diff options
Diffstat (limited to 'drivers/scsi/blz1230.c')
-rw-r--r-- | drivers/scsi/blz1230.c | 352 |
1 files changed, 352 insertions, 0 deletions
diff --git a/drivers/scsi/blz1230.c b/drivers/scsi/blz1230.c new file mode 100644 index 000000000000..4cd9fcf4dc50 --- /dev/null +++ b/drivers/scsi/blz1230.c @@ -0,0 +1,352 @@ +/* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller. + * + * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) + * + * This driver is based on the CyberStorm driver, hence the occasional + * reference to CyberStorm. + */ + +/* TODO: + * + * 1) Figure out how to make a cleaner merge with the sparc driver with regard + * to the caches and the Sparc MMU mapping. + * 2) Make as few routines required outside the generic driver. A lot of the + * routines in this file used to be inline! + */ + +#include <linux/module.h> + +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/delay.h> +#include <linux/types.h> +#include <linux/string.h> +#include <linux/slab.h> +#include <linux/blkdev.h> +#include <linux/proc_fs.h> +#include <linux/stat.h> +#include <linux/interrupt.h> + +#include "scsi.h" +#include <scsi/scsi_host.h> +#include "NCR53C9x.h" + +#include <linux/zorro.h> +#include <asm/irq.h> +#include <asm/amigaints.h> +#include <asm/amigahw.h> + +#include <asm/pgtable.h> + +#define MKIV 1 + +/* The controller registers can be found in the Z2 config area at these + * offsets: + */ +#define BLZ1230_ESP_ADDR 0x8000 +#define BLZ1230_DMA_ADDR 0x10000 +#define BLZ1230II_ESP_ADDR 0x10000 +#define BLZ1230II_DMA_ADDR 0x10021 + + +/* The Blizzard 1230 DMA interface + * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * Only two things can be programmed in the Blizzard DMA: + * 1) The data direction is controlled by the status of bit 31 (1 = write) + * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 + * + * Program DMA by first latching the highest byte of the address/direction + * (i.e. bits 31-24 of the long word constructed as described in steps 1+2 + * above). Then write each byte of the address/direction (starting with the + * top byte, working down) to the DMA address register. + * + * Figure out interrupt status by reading the ESP status byte. + */ +struct blz1230_dma_registers { + volatile unsigned char dma_addr; /* DMA address [0x0000] */ + unsigned char dmapad2[0x7fff]; + volatile unsigned char dma_latch; /* DMA latch [0x8000] */ +}; + +struct blz1230II_dma_registers { + volatile unsigned char dma_addr; /* DMA address [0x0000] */ + unsigned char dmapad2[0xf]; + volatile unsigned char dma_latch; /* DMA latch [0x0010] */ +}; + +#define BLZ1230_DMA_WRITE 0x80000000 + +static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); +static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); +static void dma_dump_state(struct NCR_ESP *esp); +static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); +static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); +static void dma_ints_off(struct NCR_ESP *esp); +static void dma_ints_on(struct NCR_ESP *esp); +static int dma_irq_p(struct NCR_ESP *esp); +static int dma_ports_p(struct NCR_ESP *esp); +static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); + +static volatile unsigned char cmd_buffer[16]; + /* This is where all commands are put + * before they are transferred to the ESP chip + * via PIO. + */ + +/***************************************************************** Detection */ +int __init blz1230_esp_detect(Scsi_Host_Template *tpnt) +{ + struct NCR_ESP *esp; + struct zorro_dev *z = NULL; + unsigned long address; + struct ESP_regs *eregs; + unsigned long board; + +#if MKIV +#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260 +#define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR +#define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR +#else +#define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060 +#define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR +#define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR +#endif + + if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) { + board = z->resource.start; + if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR, + sizeof(struct ESP_regs), "NCR53C9x")) { + /* Do some magic to figure out if the blizzard is + * equipped with a SCSI controller + */ + address = ZTWO_VADDR(board); + eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR); + esp = esp_allocate(tpnt, (void *)board+REAL_BLZ1230_ESP_ADDR); + + esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); + udelay(5); + if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) + goto err_out; + + /* Do command transfer with programmed I/O */ + esp->do_pio_cmds = 1; + + /* Required functions */ + esp->dma_bytes_sent = &dma_bytes_sent; + esp->dma_can_transfer = &dma_can_transfer; + esp->dma_dump_state = &dma_dump_state; + esp->dma_init_read = &dma_init_read; + esp->dma_init_write = &dma_init_write; + esp->dma_ints_off = &dma_ints_off; + esp->dma_ints_on = &dma_ints_on; + esp->dma_irq_p = &dma_irq_p; + esp->dma_ports_p = &dma_ports_p; + esp->dma_setup = &dma_setup; + + /* Optional functions */ + esp->dma_barrier = 0; + esp->dma_drain = 0; + esp->dma_invalidate = 0; + esp->dma_irq_entry = 0; + esp->dma_irq_exit = 0; + esp->dma_led_on = 0; + esp->dma_led_off = 0; + esp->dma_poll = 0; + esp->dma_reset = 0; + + /* SCSI chip speed */ + esp->cfreq = 40000000; + + /* The DMA registers on the Blizzard are mapped + * relative to the device (i.e. in the same Zorro + * I/O block). + */ + esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR); + + /* ESP register base */ + esp->eregs = eregs; + + /* Set the command buffer */ + esp->esp_command = cmd_buffer; + esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); + + esp->irq = IRQ_AMIGA_PORTS; + esp->slot = board+REAL_BLZ1230_ESP_ADDR; + if (request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ, + "Blizzard 1230 SCSI IV", esp->ehost)) + goto err_out; + + /* Figure out our scsi ID on the bus */ + esp->scsi_id = 7; + + /* We don't have a differential SCSI-bus. */ + esp->diff = 0; + + esp_initialize(esp); + + printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); + esps_running = esps_in_use; + return esps_in_use; + } + } + return 0; + + err_out: + scsi_unregister(esp->ehost); + esp_deallocate(esp); + release_mem_region(board+REAL_BLZ1230_ESP_ADDR, + sizeof(struct ESP_regs)); + return 0; +} + +/************************************************************* DMA Functions */ +static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) +{ + /* Since the Blizzard DMA is fully dedicated to the ESP chip, + * the number of bytes sent (to the ESP chip) equals the number + * of bytes in the FIFO - there is no buffering in the DMA controller. + * XXXX Do I read this right? It is from host to ESP, right? + */ + return fifo_count; +} + +static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) +{ + /* I don't think there's any limit on the Blizzard DMA. So we use what + * the ESP chip can handle (24 bit). + */ + unsigned long sz = sp->SCp.this_residual; + if(sz > 0x1000000) + sz = 0x1000000; + return sz; +} + +static void dma_dump_state(struct NCR_ESP *esp) +{ + ESPLOG(("intreq:<%04x>, intena:<%04x>\n", + custom.intreqr, custom.intenar)); +} + +void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) +{ +#if MKIV + struct blz1230_dma_registers *dregs = + (struct blz1230_dma_registers *) (esp->dregs); +#else + struct blz1230II_dma_registers *dregs = + (struct blz1230II_dma_registers *) (esp->dregs); +#endif + + cache_clear(addr, length); + + addr >>= 1; + addr &= ~(BLZ1230_DMA_WRITE); + + /* First set latch */ + dregs->dma_latch = (addr >> 24) & 0xff; + + /* Then pump the address to the DMA address register */ +#if MKIV + dregs->dma_addr = (addr >> 24) & 0xff; +#endif + dregs->dma_addr = (addr >> 16) & 0xff; + dregs->dma_addr = (addr >> 8) & 0xff; + dregs->dma_addr = (addr ) & 0xff; +} + +void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) +{ +#if MKIV + struct blz1230_dma_registers *dregs = + (struct blz1230_dma_registers *) (esp->dregs); +#else + struct blz1230II_dma_registers *dregs = + (struct blz1230II_dma_registers *) (esp->dregs); +#endif + + cache_push(addr, length); + + addr >>= 1; + addr |= BLZ1230_DMA_WRITE; + + /* First set latch */ + dregs->dma_latch = (addr >> 24) & 0xff; + + /* Then pump the address to the DMA address register */ +#if MKIV + dregs->dma_addr = (addr >> 24) & 0xff; +#endif + dregs->dma_addr = (addr >> 16) & 0xff; + dregs->dma_addr = (addr >> 8) & 0xff; + dregs->dma_addr = (addr ) & 0xff; +} + +static void dma_ints_off(struct NCR_ESP *esp) +{ + disable_irq(esp->irq); +} + +static void dma_ints_on(struct NCR_ESP *esp) +{ + enable_irq(esp->irq); +} + +static int dma_irq_p(struct NCR_ESP *esp) +{ + return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); +} + +static int dma_ports_p(struct NCR_ESP *esp) +{ + return ((custom.intenar) & IF_PORTS); +} + +static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) +{ + /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" + * so when (write) is true, it actually means READ! + */ + if(write){ + dma_init_read(esp, addr, count); + } else { + dma_init_write(esp, addr, count); + } +} + +#define HOSTS_C + +int blz1230_esp_release(struct Scsi_Host *instance) +{ +#ifdef MODULE + unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; + esp_deallocate((struct NCR_ESP *)instance->hostdata); + esp_release(); + release_mem_region(address, sizeof(struct ESP_regs)); + free_irq(IRQ_AMIGA_PORTS, esp_intr); +#endif + return 1; +} + + +static Scsi_Host_Template driver_template = { + .proc_name = "esp-blz1230", + .proc_info = esp_proc_info, + .name = "Blizzard1230 SCSI IV", + .detect = blz1230_esp_detect, + .slave_alloc = esp_slave_alloc, + .slave_destroy = esp_slave_destroy, + .release = blz1230_esp_release, + .queuecommand = esp_queue, + .eh_abort_handler = esp_abort, + .eh_bus_reset_handler = esp_reset, + .can_queue = 7, + .this_id = 7, + .sg_tablesize = SG_ALL, + .cmd_per_lun = 1, + .use_clustering = ENABLE_CLUSTERING +}; + + +#include "scsi_module.c" + +MODULE_LICENSE("GPL"); |