;
+
+ /* add it into sit main buffer */
+ mutex_lock(&sit_i->sentry_lock);
+
+ update_sit_entry(sbi, addr, -1);
+
+ /* add it into dirty seglist */
+ locate_dirty_segment(sbi, segno);
+
+ mutex_unlock(&sit_i->sentry_lock);
+}
+
+/*
+ * This function should be resided under the curseg_mutex lock
+ */
+static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
+ struct f2fs_summary *sum, unsigned short offset)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ void *addr = curseg->sum_blk;
+ addr += offset * sizeof(struct f2fs_summary);
+ memcpy(addr, sum, sizeof(struct f2fs_summary));
+ return;
+}
+
+/*
+ * Calculate the number of current summary pages for writing
+ */
+int npages_for_summary_flush(struct f2fs_sb_info *sbi)
+{
+ int total_size_bytes = 0;
+ int valid_sum_count = 0;
+ int i, sum_space;
+
+ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
+ if (sbi->ckpt->alloc_type[i] == SSR)
+ valid_sum_count += sbi->blocks_per_seg;
+ else
+ valid_sum_count += curseg_blkoff(sbi, i);
+ }
+
+ total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
+ + sizeof(struct nat_journal) + 2
+ + sizeof(struct sit_journal) + 2;
+ sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
+ if (total_size_bytes < sum_space)
+ return 1;
+ else if (total_size_bytes < 2 * sum_space)
+ return 2;
+ return 3;
+}
+
+/*
+ * Caller should put this summary page
+ */
+struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
+}
+
+static void write_sum_page(struct f2fs_sb_info *sbi,
+ struct f2fs_summary_block *sum_blk, block_t blk_addr)
+{
+ struct page *page = grab_meta_page(sbi, blk_addr);
+ void *kaddr = page_address(page);
+ memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+}
+
+static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi,
+ int ofs_unit, int type)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
+ unsigned int segno, next_segno, i;
+ int ofs = 0;
+
+ /*
+ * If there is not enough reserved sections,
+ * we should not reuse prefree segments.
+ */
+ if (has_not_enough_free_secs(sbi, 0))
+ return NULL_SEGNO;
+
+ /*
+ * NODE page should not reuse prefree segment,
+ * since those information is used for SPOR.
+ */
+ if (IS_NODESEG(type))
+ return NULL_SEGNO;
+next:
+ segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++);
+ ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit;
+ if (segno < TOTAL_SEGS(sbi)) {
+ /* skip intermediate segments in a section */
+ if (segno % ofs_unit)
+ goto next;
+
+ /* skip if whole section is not prefree */
+ next_segno = find_next_zero_bit(prefree_segmap,
+ TOTAL_SEGS(sbi), segno + 1);
+ if (next_segno - segno < ofs_unit)
+ goto next;
+
+ /* skip if whole section was not free at the last checkpoint */
+ for (i = 0; i < ofs_unit; i++)
+ if (get_seg_entry(sbi, segno)->ckpt_valid_blocks)
+ goto next;
+ return segno;
+ }
+ return NULL_SEGNO;
+}
+
+/*
+ * Find a new segment from the free segments bitmap to right order
+ * This function should be returned with success, otherwise BUG
+ */
+static void get_new_segment(struct f2fs_sb_info *sbi,
+ unsigned int *newseg, bool new_sec, int dir)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int total_secs = sbi->total_sections;
+ unsigned int segno, secno, zoneno;
+ unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone;
+ unsigned int hint = *newseg / sbi->segs_per_sec;
+ unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
+ unsigned int left_start = hint;
+ bool init = true;
+ int go_left = 0;
+ int i;
+
+ write_lock(&free_i->segmap_lock);
+
+ if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
+ segno = find_next_zero_bit(free_i->free_segmap,
+ TOTAL_SEGS(sbi), *newseg + 1);
+ if (segno < TOTAL_SEGS(sbi))
+ goto got_it;
+ }
+find_other_zone:
+ secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint);
+ if (secno >= total_secs) {
+ if (dir == ALLOC_RIGHT) {
+ secno = find_next_zero_bit(free_i->free_secmap,
+ total_secs, 0);
+ BUG_ON(secno >= total_secs);
+ } else {
+ go_left = 1;
+ left_start = hint - 1;
+ }
+ }
+ if (go_left == 0)
+ goto skip_left;
+
+ while (test_bit(left_start, free_i->free_secmap)) {
+ if (left_start > 0) {
+ left_start--;
+ continue;
+ }
+ left_start = find_next_zero_bit(free_i->free_secmap,
+ total_secs, 0);
+ BUG_ON(left_start >= total_secs);
+ break;
+ }
+ secno = left_start;
+skip_left:
+ hint = secno;
+ segno = secno * sbi->segs_per_sec;
+ zoneno = secno / sbi->secs_per_zone;
+
+ /* give up on finding another zone */
+ if (!init)
+ goto got_it;
+ if (sbi->secs_per_zone == 1)
+ goto got_it;
+ if (zoneno == old_zoneno)
+ goto got_it;
+ if (dir == ALLOC_LEFT) {
+ if (!go_left && zoneno + 1 >= total_zones)
+ goto got_it;
+ if (go_left && zoneno == 0)
+ goto got_it;
+ }
+ for (i = 0; i < NR_CURSEG_TYPE; i++)
+ if (CURSEG_I(sbi, i)->zone == zoneno)
+ break;
+
+ if (i < NR_CURSEG_TYPE) {
+ /* zone is in user, try another */
+ if (go_left)
+ hint = zoneno * sbi->secs_per_zone - 1;
+ else if (zoneno + 1 >= total_zones)
+ hint = 0;
+ else
+ hint = (zoneno + 1) * sbi->secs_per_zone;
+ init = false;
+ goto find_other_zone;
+ }
+got_it:
+ /* set it as dirty segment in free segmap */
+ BUG_ON(test_bit(segno, free_i->free_segmap));
+ __set_inuse(sbi, segno);
+ *newseg = segno;
+ write_unlock(&free_i->segmap_lock);
+}
+
+static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ struct summary_footer *sum_footer;
+
+ curseg->segno = curseg->next_segno;
+ curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
+ curseg->next_blkoff = 0;
+ curseg->next_segno = NULL_SEGNO;
+
+ sum_footer = &(curseg->sum_blk->footer);
+ memset(sum_footer, 0, sizeof(struct summary_footer));
+ if (IS_DATASEG(type))
+ SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
+ if (IS_NODESEG(type))
+ SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
+ __set_sit_entry_type(sbi, type, curseg->segno, modified);
+}
+
+/*
+ * Allocate a current working segment.
+ * This function always allocates a free segment in LFS manner.
+ */
+static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ unsigned int segno = curseg->segno;
+ int dir = ALLOC_LEFT;
+
+ write_sum_page(sbi, curseg->sum_blk,
+ GET_SUM_BLOCK(sbi, curseg->segno));
+ if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
+ dir = ALLOC_RIGHT;
+
+ if (test_opt(sbi, NOHEAP))
+ dir = ALLOC_RIGHT;
+
+ get_new_segment(sbi, &segno, new_sec, dir);
+ curseg->next_segno = segno;
+ reset_curseg(sbi, type, 1);
+ curseg->alloc_type = LFS;
+}
+
+static void __next_free_blkoff(struct f2fs_sb_info *sbi,
+ struct curseg_info *seg, block_t start)
+{
+ struct seg_entry *se = get_seg_entry(sbi, seg->segno);
+ block_t ofs;
+ for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
+ if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
+ && !f2fs_test_bit(ofs, se->cur_valid_map))
+ break;
+ }
+ seg->next_blkoff = ofs;
+}
+
+/*
+ * If a segment is written by LFS manner, next block offset is just obtained
+ * by increasing the current block offset. However, if a segment is written by
+ * SSR manner, next block offset obtained by calling __next_free_blkoff
+ */
+static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
+ struct curseg_info *seg)
+{
+ if (seg->alloc_type == SSR)
+ __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
+ else
+ seg->next_blkoff++;
+}
+
+/*
+ * This function always allocates a used segment (from dirty seglist) by SSR
+ * manner, so it should recover the existing segment information of valid blocks
+ */
+static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ unsigned int new_segno = curseg->next_segno;
+ struct f2fs_summary_block *sum_node;
+ struct page *sum_page;
+
+ write_sum_page(sbi, curseg->sum_blk,
+ GET_SUM_BLOCK(sbi, curseg->segno));
+ __set_test_and_inuse(sbi, new_segno);
+
+ mutex_lock(&dirty_i->seglist_lock);
+ __remove_dirty_segment(sbi, new_segno, PRE);
+ __remove_dirty_segment(sbi, new_segno, DIRTY);
+ mutex_unlock(&dirty_i->seglist_lock);
+
+ reset_curseg(sbi, type, 1);
+ curseg->alloc_type = SSR;
+ __next_free_blkoff(sbi, curseg, 0);
+
+ if (reuse) {
+ sum_page = get_sum_page(sbi, new_segno);
+ sum_node = (struct f2fs_summary_block *)page_address(sum_page);
+ memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
+ f2fs_put_page(sum_page, 1);
+ }
+}
+
+static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
+
+ if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
+ return v_ops->get_victim(sbi,
+ &(curseg)->next_segno, BG_GC, type, SSR);
+
+ /* For data segments, let's do SSR more intensively */
+ for (; type >= CURSEG_HOT_DATA; type--)
+ if (v_ops->get_victim(sbi, &(curseg)->next_segno,
+ BG_GC, type, SSR))
+ return 1;
+ return 0;
+}
+
+/*
+ * flush out current segment and replace it with new segment
+ * This function should be returned with success, otherwise BUG
+ */
+static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
+ int type, bool force)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ unsigned int ofs_unit;
+
+ if (force) {
+ new_curseg(sbi, type, true);
+ goto out;
+ }
+
+ ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec;
+ curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type);
+
+ if (curseg->next_segno != NULL_SEGNO)
+ change_curseg(sbi, type, false);
+ else if (type == CURSEG_WARM_NODE)
+ new_curseg(sbi, type, false);
+ else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
+ change_curseg(sbi, type, true);
+ else
+ new_curseg(sbi, type, false);
+out:
+ sbi->segment_count[curseg->alloc_type]++;
+}
+
+void allocate_new_segments(struct f2fs_sb_info *sbi)
+{
+ struct curseg_info *curseg;
+ unsigned int old_curseg;
+ int i;
+
+ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
+ curseg = CURSEG_I(sbi, i);
+ old_curseg = curseg->segno;
+ SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
+ locate_dirty_segment(sbi, old_curseg);
+ }
+}
+
+static const struct segment_allocation default_salloc_ops = {
+ .allocate_segment = allocate_segment_by_default,
+};
+
+static void f2fs_end_io_write(struct bio *bio, int err)
+{
+ const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+ struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
+ struct bio_private *p = bio->bi_private;
+
+ do {
+ struct page *page = bvec->bv_page;
+
+ if (--bvec >= bio->bi_io_vec)
+ prefetchw(&bvec->bv_page->flags);
+ if (!uptodate) {
+ SetPageError(page);
+ if (page->mapping)
+ set_bit(AS_EIO, &page->mapping->flags);
+ set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
+ p->sbi->sb->s_flags |= MS_RDONLY;
+ }
+ end_page_writeback(page);
+ dec_page_count(p->sbi, F2FS_WRITEBACK);
+ } while (bvec >= bio->bi_io_vec);
+
+ if (p->is_sync)
+ complete(p->wait);
+ kfree(p);
+ bio_put(bio);
+}
+
+struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
+{
+ struct bio *bio;
+ struct bio_private *priv;
+retry:
+ priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
+ if (!priv) {
+ cond_resched();
+ goto retry;
+ }
+
+ /* No failure on bio allocation */
+ bio = bio_alloc(GFP_NOIO, npages);
+ bio->bi_bdev = bdev;
+ bio->bi_private = priv;
+ return bio;
+}
+
+static void do_submit_bio(struct f2fs_sb_info *sbi,
+ enum page_type type, bool sync)
+{
+ int rw = sync ? WRITE_SYNC : WRITE;
+ enum page_type btype = type > META ? META : type;
+
+ if (type >= META_FLUSH)
+ rw = WRITE_FLUSH_FUA;
+
+ if (sbi->bio[btype]) {
+ struct bio_private *p = sbi->bio[btype]->bi_private;
+ p->sbi = sbi;
+ sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
+ if (type == META_FLUSH) {
+ DECLARE_COMPLETION_ONSTACK(wait);
+ p->is_sync = true;
+ p->wait = &wait;
+ submit_bio(rw, sbi->bio[btype]);
+ wait_for_completion(&wait);
+ } else {
+ p->is_sync = false;
+ submit_bio(rw, sbi->bio[btype]);
+ }
+ sbi->bio[btype] = NULL;
+ }
+}
+
+void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
+{
+ down_write(&sbi->bio_sem);
+ do_submit_bio(sbi, type, sync);
+ up_write(&sbi->bio_sem);
+}
+
+static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
+ block_t blk_addr, enum page_type type)
+{
+ struct block_device *bdev = sbi->sb->s_bdev;
+
+ verify_block_addr(sbi, blk_addr);
+
+ down_write(&sbi->bio_sem);
+
+ inc_page_count(sbi, F2FS_WRITEBACK);
+
+ if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
+ do_submit_bio(sbi, type, false);
+alloc_new:
+ if (sbi->bio[type] == NULL) {
+ sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev));
+ sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
+ /*
+ * The end_io will be assigned at the sumbission phase.
+ * Until then, let bio_add_page() merge consecutive IOs as much
+ * as possible.
+ */
+ }
+
+ if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
+ PAGE_CACHE_SIZE) {
+ do_submit_bio(sbi, type, false);
+ goto alloc_new;
+ }
+
+ sbi->last_block_in_bio[type] = blk_addr;
+
+ up_write(&sbi->bio_sem);
+}
+
+static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ if (curseg->next_blkoff < sbi->blocks_per_seg)
+ return true;
+ return false;
+}
+
+static int __get_segment_type_2(struct page *page, enum page_type p_type)
+{
+ if (p_type == DATA)
+ return CURSEG_HOT_DATA;
+ else
+ return CURSEG_HOT_NODE;
+}
+
+static int __get_segment_type_4(struct page *page, enum page_type p_type)
+{
+ if (p_type == DATA) {
+ struct inode *inode = page->mapping->host;
+
+ if (S_ISDIR(inode->i_mode))
+ return CURSEG_HOT_DATA;
+ else
+ return CURSEG_COLD_DATA;
+ } else {
+ if (IS_DNODE(page) && !is_cold_node(page))
+ return CURSEG_HOT_NODE;
+ else
+ return CURSEG_COLD_NODE;
+ }
+}
+
+static int __get_segment_type_6(struct page *page, enum page_type p_type)
+{
+ if (p_type == DATA) {
+ struct inode *inode = page->mapping->host;
+
+ if (S_ISDIR(inode->i_mode))
+ return CURSEG_HOT_DATA;
+ else if (is_cold_data(page) || is_cold_file(inode))
+ return CURSEG_COLD_DATA;
+ else
+ return CURSEG_WARM_DATA;
+ } else {
+ if (IS_DNODE(page))
+ return is_cold_node(page) ? CURSEG_WARM_NODE :
+ CURSEG_HOT_NODE;
+ else
+ return CURSEG_COLD_NODE;
+ }
+}
+
+static int __get_segment_type(struct page *page, enum page_type p_type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
+ switch (sbi->active_logs) {
+ case 2:
+ return __get_segment_type_2(page, p_type);
+ case 4:
+ return __get_segment_type_4(page, p_type);
+ }
+ /* NR_CURSEG_TYPE(6) logs by default */
+ BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
+ return __get_segment_type_6(page, p_type);
+}
+
+static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
+ block_t old_blkaddr, block_t *new_blkaddr,
+ struct f2fs_summary *sum, enum page_type p_type)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ struct curseg_info *curseg;
+ unsigned int old_cursegno;
+ int type;
+
+ type = __get_segment_type(page, p_type);
+ curseg = CURSEG_I(sbi, type);
+
+ mutex_lock(&curseg->curseg_mutex);
+
+ *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
+ old_cursegno = curseg->segno;
+
+ /*
+ * __add_sum_entry should be resided under the curseg_mutex
+ * because, this function updates a summary entry in the
+ * current summary block.
+ */
+ __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
+
+ mutex_lock(&sit_i->sentry_lock);
+ __refresh_next_blkoff(sbi, curseg);
+ sbi->block_count[curseg->alloc_type]++;
+
+ /*
+ * SIT information should be updated before segment allocation,
+ * since SSR needs latest valid block information.
+ */
+ refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
+
+ if (!__has_curseg_space(sbi, type))
+ sit_i->s_ops->allocate_segment(sbi, type, false);
+
+ locate_dirty_segment(sbi, old_cursegno);
+ locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
+ mutex_unlock(&sit_i->sentry_lock);
+
+ if (p_type == NODE)
+ fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
+
+ /* writeout dirty page into bdev */
+ submit_write_page(sbi, page, *new_blkaddr, p_type);
+
+ mutex_unlock(&curseg->curseg_mutex);
+}
+
+void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
+{
+ set_page_writeback(page);
+ submit_write_page(sbi, page, page->index, META);
+}
+
+void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
+ unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
+{
+ struct f2fs_summary sum;
+ set_summary(&sum, nid, 0, 0);
+ do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
+}
+
+void write_data_page(struct inode *inode, struct page *page,
+ struct dnode_of_data *dn, block_t old_blkaddr,
+ block_t *new_blkaddr)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct f2fs_summary sum;
+ struct node_info ni;
+
+ BUG_ON(old_blkaddr == NULL_ADDR);
+ get_node_info(sbi, dn->nid, &ni);
+ set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
+
+ do_write_page(sbi, page, old_blkaddr,
+ new_blkaddr, &sum, DATA);
+}
+
+void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
+ block_t old_blk_addr)
+{
+ submit_write_page(sbi, page, old_blk_addr, DATA);
+}
+
+void recover_data_page(struct f2fs_sb_info *sbi,
+ struct page *page, struct f2fs_summary *sum,
+ block_t old_blkaddr, block_t new_blkaddr)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ struct curseg_info *curseg;
+ unsigned int segno, old_cursegno;
+ struct seg_entry *se;
+ int type;
+
+ segno = GET_SEGNO(sbi, new_blkaddr);
+ se = get_seg_entry(sbi, segno);
+ type = se->type;
+
+ if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
+ if (old_blkaddr == NULL_ADDR)
+ type = CURSEG_COLD_DATA;
+ else
+ type = CURSEG_WARM_DATA;
+ }
+ curseg = CURSEG_I(sbi, type);
+
+ mutex_lock(&curseg->curseg_mutex);
+ mutex_lock(&sit_i->sentry_lock);
+
+ old_cursegno = curseg->segno;
+
+ /* change the current segment */
+ if (segno != curseg->segno) {
+ curseg->next_segno = segno;
+ change_curseg(sbi, type, true);
+ }
+
+ curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
+ (sbi->blocks_per_seg - 1);
+ __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
+
+ refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
+
+ locate_dirty_segment(sbi, old_cursegno);
+ locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
+
+ mutex_unlock(&sit_i->sentry_lock);
+ mutex_unlock(&curseg->curseg_mutex);
+}
+
+void rewrite_node_page(struct f2fs_sb_info *sbi,
+ struct page *page, struct f2fs_summary *sum,
+ block_t old_blkaddr, block_t new_blkaddr)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ int type = CURSEG_WARM_NODE;
+ struct curseg_info *curseg;
+ unsigned int segno, old_cursegno;
+ block_t next_blkaddr = next_blkaddr_of_node(page);
+ unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
+
+ curseg = CURSEG_I(sbi, type);
+
+ mutex_lock(&curseg->curseg_mutex);
+ mutex_lock(&sit_i->sentry_lock);
+
+ segno = GET_SEGNO(sbi, new_blkaddr);
+ old_cursegno = curseg->segno;
+
+ /* change the current segment */
+ if (segno != curseg->segno) {
+ curseg->next_segno = segno;
+ change_curseg(sbi, type, true);
+ }
+ curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
+ (sbi->blocks_per_seg - 1);
+ __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
+
+ /* change the current log to the next block addr in advance */
+ if (next_segno != segno) {
+ curseg->next_segno = next_segno;
+ change_curseg(sbi, type, true);
+ }
+ curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
+ (sbi->blocks_per_seg - 1);
+
+ /* rewrite node page */
+ set_page_writeback(page);
+ submit_write_page(sbi, page, new_blkaddr, NODE);
+ f2fs_submit_bio(sbi, NODE, true);
+ refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
+
+ locate_dirty_segment(sbi, old_cursegno);
+ locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
+
+ mutex_unlock(&sit_i->sentry_lock);
+ mutex_unlock(&curseg->curseg_mutex);
+}
+
+static int read_compacted_summaries(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ struct curseg_info *seg_i;
+ unsigned char *kaddr;
+ struct page *page;
+ block_t start;
+ int i, j, offset;
+
+ start = start_sum_block(sbi);
+
+ page = get_meta_page(sbi, start++);
+ kaddr = (unsigned char *)page_address(page);
+
+ /* Step 1: restore nat cache */
+ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
+
+ /* Step 2: restore sit cache */
+ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
+ memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
+ SUM_JOURNAL_SIZE);
+ offset = 2 * SUM_JOURNAL_SIZE;
+
+ /* Step 3: restore summary entries */
+ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
+ unsigned short blk_off;
+ unsigned int segno;
+
+ seg_i = CURSEG_I(sbi, i);
+ segno = le32_to_cpu(ckpt->cur_data_segno[i]);
+ blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
+ seg_i->next_segno = segno;
+ reset_curseg(sbi, i, 0);
+ seg_i->alloc_type = ckpt->alloc_type[i];
+ seg_i->next_blkoff = blk_off;
+
+ if (seg_i->alloc_type == SSR)
+ blk_off = sbi->blocks_per_seg;
+
+ for (j = 0; j < blk_off; j++) {
+ struct f2fs_summary *s;
+ s = (struct f2fs_summary *)(kaddr + offset);
+ seg_i->sum_blk->entries[j] = *s;
+ offset += SUMMARY_SIZE;
+ if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
+ SUM_FOOTER_SIZE)
+ continue;
+
+ f2fs_put_page(page, 1);
+ page = NULL;
+
+ page = get_meta_page(sbi, start++);
+ kaddr = (unsigned char *)page_address(page);
+ offset = 0;
+ }
+ }
+ f2fs_put_page(page, 1);
+ return 0;
+}
+
+static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
+{
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ struct f2fs_summary_block *sum;
+ struct curseg_info *curseg;
+ struct page *new;
+ unsigned short blk_off;
+ unsigned int segno = 0;
+ block_t blk_addr = 0;
+
+ /* get segment number and block addr */
+ if (IS_DATASEG(type)) {
+ segno = le32_to_cpu(ckpt->cur_data_segno[type]);
+ blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
+ CURSEG_HOT_DATA]);
+ if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
+ blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
+ else
+ blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
+ } else {
+ segno = le32_to_cpu(ckpt->cur_node_segno[type -
+ CURSEG_HOT_NODE]);
+ blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
+ CURSEG_HOT_NODE]);
+ if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
+ blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
+ type - CURSEG_HOT_NODE);
+ else
+ blk_addr = GET_SUM_BLOCK(sbi, segno);
+ }
+
+ new = get_meta_page(sbi, blk_addr);
+ sum = (struct f2fs_summary_block *)page_address(new);
+
+ if (IS_NODESEG(type)) {
+ if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
+ struct f2fs_summary *ns = &sum->entries[0];
+ int i;
+ for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
+ ns->version = 0;
+ ns->ofs_in_node = 0;
+ }
+ } else {
+ if (restore_node_summary(sbi, segno, sum)) {
+ f2fs_put_page(new, 1);
+ return -EINVAL;
+ }
+ }
+ }
+
+ /* set uncompleted segment to curseg */
+ curseg = CURSEG_I(sbi, type);
+ mutex_lock(&curseg->curseg_mutex);
+ memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
+ curseg->next_segno = segno;
+ reset_curseg(sbi, type, 0);
+ curseg->alloc_type = ckpt->alloc_type[type];
+ curseg->next_blkoff = blk_off;
+ mutex_unlock(&curseg->curseg_mutex);
+ f2fs_put_page(new, 1);
+ return 0;
+}
+
+static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
+{
+ int type = CURSEG_HOT_DATA;
+
+ if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
+ /* restore for compacted data summary */
+ if (read_compacted_summaries(sbi))
+ return -EINVAL;
+ type = CURSEG_HOT_NODE;
+ }
+
+ for (; type <= CURSEG_COLD_NODE; type++)
+ if (read_normal_summaries(sbi, type))
+ return -EINVAL;
+ return 0;
+}
+
+static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
+{
+ struct page *page;
+ unsigned char *kaddr;
+ struct f2fs_summary *summary;
+ struct curseg_info *seg_i;
+ int written_size = 0;
+ int i, j;
+
+ page = grab_meta_page(sbi, blkaddr++);
+ kaddr = (unsigned char *)page_address(page);
+
+ /* Step 1: write nat cache */
+ seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
+ memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
+ written_size += SUM_JOURNAL_SIZE;
+
+ /* Step 2: write sit cache */
+ seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
+ memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
+ SUM_JOURNAL_SIZE);
+ written_size += SUM_JOURNAL_SIZE;
+
+ set_page_dirty(page);
+
+ /* Step 3: write summary entries */
+ for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
+ unsigned short blkoff;
+ seg_i = CURSEG_I(sbi, i);
+ if (sbi->ckpt->alloc_type[i] == SSR)
+ blkoff = sbi->blocks_per_seg;
+ else
+ blkoff = curseg_blkoff(sbi, i);
+
+ for (j = 0; j < blkoff; j++) {
+ if (!page) {
+ page = grab_meta_page(sbi, blkaddr++);
+ kaddr = (unsigned char *)page_address(page);
+ written_size = 0;
+ }
+ summary = (struct f2fs_summary *)(kaddr + written_size);
+ *summary = seg_i->sum_blk->entries[j];
+ written_size += SUMMARY_SIZE;
+ set_page_dirty(page);
+
+ if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
+ SUM_FOOTER_SIZE)
+ continue;
+
+ f2fs_put_page(page, 1);
+ page = NULL;
+ }
+ }
+ if (page)
+ f2fs_put_page(page, 1);
+}
+
+static void write_normal_summaries(struct f2fs_sb_info *sbi,
+ block_t blkaddr, int type)
+{
+ int i, end;
+ if (IS_DATASEG(type))
+ end = type + NR_CURSEG_DATA_TYPE;
+ else
+ end = type + NR_CURSEG_NODE_TYPE;
+
+ for (i = type; i < end; i++) {
+ struct curseg_info *sum = CURSEG_I(sbi, i);
+ mutex_lock(&sum->curseg_mutex);
+ write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
+ mutex_unlock(&sum->curseg_mutex);
+ }
+}
+
+void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
+{
+ if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
+ write_compacted_summaries(sbi, start_blk);
+ else
+ write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
+}
+
+void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
+{
+ if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
+ write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
+ return;
+}
+
+int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
+ unsigned int val, int alloc)
+{
+ int i;
+
+ if (type == NAT_JOURNAL) {
+ for (i = 0; i < nats_in_cursum(sum); i++) {
+ if (le32_to_cpu(nid_in_journal(sum, i)) == val)
+ return i;
+ }
+ if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
+ return update_nats_in_cursum(sum, 1);
+ } else if (type == SIT_JOURNAL) {
+ for (i = 0; i < sits_in_cursum(sum); i++)
+ if (le32_to_cpu(segno_in_journal(sum, i)) == val)
+ return i;
+ if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
+ return update_sits_in_cursum(sum, 1);
+ }
+ return -1;
+}
+
+static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
+ block_t blk_addr = sit_i->sit_base_addr + offset;
+
+ check_seg_range(sbi, segno);
+
+ /* calculate sit block address */
+ if (f2fs_test_bit(offset, sit_i->sit_bitmap))
+ blk_addr += sit_i->sit_blocks;
+
+ return get_meta_page(sbi, blk_addr);
+}
+
+static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
+ unsigned int start)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ struct page *src_page, *dst_page;
+ pgoff_t src_off, dst_off;
+ void *src_addr, *dst_addr;
+
+ src_off = current_sit_addr(sbi, start);
+ dst_off = next_sit_addr(sbi, src_off);
+
+ /* get current sit block page without lock */
+ src_page = get_meta_page(sbi, src_off);
+ dst_page = grab_meta_page(sbi, dst_off);
+ BUG_ON(PageDirty(src_page));
+
+ src_addr = page_address(src_page);
+ dst_addr = page_address(dst_page);
+ memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
+
+ set_page_dirty(dst_page);
+ f2fs_put_page(src_page, 1);
+
+ set_to_next_sit(sit_i, start);
+
+ return dst_page;
+}
+
+static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ int i;
+
+ /*
+ * If the journal area in the current summary is full of sit entries,
+ * all the sit entries will be flushed. Otherwise the sit entries
+ * are not able to replace with newly hot sit entries.
+ */
+ if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
+ for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
+ unsigned int segno;
+ segno = le32_to_cpu(segno_in_journal(sum, i));
+ __mark_sit_entry_dirty(sbi, segno);
+ }
+ update_sits_in_cursum(sum, -sits_in_cursum(sum));
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * CP calls this function, which flushes SIT entries including sit_journal,
+ * and moves prefree segs to free segs.
+ */
+void flush_sit_entries(struct f2fs_sb_info *sbi)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ unsigned long nsegs = TOTAL_SEGS(sbi);
+ struct page *page = NULL;
+ struct f2fs_sit_block *raw_sit = NULL;
+ unsigned int start = 0, end = 0;
+ unsigned int segno = -1;
+ bool flushed;
+
+ mutex_lock(&curseg->curseg_mutex);
+ mutex_lock(&sit_i->sentry_lock);
+
+ /*
+ * "flushed" indicates whether sit entries in journal are flushed
+ * to the SIT area or not.
+ */
+ flushed = flush_sits_in_journal(sbi);
+
+ while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
+ struct seg_entry *se = get_seg_entry(sbi, segno);
+ int sit_offset, offset;
+
+ sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
+
+ if (flushed)
+ goto to_sit_page;
+
+ offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
+ if (offset >= 0) {
+ segno_in_journal(sum, offset) = cpu_to_le32(segno);
+ seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
+ goto flush_done;
+ }
+to_sit_page:
+ if (!page || (start > segno) || (segno > end)) {
+ if (page) {
+ f2fs_put_page(page, 1);
+ page = NULL;
+ }
+
+ start = START_SEGNO(sit_i, segno);
+ end = start + SIT_ENTRY_PER_BLOCK - 1;
+
+ /* read sit block that will be updated */
+ page = get_next_sit_page(sbi, start);
+ raw_sit = page_address(page);
+ }
+
+ /* udpate entry in SIT block */
+ seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
+flush_done:
+ __clear_bit(segno, bitmap);
+ sit_i->dirty_sentries--;
+ }
+ mutex_unlock(&sit_i->sentry_lock);
+ mutex_unlock(&curseg->curseg_mutex);
+
+ /* writeout last modified SIT block */
+ f2fs_put_page(page, 1);
+
+ set_prefree_as_free_segments(sbi);
+}
+
+static int build_sit_info(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ struct sit_info *sit_i;
+ unsigned int sit_segs, start;
+ char *src_bitmap, *dst_bitmap;
+ unsigned int bitmap_size;
+
+ /* allocate memory for SIT information */
+ sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
+ if (!sit_i)
+ return -ENOMEM;
+
+ SM_I(sbi)->sit_info = sit_i;
+
+ sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
+ if (!sit_i->sentries)
+ return -ENOMEM;
+
+ bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
+ sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
+ if (!sit_i->dirty_sentries_bitmap)
+ return -ENOMEM;
+
+ for (start = 0; start < TOTAL_SEGS(sbi); start++) {
+ sit_i->sentries[start].cur_valid_map
+ = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
+ sit_i->sentries[start].ckpt_valid_map
+ = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
+ if (!sit_i->sentries[start].cur_valid_map
+ || !sit_i->sentries[start].ckpt_valid_map)
+ return -ENOMEM;
+ }
+
+ if (sbi->segs_per_sec > 1) {
+ sit_i->sec_entries = vzalloc(sbi->total_sections *
+ sizeof(struct sec_entry));
+ if (!sit_i->sec_entries)
+ return -ENOMEM;
+ }
+
+ /* get information related with SIT */
+ sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
+
+ /* setup SIT bitmap from ckeckpoint pack */
+ bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
+ src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
+
+ dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
+ if (!dst_bitmap)
+ return -ENOMEM;
+ memcpy(dst_bitmap, src_bitmap, bitmap_size);
+
+ /* init SIT information */
+ sit_i->s_ops = &default_salloc_ops;
+
+ sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
+ sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
+ sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
+ sit_i->sit_bitmap = dst_bitmap;
+ sit_i->bitmap_size = bitmap_size;
+ sit_i->dirty_sentries = 0;
+ sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
+ sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
+ sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
+ mutex_init(&sit_i->sentry_lock);
+ return 0;
+}
+
+static int build_free_segmap(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_sm_info *sm_info = SM_I(sbi);
+ struct free_segmap_info *free_i;
+ unsigned int bitmap_size, sec_bitmap_size;
+
+ /* allocate memory for free segmap information */
+ free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
+ if (!free_i)
+ return -ENOMEM;
+
+ SM_I(sbi)->free_info = free_i;
+
+ bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
+ free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
+ if (!free_i->free_segmap)
+ return -ENOMEM;
+
+ sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections);
+ free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
+ if (!free_i->free_secmap)
+ return -ENOMEM;
+
+ /* set all segments as dirty temporarily */
+ memset(free_i->free_segmap, 0xff, bitmap_size);
+ memset(free_i->free_secmap, 0xff, sec_bitmap_size);
+
+ /* init free segmap information */
+ free_i->start_segno =
+ (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
+ free_i->free_segments = 0;
+ free_i->free_sections = 0;
+ rwlock_init(&free_i->segmap_lock);
+ return 0;
+}
+
+static int build_curseg(struct f2fs_sb_info *sbi)
+{
+ struct curseg_info *array;
+ int i;
+
+ array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
+ if (!array)
+ return -ENOMEM;
+
+ SM_I(sbi)->curseg_array = array;
+
+ for (i = 0; i < NR_CURSEG_TYPE; i++) {
+ mutex_init(&array[i].curseg_mutex);
+ array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
+ if (!array[i].sum_blk)
+ return -ENOMEM;
+ array[i].segno = NULL_SEGNO;
+ array[i].next_blkoff = 0;
+ }
+ return restore_curseg_summaries(sbi);
+}
+
+static void build_sit_entries(struct f2fs_sb_info *sbi)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
+ struct f2fs_summary_block *sum = curseg->sum_blk;
+ unsigned int start;
+
+ for (start = 0; start < TOTAL_SEGS(sbi); start++) {
+ struct seg_entry *se = &sit_i->sentries[start];
+ struct f2fs_sit_block *sit_blk;
+ struct f2fs_sit_entry sit;
+ struct page *page;
+ int i;
+
+ mutex_lock(&curseg->curseg_mutex);
+ for (i = 0; i < sits_in_cursum(sum); i++) {
+ if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
+ sit = sit_in_journal(sum, i);
+ mutex_unlock(&curseg->curseg_mutex);
+ goto got_it;
+ }
+ }
+ mutex_unlock(&curseg->curseg_mutex);
+ page = get_current_sit_page(sbi, start);
+ sit_blk = (struct f2fs_sit_block *)page_address(page);
+ sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
+ f2fs_put_page(page, 1);
+got_it:
+ check_block_count(sbi, start, &sit);
+ seg_info_from_raw_sit(se, &sit);
+ if (sbi->segs_per_sec > 1) {
+ struct sec_entry *e = get_sec_entry(sbi, start);
+ e->valid_blocks += se->valid_blocks;
+ }
+ }
+}
+
+static void init_free_segmap(struct f2fs_sb_info *sbi)
+{
+ unsigned int start;
+ int type;
+
+ for (start = 0; start < TOTAL_SEGS(sbi); start++) {
+ struct seg_entry *sentry = get_seg_entry(sbi, start);
+ if (!sentry->valid_blocks)
+ __set_free(sbi, start);
+ }
+
+ /* set use the current segments */
+ for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
+ struct curseg_info *curseg_t = CURSEG_I(sbi, type);
+ __set_test_and_inuse(sbi, curseg_t->segno);
+ }
+}
+
+static void init_dirty_segmap(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int segno = 0, offset = 0;
+ unsigned short valid_blocks;
+
+ while (segno < TOTAL_SEGS(sbi)) {
+ /* find dirty segment based on free segmap */
+ segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
+ if (segno >= TOTAL_SEGS(sbi))
+ break;
+ offset = segno + 1;
+ valid_blocks = get_valid_blocks(sbi, segno, 0);
+ if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
+ continue;
+ mutex_lock(&dirty_i->seglist_lock);
+ __locate_dirty_segment(sbi, segno, DIRTY);
+ mutex_unlock(&dirty_i->seglist_lock);
+ }
+}
+
+static int init_victim_segmap(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
+
+ dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
+ dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
+ if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC])
+ return -ENOMEM;
+ return 0;
+}
+
+static int build_dirty_segmap(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i;
+ unsigned int bitmap_size, i;
+
+ /* allocate memory for dirty segments list information */
+ dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
+ if (!dirty_i)
+ return -ENOMEM;
+
+ SM_I(sbi)->dirty_info = dirty_i;
+ mutex_init(&dirty_i->seglist_lock);
+
+ bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
+
+ for (i = 0; i < NR_DIRTY_TYPE; i++) {
+ dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
+ if (!dirty_i->dirty_segmap[i])
+ return -ENOMEM;
+ }
+
+ init_dirty_segmap(sbi);
+ return init_victim_segmap(sbi);
+}
+
+/*
+ * Update min, max modified time for cost-benefit GC algorithm
+ */
+static void init_min_max_mtime(struct f2fs_sb_info *sbi)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned int segno;
+
+ mutex_lock(&sit_i->sentry_lock);
+
+ sit_i->min_mtime = LLONG_MAX;
+
+ for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
+ unsigned int i;
+ unsigned long long mtime = 0;
+
+ for (i = 0; i < sbi->segs_per_sec; i++)
+ mtime += get_seg_entry(sbi, segno + i)->mtime;
+
+ mtime = div_u64(mtime, sbi->segs_per_sec);
+
+ if (sit_i->min_mtime > mtime)
+ sit_i->min_mtime = mtime;
+ }
+ sit_i->max_mtime = get_mtime(sbi);
+ mutex_unlock(&sit_i->sentry_lock);
+}
+
+int build_segment_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+ struct f2fs_sm_info *sm_info;
+ int err;
+
+ sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
+ if (!sm_info)
+ return -ENOMEM;
+
+ /* init sm info */
+ sbi->sm_info = sm_info;
+ INIT_LIST_HEAD(&sm_info->wblist_head);
+ spin_lock_init(&sm_info->wblist_lock);
+ sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
+ sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
+ sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
+ sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
+ sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
+ sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
+ sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
+
+ err = build_sit_info(sbi);
+ if (err)
+ return err;
+ err = build_free_segmap(sbi);
+ if (err)
+ return err;
+ err = build_curseg(sbi);
+ if (err)
+ return err;
+
+ /* reinit free segmap based on SIT */
+ build_sit_entries(sbi);
+
+ init_free_segmap(sbi);
+ err = build_dirty_segmap(sbi);
+ if (err)
+ return err;
+
+ init_min_max_mtime(sbi);
+ return 0;
+}
+
+static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
+ enum dirty_type dirty_type)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+
+ mutex_lock(&dirty_i->seglist_lock);
+ kfree(dirty_i->dirty_segmap[dirty_type]);
+ dirty_i->nr_dirty[dirty_type] = 0;
+ mutex_unlock(&dirty_i->seglist_lock);
+}
+
+void reset_victim_segmap(struct f2fs_sb_info *sbi)
+{
+ unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
+ memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size);
+}
+
+static void destroy_victim_segmap(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+
+ kfree(dirty_i->victim_segmap[FG_GC]);
+ kfree(dirty_i->victim_segmap[BG_GC]);
+}
+
+static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
+{
+ struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
+ int i;
+
+ if (!dirty_i)
+ return;
+
+ /* discard pre-free/dirty segments list */
+ for (i = 0; i < NR_DIRTY_TYPE; i++)
+ discard_dirty_segmap(sbi, i);
+
+ destroy_victim_segmap(sbi);
+ SM_I(sbi)->dirty_info = NULL;
+ kfree(dirty_i);
+}
+
+static void destroy_curseg(struct f2fs_sb_info *sbi)
+{
+ struct curseg_info *array = SM_I(sbi)->curseg_array;
+ int i;
+
+ if (!array)
+ return;
+ SM_I(sbi)->curseg_array = NULL;
+ for (i = 0; i < NR_CURSEG_TYPE; i++)
+ kfree(array[i].sum_blk);
+ kfree(array);
+}
+
+static void destroy_free_segmap(struct f2fs_sb_info *sbi)
+{
+ struct free_segmap_info *free_i = SM_I(sbi)->free_info;
+ if (!free_i)
+ return;
+ SM_I(sbi)->free_info = NULL;
+ kfree(free_i->free_segmap);
+ kfree(free_i->free_secmap);
+ kfree(free_i);
+}
+
+static void destroy_sit_info(struct f2fs_sb_info *sbi)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned int start;
+
+ if (!sit_i)
+ return;
+
+ if (sit_i->sentries) {
+ for (start = 0; start < TOTAL_SEGS(sbi); start++) {
+ kfree(sit_i->sentries[start].cur_valid_map);
+ kfree(sit_i->sentries[start].ckpt_valid_map);
+ }
+ }
+ vfree(sit_i->sentries);
+ vfree(sit_i->sec_entries);
+ kfree(sit_i->dirty_sentries_bitmap);
+
+ SM_I(sbi)->sit_info = NULL;
+ kfree(sit_i->sit_bitmap);
+ kfree(sit_i);
+}
+
+void destroy_segment_manager(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_sm_info *sm_info = SM_I(sbi);
+ destroy_dirty_segmap(sbi);
+ destroy_curseg(sbi);
+ destroy_free_segmap(sbi);
+ destroy_sit_info(sbi);
+ sbi->sm_info = NULL;
+ kfree(sm_info);
+}
diff --git a/fs/f2fs/segment.h b/fs/f2fs/segment.h
new file mode 100644
index 000000000000..552dadbb2327
--- /dev/null
+++ b/fs/f2fs/segment.h
@@ -0,0 +1,618 @@
+/*
+ * fs/f2fs/segment.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+/* constant macro */
+#define NULL_SEGNO ((unsigned int)(~0))
+
+/* V: Logical segment # in volume, R: Relative segment # in main area */
+#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
+#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
+
+#define IS_DATASEG(t) \
+ ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
+ (t == CURSEG_WARM_DATA))
+
+#define IS_NODESEG(t) \
+ ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
+ (t == CURSEG_WARM_NODE))
+
+#define IS_CURSEG(sbi, segno) \
+ ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
+ (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
+ (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
+ (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
+ (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
+ (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
+
+#define IS_CURSEC(sbi, secno) \
+ ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
+ sbi->segs_per_sec) || \
+ (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
+ sbi->segs_per_sec) || \
+ (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
+ sbi->segs_per_sec) || \
+ (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
+ sbi->segs_per_sec) || \
+ (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
+ sbi->segs_per_sec) || \
+ (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
+ sbi->segs_per_sec)) \
+
+#define START_BLOCK(sbi, segno) \
+ (SM_I(sbi)->seg0_blkaddr + \
+ (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
+#define NEXT_FREE_BLKADDR(sbi, curseg) \
+ (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
+
+#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
+
+#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
+ ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
+#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
+ (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
+#define GET_SEGNO(sbi, blk_addr) \
+ (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
+ NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
+ GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
+#define GET_SECNO(sbi, segno) \
+ ((segno) / sbi->segs_per_sec)
+#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
+ ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
+
+#define GET_SUM_BLOCK(sbi, segno) \
+ ((sbi->sm_info->ssa_blkaddr) + segno)
+
+#define GET_SUM_TYPE(footer) ((footer)->entry_type)
+#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
+
+#define SIT_ENTRY_OFFSET(sit_i, segno) \
+ (segno % sit_i->sents_per_block)
+#define SIT_BLOCK_OFFSET(sit_i, segno) \
+ (segno / SIT_ENTRY_PER_BLOCK)
+#define START_SEGNO(sit_i, segno) \
+ (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
+#define f2fs_bitmap_size(nr) \
+ (BITS_TO_LONGS(nr) * sizeof(unsigned long))
+#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
+
+#define SECTOR_FROM_BLOCK(sbi, blk_addr) \
+ (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
+
+/* during checkpoint, bio_private is used to synchronize the last bio */
+struct bio_private {
+ struct f2fs_sb_info *sbi;
+ bool is_sync;
+ void *wait;
+};
+
+/*
+ * indicate a block allocation direction: RIGHT and LEFT.
+ * RIGHT means allocating new sections towards the end of volume.
+ * LEFT means the opposite direction.
+ */
+enum {
+ ALLOC_RIGHT = 0,
+ ALLOC_LEFT
+};
+
+/*
+ * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
+ * LFS writes data sequentially with cleaning operations.
+ * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
+ */
+enum {
+ LFS = 0,
+ SSR
+};
+
+/*
+ * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
+ * GC_CB is based on cost-benefit algorithm.
+ * GC_GREEDY is based on greedy algorithm.
+ */
+enum {
+ GC_CB = 0,
+ GC_GREEDY
+};
+
+/*
+ * BG_GC means the background cleaning job.
+ * FG_GC means the on-demand cleaning job.
+ */
+enum {
+ BG_GC = 0,
+ FG_GC
+};
+
+/* for a function parameter to select a victim segment */
+struct victim_sel_policy {
+ int alloc_mode; /* LFS or SSR */
+ int gc_mode; /* GC_CB or GC_GREEDY */
+ unsigned long *dirty_segmap; /* dirty segment bitmap */
+ unsigned int offset; /* last scanned bitmap offset */
+ unsigned int ofs_unit; /* bitmap search unit */
+ unsigned int min_cost; /* minimum cost */
+ unsigned int min_segno; /* segment # having min. cost */
+};
+
+struct seg_entry {
+ unsigned short valid_blocks; /* # of valid blocks */
+ unsigned char *cur_valid_map; /* validity bitmap of blocks */
+ /*
+ * # of valid blocks and the validity bitmap stored in the the last
+ * checkpoint pack. This information is used by the SSR mode.
+ */
+ unsigned short ckpt_valid_blocks;
+ unsigned char *ckpt_valid_map;
+ unsigned char type; /* segment type like CURSEG_XXX_TYPE */
+ unsigned long long mtime; /* modification time of the segment */
+};
+
+struct sec_entry {
+ unsigned int valid_blocks; /* # of valid blocks in a section */
+};
+
+struct segment_allocation {
+ void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
+};
+
+struct sit_info {
+ const struct segment_allocation *s_ops;
+
+ block_t sit_base_addr; /* start block address of SIT area */
+ block_t sit_blocks; /* # of blocks used by SIT area */
+ block_t written_valid_blocks; /* # of valid blocks in main area */
+ char *sit_bitmap; /* SIT bitmap pointer */
+ unsigned int bitmap_size; /* SIT bitmap size */
+
+ unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
+ unsigned int dirty_sentries; /* # of dirty sentries */
+ unsigned int sents_per_block; /* # of SIT entries per block */
+ struct mutex sentry_lock; /* to protect SIT cache */
+ struct seg_entry *sentries; /* SIT segment-level cache */
+ struct sec_entry *sec_entries; /* SIT section-level cache */
+
+ /* for cost-benefit algorithm in cleaning procedure */
+ unsigned long long elapsed_time; /* elapsed time after mount */
+ unsigned long long mounted_time; /* mount time */
+ unsigned long long min_mtime; /* min. modification time */
+ unsigned long long max_mtime; /* max. modification time */
+};
+
+struct free_segmap_info {
+ unsigned int start_segno; /* start segment number logically */
+ unsigned int free_segments; /* # of free segments */
+ unsigned int free_sections; /* # of free sections */
+ rwlock_t segmap_lock; /* free segmap lock */
+ unsigned long *free_segmap; /* free segment bitmap */
+ unsigned long *free_secmap; /* free section bitmap */
+};
+
+/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
+enum dirty_type {
+ DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
+ DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
+ DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
+ DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
+ DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
+ DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
+ DIRTY, /* to count # of dirty segments */
+ PRE, /* to count # of entirely obsolete segments */
+ NR_DIRTY_TYPE
+};
+
+struct dirty_seglist_info {
+ const struct victim_selection *v_ops; /* victim selction operation */
+ unsigned long *dirty_segmap[NR_DIRTY_TYPE];
+ struct mutex seglist_lock; /* lock for segment bitmaps */
+ int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
+ unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */
+};
+
+/* victim selection function for cleaning and SSR */
+struct victim_selection {
+ int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
+ int, int, char);
+};
+
+/* for active log information */
+struct curseg_info {
+ struct mutex curseg_mutex; /* lock for consistency */
+ struct f2fs_summary_block *sum_blk; /* cached summary block */
+ unsigned char alloc_type; /* current allocation type */
+ unsigned int segno; /* current segment number */
+ unsigned short next_blkoff; /* next block offset to write */
+ unsigned int zone; /* current zone number */
+ unsigned int next_segno; /* preallocated segment */
+};
+
+/*
+ * inline functions
+ */
+static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
+{
+ return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
+}
+
+static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ return &sit_i->sentries[segno];
+}
+
+static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
+}
+
+static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
+ unsigned int segno, int section)
+{
+ /*
+ * In order to get # of valid blocks in a section instantly from many
+ * segments, f2fs manages two counting structures separately.
+ */
+ if (section > 1)
+ return get_sec_entry(sbi, segno)->valid_blocks;
+ else
+ return get_seg_entry(sbi, segno)->valid_blocks;
+}
+
+static inline void seg_info_from_raw_sit(struct seg_entry *se,
+ struct f2fs_sit_entry *rs)
+{
+ se->valid_blocks = GET_SIT_VBLOCKS(rs);
+ se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
+ memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
+ memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
+ se->type = GET_SIT_TYPE(rs);
+ se->mtime = le64_to_cpu(rs->mtime);
+}
+
+static inline void seg_info_to_raw_sit(struct seg_entry *se,
+ struct f2fs_sit_entry *rs)
+{
+ unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
+ se->valid_blocks;
+ rs->vblocks = cpu_to_le16(raw_vblocks);
+ memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
+ memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
+ se->ckpt_valid_blocks = se->valid_blocks;
+ rs->mtime = cpu_to_le64(se->mtime);
+}
+
+static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
+ unsigned int max, unsigned int segno)
+{
+ unsigned int ret;
+ read_lock(&free_i->segmap_lock);
+ ret = find_next_bit(free_i->free_segmap, max, segno);
+ read_unlock(&free_i->segmap_lock);
+ return ret;
+}
+
+static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = segno / sbi->segs_per_sec;
+ unsigned int start_segno = secno * sbi->segs_per_sec;
+ unsigned int next;
+
+ write_lock(&free_i->segmap_lock);
+ clear_bit(segno, free_i->free_segmap);
+ free_i->free_segments++;
+
+ next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
+ if (next >= start_segno + sbi->segs_per_sec) {
+ clear_bit(secno, free_i->free_secmap);
+ free_i->free_sections++;
+ }
+ write_unlock(&free_i->segmap_lock);
+}
+
+static inline void __set_inuse(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = segno / sbi->segs_per_sec;
+ set_bit(segno, free_i->free_segmap);
+ free_i->free_segments--;
+ if (!test_and_set_bit(secno, free_i->free_secmap))
+ free_i->free_sections--;
+}
+
+static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = segno / sbi->segs_per_sec;
+ unsigned int start_segno = secno * sbi->segs_per_sec;
+ unsigned int next;
+
+ write_lock(&free_i->segmap_lock);
+ if (test_and_clear_bit(segno, free_i->free_segmap)) {
+ free_i->free_segments++;
+
+ next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
+ start_segno);
+ if (next >= start_segno + sbi->segs_per_sec) {
+ if (test_and_clear_bit(secno, free_i->free_secmap))
+ free_i->free_sections++;
+ }
+ }
+ write_unlock(&free_i->segmap_lock);
+}
+
+static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
+ unsigned int segno)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int secno = segno / sbi->segs_per_sec;
+ write_lock(&free_i->segmap_lock);
+ if (!test_and_set_bit(segno, free_i->free_segmap)) {
+ free_i->free_segments--;
+ if (!test_and_set_bit(secno, free_i->free_secmap))
+ free_i->free_sections--;
+ }
+ write_unlock(&free_i->segmap_lock);
+}
+
+static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
+ void *dst_addr)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
+}
+
+static inline block_t written_block_count(struct f2fs_sb_info *sbi)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ block_t vblocks;
+
+ mutex_lock(&sit_i->sentry_lock);
+ vblocks = sit_i->written_valid_blocks;
+ mutex_unlock(&sit_i->sentry_lock);
+
+ return vblocks;
+}
+
+static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int free_segs;
+
+ read_lock(&free_i->segmap_lock);
+ free_segs = free_i->free_segments;
+ read_unlock(&free_i->segmap_lock);
+
+ return free_segs;
+}
+
+static inline int reserved_segments(struct f2fs_sb_info *sbi)
+{
+ return SM_I(sbi)->reserved_segments;
+}
+
+static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
+{
+ struct free_segmap_info *free_i = FREE_I(sbi);
+ unsigned int free_secs;
+
+ read_lock(&free_i->segmap_lock);
+ free_secs = free_i->free_sections;
+ read_unlock(&free_i->segmap_lock);
+
+ return free_secs;
+}
+
+static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
+{
+ return DIRTY_I(sbi)->nr_dirty[PRE];
+}
+
+static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
+{
+ return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
+ DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
+}
+
+static inline int overprovision_segments(struct f2fs_sb_info *sbi)
+{
+ return SM_I(sbi)->ovp_segments;
+}
+
+static inline int overprovision_sections(struct f2fs_sb_info *sbi)
+{
+ return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
+}
+
+static inline int reserved_sections(struct f2fs_sb_info *sbi)
+{
+ return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
+}
+
+static inline bool need_SSR(struct f2fs_sb_info *sbi)
+{
+ return (free_sections(sbi) < overprovision_sections(sbi));
+}
+
+static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
+{
+ int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
+ int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
+
+ if (sbi->por_doing)
+ return false;
+
+ return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
+ reserved_sections(sbi)));
+}
+
+static inline int utilization(struct f2fs_sb_info *sbi)
+{
+ return (long int)valid_user_blocks(sbi) * 100 /
+ (long int)sbi->user_block_count;
+}
+
+/*
+ * Sometimes f2fs may be better to drop out-of-place update policy.
+ * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
+ * data in the original place likewise other traditional file systems.
+ * But, currently set 100 in percentage, which means it is disabled.
+ * See below need_inplace_update().
+ */
+#define MIN_IPU_UTIL 100
+static inline bool need_inplace_update(struct inode *inode)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ if (S_ISDIR(inode->i_mode))
+ return false;
+ if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
+ return true;
+ return false;
+}
+
+static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
+ int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ return curseg->segno;
+}
+
+static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
+ int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ return curseg->alloc_type;
+}
+
+static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
+{
+ struct curseg_info *curseg = CURSEG_I(sbi, type);
+ return curseg->next_blkoff;
+}
+
+static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
+{
+ unsigned int end_segno = SM_I(sbi)->segment_count - 1;
+ BUG_ON(segno > end_segno);
+}
+
+/*
+ * This function is used for only debugging.
+ * NOTE: In future, we have to remove this function.
+ */
+static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
+{
+ struct f2fs_sm_info *sm_info = SM_I(sbi);
+ block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
+ block_t start_addr = sm_info->seg0_blkaddr;
+ block_t end_addr = start_addr + total_blks - 1;
+ BUG_ON(blk_addr < start_addr);
+ BUG_ON(blk_addr > end_addr);
+}
+
+/*
+ * Summary block is always treated as invalid block
+ */
+static inline void check_block_count(struct f2fs_sb_info *sbi,
+ int segno, struct f2fs_sit_entry *raw_sit)
+{
+ struct f2fs_sm_info *sm_info = SM_I(sbi);
+ unsigned int end_segno = sm_info->segment_count - 1;
+ int valid_blocks = 0;
+ int i;
+
+ /* check segment usage */
+ BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
+
+ /* check boundary of a given segment number */
+ BUG_ON(segno > end_segno);
+
+ /* check bitmap with valid block count */
+ for (i = 0; i < sbi->blocks_per_seg; i++)
+ if (f2fs_test_bit(i, raw_sit->valid_map))
+ valid_blocks++;
+ BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
+}
+
+static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
+ unsigned int start)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
+ block_t blk_addr = sit_i->sit_base_addr + offset;
+
+ check_seg_range(sbi, start);
+
+ /* calculate sit block address */
+ if (f2fs_test_bit(offset, sit_i->sit_bitmap))
+ blk_addr += sit_i->sit_blocks;
+
+ return blk_addr;
+}
+
+static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
+ pgoff_t block_addr)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ block_addr -= sit_i->sit_base_addr;
+ if (block_addr < sit_i->sit_blocks)
+ block_addr += sit_i->sit_blocks;
+ else
+ block_addr -= sit_i->sit_blocks;
+
+ return block_addr + sit_i->sit_base_addr;
+}
+
+static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
+{
+ unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
+
+ if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
+ f2fs_clear_bit(block_off, sit_i->sit_bitmap);
+ else
+ f2fs_set_bit(block_off, sit_i->sit_bitmap);
+}
+
+static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
+{
+ struct sit_info *sit_i = SIT_I(sbi);
+ return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
+ sit_i->mounted_time;
+}
+
+static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
+ unsigned int ofs_in_node, unsigned char version)
+{
+ sum->nid = cpu_to_le32(nid);
+ sum->ofs_in_node = cpu_to_le16(ofs_in_node);
+ sum->version = version;
+}
+
+static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
+{
+ return __start_cp_addr(sbi) +
+ le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
+}
+
+static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
+{
+ return __start_cp_addr(sbi) +
+ le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
+ - (base + 1) + type;
+}
diff --git a/fs/f2fs/super.c b/fs/f2fs/super.c
new file mode 100644
index 000000000000..fea6e582a2ed
--- /dev/null
+++ b/fs/f2fs/super.c
@@ -0,0 +1,750 @@
+/*
+ * fs/f2fs/super.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/statfs.h>
+#include <linux/proc_fs.h>
+#include <linux/buffer_head.h>
+#include <linux/backing-dev.h>
+#include <linux/kthread.h>
+#include <linux/parser.h>
+#include <linux/mount.h>
+#include <linux/seq_file.h>
+#include <linux/random.h>
+#include <linux/exportfs.h>
+#include <linux/f2fs_fs.h>
+
+#include "f2fs.h"
+#include "node.h"
+#include "xattr.h"
+
+static struct kmem_cache *f2fs_inode_cachep;
+
+enum {
+ Opt_gc_background_off,
+ Opt_disable_roll_forward,
+ Opt_discard,
+ Opt_noheap,
+ Opt_nouser_xattr,
+ Opt_noacl,
+ Opt_active_logs,
+ Opt_disable_ext_identify,
+ Opt_err,
+};
+
+static match_table_t f2fs_tokens = {
+ {Opt_gc_background_off, "background_gc_off"},
+ {Opt_disable_roll_forward, "disable_roll_forward"},
+ {Opt_discard, "discard"},
+ {Opt_noheap, "no_heap"},
+ {Opt_nouser_xattr, "nouser_xattr"},
+ {Opt_noacl, "noacl"},
+ {Opt_active_logs, "active_logs=%u"},
+ {Opt_disable_ext_identify, "disable_ext_identify"},
+ {Opt_err, NULL},
+};
+
+void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
+{
+ struct va_format vaf;
+ va_list args;
+
+ va_start(args, fmt);
+ vaf.fmt = fmt;
+ vaf.va = &args;
+ printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
+ va_end(args);
+}
+
+static void init_once(void *foo)
+{
+ struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
+
+ inode_init_once(&fi->vfs_inode);
+}
+
+static struct inode *f2fs_alloc_inode(struct super_block *sb)
+{
+ struct f2fs_inode_info *fi;
+
+ fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_NOFS | __GFP_ZERO);
+ if (!fi)
+ return NULL;
+
+ init_once((void *) fi);
+
+ /* Initilize f2fs-specific inode info */
+ fi->vfs_inode.i_version = 1;
+ atomic_set(&fi->dirty_dents, 0);
+ fi->i_current_depth = 1;
+ fi->i_advise = 0;
+ rwlock_init(&fi->ext.ext_lock);
+
+ set_inode_flag(fi, FI_NEW_INODE);
+
+ return &fi->vfs_inode;
+}
+
+static void f2fs_i_callback(struct rcu_head *head)
+{
+ struct inode *inode = container_of(head, struct inode, i_rcu);
+ kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
+}
+
+static void f2fs_destroy_inode(struct inode *inode)
+{
+ call_rcu(&inode->i_rcu, f2fs_i_callback);
+}
+
+static void f2fs_put_super(struct super_block *sb)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+
+ f2fs_destroy_stats(sbi);
+ stop_gc_thread(sbi);
+
+ write_checkpoint(sbi, true);
+
+ iput(sbi->node_inode);
+ iput(sbi->meta_inode);
+
+ /* destroy f2fs internal modules */
+ destroy_node_manager(sbi);
+ destroy_segment_manager(sbi);
+
+ kfree(sbi->ckpt);
+
+ sb->s_fs_info = NULL;
+ brelse(sbi->raw_super_buf);
+ kfree(sbi);
+}
+
+int f2fs_sync_fs(struct super_block *sb, int sync)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+
+ if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
+ return 0;
+
+ if (sync)
+ write_checkpoint(sbi, false);
+ else
+ f2fs_balance_fs(sbi);
+
+ return 0;
+}
+
+static int f2fs_freeze(struct super_block *sb)
+{
+ int err;
+
+ if (sb->s_flags & MS_RDONLY)
+ return 0;
+
+ err = f2fs_sync_fs(sb, 1);
+ return err;
+}
+
+static int f2fs_unfreeze(struct super_block *sb)
+{
+ return 0;
+}
+
+static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
+{
+ struct super_block *sb = dentry->d_sb;
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
+ block_t total_count, user_block_count, start_count, ovp_count;
+
+ total_count = le64_to_cpu(sbi->raw_super->block_count);
+ user_block_count = sbi->user_block_count;
+ start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
+ ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
+ buf->f_type = F2FS_SUPER_MAGIC;
+ buf->f_bsize = sbi->blocksize;
+
+ buf->f_blocks = total_count - start_count;
+ buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
+ buf->f_bavail = user_block_count - valid_user_blocks(sbi);
+
+ buf->f_files = sbi->total_node_count;
+ buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
+
+ buf->f_namelen = F2FS_MAX_NAME_LEN;
+ buf->f_fsid.val[0] = (u32)id;
+ buf->f_fsid.val[1] = (u32)(id >> 32);
+
+ return 0;
+}
+
+static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
+
+ if (test_opt(sbi, BG_GC))
+ seq_puts(seq, ",background_gc_on");
+ else
+ seq_puts(seq, ",background_gc_off");
+ if (test_opt(sbi, DISABLE_ROLL_FORWARD))
+ seq_puts(seq, ",disable_roll_forward");
+ if (test_opt(sbi, DISCARD))
+ seq_puts(seq, ",discard");
+ if (test_opt(sbi, NOHEAP))
+ seq_puts(seq, ",no_heap_alloc");
+#ifdef CONFIG_F2FS_FS_XATTR
+ if (test_opt(sbi, XATTR_USER))
+ seq_puts(seq, ",user_xattr");
+ else
+ seq_puts(seq, ",nouser_xattr");
+#endif
+#ifdef CONFIG_F2FS_FS_POSIX_ACL
+ if (test_opt(sbi, POSIX_ACL))
+ seq_puts(seq, ",acl");
+ else
+ seq_puts(seq, ",noacl");
+#endif
+ if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
+ seq_puts(seq, ",disable_ext_identify");
+
+ seq_printf(seq, ",active_logs=%u", sbi->active_logs);
+
+ return 0;
+}
+
+static struct super_operations f2fs_sops = {
+ .alloc_inode = f2fs_alloc_inode,
+ .destroy_inode = f2fs_destroy_inode,
+ .write_inode = f2fs_write_inode,
+ .show_options = f2fs_show_options,
+ .evict_inode = f2fs_evict_inode,
+ .put_super = f2fs_put_super,
+ .sync_fs = f2fs_sync_fs,
+ .freeze_fs = f2fs_freeze,
+ .unfreeze_fs = f2fs_unfreeze,
+ .statfs = f2fs_statfs,
+};
+
+static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
+ u64 ino, u32 generation)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(sb);
+ struct inode *inode;
+
+ if (ino < F2FS_ROOT_INO(sbi))
+ return ERR_PTR(-ESTALE);
+
+ /*
+ * f2fs_iget isn't quite right if the inode is currently unallocated!
+ * However f2fs_iget currently does appropriate checks to handle stale
+ * inodes so everything is OK.
+ */
+ inode = f2fs_iget(sb, ino);
+ if (IS_ERR(inode))
+ return ERR_CAST(inode);
+ if (generation && inode->i_generation != generation) {
+ /* we didn't find the right inode.. */
+ iput(inode);
+ return ERR_PTR(-ESTALE);
+ }
+ return inode;
+}
+
+static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
+ int fh_len, int fh_type)
+{
+ return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
+ f2fs_nfs_get_inode);
+}
+
+static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
+ int fh_len, int fh_type)
+{
+ return generic_fh_to_parent(sb, fid, fh_len, fh_type,
+ f2fs_nfs_get_inode);
+}
+
+static const struct export_operations f2fs_export_ops = {
+ .fh_to_dentry = f2fs_fh_to_dentry,
+ .fh_to_parent = f2fs_fh_to_parent,
+ .get_parent = f2fs_get_parent,
+};
+
+static int parse_options(struct super_block *sb, struct f2fs_sb_info *sbi,
+ char *options)
+{
+ substring_t args[MAX_OPT_ARGS];
+ char *p;
+ int arg = 0;
+
+ if (!options)
+ return 0;
+
+ while ((p = strsep(&options, ",")) != NULL) {
+ int token;
+ if (!*p)
+ continue;
+ /*
+ * Initialize args struct so we know whether arg was
+ * found; some options take optional arguments.
+ */
+ args[0].to = args[0].from = NULL;
+ token = match_token(p, f2fs_tokens, args);
+
+ switch (token) {
+ case Opt_gc_background_off:
+ clear_opt(sbi, BG_GC);
+ break;
+ case Opt_disable_roll_forward:
+ set_opt(sbi, DISABLE_ROLL_FORWARD);
+ break;
+ case Opt_discard:
+ set_opt(sbi, DISCARD);
+ break;
+ case Opt_noheap:
+ set_opt(sbi, NOHEAP);
+ break;
+#ifdef CONFIG_F2FS_FS_XATTR
+ case Opt_nouser_xattr:
+ clear_opt(sbi, XATTR_USER);
+ break;
+#else
+ case Opt_nouser_xattr:
+ f2fs_msg(sb, KERN_INFO,
+ "nouser_xattr options not supported");
+ break;
+#endif
+#ifdef CONFIG_F2FS_FS_POSIX_ACL
+ case Opt_noacl:
+ clear_opt(sbi, POSIX_ACL);
+ break;
+#else
+ case Opt_noacl:
+ f2fs_msg(sb, KERN_INFO, "noacl options not supported");
+ break;
+#endif
+ case Opt_active_logs:
+ if (args->from && match_int(args, &arg))
+ return -EINVAL;
+ if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
+ return -EINVAL;
+ sbi->active_logs = arg;
+ break;
+ case Opt_disable_ext_identify:
+ set_opt(sbi, DISABLE_EXT_IDENTIFY);
+ break;
+ default:
+ f2fs_msg(sb, KERN_ERR,
+ "Unrecognized mount option \"%s\" or missing value",
+ p);
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+static loff_t max_file_size(unsigned bits)
+{
+ loff_t result = ADDRS_PER_INODE;
+ loff_t leaf_count = ADDRS_PER_BLOCK;
+
+ /* two direct node blocks */
+ result += (leaf_count * 2);
+
+ /* two indirect node blocks */
+ leaf_count *= NIDS_PER_BLOCK;
+ result += (leaf_count * 2);
+
+ /* one double indirect node block */
+ leaf_count *= NIDS_PER_BLOCK;
+ result += leaf_count;
+
+ result <<= bits;
+ return result;
+}
+
+static int sanity_check_raw_super(struct super_block *sb,
+ struct f2fs_super_block *raw_super)
+{
+ unsigned int blocksize;
+
+ if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
+ f2fs_msg(sb, KERN_INFO,
+ "Magic Mismatch, valid(0x%x) - read(0x%x)",
+ F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
+ return 1;
+ }
+
+ /* Currently, support only 4KB page cache size */
+ if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
+ f2fs_msg(sb, KERN_INFO,
+ "Invalid page_cache_size (%lu), supports only 4KB\n",
+ PAGE_CACHE_SIZE);
+ return 1;
+ }
+
+ /* Currently, support only 4KB block size */
+ blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
+ if (blocksize != F2FS_BLKSIZE) {
+ f2fs_msg(sb, KERN_INFO,
+ "Invalid blocksize (%u), supports only 4KB\n",
+ blocksize);
+ return 1;
+ }
+
+ if (le32_to_cpu(raw_super->log_sectorsize) !=
+ F2FS_LOG_SECTOR_SIZE) {
+ f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
+ return 1;
+ }
+ if (le32_to_cpu(raw_super->log_sectors_per_block) !=
+ F2FS_LOG_SECTORS_PER_BLOCK) {
+ f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
+ return 1;
+ }
+ return 0;
+}
+
+static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
+{
+ unsigned int total, fsmeta;
+ struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
+ struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+
+ total = le32_to_cpu(raw_super->segment_count);
+ fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
+ fsmeta += le32_to_cpu(raw_super->segment_count_sit);
+ fsmeta += le32_to_cpu(raw_super->segment_count_nat);
+ fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
+ fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
+
+ if (fsmeta >= total)
+ return 1;
+
+ if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
+ f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
+ return 1;
+ }
+ return 0;
+}
+
+static void init_sb_info(struct f2fs_sb_info *sbi)
+{
+ struct f2fs_super_block *raw_super = sbi->raw_super;
+ int i;
+
+ sbi->log_sectors_per_block =
+ le32_to_cpu(raw_super->log_sectors_per_block);
+ sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
+ sbi->blocksize = 1 << sbi->log_blocksize;
+ sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
+ sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
+ sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
+ sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
+ sbi->total_sections = le32_to_cpu(raw_super->section_count);
+ sbi->total_node_count =
+ (le32_to_cpu(raw_super->segment_count_nat) / 2)
+ * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
+ sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
+ sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
+ sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
+
+ for (i = 0; i < NR_COUNT_TYPE; i++)
+ atomic_set(&sbi->nr_pages[i], 0);
+}
+
+static int validate_superblock(struct super_block *sb,
+ struct f2fs_super_block **raw_super,
+ struct buffer_head **raw_super_buf, sector_t block)
+{
+ const char *super = (block == 0 ? "first" : "second");
+
+ /* read f2fs raw super block */
+ *raw_super_buf = sb_bread(sb, block);
+ if (!*raw_super_buf) {
+ f2fs_msg(sb, KERN_ERR, "unable to read %s superblock",
+ super);
+ return 1;
+ }
+
+ *raw_super = (struct f2fs_super_block *)
+ ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
+
+ /* sanity checking of raw super */
+ if (!sanity_check_raw_super(sb, *raw_super))
+ return 0;
+
+ f2fs_msg(sb, KERN_ERR, "Can't find a valid F2FS filesystem "
+ "in %s superblock", super);
+ return 1;
+}
+
+static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
+{
+ struct f2fs_sb_info *sbi;
+ struct f2fs_super_block *raw_super;
+ struct buffer_head *raw_super_buf;
+ struct inode *root;
+ long err = -EINVAL;
+ int i;
+
+ /* allocate memory for f2fs-specific super block info */
+ sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
+ if (!sbi)
+ return -ENOMEM;
+
+ /* set a block size */
+ if (!sb_set_blocksize(sb, F2FS_BLKSIZE)) {
+ f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
+ goto free_sbi;
+ }
+
+ if (validate_superblock(sb, &raw_super, &raw_super_buf, 0)) {
+ brelse(raw_super_buf);
+ if (validate_superblock(sb, &raw_super, &raw_super_buf, 1))
+ goto free_sb_buf;
+ }
+ /* init some FS parameters */
+ sbi->active_logs = NR_CURSEG_TYPE;
+
+ set_opt(sbi, BG_GC);
+
+#ifdef CONFIG_F2FS_FS_XATTR
+ set_opt(sbi, XATTR_USER);
+#endif
+#ifdef CONFIG_F2FS_FS_POSIX_ACL
+ set_opt(sbi, POSIX_ACL);
+#endif
+ /* parse mount options */
+ if (parse_options(sb, sbi, (char *)data))
+ goto free_sb_buf;
+
+ sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
+ sb->s_max_links = F2FS_LINK_MAX;
+ get_random_bytes(&sbi->s_next_generation, sizeof(u32));
+
+ sb->s_op = &f2fs_sops;
+ sb->s_xattr = f2fs_xattr_handlers;
+ sb->s_export_op = &f2fs_export_ops;
+ sb->s_magic = F2FS_SUPER_MAGIC;
+ sb->s_fs_info = sbi;
+ sb->s_time_gran = 1;
+ sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
+ (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
+ memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
+
+ /* init f2fs-specific super block info */
+ sbi->sb = sb;
+ sbi->raw_super = raw_super;
+ sbi->raw_super_buf = raw_super_buf;
+ mutex_init(&sbi->gc_mutex);
+ mutex_init(&sbi->write_inode);
+ mutex_init(&sbi->writepages);
+ mutex_init(&sbi->cp_mutex);
+ for (i = 0; i < NR_LOCK_TYPE; i++)
+ mutex_init(&sbi->fs_lock[i]);
+ sbi->por_doing = 0;
+ spin_lock_init(&sbi->stat_lock);
+ init_rwsem(&sbi->bio_sem);
+ init_sb_info(sbi);
+
+ /* get an inode for meta space */
+ sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
+ if (IS_ERR(sbi->meta_inode)) {
+ f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
+ err = PTR_ERR(sbi->meta_inode);
+ goto free_sb_buf;
+ }
+
+ err = get_valid_checkpoint(sbi);
+ if (err) {
+ f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
+ goto free_meta_inode;
+ }
+
+ /* sanity checking of checkpoint */
+ err = -EINVAL;
+ if (sanity_check_ckpt(sbi)) {
+ f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
+ goto free_cp;
+ }
+
+ sbi->total_valid_node_count =
+ le32_to_cpu(sbi->ckpt->valid_node_count);
+ sbi->total_valid_inode_count =
+ le32_to_cpu(sbi->ckpt->valid_inode_count);
+ sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
+ sbi->total_valid_block_count =
+ le64_to_cpu(sbi->ckpt->valid_block_count);
+ sbi->last_valid_block_count = sbi->total_valid_block_count;
+ sbi->alloc_valid_block_count = 0;
+ INIT_LIST_HEAD(&sbi->dir_inode_list);
+ spin_lock_init(&sbi->dir_inode_lock);
+
+ init_orphan_info(sbi);
+
+ /* setup f2fs internal modules */
+ err = build_segment_manager(sbi);
+ if (err) {
+ f2fs_msg(sb, KERN_ERR,
+ "Failed to initialize F2FS segment manager");
+ goto free_sm;
+ }
+ err = build_node_manager(sbi);
+ if (err) {
+ f2fs_msg(sb, KERN_ERR,
+ "Failed to initialize F2FS node manager");
+ goto free_nm;
+ }
+
+ build_gc_manager(sbi);
+
+ /* get an inode for node space */
+ sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
+ if (IS_ERR(sbi->node_inode)) {
+ f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
+ err = PTR_ERR(sbi->node_inode);
+ goto free_nm;
+ }
+
+ /* if there are nt orphan nodes free them */
+ err = -EINVAL;
+ if (recover_orphan_inodes(sbi))
+ goto free_node_inode;
+
+ /* read root inode and dentry */
+ root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
+ if (IS_ERR(root)) {
+ f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
+ err = PTR_ERR(root);
+ goto free_node_inode;
+ }
+ if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size)
+ goto free_root_inode;
+
+ sb->s_root = d_make_root(root); /* allocate root dentry */
+ if (!sb->s_root) {
+ err = -ENOMEM;
+ goto free_root_inode;
+ }
+
+ /* recover fsynced data */
+ if (!test_opt(sbi, DISABLE_ROLL_FORWARD))
+ recover_fsync_data(sbi);
+
+ /* After POR, we can run background GC thread */
+ err = start_gc_thread(sbi);
+ if (err)
+ goto fail;
+
+ err = f2fs_build_stats(sbi);
+ if (err)
+ goto fail;
+
+ return 0;
+fail:
+ stop_gc_thread(sbi);
+free_root_inode:
+ dput(sb->s_root);
+ sb->s_root = NULL;
+free_node_inode:
+ iput(sbi->node_inode);
+free_nm:
+ destroy_node_manager(sbi);
+free_sm:
+ destroy_segment_manager(sbi);
+free_cp:
+ kfree(sbi->ckpt);
+free_meta_inode:
+ make_bad_inode(sbi->meta_inode);
+ iput(sbi->meta_inode);
+free_sb_buf:
+ brelse(raw_super_buf);
+free_sbi:
+ kfree(sbi);
+ return err;
+}
+
+static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
+ const char *dev_name, void *data)
+{
+ return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
+}
+
+static struct file_system_type f2fs_fs_type = {
+ .owner = THIS_MODULE,
+ .name = "f2fs",
+ .mount = f2fs_mount,
+ .kill_sb = kill_block_super,
+ .fs_flags = FS_REQUIRES_DEV,
+};
+MODULE_ALIAS_FS("f2fs");
+
+static int __init init_inodecache(void)
+{
+ f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
+ sizeof(struct f2fs_inode_info), NULL);
+ if (f2fs_inode_cachep == NULL)
+ return -ENOMEM;
+ return 0;
+}
+
+static void destroy_inodecache(void)
+{
+ /*
+ * Make sure all delayed rcu free inodes are flushed before we
+ * destroy cache.
+ */
+ rcu_barrier();
+ kmem_cache_destroy(f2fs_inode_cachep);
+}
+
+static int __init init_f2fs_fs(void)
+{
+ int err;
+
+ err = init_inodecache();
+ if (err)
+ goto fail;
+ err = create_node_manager_caches();
+ if (err)
+ goto fail;
+ err = create_gc_caches();
+ if (err)
+ goto fail;
+ err = create_checkpoint_caches();
+ if (err)
+ goto fail;
+ err = register_filesystem(&f2fs_fs_type);
+ if (err)
+ goto fail;
+ f2fs_create_root_stats();
+fail:
+ return err;
+}
+
+static void __exit exit_f2fs_fs(void)
+{
+ f2fs_destroy_root_stats();
+ unregister_filesystem(&f2fs_fs_type);
+ destroy_checkpoint_caches();
+ destroy_gc_caches();
+ destroy_node_manager_caches();
+ destroy_inodecache();
+}
+
+module_init(init_f2fs_fs)
+module_exit(exit_f2fs_fs)
+
+MODULE_AUTHOR("Samsung Electronics's Praesto Team");
+MODULE_DESCRIPTION("Flash Friendly File System");
+MODULE_LICENSE("GPL");
diff --git a/fs/f2fs/xattr.c b/fs/f2fs/xattr.c
new file mode 100644
index 000000000000..8038c0496504
--- /dev/null
+++ b/fs/f2fs/xattr.c
@@ -0,0 +1,443 @@
+/*
+ * fs/f2fs/xattr.c
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * Portions of this code from linux/fs/ext2/xattr.c
+ *
+ * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
+ *
+ * Fix by Harrison Xing <harrison@mountainviewdata.com>.
+ * Extended attributes for symlinks and special files added per
+ * suggestion of Luka Renko <luka.renko@hermes.si>.
+ * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
+ * Red Hat Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/rwsem.h>
+#include <linux/f2fs_fs.h>
+#include "f2fs.h"
+#include "xattr.h"
+
+static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list,
+ size_t list_size, const char *name, size_t name_len, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
+ int total_len, prefix_len = 0;
+ const char *prefix = NULL;
+
+ switch (type) {
+ case F2FS_XATTR_INDEX_USER:
+ if (!test_opt(sbi, XATTR_USER))
+ return -EOPNOTSUPP;
+ prefix = XATTR_USER_PREFIX;
+ prefix_len = XATTR_USER_PREFIX_LEN;
+ break;
+ case F2FS_XATTR_INDEX_TRUSTED:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ prefix = XATTR_TRUSTED_PREFIX;
+ prefix_len = XATTR_TRUSTED_PREFIX_LEN;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ total_len = prefix_len + name_len + 1;
+ if (list && total_len <= list_size) {
+ memcpy(list, prefix, prefix_len);
+ memcpy(list+prefix_len, name, name_len);
+ list[prefix_len + name_len] = '\0';
+ }
+ return total_len;
+}
+
+static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name,
+ void *buffer, size_t size, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
+
+ switch (type) {
+ case F2FS_XATTR_INDEX_USER:
+ if (!test_opt(sbi, XATTR_USER))
+ return -EOPNOTSUPP;
+ break;
+ case F2FS_XATTR_INDEX_TRUSTED:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ break;
+ default:
+ return -EINVAL;
+ }
+ if (strcmp(name, "") == 0)
+ return -EINVAL;
+ return f2fs_getxattr(dentry->d_inode, type, name,
+ buffer, size);
+}
+
+static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name,
+ const void *value, size_t size, int flags, int type)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
+
+ switch (type) {
+ case F2FS_XATTR_INDEX_USER:
+ if (!test_opt(sbi, XATTR_USER))
+ return -EOPNOTSUPP;
+ break;
+ case F2FS_XATTR_INDEX_TRUSTED:
+ if (!capable(CAP_SYS_ADMIN))
+ return -EPERM;
+ break;
+ default:
+ return -EINVAL;
+ }
+ if (strcmp(name, "") == 0)
+ return -EINVAL;
+
+ return f2fs_setxattr(dentry->d_inode, type, name, value, size);
+}
+
+static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list,
+ size_t list_size, const char *name, size_t name_len, int type)
+{
+ const char *xname = F2FS_SYSTEM_ADVISE_PREFIX;
+ size_t size;
+
+ if (type != F2FS_XATTR_INDEX_ADVISE)
+ return 0;
+
+ size = strlen(xname) + 1;
+ if (list && size <= list_size)
+ memcpy(list, xname, size);
+ return size;
+}
+
+static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name,
+ void *buffer, size_t size, int type)
+{
+ struct inode *inode = dentry->d_inode;
+
+ if (strcmp(name, "") != 0)
+ return -EINVAL;
+
+ *((char *)buffer) = F2FS_I(inode)->i_advise;
+ return sizeof(char);
+}
+
+static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name,
+ const void *value, size_t size, int flags, int type)
+{
+ struct inode *inode = dentry->d_inode;
+
+ if (strcmp(name, "") != 0)
+ return -EINVAL;
+ if (!inode_owner_or_capable(inode))
+ return -EPERM;
+ if (value == NULL)
+ return -EINVAL;
+
+ F2FS_I(inode)->i_advise |= *(char *)value;
+ return 0;
+}
+
+const struct xattr_handler f2fs_xattr_user_handler = {
+ .prefix = XATTR_USER_PREFIX,
+ .flags = F2FS_XATTR_INDEX_USER,
+ .list = f2fs_xattr_generic_list,
+ .get = f2fs_xattr_generic_get,
+ .set = f2fs_xattr_generic_set,
+};
+
+const struct xattr_handler f2fs_xattr_trusted_handler = {
+ .prefix = XATTR_TRUSTED_PREFIX,
+ .flags = F2FS_XATTR_INDEX_TRUSTED,
+ .list = f2fs_xattr_generic_list,
+ .get = f2fs_xattr_generic_get,
+ .set = f2fs_xattr_generic_set,
+};
+
+const struct xattr_handler f2fs_xattr_advise_handler = {
+ .prefix = F2FS_SYSTEM_ADVISE_PREFIX,
+ .flags = F2FS_XATTR_INDEX_ADVISE,
+ .list = f2fs_xattr_advise_list,
+ .get = f2fs_xattr_advise_get,
+ .set = f2fs_xattr_advise_set,
+};
+
+static const struct xattr_handler *f2fs_xattr_handler_map[] = {
+ [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
+#ifdef CONFIG_F2FS_FS_POSIX_ACL
+ [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &f2fs_xattr_acl_access_handler,
+ [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &f2fs_xattr_acl_default_handler,
+#endif
+ [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
+ [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
+};
+
+const struct xattr_handler *f2fs_xattr_handlers[] = {
+ &f2fs_xattr_user_handler,
+#ifdef CONFIG_F2FS_FS_POSIX_ACL
+ &f2fs_xattr_acl_access_handler,
+ &f2fs_xattr_acl_default_handler,
+#endif
+ &f2fs_xattr_trusted_handler,
+ &f2fs_xattr_advise_handler,
+ NULL,
+};
+
+static inline const struct xattr_handler *f2fs_xattr_handler(int name_index)
+{
+ const struct xattr_handler *handler = NULL;
+
+ if (name_index > 0 && name_index < ARRAY_SIZE(f2fs_xattr_handler_map))
+ handler = f2fs_xattr_handler_map[name_index];
+ return handler;
+}
+
+int f2fs_getxattr(struct inode *inode, int name_index, const char *name,
+ void *buffer, size_t buffer_size)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ struct f2fs_xattr_entry *entry;
+ struct page *page;
+ void *base_addr;
+ int error = 0, found = 0;
+ size_t value_len, name_len;
+
+ if (name == NULL)
+ return -EINVAL;
+ name_len = strlen(name);
+
+ if (!fi->i_xattr_nid)
+ return -ENODATA;
+
+ page = get_node_page(sbi, fi->i_xattr_nid);
+ base_addr = page_address(page);
+
+ list_for_each_xattr(entry, base_addr) {
+ if (entry->e_name_index != name_index)
+ continue;
+ if (entry->e_name_len != name_len)
+ continue;
+ if (!memcmp(entry->e_name, name, name_len)) {
+ found = 1;
+ break;
+ }
+ }
+ if (!found) {
+ error = -ENODATA;
+ goto cleanup;
+ }
+
+ value_len = le16_to_cpu(entry->e_value_size);
+
+ if (buffer && value_len > buffer_size) {
+ error = -ERANGE;
+ goto cleanup;
+ }
+
+ if (buffer) {
+ char *pval = entry->e_name + entry->e_name_len;
+ memcpy(buffer, pval, value_len);
+ }
+ error = value_len;
+
+cleanup:
+ f2fs_put_page(page, 1);
+ return error;
+}
+
+ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
+{
+ struct inode *inode = dentry->d_inode;
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ struct f2fs_xattr_entry *entry;
+ struct page *page;
+ void *base_addr;
+ int error = 0;
+ size_t rest = buffer_size;
+
+ if (!fi->i_xattr_nid)
+ return 0;
+
+ page = get_node_page(sbi, fi->i_xattr_nid);
+ base_addr = page_address(page);
+
+ list_for_each_xattr(entry, base_addr) {
+ const struct xattr_handler *handler =
+ f2fs_xattr_handler(entry->e_name_index);
+ size_t size;
+
+ if (!handler)
+ continue;
+
+ size = handler->list(dentry, buffer, rest, entry->e_name,
+ entry->e_name_len, handler->flags);
+ if (buffer && size > rest) {
+ error = -ERANGE;
+ goto cleanup;
+ }
+
+ if (buffer)
+ buffer += size;
+ rest -= size;
+ }
+ error = buffer_size - rest;
+cleanup:
+ f2fs_put_page(page, 1);
+ return error;
+}
+
+int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
+ const void *value, size_t value_len)
+{
+ struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
+ struct f2fs_inode_info *fi = F2FS_I(inode);
+ struct f2fs_xattr_header *header = NULL;
+ struct f2fs_xattr_entry *here, *last;
+ struct page *page;
+ void *base_addr;
+ int error, found, free, newsize;
+ size_t name_len;
+ char *pval;
+
+ if (name == NULL)
+ return -EINVAL;
+ name_len = strlen(name);
+
+ if (value == NULL)
+ value_len = 0;
+
+ if (name_len > 255 || value_len > MAX_VALUE_LEN)
+ return -ERANGE;
+
+ f2fs_balance_fs(sbi);
+
+ mutex_lock_op(sbi, NODE_NEW);
+ if (!fi->i_xattr_nid) {
+ /* Allocate new attribute block */
+ struct dnode_of_data dn;
+
+ if (!alloc_nid(sbi, &fi->i_xattr_nid)) {
+ mutex_unlock_op(sbi, NODE_NEW);
+ return -ENOSPC;
+ }
+ set_new_dnode(&dn, inode, NULL, NULL, fi->i_xattr_nid);
+ mark_inode_dirty(inode);
+
+ page = new_node_page(&dn, XATTR_NODE_OFFSET);
+ if (IS_ERR(page)) {
+ alloc_nid_failed(sbi, fi->i_xattr_nid);
+ fi->i_xattr_nid = 0;
+ mutex_unlock_op(sbi, NODE_NEW);
+ return PTR_ERR(page);
+ }
+
+ alloc_nid_done(sbi, fi->i_xattr_nid);
+ base_addr = page_address(page);
+ header = XATTR_HDR(base_addr);
+ header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
+ header->h_refcount = cpu_to_le32(1);
+ } else {
+ /* The inode already has an extended attribute block. */
+ page = get_node_page(sbi, fi->i_xattr_nid);
+ if (IS_ERR(page)) {
+ mutex_unlock_op(sbi, NODE_NEW);
+ return PTR_ERR(page);
+ }
+
+ base_addr = page_address(page);
+ header = XATTR_HDR(base_addr);
+ }
+
+ if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
+ error = -EIO;
+ goto cleanup;
+ }
+
+ /* find entry with wanted name. */
+ found = 0;
+ list_for_each_xattr(here, base_addr) {
+ if (here->e_name_index != name_index)
+ continue;
+ if (here->e_name_len != name_len)
+ continue;
+ if (!memcmp(here->e_name, name, name_len)) {
+ found = 1;
+ break;
+ }
+ }
+
+ last = here;
+
+ while (!IS_XATTR_LAST_ENTRY(last))
+ last = XATTR_NEXT_ENTRY(last);
+
+ newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) +
+ name_len + value_len);
+
+ /* 1. Check space */
+ if (value) {
+ /* If value is NULL, it is remove operation.
+ * In case of update operation, we caculate free.
+ */
+ free = MIN_OFFSET - ((char *)last - (char *)header);
+ if (found)
+ free = free - ENTRY_SIZE(here);
+
+ if (free < newsize) {
+ error = -ENOSPC;
+ goto cleanup;
+ }
+ }
+
+ /* 2. Remove old entry */
+ if (found) {
+ /* If entry is found, remove old entry.
+ * If not found, remove operation is not needed.
+ */
+ struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
+ int oldsize = ENTRY_SIZE(here);
+
+ memmove(here, next, (char *)last - (char *)next);
+ last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
+ memset(last, 0, oldsize);
+ }
+
+ /* 3. Write new entry */
+ if (value) {
+ /* Before we come here, old entry is removed.
+ * We just write new entry. */
+ memset(last, 0, newsize);
+ last->e_name_index = name_index;
+ last->e_name_len = name_len;
+ memcpy(last->e_name, name, name_len);
+ pval = last->e_name + name_len;
+ memcpy(pval, value, value_len);
+ last->e_value_size = cpu_to_le16(value_len);
+ }
+
+ set_page_dirty(page);
+ f2fs_put_page(page, 1);
+
+ if (is_inode_flag_set(fi, FI_ACL_MODE)) {
+ inode->i_mode = fi->i_acl_mode;
+ inode->i_ctime = CURRENT_TIME;
+ clear_inode_flag(fi, FI_ACL_MODE);
+ }
+ f2fs_write_inode(inode, NULL);
+ mutex_unlock_op(sbi, NODE_NEW);
+
+ return 0;
+cleanup:
+ f2fs_put_page(page, 1);
+ mutex_unlock_op(sbi, NODE_NEW);
+ return error;
+}
diff --git a/fs/f2fs/xattr.h b/fs/f2fs/xattr.h
new file mode 100644
index 000000000000..49c9558305e3
--- /dev/null
+++ b/fs/f2fs/xattr.h
@@ -0,0 +1,145 @@
+/*
+ * fs/f2fs/xattr.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ * http://www.samsung.com/
+ *
+ * Portions of this code from linux/fs/ext2/xattr.h
+ *
+ * On-disk format of extended attributes for the ext2 filesystem.
+ *
+ * (C) 2001 Andreas Gruenbacher, <a.gruenbacher@computer.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef __F2FS_XATTR_H__
+#define __F2FS_XATTR_H__
+
+#include <linux/init.h>
+#include <linux/xattr.h>
+
+/* Magic value in attribute blocks */
+#define F2FS_XATTR_MAGIC 0xF2F52011
+
+/* Maximum number of references to one attribute block */
+#define F2FS_XATTR_REFCOUNT_MAX 1024
+
+/* Name indexes */
+#define F2FS_SYSTEM_ADVISE_PREFIX "system.advise"
+#define F2FS_XATTR_INDEX_USER 1
+#define F2FS_XATTR_INDEX_POSIX_ACL_ACCESS 2
+#define F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT 3
+#define F2FS_XATTR_INDEX_TRUSTED 4
+#define F2FS_XATTR_INDEX_LUSTRE 5
+#define F2FS_XATTR_INDEX_SECURITY 6
+#define F2FS_XATTR_INDEX_ADVISE 7
+
+struct f2fs_xattr_header {
+ __le32 h_magic; /* magic number for identification */
+ __le32 h_refcount; /* reference count */
+ __u32 h_reserved[4]; /* zero right now */
+};
+
+struct f2fs_xattr_entry {
+ __u8 e_name_index;
+ __u8 e_name_len;
+ __le16 e_value_size; /* size of attribute value */
+ char e_name[0]; /* attribute name */
+};
+
+#define XATTR_HDR(ptr) ((struct f2fs_xattr_header *)(ptr))
+#define XATTR_ENTRY(ptr) ((struct f2fs_xattr_entry *)(ptr))
+#define XATTR_FIRST_ENTRY(ptr) (XATTR_ENTRY(XATTR_HDR(ptr)+1))
+#define XATTR_ROUND (3)
+
+#define XATTR_ALIGN(size) ((size + XATTR_ROUND) & ~XATTR_ROUND)
+
+#define ENTRY_SIZE(entry) (XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + \
+ entry->e_name_len + le16_to_cpu(entry->e_value_size)))
+
+#define XATTR_NEXT_ENTRY(entry) ((struct f2fs_xattr_entry *)((char *)(entry) +\
+ ENTRY_SIZE(entry)))
+
+#define IS_XATTR_LAST_ENTRY(entry) (*(__u32 *)(entry) == 0)
+
+#define list_for_each_xattr(entry, addr) \
+ for (entry = XATTR_FIRST_ENTRY(addr);\
+ !IS_XATTR_LAST_ENTRY(entry);\
+ entry = XATTR_NEXT_ENTRY(entry))
+
+
+#define MIN_OFFSET XATTR_ALIGN(PAGE_SIZE - \
+ sizeof(struct node_footer) - \
+ sizeof(__u32))
+
+#define MAX_VALUE_LEN (MIN_OFFSET - sizeof(struct f2fs_xattr_header) - \
+ sizeof(struct f2fs_xattr_entry))
+
+/*
+ * On-disk structure of f2fs_xattr
+ * We use only 1 block for xattr.
+ *
+ * +--------------------+
+ * | f2fs_xattr_header |
+ * | |
+ * +--------------------+
+ * | f2fs_xattr_entry |
+ * | .e_name_index = 1 |
+ * | .e_name_len = 3 |
+ * | .e_value_size = 14 |
+ * | .e_name = "foo" |
+ * | "value_of_xattr" |<- value_offs = e_name + e_name_len
+ * +--------------------+
+ * | f2fs_xattr_entry |
+ * | .e_name_index = 4 |
+ * | .e_name = "bar" |
+ * +--------------------+
+ * | |
+ * | Free |
+ * | |
+ * +--------------------+<- MIN_OFFSET
+ * | node_footer |
+ * | (nid, ino, offset) |
+ * +--------------------+
+ *
+ **/
+
+#ifdef CONFIG_F2FS_FS_XATTR
+extern const struct xattr_handler f2fs_xattr_user_handler;
+extern const struct xattr_handler f2fs_xattr_trusted_handler;
+extern const struct xattr_handler f2fs_xattr_acl_access_handler;
+extern const struct xattr_handler f2fs_xattr_acl_default_handler;
+extern const struct xattr_handler f2fs_xattr_advise_handler;
+
+extern const struct xattr_handler *f2fs_xattr_handlers[];
+
+extern int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
+ const void *value, size_t value_len);
+extern int f2fs_getxattr(struct inode *inode, int name_index, const char *name,
+ void *buffer, size_t buffer_size);
+extern ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer,
+ size_t buffer_size);
+
+#else
+
+#define f2fs_xattr_handlers NULL
+static inline int f2fs_setxattr(struct inode *inode, int name_index,
+ const char *name, const void *value, size_t value_len)
+{
+ return -EOPNOTSUPP;
+}
+static inline int f2fs_getxattr(struct inode *inode, int name_index,
+ const char *name, void *buffer, size_t buffer_size)
+{
+ return -EOPNOTSUPP;
+}
+static inline ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer,
+ size_t buffer_size)
+{
+ return -EOPNOTSUPP;
+}
+#endif
+
+#endif /* __F2FS_XATTR_H__ */