summaryrefslogtreecommitdiff
path: root/fs/bcachefs/btree_key_cache.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/bcachefs/btree_key_cache.c')
-rw-r--r--fs/bcachefs/btree_key_cache.c813
1 files changed, 813 insertions, 0 deletions
diff --git a/fs/bcachefs/btree_key_cache.c b/fs/bcachefs/btree_key_cache.c
new file mode 100644
index 000000000000..244610b1d0b5
--- /dev/null
+++ b/fs/bcachefs/btree_key_cache.c
@@ -0,0 +1,813 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "bcachefs.h"
+#include "btree_cache.h"
+#include "btree_iter.h"
+#include "btree_key_cache.h"
+#include "btree_locking.h"
+#include "btree_update.h"
+#include "errcode.h"
+#include "error.h"
+#include "journal.h"
+#include "journal_reclaim.h"
+#include "trace.h"
+
+#include <linux/sched/mm.h>
+
+static inline bool btree_uses_pcpu_readers(enum btree_id id)
+{
+ return id == BTREE_ID_subvolumes;
+}
+
+static struct kmem_cache *bch2_key_cache;
+
+static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
+ const void *obj)
+{
+ const struct bkey_cached *ck = obj;
+ const struct bkey_cached_key *key = arg->key;
+
+ return ck->key.btree_id != key->btree_id ||
+ !bpos_eq(ck->key.pos, key->pos);
+}
+
+static const struct rhashtable_params bch2_btree_key_cache_params = {
+ .head_offset = offsetof(struct bkey_cached, hash),
+ .key_offset = offsetof(struct bkey_cached, key),
+ .key_len = sizeof(struct bkey_cached_key),
+ .obj_cmpfn = bch2_btree_key_cache_cmp_fn,
+ .automatic_shrinking = true,
+};
+
+static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
+ struct bkey_cached *ck,
+ enum btree_node_locked_type lock_held)
+{
+ path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
+ path->l[0].b = (void *) ck;
+ mark_btree_node_locked(trans, path, 0, lock_held);
+}
+
+__flatten
+inline struct bkey_cached *
+bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
+{
+ struct bkey_cached_key key = {
+ .btree_id = btree_id,
+ .pos = pos,
+ };
+
+ return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
+ bch2_btree_key_cache_params);
+}
+
+static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
+{
+ if (!six_trylock_intent(&ck->c.lock))
+ return false;
+
+ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ six_unlock_intent(&ck->c.lock);
+ return false;
+ }
+
+ if (!six_trylock_write(&ck->c.lock)) {
+ six_unlock_intent(&ck->c.lock);
+ return false;
+ }
+
+ return true;
+}
+
+static bool bkey_cached_evict(struct btree_key_cache *c,
+ struct bkey_cached *ck)
+{
+ bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
+ bch2_btree_key_cache_params);
+ if (ret) {
+ memset(&ck->key, ~0, sizeof(ck->key));
+ atomic_long_dec(&c->nr_keys);
+ }
+
+ return ret;
+}
+
+static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
+{
+ struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
+ struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);
+
+ this_cpu_dec(*c->btree_key_cache.nr_pending);
+ kmem_cache_free(bch2_key_cache, ck);
+}
+
+static void bkey_cached_free(struct btree_key_cache *bc,
+ struct bkey_cached *ck)
+{
+ kfree(ck->k);
+ ck->k = NULL;
+ ck->u64s = 0;
+
+ six_unlock_write(&ck->c.lock);
+ six_unlock_intent(&ck->c.lock);
+
+ bool pcpu_readers = ck->c.lock.readers != NULL;
+ rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
+ this_cpu_inc(*bc->nr_pending);
+}
+
+static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
+{
+ gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
+
+ struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
+ if (unlikely(!ck))
+ return NULL;
+ ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
+ if (unlikely(!ck->k)) {
+ kmem_cache_free(bch2_key_cache, ck);
+ return NULL;
+ }
+ ck->u64s = key_u64s;
+ return ck;
+}
+
+static struct bkey_cached *
+bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
+{
+ struct bch_fs *c = trans->c;
+ struct btree_key_cache *bc = &c->btree_key_cache;
+ bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
+ int ret;
+
+ struct bkey_cached *ck = container_of_or_null(
+ rcu_pending_dequeue(&bc->pending[pcpu_readers]),
+ struct bkey_cached, rcu);
+ if (ck)
+ goto lock;
+
+ ck = allocate_dropping_locks(trans, ret,
+ __bkey_cached_alloc(key_u64s, _gfp));
+ if (ret) {
+ if (ck)
+ kfree(ck->k);
+ kmem_cache_free(bch2_key_cache, ck);
+ return ERR_PTR(ret);
+ }
+
+ if (ck) {
+ bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
+ ck->c.cached = true;
+ goto lock;
+ }
+
+ ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
+ struct bkey_cached, rcu);
+ if (ck)
+ goto lock;
+lock:
+ six_lock_intent(&ck->c.lock, NULL, NULL);
+ six_lock_write(&ck->c.lock, NULL, NULL);
+ return ck;
+}
+
+static struct bkey_cached *
+bkey_cached_reuse(struct btree_key_cache *c)
+{
+ struct bucket_table *tbl;
+ struct rhash_head *pos;
+ struct bkey_cached *ck;
+ unsigned i;
+
+ rcu_read_lock();
+ tbl = rht_dereference_rcu(c->table.tbl, &c->table);
+ for (i = 0; i < tbl->size; i++)
+ rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
+ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
+ bkey_cached_lock_for_evict(ck)) {
+ if (bkey_cached_evict(c, ck))
+ goto out;
+ six_unlock_write(&ck->c.lock);
+ six_unlock_intent(&ck->c.lock);
+ }
+ }
+ ck = NULL;
+out:
+ rcu_read_unlock();
+ return ck;
+}
+
+static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
+ struct bkey_s_c k)
+{
+ struct bch_fs *c = trans->c;
+ struct btree_key_cache *bc = &c->btree_key_cache;
+
+ /*
+ * bch2_varint_decode can read past the end of the buffer by at
+ * most 7 bytes (it won't be used):
+ */
+ unsigned key_u64s = k.k->u64s + 1;
+
+ /*
+ * Allocate some extra space so that the transaction commit path is less
+ * likely to have to reallocate, since that requires a transaction
+ * restart:
+ */
+ key_u64s = min(256U, (key_u64s * 3) / 2);
+ key_u64s = roundup_pow_of_two(key_u64s);
+
+ struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
+ int ret = PTR_ERR_OR_ZERO(ck);
+ if (ret)
+ return ret;
+
+ if (unlikely(!ck)) {
+ ck = bkey_cached_reuse(bc);
+ if (unlikely(!ck)) {
+ bch_err(c, "error allocating memory for key cache item, btree %s",
+ bch2_btree_id_str(path->btree_id));
+ return -BCH_ERR_ENOMEM_btree_key_cache_create;
+ }
+ }
+
+ ck->c.level = 0;
+ ck->c.btree_id = path->btree_id;
+ ck->key.btree_id = path->btree_id;
+ ck->key.pos = path->pos;
+ ck->flags = 1U << BKEY_CACHED_ACCESSED;
+
+ if (unlikely(key_u64s > ck->u64s)) {
+ mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
+
+ struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
+ kmalloc(key_u64s * sizeof(u64), _gfp));
+ if (unlikely(!new_k)) {
+ bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
+ bch2_btree_id_str(ck->key.btree_id), key_u64s);
+ ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
+ } else if (ret) {
+ kfree(new_k);
+ goto err;
+ }
+
+ kfree(ck->k);
+ ck->k = new_k;
+ ck->u64s = key_u64s;
+ }
+
+ bkey_reassemble(ck->k, k);
+
+ ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
+ if (unlikely(ret)) /* raced with another fill? */
+ goto err;
+
+ atomic_long_inc(&bc->nr_keys);
+ six_unlock_write(&ck->c.lock);
+
+ enum six_lock_type lock_want = __btree_lock_want(path, 0);
+ if (lock_want == SIX_LOCK_read)
+ six_lock_downgrade(&ck->c.lock);
+ btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
+ path->uptodate = BTREE_ITER_UPTODATE;
+ return 0;
+err:
+ bkey_cached_free(bc, ck);
+ mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
+
+ return ret;
+}
+
+static noinline int btree_key_cache_fill(struct btree_trans *trans,
+ struct btree_path *ck_path,
+ unsigned flags)
+{
+ if (flags & BTREE_ITER_cached_nofill) {
+ ck_path->uptodate = BTREE_ITER_UPTODATE;
+ return 0;
+ }
+
+ struct bch_fs *c = trans->c;
+ struct btree_iter iter;
+ struct bkey_s_c k;
+ int ret;
+
+ bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
+ BTREE_ITER_key_cache_fill|
+ BTREE_ITER_cached_nofill);
+ iter.flags &= ~BTREE_ITER_with_journal;
+ k = bch2_btree_iter_peek_slot(&iter);
+ ret = bkey_err(k);
+ if (ret)
+ goto err;
+
+ /* Recheck after btree lookup, before allocating: */
+ ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
+ if (unlikely(ret))
+ goto out;
+
+ ret = btree_key_cache_create(trans, ck_path, k);
+ if (ret)
+ goto err;
+out:
+ /* We're not likely to need this iterator again: */
+ bch2_set_btree_iter_dontneed(&iter);
+err:
+ bch2_trans_iter_exit(trans, &iter);
+ return ret;
+}
+
+static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
+ struct btree_path *path)
+{
+ struct bch_fs *c = trans->c;
+ struct bkey_cached *ck;
+retry:
+ ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
+ if (!ck)
+ return -ENOENT;
+
+ enum six_lock_type lock_want = __btree_lock_want(path, 0);
+
+ int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
+ if (ret)
+ return ret;
+
+ if (ck->key.btree_id != path->btree_id ||
+ !bpos_eq(ck->key.pos, path->pos)) {
+ six_unlock_type(&ck->c.lock, lock_want);
+ goto retry;
+ }
+
+ if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
+ set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
+
+ btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
+ path->uptodate = BTREE_ITER_UPTODATE;
+ return 0;
+}
+
+int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
+ unsigned flags)
+{
+ EBUG_ON(path->level);
+
+ path->l[1].b = NULL;
+
+ int ret;
+ do {
+ ret = btree_path_traverse_cached_fast(trans, path);
+ if (unlikely(ret == -ENOENT))
+ ret = btree_key_cache_fill(trans, path, flags);
+ } while (ret == -EEXIST);
+
+ if (unlikely(ret)) {
+ path->uptodate = BTREE_ITER_NEED_TRAVERSE;
+ if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
+ btree_node_unlock(trans, path, 0);
+ path->l[0].b = ERR_PTR(ret);
+ }
+ }
+ return ret;
+}
+
+static int btree_key_cache_flush_pos(struct btree_trans *trans,
+ struct bkey_cached_key key,
+ u64 journal_seq,
+ unsigned commit_flags,
+ bool evict)
+{
+ struct bch_fs *c = trans->c;
+ struct journal *j = &c->journal;
+ struct btree_iter c_iter, b_iter;
+ struct bkey_cached *ck = NULL;
+ int ret;
+
+ bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
+ BTREE_ITER_slots|
+ BTREE_ITER_intent|
+ BTREE_ITER_all_snapshots);
+ bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
+ BTREE_ITER_cached|
+ BTREE_ITER_intent);
+ b_iter.flags &= ~BTREE_ITER_with_key_cache;
+
+ ret = bch2_btree_iter_traverse(&c_iter);
+ if (ret)
+ goto out;
+
+ ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
+ if (!ck)
+ goto out;
+
+ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ if (evict)
+ goto evict;
+ goto out;
+ }
+
+ if (journal_seq && ck->journal.seq != journal_seq)
+ goto out;
+
+ trans->journal_res.seq = ck->journal.seq;
+
+ /*
+ * If we're at the end of the journal, we really want to free up space
+ * in the journal right away - we don't want to pin that old journal
+ * sequence number with a new btree node write, we want to re-journal
+ * the update
+ */
+ if (ck->journal.seq == journal_last_seq(j))
+ commit_flags |= BCH_WATERMARK_reclaim;
+
+ if (ck->journal.seq != journal_last_seq(j) ||
+ !test_bit(JOURNAL_space_low, &c->journal.flags))
+ commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
+
+ ret = bch2_btree_iter_traverse(&b_iter) ?:
+ bch2_trans_update(trans, &b_iter, ck->k,
+ BTREE_UPDATE_key_cache_reclaim|
+ BTREE_UPDATE_internal_snapshot_node|
+ BTREE_TRIGGER_norun) ?:
+ bch2_trans_commit(trans, NULL, NULL,
+ BCH_TRANS_COMMIT_no_check_rw|
+ BCH_TRANS_COMMIT_no_enospc|
+ commit_flags);
+
+ bch2_fs_fatal_err_on(ret &&
+ !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
+ !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
+ !bch2_journal_error(j), c,
+ "flushing key cache: %s", bch2_err_str(ret));
+ if (ret)
+ goto out;
+
+ bch2_journal_pin_drop(j, &ck->journal);
+
+ struct btree_path *path = btree_iter_path(trans, &c_iter);
+ BUG_ON(!btree_node_locked(path, 0));
+
+ if (!evict) {
+ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
+ atomic_long_dec(&c->btree_key_cache.nr_dirty);
+ }
+ } else {
+ struct btree_path *path2;
+ unsigned i;
+evict:
+ trans_for_each_path(trans, path2, i)
+ if (path2 != path)
+ __bch2_btree_path_unlock(trans, path2);
+
+ bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
+
+ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
+ atomic_long_dec(&c->btree_key_cache.nr_dirty);
+ }
+
+ mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
+ if (bkey_cached_evict(&c->btree_key_cache, ck)) {
+ bkey_cached_free(&c->btree_key_cache, ck);
+ } else {
+ six_unlock_write(&ck->c.lock);
+ six_unlock_intent(&ck->c.lock);
+ }
+ }
+out:
+ bch2_trans_iter_exit(trans, &b_iter);
+ bch2_trans_iter_exit(trans, &c_iter);
+ return ret;
+}
+
+int bch2_btree_key_cache_journal_flush(struct journal *j,
+ struct journal_entry_pin *pin, u64 seq)
+{
+ struct bch_fs *c = container_of(j, struct bch_fs, journal);
+ struct bkey_cached *ck =
+ container_of(pin, struct bkey_cached, journal);
+ struct bkey_cached_key key;
+ struct btree_trans *trans = bch2_trans_get(c);
+ int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
+ int ret = 0;
+
+ btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
+ key = ck->key;
+
+ if (ck->journal.seq != seq ||
+ !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ six_unlock_read(&ck->c.lock);
+ goto unlock;
+ }
+
+ if (ck->seq != seq) {
+ bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
+ bch2_btree_key_cache_journal_flush);
+ six_unlock_read(&ck->c.lock);
+ goto unlock;
+ }
+ six_unlock_read(&ck->c.lock);
+
+ ret = lockrestart_do(trans,
+ btree_key_cache_flush_pos(trans, key, seq,
+ BCH_TRANS_COMMIT_journal_reclaim, false));
+unlock:
+ srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
+
+ bch2_trans_put(trans);
+ return ret;
+}
+
+bool bch2_btree_insert_key_cached(struct btree_trans *trans,
+ unsigned flags,
+ struct btree_insert_entry *insert_entry)
+{
+ struct bch_fs *c = trans->c;
+ struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
+ struct bkey_i *insert = insert_entry->k;
+ bool kick_reclaim = false;
+
+ BUG_ON(insert->k.u64s > ck->u64s);
+
+ bkey_copy(ck->k, insert);
+
+ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
+ set_bit(BKEY_CACHED_DIRTY, &ck->flags);
+ atomic_long_inc(&c->btree_key_cache.nr_dirty);
+
+ if (bch2_nr_btree_keys_need_flush(c))
+ kick_reclaim = true;
+ }
+
+ /*
+ * To minimize lock contention, we only add the journal pin here and
+ * defer pin updates to the flush callback via ->seq. Be careful not to
+ * update ->seq on nojournal commits because we don't want to update the
+ * pin to a seq that doesn't include journal updates on disk. Otherwise
+ * we risk losing the update after a crash.
+ *
+ * The only exception is if the pin is not active in the first place. We
+ * have to add the pin because journal reclaim drives key cache
+ * flushing. The flush callback will not proceed unless ->seq matches
+ * the latest pin, so make sure it starts with a consistent value.
+ */
+ if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
+ !journal_pin_active(&ck->journal)) {
+ ck->seq = trans->journal_res.seq;
+ }
+ bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
+ &ck->journal, bch2_btree_key_cache_journal_flush);
+
+ if (kick_reclaim)
+ journal_reclaim_kick(&c->journal);
+ return true;
+}
+
+void bch2_btree_key_cache_drop(struct btree_trans *trans,
+ struct btree_path *path)
+{
+ struct bch_fs *c = trans->c;
+ struct btree_key_cache *bc = &c->btree_key_cache;
+ struct bkey_cached *ck = (void *) path->l[0].b;
+
+ /*
+ * We just did an update to the btree, bypassing the key cache: the key
+ * cache key is now stale and must be dropped, even if dirty:
+ */
+ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
+ atomic_long_dec(&c->btree_key_cache.nr_dirty);
+ bch2_journal_pin_drop(&c->journal, &ck->journal);
+ }
+
+ bkey_cached_evict(bc, ck);
+ bkey_cached_free(bc, ck);
+
+ mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
+ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
+ path->should_be_locked = false;
+}
+
+static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct bch_fs *c = shrink->private_data;
+ struct btree_key_cache *bc = &c->btree_key_cache;
+ struct bucket_table *tbl;
+ struct bkey_cached *ck;
+ size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
+ unsigned iter, start;
+ int srcu_idx;
+
+ srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
+ rcu_read_lock();
+
+ tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
+
+ /*
+ * Scanning is expensive while a rehash is in progress - most elements
+ * will be on the new hashtable, if it's in progress
+ *
+ * A rehash could still start while we're scanning - that's ok, we'll
+ * still see most elements.
+ */
+ if (unlikely(tbl->nest)) {
+ rcu_read_unlock();
+ srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
+ return SHRINK_STOP;
+ }
+
+ iter = bc->shrink_iter;
+ if (iter >= tbl->size)
+ iter = 0;
+ start = iter;
+
+ do {
+ struct rhash_head *pos, *next;
+
+ pos = rht_ptr_rcu(&tbl->buckets[iter]);
+
+ while (!rht_is_a_nulls(pos)) {
+ next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
+ ck = container_of(pos, struct bkey_cached, hash);
+
+ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
+ bc->skipped_dirty++;
+ } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
+ clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
+ bc->skipped_accessed++;
+ } else if (!bkey_cached_lock_for_evict(ck)) {
+ bc->skipped_lock_fail++;
+ } else if (bkey_cached_evict(bc, ck)) {
+ bkey_cached_free(bc, ck);
+ bc->freed++;
+ freed++;
+ } else {
+ six_unlock_write(&ck->c.lock);
+ six_unlock_intent(&ck->c.lock);
+ }
+
+ scanned++;
+ if (scanned >= nr)
+ goto out;
+
+ pos = next;
+ }
+
+ iter++;
+ if (iter >= tbl->size)
+ iter = 0;
+ } while (scanned < nr && iter != start);
+out:
+ bc->shrink_iter = iter;
+
+ rcu_read_unlock();
+ srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
+
+ return freed;
+}
+
+static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
+ struct shrink_control *sc)
+{
+ struct bch_fs *c = shrink->private_data;
+ struct btree_key_cache *bc = &c->btree_key_cache;
+ long nr = atomic_long_read(&bc->nr_keys) -
+ atomic_long_read(&bc->nr_dirty);
+
+ /*
+ * Avoid hammering our shrinker too much if it's nearly empty - the
+ * shrinker code doesn't take into account how big our cache is, if it's
+ * mostly empty but the system is under memory pressure it causes nasty
+ * lock contention:
+ */
+ nr -= 128;
+
+ return max(0L, nr);
+}
+
+void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
+{
+ struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
+ struct bucket_table *tbl;
+ struct bkey_cached *ck;
+ struct rhash_head *pos;
+ LIST_HEAD(items);
+ unsigned i;
+
+ shrinker_free(bc->shrink);
+
+ /*
+ * The loop is needed to guard against racing with rehash:
+ */
+ while (atomic_long_read(&bc->nr_keys)) {
+ rcu_read_lock();
+ tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
+ if (tbl) {
+ if (tbl->nest) {
+ /* wait for in progress rehash */
+ rcu_read_unlock();
+ mutex_lock(&bc->table.mutex);
+ mutex_unlock(&bc->table.mutex);
+ rcu_read_lock();
+ continue;
+ }
+ for (i = 0; i < tbl->size; i++)
+ while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
+ ck = container_of(pos, struct bkey_cached, hash);
+ BUG_ON(!bkey_cached_evict(bc, ck));
+ kfree(ck->k);
+ kmem_cache_free(bch2_key_cache, ck);
+ }
+ }
+ rcu_read_unlock();
+ }
+
+ if (atomic_long_read(&bc->nr_dirty) &&
+ !bch2_journal_error(&c->journal) &&
+ test_bit(BCH_FS_was_rw, &c->flags))
+ panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
+ atomic_long_read(&bc->nr_dirty));
+
+ if (atomic_long_read(&bc->nr_keys))
+ panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
+ atomic_long_read(&bc->nr_keys));
+
+ if (bc->table_init_done)
+ rhashtable_destroy(&bc->table);
+
+ rcu_pending_exit(&bc->pending[0]);
+ rcu_pending_exit(&bc->pending[1]);
+
+ free_percpu(bc->nr_pending);
+}
+
+void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
+{
+}
+
+int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
+{
+ struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
+ struct shrinker *shrink;
+
+ bc->nr_pending = alloc_percpu(size_t);
+ if (!bc->nr_pending)
+ return -BCH_ERR_ENOMEM_fs_btree_cache_init;
+
+ if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
+ rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
+ return -BCH_ERR_ENOMEM_fs_btree_cache_init;
+
+ if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
+ return -BCH_ERR_ENOMEM_fs_btree_cache_init;
+
+ bc->table_init_done = true;
+
+ shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
+ if (!shrink)
+ return -BCH_ERR_ENOMEM_fs_btree_cache_init;
+ bc->shrink = shrink;
+ shrink->count_objects = bch2_btree_key_cache_count;
+ shrink->scan_objects = bch2_btree_key_cache_scan;
+ shrink->batch = 1 << 14;
+ shrink->seeks = 0;
+ shrink->private_data = c;
+ shrinker_register(shrink);
+ return 0;
+}
+
+void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
+{
+ printbuf_tabstop_push(out, 24);
+ printbuf_tabstop_push(out, 12);
+
+ prt_printf(out, "keys:\t%lu\r\n", atomic_long_read(&bc->nr_keys));
+ prt_printf(out, "dirty:\t%lu\r\n", atomic_long_read(&bc->nr_dirty));
+ prt_printf(out, "table size:\t%u\r\n", bc->table.tbl->size);
+ prt_newline(out);
+ prt_printf(out, "shrinker:\n");
+ prt_printf(out, "requested_to_free:\t%lu\r\n", bc->requested_to_free);
+ prt_printf(out, "freed:\t%lu\r\n", bc->freed);
+ prt_printf(out, "skipped_dirty:\t%lu\r\n", bc->skipped_dirty);
+ prt_printf(out, "skipped_accessed:\t%lu\r\n", bc->skipped_accessed);
+ prt_printf(out, "skipped_lock_fail:\t%lu\r\n", bc->skipped_lock_fail);
+ prt_newline(out);
+ prt_printf(out, "pending:\t%zu\r\n", per_cpu_sum(bc->nr_pending));
+}
+
+void bch2_btree_key_cache_exit(void)
+{
+ kmem_cache_destroy(bch2_key_cache);
+}
+
+int __init bch2_btree_key_cache_init(void)
+{
+ bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
+ if (!bch2_key_cache)
+ return -ENOMEM;
+
+ return 0;
+}