summaryrefslogtreecommitdiff
path: root/drivers/usb/serial/mct_u232.h
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/usb/serial/mct_u232.h')
-rw-r--r--drivers/usb/serial/mct_u232.h453
1 files changed, 453 insertions, 0 deletions
diff --git a/drivers/usb/serial/mct_u232.h b/drivers/usb/serial/mct_u232.h
new file mode 100644
index 000000000000..73dd0d984cd3
--- /dev/null
+++ b/drivers/usb/serial/mct_u232.h
@@ -0,0 +1,453 @@
+/*
+ * Definitions for MCT (Magic Control Technology) USB-RS232 Converter Driver
+ *
+ * Copyright (C) 2000 Wolfgang Grandegger (wolfgang@ces.ch)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This driver is for the device MCT USB-RS232 Converter (25 pin, Model No.
+ * U232-P25) from Magic Control Technology Corp. (there is also a 9 pin
+ * Model No. U232-P9). See http://www.mct.com.tw/p_u232.html for further
+ * information. The properties of this device are listed at the end of this
+ * file. This device is available from various distributors. I know Hana,
+ * http://www.hana.de and D-Link, http://www.dlink.com/products/usb/dsbs25.
+ *
+ * All of the information about the device was acquired by using SniffUSB
+ * on Windows98. The technical details of the reverse engineering are
+ * summarized at the end of this file.
+ */
+
+#ifndef __LINUX_USB_SERIAL_MCT_U232_H
+#define __LINUX_USB_SERIAL_MCT_U232_H
+
+#define MCT_U232_VID 0x0711 /* Vendor Id */
+#define MCT_U232_PID 0x0210 /* Original MCT Product Id */
+
+/* U232-P25, Sitecom */
+#define MCT_U232_SITECOM_PID 0x0230 /* Sitecom Product Id */
+
+/* DU-H3SP USB BAY hub */
+#define MCT_U232_DU_H3SP_PID 0x0200 /* D-Link DU-H3SP USB BAY */
+
+/* Belkin badge the MCT U232-P9 as the F5U109 */
+#define MCT_U232_BELKIN_F5U109_VID 0x050d /* Vendor Id */
+#define MCT_U232_BELKIN_F5U109_PID 0x0109 /* Product Id */
+
+/*
+ * Vendor Request Interface
+ */
+#define MCT_U232_SET_REQUEST_TYPE 0x40
+#define MCT_U232_GET_REQUEST_TYPE 0xc0
+
+#define MCT_U232_GET_MODEM_STAT_REQUEST 2 /* Get Modem Status Register (MSR) */
+#define MCT_U232_GET_MODEM_STAT_SIZE 1
+
+#define MCT_U232_GET_LINE_CTRL_REQUEST 6 /* Get Line Control Register (LCR) */
+#define MCT_U232_GET_LINE_CTRL_SIZE 1 /* ... not used by this driver */
+
+#define MCT_U232_SET_BAUD_RATE_REQUEST 5 /* Set Baud Rate Divisor */
+#define MCT_U232_SET_BAUD_RATE_SIZE 4
+
+#define MCT_U232_SET_LINE_CTRL_REQUEST 7 /* Set Line Control Register (LCR) */
+#define MCT_U232_SET_LINE_CTRL_SIZE 1
+
+#define MCT_U232_SET_MODEM_CTRL_REQUEST 10 /* Set Modem Control Register (MCR) */
+#define MCT_U232_SET_MODEM_CTRL_SIZE 1
+
+/* This USB device request code is not well understood. It is transmitted by
+ the MCT-supplied Windows driver whenever the baud rate changes.
+*/
+#define MCT_U232_SET_UNKNOWN1_REQUEST 11 /* Unknown functionality */
+#define MCT_U232_SET_UNKNOWN1_SIZE 1
+
+/* This USB device request code is not well understood. It is transmitted by
+ the MCT-supplied Windows driver whenever the baud rate changes.
+
+ Without this USB device request, the USB/RS-232 adapter will not write to
+ RS-232 devices which do not assert the 'CTS' signal.
+*/
+#define MCT_U232_SET_UNKNOWN2_REQUEST 12 /* Unknown functionality */
+#define MCT_U232_SET_UNKNOWN2_SIZE 1
+
+/*
+ * Baud rate (divisor)
+ * Actually, there are two of them, MCT website calls them "Philips solution"
+ * and "Intel solution". They are the regular MCT and "Sitecom" for us.
+ * This is pointless to document in the header, see the code for the bits.
+ */
+static int mct_u232_calculate_baud_rate(struct usb_serial *serial, int value);
+
+/*
+ * Line Control Register (LCR)
+ */
+#define MCT_U232_SET_BREAK 0x40
+
+#define MCT_U232_PARITY_SPACE 0x38
+#define MCT_U232_PARITY_MARK 0x28
+#define MCT_U232_PARITY_EVEN 0x18
+#define MCT_U232_PARITY_ODD 0x08
+#define MCT_U232_PARITY_NONE 0x00
+
+#define MCT_U232_DATA_BITS_5 0x00
+#define MCT_U232_DATA_BITS_6 0x01
+#define MCT_U232_DATA_BITS_7 0x02
+#define MCT_U232_DATA_BITS_8 0x03
+
+#define MCT_U232_STOP_BITS_2 0x04
+#define MCT_U232_STOP_BITS_1 0x00
+
+/*
+ * Modem Control Register (MCR)
+ */
+#define MCT_U232_MCR_NONE 0x8 /* Deactivate DTR and RTS */
+#define MCT_U232_MCR_RTS 0xa /* Activate RTS */
+#define MCT_U232_MCR_DTR 0x9 /* Activate DTR */
+
+/*
+ * Modem Status Register (MSR)
+ */
+#define MCT_U232_MSR_INDEX 0x0 /* data[index] */
+#define MCT_U232_MSR_CD 0x80 /* Current CD */
+#define MCT_U232_MSR_RI 0x40 /* Current RI */
+#define MCT_U232_MSR_DSR 0x20 /* Current DSR */
+#define MCT_U232_MSR_CTS 0x10 /* Current CTS */
+#define MCT_U232_MSR_DCD 0x08 /* Delta CD */
+#define MCT_U232_MSR_DRI 0x04 /* Delta RI */
+#define MCT_U232_MSR_DDSR 0x02 /* Delta DSR */
+#define MCT_U232_MSR_DCTS 0x01 /* Delta CTS */
+
+/*
+ * Line Status Register (LSR)
+ */
+#define MCT_U232_LSR_INDEX 1 /* data[index] */
+#define MCT_U232_LSR_ERR 0x80 /* OE | PE | FE | BI */
+#define MCT_U232_LSR_TEMT 0x40 /* transmit register empty */
+#define MCT_U232_LSR_THRE 0x20 /* transmit holding register empty */
+#define MCT_U232_LSR_BI 0x10 /* break indicator */
+#define MCT_U232_LSR_FE 0x08 /* framing error */
+#define MCT_U232_LSR_OE 0x02 /* overrun error */
+#define MCT_U232_LSR_PE 0x04 /* parity error */
+#define MCT_U232_LSR_OE 0x02 /* overrun error */
+#define MCT_U232_LSR_DR 0x01 /* receive data ready */
+
+
+/* -----------------------------------------------------------------------------
+ * Technical Specification reverse engineered with SniffUSB on Windows98
+ * =====================================================================
+ *
+ * The technical details of the device have been acquired be using "SniffUSB"
+ * and the vendor-supplied device driver (version 2.3A) under Windows98. To
+ * identify the USB vendor-specific requests and to assign them to terminal
+ * settings (flow control, baud rate, etc.) the program "SerialSettings" from
+ * William G. Greathouse has been proven to be very useful. I also used the
+ * Win98 "HyperTerminal" and "usb-robot" on Linux for testing. The results and
+ * observations are summarized below:
+ *
+ * The USB requests seem to be directly mapped to the registers of a 8250,
+ * 16450 or 16550 UART. The FreeBSD handbook (appendix F.4 "Input/Output
+ * devices") contains a comprehensive description of UARTs and its registers.
+ * The bit descriptions are actually taken from there.
+ *
+ *
+ * Baud rate (divisor)
+ * -------------------
+ *
+ * BmRequestType: 0x40 (0100 0000B)
+ * bRequest: 0x05
+ * wValue: 0x0000
+ * wIndex: 0x0000
+ * wLength: 0x0004
+ * Data: divisor = 115200 / baud_rate
+ *
+ * SniffUSB observations (Nov 2003): Contrary to the 'wLength' value of 4
+ * shown above, observations with a Belkin F5U109 adapter, using the
+ * MCT-supplied Windows98 driver (U2SPORT.VXD, "File version: 1.21P.0104 for
+ * Win98/Me"), show this request has a length of 1 byte, presumably because
+ * of the fact that the Belkin adapter and the 'Sitecom U232-P25' adapter
+ * use a baud-rate code instead of a conventional RS-232 baud rate divisor.
+ * The current source code for this driver does not reflect this fact, but
+ * the driver works fine with this adapter/driver combination nonetheless.
+ *
+ *
+ * Line Control Register (LCR)
+ * ---------------------------
+ *
+ * BmRequestType: 0x40 (0100 0000B) 0xc0 (1100 0000B)
+ * bRequest: 0x07 0x06
+ * wValue: 0x0000
+ * wIndex: 0x0000
+ * wLength: 0x0001
+ * Data: LCR (see below)
+ *
+ * Bit 7: Divisor Latch Access Bit (DLAB). When set, access to the data
+ * transmit/receive register (THR/RBR) and the Interrupt Enable Register
+ * (IER) is disabled. Any access to these ports is now redirected to the
+ * Divisor Latch Registers. Setting this bit, loading the Divisor
+ * Registers, and clearing DLAB should be done with interrupts disabled.
+ * Bit 6: Set Break. When set to "1", the transmitter begins to transmit
+ * continuous Spacing until this bit is set to "0". This overrides any
+ * bits of characters that are being transmitted.
+ * Bit 5: Stick Parity. When parity is enabled, setting this bit causes parity
+ * to always be "1" or "0", based on the value of Bit 4.
+ * Bit 4: Even Parity Select (EPS). When parity is enabled and Bit 5 is "0",
+ * setting this bit causes even parity to be transmitted and expected.
+ * Otherwise, odd parity is used.
+ * Bit 3: Parity Enable (PEN). When set to "1", a parity bit is inserted
+ * between the last bit of the data and the Stop Bit. The UART will also
+ * expect parity to be present in the received data.
+ * Bit 2: Number of Stop Bits (STB). If set to "1" and using 5-bit data words,
+ * 1.5 Stop Bits are transmitted and expected in each data word. For
+ * 6, 7 and 8-bit data words, 2 Stop Bits are transmitted and expected.
+ * When this bit is set to "0", one Stop Bit is used on each data word.
+ * Bit 1: Word Length Select Bit #1 (WLSB1)
+ * Bit 0: Word Length Select Bit #0 (WLSB0)
+ * Together these bits specify the number of bits in each data word.
+ * 1 0 Word Length
+ * 0 0 5 Data Bits
+ * 0 1 6 Data Bits
+ * 1 0 7 Data Bits
+ * 1 1 8 Data Bits
+ *
+ * SniffUSB observations: Bit 7 seems not to be used. There seem to be two bugs
+ * in the Win98 driver: the break does not work (bit 6 is not asserted) and the
+ * stick parity bit is not cleared when set once. The LCR can also be read
+ * back with USB request 6 but this has never been observed with SniffUSB.
+ *
+ *
+ * Modem Control Register (MCR)
+ * ----------------------------
+ *
+ * BmRequestType: 0x40 (0100 0000B)
+ * bRequest: 0x0a
+ * wValue: 0x0000
+ * wIndex: 0x0000
+ * wLength: 0x0001
+ * Data: MCR (Bit 4..7, see below)
+ *
+ * Bit 7: Reserved, always 0.
+ * Bit 6: Reserved, always 0.
+ * Bit 5: Reserved, always 0.
+ * Bit 4: Loop-Back Enable. When set to "1", the UART transmitter and receiver
+ * are internally connected together to allow diagnostic operations. In
+ * addition, the UART modem control outputs are connected to the UART
+ * modem control inputs. CTS is connected to RTS, DTR is connected to
+ * DSR, OUT1 is connected to RI, and OUT 2 is connected to DCD.
+ * Bit 3: OUT 2. An auxiliary output that the host processor may set high or
+ * low. In the IBM PC serial adapter (and most clones), OUT 2 is used
+ * to tri-state (disable) the interrupt signal from the
+ * 8250/16450/16550 UART.
+ * Bit 2: OUT 1. An auxiliary output that the host processor may set high or
+ * low. This output is not used on the IBM PC serial adapter.
+ * Bit 1: Request to Send (RTS). When set to "1", the output of the UART -RTS
+ * line is Low (Active).
+ * Bit 0: Data Terminal Ready (DTR). When set to "1", the output of the UART
+ * -DTR line is Low (Active).
+ *
+ * SniffUSB observations: Bit 2 and 4 seem not to be used but bit 3 has been
+ * seen _always_ set.
+ *
+ *
+ * Modem Status Register (MSR)
+ * ---------------------------
+ *
+ * BmRequestType: 0xc0 (1100 0000B)
+ * bRequest: 0x02
+ * wValue: 0x0000
+ * wIndex: 0x0000
+ * wLength: 0x0001
+ * Data: MSR (see below)
+ *
+ * Bit 7: Data Carrier Detect (CD). Reflects the state of the DCD line on the
+ * UART.
+ * Bit 6: Ring Indicator (RI). Reflects the state of the RI line on the UART.
+ * Bit 5: Data Set Ready (DSR). Reflects the state of the DSR line on the UART.
+ * Bit 4: Clear To Send (CTS). Reflects the state of the CTS line on the UART.
+ * Bit 3: Delta Data Carrier Detect (DDCD). Set to "1" if the -DCD line has
+ * changed state one more more times since the last time the MSR was
+ * read by the host.
+ * Bit 2: Trailing Edge Ring Indicator (TERI). Set to "1" if the -RI line has
+ * had a low to high transition since the last time the MSR was read by
+ * the host.
+ * Bit 1: Delta Data Set Ready (DDSR). Set to "1" if the -DSR line has changed
+ * state one more more times since the last time the MSR was read by the
+ * host.
+ * Bit 0: Delta Clear To Send (DCTS). Set to "1" if the -CTS line has changed
+ * state one more times since the last time the MSR was read by the
+ * host.
+ *
+ * SniffUSB observations: the MSR is also returned as first byte on the
+ * interrupt-in endpoint 0x83 to signal changes of modem status lines. The USB
+ * request to read MSR cannot be applied during normal device operation.
+ *
+ *
+ * Line Status Register (LSR)
+ * --------------------------
+ *
+ * Bit 7 Error in Receiver FIFO. On the 8250/16450 UART, this bit is zero.
+ * This bit is set to "1" when any of the bytes in the FIFO have one or
+ * more of the following error conditions: PE, FE, or BI.
+ * Bit 6 Transmitter Empty (TEMT). When set to "1", there are no words
+ * remaining in the transmit FIFO or the transmit shift register. The
+ * transmitter is completely idle.
+ * Bit 5 Transmitter Holding Register Empty (THRE). When set to "1", the FIFO
+ * (or holding register) now has room for at least one additional word
+ * to transmit. The transmitter may still be transmitting when this bit
+ * is set to "1".
+ * Bit 4 Break Interrupt (BI). The receiver has detected a Break signal.
+ * Bit 3 Framing Error (FE). A Start Bit was detected but the Stop Bit did not
+ * appear at the expected time. The received word is probably garbled.
+ * Bit 2 Parity Error (PE). The parity bit was incorrect for the word received.
+ * Bit 1 Overrun Error (OE). A new word was received and there was no room in
+ * the receive buffer. The newly-arrived word in the shift register is
+ * discarded. On 8250/16450 UARTs, the word in the holding register is
+ * discarded and the newly- arrived word is put in the holding register.
+ * Bit 0 Data Ready (DR). One or more words are in the receive FIFO that the
+ * host may read. A word must be completely received and moved from the
+ * shift register into the FIFO (or holding register for 8250/16450
+ * designs) before this bit is set.
+ *
+ * SniffUSB observations: the LSR is returned as second byte on the interrupt-in
+ * endpoint 0x83 to signal error conditions. Such errors have been seen with
+ * minicom/zmodem transfers (CRC errors).
+ *
+ *
+ * Unknown #1
+ * -------------------
+ *
+ * BmRequestType: 0x40 (0100 0000B)
+ * bRequest: 0x0b
+ * wValue: 0x0000
+ * wIndex: 0x0000
+ * wLength: 0x0001
+ * Data: 0x00
+ *
+ * SniffUSB observations (Nov 2003): With the MCT-supplied Windows98 driver
+ * (U2SPORT.VXD, "File version: 1.21P.0104 for Win98/Me"), this request
+ * occurs immediately after a "Baud rate (divisor)" message. It was not
+ * observed at any other time. It is unclear what purpose this message
+ * serves.
+ *
+ *
+ * Unknown #2
+ * -------------------
+ *
+ * BmRequestType: 0x40 (0100 0000B)
+ * bRequest: 0x0c
+ * wValue: 0x0000
+ * wIndex: 0x0000
+ * wLength: 0x0001
+ * Data: 0x00
+ *
+ * SniffUSB observations (Nov 2003): With the MCT-supplied Windows98 driver
+ * (U2SPORT.VXD, "File version: 1.21P.0104 for Win98/Me"), this request
+ * occurs immediately after the 'Unknown #1' message (see above). It was
+ * not observed at any other time. It is unclear what other purpose (if
+ * any) this message might serve, but without it, the USB/RS-232 adapter
+ * will not write to RS-232 devices which do not assert the 'CTS' signal.
+ *
+ *
+ * Flow control
+ * ------------
+ *
+ * SniffUSB observations: no flow control specific requests have been realized
+ * apart from DTR/RTS settings. Both signals are dropped for no flow control
+ * but asserted for hardware or software flow control.
+ *
+ *
+ * Endpoint usage
+ * --------------
+ *
+ * SniffUSB observations: the bulk-out endpoint 0x1 and interrupt-in endpoint
+ * 0x81 is used to transmit and receive characters. The second interrupt-in
+ * endpoint 0x83 signals exceptional conditions like modem line changes and
+ * errors. The first byte returned is the MSR and the second byte the LSR.
+ *
+ *
+ * Other observations
+ * ------------------
+ *
+ * Queued bulk transfers like used in visor.c did not work.
+ *
+ *
+ * Properties of the USB device used (as found in /var/log/messages)
+ * -----------------------------------------------------------------
+ *
+ * Manufacturer: MCT Corporation.
+ * Product: USB-232 Interfact Controller
+ * SerialNumber: U2S22050
+ *
+ * Length = 18
+ * DescriptorType = 01
+ * USB version = 1.00
+ * Vendor:Product = 0711:0210
+ * MaxPacketSize0 = 8
+ * NumConfigurations = 1
+ * Device version = 1.02
+ * Device Class:SubClass:Protocol = 00:00:00
+ * Per-interface classes
+ * Configuration:
+ * bLength = 9
+ * bDescriptorType = 02
+ * wTotalLength = 0027
+ * bNumInterfaces = 01
+ * bConfigurationValue = 01
+ * iConfiguration = 00
+ * bmAttributes = c0
+ * MaxPower = 100mA
+ *
+ * Interface: 0
+ * Alternate Setting: 0
+ * bLength = 9
+ * bDescriptorType = 04
+ * bInterfaceNumber = 00
+ * bAlternateSetting = 00
+ * bNumEndpoints = 03
+ * bInterface Class:SubClass:Protocol = 00:00:00
+ * iInterface = 00
+ * Endpoint:
+ * bLength = 7
+ * bDescriptorType = 05
+ * bEndpointAddress = 81 (in)
+ * bmAttributes = 03 (Interrupt)
+ * wMaxPacketSize = 0040
+ * bInterval = 02
+ * Endpoint:
+ * bLength = 7
+ * bDescriptorType = 05
+ * bEndpointAddress = 01 (out)
+ * bmAttributes = 02 (Bulk)
+ * wMaxPacketSize = 0040
+ * bInterval = 00
+ * Endpoint:
+ * bLength = 7
+ * bDescriptorType = 05
+ * bEndpointAddress = 83 (in)
+ * bmAttributes = 03 (Interrupt)
+ * wMaxPacketSize = 0002
+ * bInterval = 02
+ *
+ *
+ * Hardware details (added by Martin Hamilton, 2001/12/06)
+ * -----------------------------------------------------------------
+ *
+ * This info was gleaned from opening a Belkin F5U109 DB9 USB serial
+ * adaptor, which turns out to simply be a re-badged U232-P9. We
+ * know this because there is a sticky label on the circuit board
+ * which says "U232-P9" ;-)
+ *
+ * The circuit board inside the adaptor contains a Philips PDIUSBD12
+ * USB endpoint chip and a Phillips P87C52UBAA microcontroller with
+ * embedded UART. Exhaustive documentation for these is available at:
+ *
+ * http://www.semiconductors.philips.com/pip/p87c52ubaa
+ * http://www.semiconductors.philips.com/pip/pdiusbd12
+ *
+ * Thanks to Julian Highfield for the pointer to the Philips database.
+ *
+ */
+
+#endif /* __LINUX_USB_SERIAL_MCT_U232_H */
+