summaryrefslogtreecommitdiff
path: root/drivers/nvme/host/pci.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/nvme/host/pci.c')
-rw-r--r--drivers/nvme/host/pci.c3456
1 files changed, 3456 insertions, 0 deletions
diff --git a/drivers/nvme/host/pci.c b/drivers/nvme/host/pci.c
new file mode 100644
index 000000000000..97b6640a3745
--- /dev/null
+++ b/drivers/nvme/host/pci.c
@@ -0,0 +1,3456 @@
+/*
+ * NVM Express device driver
+ * Copyright (c) 2011-2014, Intel Corporation.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ */
+
+#include <linux/bitops.h>
+#include <linux/blkdev.h>
+#include <linux/blk-mq.h>
+#include <linux/cpu.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/fs.h>
+#include <linux/genhd.h>
+#include <linux/hdreg.h>
+#include <linux/idr.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kdev_t.h>
+#include <linux/kthread.h>
+#include <linux/kernel.h>
+#include <linux/list_sort.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/pci.h>
+#include <linux/poison.h>
+#include <linux/ptrace.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/t10-pi.h>
+#include <linux/types.h>
+#include <linux/pr.h>
+#include <scsi/sg.h>
+#include <linux/io-64-nonatomic-lo-hi.h>
+#include <asm/unaligned.h>
+
+#include <uapi/linux/nvme_ioctl.h>
+#include "nvme.h"
+
+#define NVME_MINORS (1U << MINORBITS)
+#define NVME_Q_DEPTH 1024
+#define NVME_AQ_DEPTH 256
+#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
+#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
+#define ADMIN_TIMEOUT (admin_timeout * HZ)
+#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
+
+static unsigned char admin_timeout = 60;
+module_param(admin_timeout, byte, 0644);
+MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
+
+unsigned char nvme_io_timeout = 30;
+module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
+MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
+
+static unsigned char shutdown_timeout = 5;
+module_param(shutdown_timeout, byte, 0644);
+MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
+
+static int nvme_major;
+module_param(nvme_major, int, 0);
+
+static int nvme_char_major;
+module_param(nvme_char_major, int, 0);
+
+static int use_threaded_interrupts;
+module_param(use_threaded_interrupts, int, 0);
+
+static bool use_cmb_sqes = true;
+module_param(use_cmb_sqes, bool, 0644);
+MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
+
+static DEFINE_SPINLOCK(dev_list_lock);
+static LIST_HEAD(dev_list);
+static struct task_struct *nvme_thread;
+static struct workqueue_struct *nvme_workq;
+static wait_queue_head_t nvme_kthread_wait;
+
+static struct class *nvme_class;
+
+static int __nvme_reset(struct nvme_dev *dev);
+static int nvme_reset(struct nvme_dev *dev);
+static int nvme_process_cq(struct nvme_queue *nvmeq);
+static void nvme_dead_ctrl(struct nvme_dev *dev);
+
+struct async_cmd_info {
+ struct kthread_work work;
+ struct kthread_worker *worker;
+ struct request *req;
+ u32 result;
+ int status;
+ void *ctx;
+};
+
+/*
+ * An NVM Express queue. Each device has at least two (one for admin
+ * commands and one for I/O commands).
+ */
+struct nvme_queue {
+ struct device *q_dmadev;
+ struct nvme_dev *dev;
+ char irqname[24]; /* nvme4294967295-65535\0 */
+ spinlock_t q_lock;
+ struct nvme_command *sq_cmds;
+ struct nvme_command __iomem *sq_cmds_io;
+ volatile struct nvme_completion *cqes;
+ struct blk_mq_tags **tags;
+ dma_addr_t sq_dma_addr;
+ dma_addr_t cq_dma_addr;
+ u32 __iomem *q_db;
+ u16 q_depth;
+ s16 cq_vector;
+ u16 sq_head;
+ u16 sq_tail;
+ u16 cq_head;
+ u16 qid;
+ u8 cq_phase;
+ u8 cqe_seen;
+ struct async_cmd_info cmdinfo;
+};
+
+/*
+ * Check we didin't inadvertently grow the command struct
+ */
+static inline void _nvme_check_size(void)
+{
+ BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
+ BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
+ BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
+ BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
+}
+
+typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
+ struct nvme_completion *);
+
+struct nvme_cmd_info {
+ nvme_completion_fn fn;
+ void *ctx;
+ int aborted;
+ struct nvme_queue *nvmeq;
+ struct nvme_iod iod[0];
+};
+
+/*
+ * Max size of iod being embedded in the request payload
+ */
+#define NVME_INT_PAGES 2
+#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
+#define NVME_INT_MASK 0x01
+
+/*
+ * Will slightly overestimate the number of pages needed. This is OK
+ * as it only leads to a small amount of wasted memory for the lifetime of
+ * the I/O.
+ */
+static int nvme_npages(unsigned size, struct nvme_dev *dev)
+{
+ unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
+ return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
+}
+
+static unsigned int nvme_cmd_size(struct nvme_dev *dev)
+{
+ unsigned int ret = sizeof(struct nvme_cmd_info);
+
+ ret += sizeof(struct nvme_iod);
+ ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
+ ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
+
+ return ret;
+}
+
+static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_dev *dev = data;
+ struct nvme_queue *nvmeq = dev->queues[0];
+
+ WARN_ON(hctx_idx != 0);
+ WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
+ WARN_ON(nvmeq->tags);
+
+ hctx->driver_data = nvmeq;
+ nvmeq->tags = &dev->admin_tagset.tags[0];
+ return 0;
+}
+
+static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
+{
+ struct nvme_queue *nvmeq = hctx->driver_data;
+
+ nvmeq->tags = NULL;
+}
+
+static int nvme_admin_init_request(void *data, struct request *req,
+ unsigned int hctx_idx, unsigned int rq_idx,
+ unsigned int numa_node)
+{
+ struct nvme_dev *dev = data;
+ struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
+ struct nvme_queue *nvmeq = dev->queues[0];
+
+ BUG_ON(!nvmeq);
+ cmd->nvmeq = nvmeq;
+ return 0;
+}
+
+static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
+ unsigned int hctx_idx)
+{
+ struct nvme_dev *dev = data;
+ struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
+
+ if (!nvmeq->tags)
+ nvmeq->tags = &dev->tagset.tags[hctx_idx];
+
+ WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
+ hctx->driver_data = nvmeq;
+ return 0;
+}
+
+static int nvme_init_request(void *data, struct request *req,
+ unsigned int hctx_idx, unsigned int rq_idx,
+ unsigned int numa_node)
+{
+ struct nvme_dev *dev = data;
+ struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
+ struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
+
+ BUG_ON(!nvmeq);
+ cmd->nvmeq = nvmeq;
+ return 0;
+}
+
+static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
+ nvme_completion_fn handler)
+{
+ cmd->fn = handler;
+ cmd->ctx = ctx;
+ cmd->aborted = 0;
+ blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
+}
+
+static void *iod_get_private(struct nvme_iod *iod)
+{
+ return (void *) (iod->private & ~0x1UL);
+}
+
+/*
+ * If bit 0 is set, the iod is embedded in the request payload.
+ */
+static bool iod_should_kfree(struct nvme_iod *iod)
+{
+ return (iod->private & NVME_INT_MASK) == 0;
+}
+
+/* Special values must be less than 0x1000 */
+#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
+#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
+#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
+#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
+
+static void special_completion(struct nvme_queue *nvmeq, void *ctx,
+ struct nvme_completion *cqe)
+{
+ if (ctx == CMD_CTX_CANCELLED)
+ return;
+ if (ctx == CMD_CTX_COMPLETED) {
+ dev_warn(nvmeq->q_dmadev,
+ "completed id %d twice on queue %d\n",
+ cqe->command_id, le16_to_cpup(&cqe->sq_id));
+ return;
+ }
+ if (ctx == CMD_CTX_INVALID) {
+ dev_warn(nvmeq->q_dmadev,
+ "invalid id %d completed on queue %d\n",
+ cqe->command_id, le16_to_cpup(&cqe->sq_id));
+ return;
+ }
+ dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
+}
+
+static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
+{
+ void *ctx;
+
+ if (fn)
+ *fn = cmd->fn;
+ ctx = cmd->ctx;
+ cmd->fn = special_completion;
+ cmd->ctx = CMD_CTX_CANCELLED;
+ return ctx;
+}
+
+static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
+ struct nvme_completion *cqe)
+{
+ u32 result = le32_to_cpup(&cqe->result);
+ u16 status = le16_to_cpup(&cqe->status) >> 1;
+
+ if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
+ ++nvmeq->dev->event_limit;
+ if (status != NVME_SC_SUCCESS)
+ return;
+
+ switch (result & 0xff07) {
+ case NVME_AER_NOTICE_NS_CHANGED:
+ dev_info(nvmeq->q_dmadev, "rescanning\n");
+ schedule_work(&nvmeq->dev->scan_work);
+ default:
+ dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
+ }
+}
+
+static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
+ struct nvme_completion *cqe)
+{
+ struct request *req = ctx;
+
+ u16 status = le16_to_cpup(&cqe->status) >> 1;
+ u32 result = le32_to_cpup(&cqe->result);
+
+ blk_mq_free_request(req);
+
+ dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
+ ++nvmeq->dev->abort_limit;
+}
+
+static void async_completion(struct nvme_queue *nvmeq, void *ctx,
+ struct nvme_completion *cqe)
+{
+ struct async_cmd_info *cmdinfo = ctx;
+ cmdinfo->result = le32_to_cpup(&cqe->result);
+ cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
+ queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
+ blk_mq_free_request(cmdinfo->req);
+}
+
+static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
+ unsigned int tag)
+{
+ struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
+
+ return blk_mq_rq_to_pdu(req);
+}
+
+/*
+ * Called with local interrupts disabled and the q_lock held. May not sleep.
+ */
+static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
+ nvme_completion_fn *fn)
+{
+ struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
+ void *ctx;
+ if (tag >= nvmeq->q_depth) {
+ *fn = special_completion;
+ return CMD_CTX_INVALID;
+ }
+ if (fn)
+ *fn = cmd->fn;
+ ctx = cmd->ctx;
+ cmd->fn = special_completion;
+ cmd->ctx = CMD_CTX_COMPLETED;
+ return ctx;
+}
+
+/**
+ * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
+ * @nvmeq: The queue to use
+ * @cmd: The command to send
+ *
+ * Safe to use from interrupt context
+ */
+static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
+ struct nvme_command *cmd)
+{
+ u16 tail = nvmeq->sq_tail;
+
+ if (nvmeq->sq_cmds_io)
+ memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
+ else
+ memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
+
+ if (++tail == nvmeq->q_depth)
+ tail = 0;
+ writel(tail, nvmeq->q_db);
+ nvmeq->sq_tail = tail;
+}
+
+static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
+{
+ unsigned long flags;
+ spin_lock_irqsave(&nvmeq->q_lock, flags);
+ __nvme_submit_cmd(nvmeq, cmd);
+ spin_unlock_irqrestore(&nvmeq->q_lock, flags);
+}
+
+static __le64 **iod_list(struct nvme_iod *iod)
+{
+ return ((void *)iod) + iod->offset;
+}
+
+static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
+ unsigned nseg, unsigned long private)
+{
+ iod->private = private;
+ iod->offset = offsetof(struct nvme_iod, sg[nseg]);
+ iod->npages = -1;
+ iod->length = nbytes;
+ iod->nents = 0;
+}
+
+static struct nvme_iod *
+__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
+ unsigned long priv, gfp_t gfp)
+{
+ struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
+ sizeof(__le64 *) * nvme_npages(bytes, dev) +
+ sizeof(struct scatterlist) * nseg, gfp);
+
+ if (iod)
+ iod_init(iod, bytes, nseg, priv);
+
+ return iod;
+}
+
+static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
+ gfp_t gfp)
+{
+ unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
+ sizeof(struct nvme_dsm_range);
+ struct nvme_iod *iod;
+
+ if (rq->nr_phys_segments <= NVME_INT_PAGES &&
+ size <= NVME_INT_BYTES(dev)) {
+ struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
+
+ iod = cmd->iod;
+ iod_init(iod, size, rq->nr_phys_segments,
+ (unsigned long) rq | NVME_INT_MASK);
+ return iod;
+ }
+
+ return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
+ (unsigned long) rq, gfp);
+}
+
+static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
+{
+ const int last_prp = dev->page_size / 8 - 1;
+ int i;
+ __le64 **list = iod_list(iod);
+ dma_addr_t prp_dma = iod->first_dma;
+
+ if (iod->npages == 0)
+ dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
+ for (i = 0; i < iod->npages; i++) {
+ __le64 *prp_list = list[i];
+ dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
+ dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
+ prp_dma = next_prp_dma;
+ }
+
+ if (iod_should_kfree(iod))
+ kfree(iod);
+}
+
+static int nvme_error_status(u16 status)
+{
+ switch (status & 0x7ff) {
+ case NVME_SC_SUCCESS:
+ return 0;
+ case NVME_SC_CAP_EXCEEDED:
+ return -ENOSPC;
+ default:
+ return -EIO;
+ }
+}
+
+#ifdef CONFIG_BLK_DEV_INTEGRITY
+static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
+{
+ if (be32_to_cpu(pi->ref_tag) == v)
+ pi->ref_tag = cpu_to_be32(p);
+}
+
+static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
+{
+ if (be32_to_cpu(pi->ref_tag) == p)
+ pi->ref_tag = cpu_to_be32(v);
+}
+
+/**
+ * nvme_dif_remap - remaps ref tags to bip seed and physical lba
+ *
+ * The virtual start sector is the one that was originally submitted by the
+ * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
+ * start sector may be different. Remap protection information to match the
+ * physical LBA on writes, and back to the original seed on reads.
+ *
+ * Type 0 and 3 do not have a ref tag, so no remapping required.
+ */
+static void nvme_dif_remap(struct request *req,
+ void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
+{
+ struct nvme_ns *ns = req->rq_disk->private_data;
+ struct bio_integrity_payload *bip;
+ struct t10_pi_tuple *pi;
+ void *p, *pmap;
+ u32 i, nlb, ts, phys, virt;
+
+ if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
+ return;
+
+ bip = bio_integrity(req->bio);
+ if (!bip)
+ return;
+
+ pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
+
+ p = pmap;
+ virt = bip_get_seed(bip);
+ phys = nvme_block_nr(ns, blk_rq_pos(req));
+ nlb = (blk_rq_bytes(req) >> ns->lba_shift);
+ ts = ns->disk->queue->integrity.tuple_size;
+
+ for (i = 0; i < nlb; i++, virt++, phys++) {
+ pi = (struct t10_pi_tuple *)p;
+ dif_swap(phys, virt, pi);
+ p += ts;
+ }
+ kunmap_atomic(pmap);
+}
+
+static void nvme_init_integrity(struct nvme_ns *ns)
+{
+ struct blk_integrity integrity;
+
+ switch (ns->pi_type) {
+ case NVME_NS_DPS_PI_TYPE3:
+ integrity.profile = &t10_pi_type3_crc;
+ break;
+ case NVME_NS_DPS_PI_TYPE1:
+ case NVME_NS_DPS_PI_TYPE2:
+ integrity.profile = &t10_pi_type1_crc;
+ break;
+ default:
+ integrity.profile = NULL;
+ break;
+ }
+ integrity.tuple_size = ns->ms;
+ blk_integrity_register(ns->disk, &integrity);
+ blk_queue_max_integrity_segments(ns->queue, 1);
+}
+#else /* CONFIG_BLK_DEV_INTEGRITY */
+static void nvme_dif_remap(struct request *req,
+ void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
+{
+}
+static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
+{
+}
+static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
+{
+}
+static void nvme_init_integrity(struct nvme_ns *ns)
+{
+}
+#endif
+
+static void req_completion(struct nvme_queue *nvmeq, void *ctx,
+ struct nvme_completion *cqe)
+{
+ struct nvme_iod *iod = ctx;
+ struct request *req = iod_get_private(iod);
+ struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
+ u16 status = le16_to_cpup(&cqe->status) >> 1;
+ bool requeue = false;
+ int error = 0;
+
+ if (unlikely(status)) {
+ if (!(status & NVME_SC_DNR || blk_noretry_request(req))
+ && (jiffies - req->start_time) < req->timeout) {
+ unsigned long flags;
+
+ requeue = true;
+ blk_mq_requeue_request(req);
+ spin_lock_irqsave(req->q->queue_lock, flags);
+ if (!blk_queue_stopped(req->q))
+ blk_mq_kick_requeue_list(req->q);
+ spin_unlock_irqrestore(req->q->queue_lock, flags);
+ goto release_iod;
+ }
+
+ if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
+ if (cmd_rq->ctx == CMD_CTX_CANCELLED)
+ error = -EINTR;
+ else
+ error = status;
+ } else {
+ error = nvme_error_status(status);
+ }
+ }
+
+ if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
+ u32 result = le32_to_cpup(&cqe->result);
+ req->special = (void *)(uintptr_t)result;
+ }
+
+ if (cmd_rq->aborted)
+ dev_warn(nvmeq->dev->dev,
+ "completing aborted command with status:%04x\n",
+ error);
+
+release_iod:
+ if (iod->nents) {
+ dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
+ rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
+ if (blk_integrity_rq(req)) {
+ if (!rq_data_dir(req))
+ nvme_dif_remap(req, nvme_dif_complete);
+ dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
+ rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
+ }
+ }
+ nvme_free_iod(nvmeq->dev, iod);
+
+ if (likely(!requeue))
+ blk_mq_complete_request(req, error);
+}
+
+/* length is in bytes. gfp flags indicates whether we may sleep. */
+static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
+ int total_len, gfp_t gfp)
+{
+ struct dma_pool *pool;
+ int length = total_len;
+ struct scatterlist *sg = iod->sg;
+ int dma_len = sg_dma_len(sg);
+ u64 dma_addr = sg_dma_address(sg);
+ u32 page_size = dev->page_size;
+ int offset = dma_addr & (page_size - 1);
+ __le64 *prp_list;
+ __le64 **list = iod_list(iod);
+ dma_addr_t prp_dma;
+ int nprps, i;
+
+ length -= (page_size - offset);
+ if (length <= 0)
+ return total_len;
+
+ dma_len -= (page_size - offset);
+ if (dma_len) {
+ dma_addr += (page_size - offset);
+ } else {
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+
+ if (length <= page_size) {
+ iod->first_dma = dma_addr;
+ return total_len;
+ }
+
+ nprps = DIV_ROUND_UP(length, page_size);
+ if (nprps <= (256 / 8)) {
+ pool = dev->prp_small_pool;
+ iod->npages = 0;
+ } else {
+ pool = dev->prp_page_pool;
+ iod->npages = 1;
+ }
+
+ prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
+ if (!prp_list) {
+ iod->first_dma = dma_addr;
+ iod->npages = -1;
+ return (total_len - length) + page_size;
+ }
+ list[0] = prp_list;
+ iod->first_dma = prp_dma;
+ i = 0;
+ for (;;) {
+ if (i == page_size >> 3) {
+ __le64 *old_prp_list = prp_list;
+ prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
+ if (!prp_list)
+ return total_len - length;
+ list[iod->npages++] = prp_list;
+ prp_list[0] = old_prp_list[i - 1];
+ old_prp_list[i - 1] = cpu_to_le64(prp_dma);
+ i = 1;
+ }
+ prp_list[i++] = cpu_to_le64(dma_addr);
+ dma_len -= page_size;
+ dma_addr += page_size;
+ length -= page_size;
+ if (length <= 0)
+ break;
+ if (dma_len > 0)
+ continue;
+ BUG_ON(dma_len < 0);
+ sg = sg_next(sg);
+ dma_addr = sg_dma_address(sg);
+ dma_len = sg_dma_len(sg);
+ }
+
+ return total_len;
+}
+
+static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
+ struct nvme_iod *iod)
+{
+ struct nvme_command cmnd;
+
+ memcpy(&cmnd, req->cmd, sizeof(cmnd));
+ cmnd.rw.command_id = req->tag;
+ if (req->nr_phys_segments) {
+ cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
+ cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
+ }
+
+ __nvme_submit_cmd(nvmeq, &cmnd);
+}
+
+/*
+ * We reuse the small pool to allocate the 16-byte range here as it is not
+ * worth having a special pool for these or additional cases to handle freeing
+ * the iod.
+ */
+static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
+ struct request *req, struct nvme_iod *iod)
+{
+ struct nvme_dsm_range *range =
+ (struct nvme_dsm_range *)iod_list(iod)[0];
+ struct nvme_command cmnd;
+
+ range->cattr = cpu_to_le32(0);
+ range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
+ range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
+
+ memset(&cmnd, 0, sizeof(cmnd));
+ cmnd.dsm.opcode = nvme_cmd_dsm;
+ cmnd.dsm.command_id = req->tag;
+ cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
+ cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
+ cmnd.dsm.nr = 0;
+ cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
+
+ __nvme_submit_cmd(nvmeq, &cmnd);
+}
+
+static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
+ int cmdid)
+{
+ struct nvme_command cmnd;
+
+ memset(&cmnd, 0, sizeof(cmnd));
+ cmnd.common.opcode = nvme_cmd_flush;
+ cmnd.common.command_id = cmdid;
+ cmnd.common.nsid = cpu_to_le32(ns->ns_id);
+
+ __nvme_submit_cmd(nvmeq, &cmnd);
+}
+
+static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
+ struct nvme_ns *ns)
+{
+ struct request *req = iod_get_private(iod);
+ struct nvme_command cmnd;
+ u16 control = 0;
+ u32 dsmgmt = 0;
+
+ if (req->cmd_flags & REQ_FUA)
+ control |= NVME_RW_FUA;
+ if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
+ control |= NVME_RW_LR;
+
+ if (req->cmd_flags & REQ_RAHEAD)
+ dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
+
+ memset(&cmnd, 0, sizeof(cmnd));
+ cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
+ cmnd.rw.command_id = req->tag;
+ cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
+ cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
+ cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
+ cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
+ cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
+
+ if (ns->ms) {
+ switch (ns->pi_type) {
+ case NVME_NS_DPS_PI_TYPE3:
+ control |= NVME_RW_PRINFO_PRCHK_GUARD;
+ break;
+ case NVME_NS_DPS_PI_TYPE1:
+ case NVME_NS_DPS_PI_TYPE2:
+ control |= NVME_RW_PRINFO_PRCHK_GUARD |
+ NVME_RW_PRINFO_PRCHK_REF;
+ cmnd.rw.reftag = cpu_to_le32(
+ nvme_block_nr(ns, blk_rq_pos(req)));
+ break;
+ }
+ if (blk_integrity_rq(req))
+ cmnd.rw.metadata =
+ cpu_to_le64(sg_dma_address(iod->meta_sg));
+ else
+ control |= NVME_RW_PRINFO_PRACT;
+ }
+
+ cmnd.rw.control = cpu_to_le16(control);
+ cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
+
+ __nvme_submit_cmd(nvmeq, &cmnd);
+
+ return 0;
+}
+
+/*
+ * NOTE: ns is NULL when called on the admin queue.
+ */
+static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
+ const struct blk_mq_queue_data *bd)
+{
+ struct nvme_ns *ns = hctx->queue->queuedata;
+ struct nvme_queue *nvmeq = hctx->driver_data;
+ struct nvme_dev *dev = nvmeq->dev;
+ struct request *req = bd->rq;
+ struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
+ struct nvme_iod *iod;
+ enum dma_data_direction dma_dir;
+
+ /*
+ * If formated with metadata, require the block layer provide a buffer
+ * unless this namespace is formated such that the metadata can be
+ * stripped/generated by the controller with PRACT=1.
+ */
+ if (ns && ns->ms && !blk_integrity_rq(req)) {
+ if (!(ns->pi_type && ns->ms == 8) &&
+ req->cmd_type != REQ_TYPE_DRV_PRIV) {
+ blk_mq_complete_request(req, -EFAULT);
+ return BLK_MQ_RQ_QUEUE_OK;
+ }
+ }
+
+ iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
+ if (!iod)
+ return BLK_MQ_RQ_QUEUE_BUSY;
+
+ if (req->cmd_flags & REQ_DISCARD) {
+ void *range;
+ /*
+ * We reuse the small pool to allocate the 16-byte range here
+ * as it is not worth having a special pool for these or
+ * additional cases to handle freeing the iod.
+ */
+ range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
+ &iod->first_dma);
+ if (!range)
+ goto retry_cmd;
+ iod_list(iod)[0] = (__le64 *)range;
+ iod->npages = 0;
+ } else if (req->nr_phys_segments) {
+ dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+
+ sg_init_table(iod->sg, req->nr_phys_segments);
+ iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
+ if (!iod->nents)
+ goto error_cmd;
+
+ if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
+ goto retry_cmd;
+
+ if (blk_rq_bytes(req) !=
+ nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
+ dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
+ goto retry_cmd;
+ }
+ if (blk_integrity_rq(req)) {
+ if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
+ goto error_cmd;
+
+ sg_init_table(iod->meta_sg, 1);
+ if (blk_rq_map_integrity_sg(
+ req->q, req->bio, iod->meta_sg) != 1)
+ goto error_cmd;
+
+ if (rq_data_dir(req))
+ nvme_dif_remap(req, nvme_dif_prep);
+
+ if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
+ goto error_cmd;
+ }
+ }
+
+ nvme_set_info(cmd, iod, req_completion);
+ spin_lock_irq(&nvmeq->q_lock);
+ if (req->cmd_type == REQ_TYPE_DRV_PRIV)
+ nvme_submit_priv(nvmeq, req, iod);
+ else if (req->cmd_flags & REQ_DISCARD)
+ nvme_submit_discard(nvmeq, ns, req, iod);
+ else if (req->cmd_flags & REQ_FLUSH)
+ nvme_submit_flush(nvmeq, ns, req->tag);
+ else
+ nvme_submit_iod(nvmeq, iod, ns);
+
+ nvme_process_cq(nvmeq);
+ spin_unlock_irq(&nvmeq->q_lock);
+ return BLK_MQ_RQ_QUEUE_OK;
+
+ error_cmd:
+ nvme_free_iod(dev, iod);
+ return BLK_MQ_RQ_QUEUE_ERROR;
+ retry_cmd:
+ nvme_free_iod(dev, iod);
+ return BLK_MQ_RQ_QUEUE_BUSY;
+}
+
+static int nvme_process_cq(struct nvme_queue *nvmeq)
+{
+ u16 head, phase;
+
+ head = nvmeq->cq_head;
+ phase = nvmeq->cq_phase;
+
+ for (;;) {
+ void *ctx;
+ nvme_completion_fn fn;
+ struct nvme_completion cqe = nvmeq->cqes[head];
+ if ((le16_to_cpu(cqe.status) & 1) != phase)
+ break;
+ nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
+ if (++head == nvmeq->q_depth) {
+ head = 0;
+ phase = !phase;
+ }
+ ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
+ fn(nvmeq, ctx, &cqe);
+ }
+
+ /* If the controller ignores the cq head doorbell and continuously
+ * writes to the queue, it is theoretically possible to wrap around
+ * the queue twice and mistakenly return IRQ_NONE. Linux only
+ * requires that 0.1% of your interrupts are handled, so this isn't
+ * a big problem.
+ */
+ if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
+ return 0;
+
+ writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
+ nvmeq->cq_head = head;
+ nvmeq->cq_phase = phase;
+
+ nvmeq->cqe_seen = 1;
+ return 1;
+}
+
+static irqreturn_t nvme_irq(int irq, void *data)
+{
+ irqreturn_t result;
+ struct nvme_queue *nvmeq = data;
+ spin_lock(&nvmeq->q_lock);
+ nvme_process_cq(nvmeq);
+ result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
+ nvmeq->cqe_seen = 0;
+ spin_unlock(&nvmeq->q_lock);
+ return result;
+}
+
+static irqreturn_t nvme_irq_check(int irq, void *data)
+{
+ struct nvme_queue *nvmeq = data;
+ struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
+ if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
+ return IRQ_NONE;
+ return IRQ_WAKE_THREAD;
+}
+
+/*
+ * Returns 0 on success. If the result is negative, it's a Linux error code;
+ * if the result is positive, it's an NVM Express status code
+ */
+int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
+ void *buffer, void __user *ubuffer, unsigned bufflen,
+ u32 *result, unsigned timeout)
+{
+ bool write = cmd->common.opcode & 1;
+ struct bio *bio = NULL;
+ struct request *req;
+ int ret;
+
+ req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+
+ req->cmd_type = REQ_TYPE_DRV_PRIV;
+ req->cmd_flags |= REQ_FAILFAST_DRIVER;
+ req->__data_len = 0;
+ req->__sector = (sector_t) -1;
+ req->bio = req->biotail = NULL;
+
+ req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
+
+ req->cmd = (unsigned char *)cmd;
+ req->cmd_len = sizeof(struct nvme_command);
+ req->special = (void *)0;
+
+ if (buffer && bufflen) {
+ ret = blk_rq_map_kern(q, req, buffer, bufflen,
+ __GFP_DIRECT_RECLAIM);
+ if (ret)
+ goto out;
+ } else if (ubuffer && bufflen) {
+ ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
+ __GFP_DIRECT_RECLAIM);
+ if (ret)
+ goto out;
+ bio = req->bio;
+ }
+
+ blk_execute_rq(req->q, NULL, req, 0);
+ if (bio)
+ blk_rq_unmap_user(bio);
+ if (result)
+ *result = (u32)(uintptr_t)req->special;
+ ret = req->errors;
+ out:
+ blk_mq_free_request(req);
+ return ret;
+}
+
+int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
+ void *buffer, unsigned bufflen)
+{
+ return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
+}
+
+static int nvme_submit_async_admin_req(struct nvme_dev *dev)
+{
+ struct nvme_queue *nvmeq = dev->queues[0];
+ struct nvme_command c;
+ struct nvme_cmd_info *cmd_info;
+ struct request *req;
+
+ req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+
+ req->cmd_flags |= REQ_NO_TIMEOUT;
+ cmd_info = blk_mq_rq_to_pdu(req);
+ nvme_set_info(cmd_info, NULL, async_req_completion);
+
+ memset(&c, 0, sizeof(c));
+ c.common.opcode = nvme_admin_async_event;
+ c.common.command_id = req->tag;
+
+ blk_mq_free_request(req);
+ __nvme_submit_cmd(nvmeq, &c);
+ return 0;
+}
+
+static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
+ struct nvme_command *cmd,
+ struct async_cmd_info *cmdinfo, unsigned timeout)
+{
+ struct nvme_queue *nvmeq = dev->queues[0];
+ struct request *req;
+ struct nvme_cmd_info *cmd_rq;
+
+ req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
+ if (IS_ERR(req))
+ return PTR_ERR(req);
+
+ req->timeout = timeout;
+ cmd_rq = blk_mq_rq_to_pdu(req);
+ cmdinfo->req = req;
+ nvme_set_info(cmd_rq, cmdinfo, async_completion);
+ cmdinfo->status = -EINTR;
+
+ cmd->common.command_id = req->tag;
+
+ nvme_submit_cmd(nvmeq, cmd);
+ return 0;
+}
+
+static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.delete_queue.opcode = opcode;
+ c.delete_queue.qid = cpu_to_le16(id);
+
+ return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
+}
+
+static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_command c;
+ int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
+
+ /*
+ * Note: we (ab)use the fact the the prp fields survive if no data
+ * is attached to the request.
+ */
+ memset(&c, 0, sizeof(c));
+ c.create_cq.opcode = nvme_admin_create_cq;
+ c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
+ c.create_cq.cqid = cpu_to_le16(qid);
+ c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_cq.cq_flags = cpu_to_le16(flags);
+ c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
+
+ return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
+}
+
+static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_command c;
+ int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
+
+ /*
+ * Note: we (ab)use the fact the the prp fields survive if no data
+ * is attached to the request.
+ */
+ memset(&c, 0, sizeof(c));
+ c.create_sq.opcode = nvme_admin_create_sq;
+ c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
+ c.create_sq.sqid = cpu_to_le16(qid);
+ c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_sq.sq_flags = cpu_to_le16(flags);
+ c.create_sq.cqid = cpu_to_le16(qid);
+
+ return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
+}
+
+static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
+{
+ return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
+}
+
+static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
+{
+ return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
+}
+
+int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
+{
+ struct nvme_command c = { };
+ int error;
+
+ /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.cns = cpu_to_le32(1);
+
+ *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
+ if (!*id)
+ return -ENOMEM;
+
+ error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
+ sizeof(struct nvme_id_ctrl));
+ if (error)
+ kfree(*id);
+ return error;
+}
+
+int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
+ struct nvme_id_ns **id)
+{
+ struct nvme_command c = { };
+ int error;
+
+ /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
+ c.identify.opcode = nvme_admin_identify,
+ c.identify.nsid = cpu_to_le32(nsid),
+
+ *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
+ if (!*id)
+ return -ENOMEM;
+
+ error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
+ sizeof(struct nvme_id_ns));
+ if (error)
+ kfree(*id);
+ return error;
+}
+
+int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
+ dma_addr_t dma_addr, u32 *result)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.features.opcode = nvme_admin_get_features;
+ c.features.nsid = cpu_to_le32(nsid);
+ c.features.prp1 = cpu_to_le64(dma_addr);
+ c.features.fid = cpu_to_le32(fid);
+
+ return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
+ result, 0);
+}
+
+int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
+ dma_addr_t dma_addr, u32 *result)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.features.opcode = nvme_admin_set_features;
+ c.features.prp1 = cpu_to_le64(dma_addr);
+ c.features.fid = cpu_to_le32(fid);
+ c.features.dword11 = cpu_to_le32(dword11);
+
+ return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
+ result, 0);
+}
+
+int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
+{
+ struct nvme_command c = { };
+ int error;
+
+ c.common.opcode = nvme_admin_get_log_page,
+ c.common.nsid = cpu_to_le32(0xFFFFFFFF),
+ c.common.cdw10[0] = cpu_to_le32(
+ (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
+ NVME_LOG_SMART),
+
+ *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
+ if (!*log)
+ return -ENOMEM;
+
+ error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
+ sizeof(struct nvme_smart_log));
+ if (error)
+ kfree(*log);
+ return error;
+}
+
+/**
+ * nvme_abort_req - Attempt aborting a request
+ *
+ * Schedule controller reset if the command was already aborted once before and
+ * still hasn't been returned to the driver, or if this is the admin queue.
+ */
+static void nvme_abort_req(struct request *req)
+{
+ struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
+ struct nvme_queue *nvmeq = cmd_rq->nvmeq;
+ struct nvme_dev *dev = nvmeq->dev;
+ struct request *abort_req;
+ struct nvme_cmd_info *abort_cmd;
+ struct nvme_command cmd;
+
+ if (!nvmeq->qid || cmd_rq->aborted) {
+ spin_lock(&dev_list_lock);
+ if (!__nvme_reset(dev)) {
+ dev_warn(dev->dev,
+ "I/O %d QID %d timeout, reset controller\n",
+ req->tag, nvmeq->qid);
+ }
+ spin_unlock(&dev_list_lock);
+ return;
+ }
+
+ if (!dev->abort_limit)
+ return;
+
+ abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
+ false);
+ if (IS_ERR(abort_req))
+ return;
+
+ abort_cmd = blk_mq_rq_to_pdu(abort_req);
+ nvme_set_info(abort_cmd, abort_req, abort_completion);
+
+ memset(&cmd, 0, sizeof(cmd));
+ cmd.abort.opcode = nvme_admin_abort_cmd;
+ cmd.abort.cid = req->tag;
+ cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
+ cmd.abort.command_id = abort_req->tag;
+
+ --dev->abort_limit;
+ cmd_rq->aborted = 1;
+
+ dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
+ nvmeq->qid);
+ nvme_submit_cmd(dev->queues[0], &cmd);
+}
+
+static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
+{
+ struct nvme_queue *nvmeq = data;
+ void *ctx;
+ nvme_completion_fn fn;
+ struct nvme_cmd_info *cmd;
+ struct nvme_completion cqe;
+
+ if (!blk_mq_request_started(req))
+ return;
+
+ cmd = blk_mq_rq_to_pdu(req);
+
+ if (cmd->ctx == CMD_CTX_CANCELLED)
+ return;
+
+ if (blk_queue_dying(req->q))
+ cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
+ else
+ cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
+
+
+ dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
+ req->tag, nvmeq->qid);
+ ctx = cancel_cmd_info(cmd, &fn);
+ fn(nvmeq, ctx, &cqe);
+}
+
+static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
+{
+ struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
+ struct nvme_queue *nvmeq = cmd->nvmeq;
+
+ dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
+ nvmeq->qid);
+ spin_lock_irq(&nvmeq->q_lock);
+ nvme_abort_req(req);
+ spin_unlock_irq(&nvmeq->q_lock);
+
+ /*
+ * The aborted req will be completed on receiving the abort req.
+ * We enable the timer again. If hit twice, it'll cause a device reset,
+ * as the device then is in a faulty state.
+ */
+ return BLK_EH_RESET_TIMER;
+}
+
+static void nvme_free_queue(struct nvme_queue *nvmeq)
+{
+ dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
+ (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
+ if (nvmeq->sq_cmds)
+ dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
+ nvmeq->sq_cmds, nvmeq->sq_dma_addr);
+ kfree(nvmeq);
+}
+
+static void nvme_free_queues(struct nvme_dev *dev, int lowest)
+{
+ int i;
+
+ for (i = dev->queue_count - 1; i >= lowest; i--) {
+ struct nvme_queue *nvmeq = dev->queues[i];
+ dev->queue_count--;
+ dev->queues[i] = NULL;
+ nvme_free_queue(nvmeq);
+ }
+}
+
+/**
+ * nvme_suspend_queue - put queue into suspended state
+ * @nvmeq - queue to suspend
+ */
+static int nvme_suspend_queue(struct nvme_queue *nvmeq)
+{
+ int vector;
+
+ spin_lock_irq(&nvmeq->q_lock);
+ if (nvmeq->cq_vector == -1) {
+ spin_unlock_irq(&nvmeq->q_lock);
+ return 1;
+ }
+ vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
+ nvmeq->dev->online_queues--;
+ nvmeq->cq_vector = -1;
+ spin_unlock_irq(&nvmeq->q_lock);
+
+ if (!nvmeq->qid && nvmeq->dev->admin_q)
+ blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
+
+ irq_set_affinity_hint(vector, NULL);
+ free_irq(vector, nvmeq);
+
+ return 0;
+}
+
+static void nvme_clear_queue(struct nvme_queue *nvmeq)
+{
+ spin_lock_irq(&nvmeq->q_lock);
+ if (nvmeq->tags && *nvmeq->tags)
+ blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
+ spin_unlock_irq(&nvmeq->q_lock);
+}
+
+static void nvme_disable_queue(struct nvme_dev *dev, int qid)
+{
+ struct nvme_queue *nvmeq = dev->queues[qid];
+
+ if (!nvmeq)
+ return;
+ if (nvme_suspend_queue(nvmeq))
+ return;
+
+ /* Don't tell the adapter to delete the admin queue.
+ * Don't tell a removed adapter to delete IO queues. */
+ if (qid && readl(&dev->bar->csts) != -1) {
+ adapter_delete_sq(dev, qid);
+ adapter_delete_cq(dev, qid);
+ }
+
+ spin_lock_irq(&nvmeq->q_lock);
+ nvme_process_cq(nvmeq);
+ spin_unlock_irq(&nvmeq->q_lock);
+}
+
+static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
+ int entry_size)
+{
+ int q_depth = dev->q_depth;
+ unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
+
+ if (q_size_aligned * nr_io_queues > dev->cmb_size) {
+ u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
+ mem_per_q = round_down(mem_per_q, dev->page_size);
+ q_depth = div_u64(mem_per_q, entry_size);
+
+ /*
+ * Ensure the reduced q_depth is above some threshold where it
+ * would be better to map queues in system memory with the
+ * original depth
+ */
+ if (q_depth < 64)
+ return -ENOMEM;
+ }
+
+ return q_depth;
+}
+
+static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
+ int qid, int depth)
+{
+ if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
+ unsigned offset = (qid - 1) *
+ roundup(SQ_SIZE(depth), dev->page_size);
+ nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
+ nvmeq->sq_cmds_io = dev->cmb + offset;
+ } else {
+ nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
+ &nvmeq->sq_dma_addr, GFP_KERNEL);
+ if (!nvmeq->sq_cmds)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
+ int depth)
+{
+ struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
+ if (!nvmeq)
+ return NULL;
+
+ nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
+ &nvmeq->cq_dma_addr, GFP_KERNEL);
+ if (!nvmeq->cqes)
+ goto free_nvmeq;
+
+ if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
+ goto free_cqdma;
+
+ nvmeq->q_dmadev = dev->dev;
+ nvmeq->dev = dev;
+ snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
+ dev->instance, qid);
+ spin_lock_init(&nvmeq->q_lock);
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ nvmeq->q_depth = depth;
+ nvmeq->qid = qid;
+ nvmeq->cq_vector = -1;
+ dev->queues[qid] = nvmeq;
+
+ /* make sure queue descriptor is set before queue count, for kthread */
+ mb();
+ dev->queue_count++;
+
+ return nvmeq;
+
+ free_cqdma:
+ dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
+ nvmeq->cq_dma_addr);
+ free_nvmeq:
+ kfree(nvmeq);
+ return NULL;
+}
+
+static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
+ const char *name)
+{
+ if (use_threaded_interrupts)
+ return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
+ nvme_irq_check, nvme_irq, IRQF_SHARED,
+ name, nvmeq);
+ return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
+ IRQF_SHARED, name, nvmeq);
+}
+
+static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+
+ spin_lock_irq(&nvmeq->q_lock);
+ nvmeq->sq_tail = 0;
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
+ dev->online_queues++;
+ spin_unlock_irq(&nvmeq->q_lock);
+}
+
+static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+ int result;
+
+ nvmeq->cq_vector = qid - 1;
+ result = adapter_alloc_cq(dev, qid, nvmeq);
+ if (result < 0)
+ return result;
+
+ result = adapter_alloc_sq(dev, qid, nvmeq);
+ if (result < 0)
+ goto release_cq;
+
+ result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
+ if (result < 0)
+ goto release_sq;
+
+ nvme_init_queue(nvmeq, qid);
+ return result;
+
+ release_sq:
+ adapter_delete_sq(dev, qid);
+ release_cq:
+ adapter_delete_cq(dev, qid);
+ return result;
+}
+
+static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
+{
+ unsigned long timeout;
+ u32 bit = enabled ? NVME_CSTS_RDY : 0;
+
+ timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
+
+ while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
+ msleep(100);
+ if (fatal_signal_pending(current))
+ return -EINTR;
+ if (time_after(jiffies, timeout)) {
+ dev_err(dev->dev,
+ "Device not ready; aborting %s\n", enabled ?
+ "initialisation" : "reset");
+ return -ENODEV;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * If the device has been passed off to us in an enabled state, just clear
+ * the enabled bit. The spec says we should set the 'shutdown notification
+ * bits', but doing so may cause the device to complete commands to the
+ * admin queue ... and we don't know what memory that might be pointing at!
+ */
+static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
+{
+ dev->ctrl_config &= ~NVME_CC_SHN_MASK;
+ dev->ctrl_config &= ~NVME_CC_ENABLE;
+ writel(dev->ctrl_config, &dev->bar->cc);
+
+ return nvme_wait_ready(dev, cap, false);
+}
+
+static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
+{
+ dev->ctrl_config &= ~NVME_CC_SHN_MASK;
+ dev->ctrl_config |= NVME_CC_ENABLE;
+ writel(dev->ctrl_config, &dev->bar->cc);
+
+ return nvme_wait_ready(dev, cap, true);
+}
+
+static int nvme_shutdown_ctrl(struct nvme_dev *dev)
+{
+ unsigned long timeout;
+
+ dev->ctrl_config &= ~NVME_CC_SHN_MASK;
+ dev->ctrl_config |= NVME_CC_SHN_NORMAL;
+
+ writel(dev->ctrl_config, &dev->bar->cc);
+
+ timeout = SHUTDOWN_TIMEOUT + jiffies;
+ while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
+ NVME_CSTS_SHST_CMPLT) {
+ msleep(100);
+ if (fatal_signal_pending(current))
+ return -EINTR;
+ if (time_after(jiffies, timeout)) {
+ dev_err(dev->dev,
+ "Device shutdown incomplete; abort shutdown\n");
+ return -ENODEV;
+ }
+ }
+
+ return 0;
+}
+
+static struct blk_mq_ops nvme_mq_admin_ops = {
+ .queue_rq = nvme_queue_rq,
+ .map_queue = blk_mq_map_queue,
+ .init_hctx = nvme_admin_init_hctx,
+ .exit_hctx = nvme_admin_exit_hctx,
+ .init_request = nvme_admin_init_request,
+ .timeout = nvme_timeout,
+};
+
+static struct blk_mq_ops nvme_mq_ops = {
+ .queue_rq = nvme_queue_rq,
+ .map_queue = blk_mq_map_queue,
+ .init_hctx = nvme_init_hctx,
+ .init_request = nvme_init_request,
+ .timeout = nvme_timeout,
+};
+
+static void nvme_dev_remove_admin(struct nvme_dev *dev)
+{
+ if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
+ blk_cleanup_queue(dev->admin_q);
+ blk_mq_free_tag_set(&dev->admin_tagset);
+ }
+}
+
+static int nvme_alloc_admin_tags(struct nvme_dev *dev)
+{
+ if (!dev->admin_q) {
+ dev->admin_tagset.ops = &nvme_mq_admin_ops;
+ dev->admin_tagset.nr_hw_queues = 1;
+ dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
+ dev->admin_tagset.reserved_tags = 1;
+ dev->admin_tagset.timeout = ADMIN_TIMEOUT;
+ dev->admin_tagset.numa_node = dev_to_node(dev->dev);
+ dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
+ dev->admin_tagset.driver_data = dev;
+
+ if (blk_mq_alloc_tag_set(&dev->admin_tagset))
+ return -ENOMEM;
+
+ dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
+ if (IS_ERR(dev->admin_q)) {
+ blk_mq_free_tag_set(&dev->admin_tagset);
+ return -ENOMEM;
+ }
+ if (!blk_get_queue(dev->admin_q)) {
+ nvme_dev_remove_admin(dev);
+ dev->admin_q = NULL;
+ return -ENODEV;
+ }
+ } else
+ blk_mq_unfreeze_queue(dev->admin_q);
+
+ return 0;
+}
+
+static int nvme_configure_admin_queue(struct nvme_dev *dev)
+{
+ int result;
+ u32 aqa;
+ u64 cap = readq(&dev->bar->cap);
+ struct nvme_queue *nvmeq;
+ unsigned page_shift = PAGE_SHIFT;
+ unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
+ unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
+
+ if (page_shift < dev_page_min) {
+ dev_err(dev->dev,
+ "Minimum device page size (%u) too large for "
+ "host (%u)\n", 1 << dev_page_min,
+ 1 << page_shift);
+ return -ENODEV;
+ }
+ if (page_shift > dev_page_max) {
+ dev_info(dev->dev,
+ "Device maximum page size (%u) smaller than "
+ "host (%u); enabling work-around\n",
+ 1 << dev_page_max, 1 << page_shift);
+ page_shift = dev_page_max;
+ }
+
+ dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
+ NVME_CAP_NSSRC(cap) : 0;
+
+ if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
+ writel(NVME_CSTS_NSSRO, &dev->bar->csts);
+
+ result = nvme_disable_ctrl(dev, cap);
+ if (result < 0)
+ return result;
+
+ nvmeq = dev->queues[0];
+ if (!nvmeq) {
+ nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
+ if (!nvmeq)
+ return -ENOMEM;
+ }
+
+ aqa = nvmeq->q_depth - 1;
+ aqa |= aqa << 16;
+
+ dev->page_size = 1 << page_shift;
+
+ dev->ctrl_config = NVME_CC_CSS_NVM;
+ dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
+ dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
+ dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
+
+ writel(aqa, &dev->bar->aqa);
+ writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
+ writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
+
+ result = nvme_enable_ctrl(dev, cap);
+ if (result)
+ goto free_nvmeq;
+
+ nvmeq->cq_vector = 0;
+ result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
+ if (result) {
+ nvmeq->cq_vector = -1;
+ goto free_nvmeq;
+ }
+
+ return result;
+
+ free_nvmeq:
+ nvme_free_queues(dev, 0);
+ return result;
+}
+
+static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
+{
+ struct nvme_dev *dev = ns->dev;
+ struct nvme_user_io io;
+ struct nvme_command c;
+ unsigned length, meta_len;
+ int status, write;
+ dma_addr_t meta_dma = 0;
+ void *meta = NULL;
+ void __user *metadata;
+
+ if (copy_from_user(&io, uio, sizeof(io)))
+ return -EFAULT;
+
+ switch (io.opcode) {
+ case nvme_cmd_write:
+ case nvme_cmd_read:
+ case nvme_cmd_compare:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ length = (io.nblocks + 1) << ns->lba_shift;
+ meta_len = (io.nblocks + 1) * ns->ms;
+ metadata = (void __user *)(uintptr_t)io.metadata;
+ write = io.opcode & 1;
+
+ if (ns->ext) {
+ length += meta_len;
+ meta_len = 0;
+ }
+ if (meta_len) {
+ if (((io.metadata & 3) || !io.metadata) && !ns->ext)
+ return -EINVAL;
+
+ meta = dma_alloc_coherent(dev->dev, meta_len,
+ &meta_dma, GFP_KERNEL);
+
+ if (!meta) {
+ status = -ENOMEM;
+ goto unmap;
+ }
+ if (write) {
+ if (copy_from_user(meta, metadata, meta_len)) {
+ status = -EFAULT;
+ goto unmap;
+ }
+ }
+ }
+
+ memset(&c, 0, sizeof(c));
+ c.rw.opcode = io.opcode;
+ c.rw.flags = io.flags;
+ c.rw.nsid = cpu_to_le32(ns->ns_id);
+ c.rw.slba = cpu_to_le64(io.slba);
+ c.rw.length = cpu_to_le16(io.nblocks);
+ c.rw.control = cpu_to_le16(io.control);
+ c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
+ c.rw.reftag = cpu_to_le32(io.reftag);
+ c.rw.apptag = cpu_to_le16(io.apptag);
+ c.rw.appmask = cpu_to_le16(io.appmask);
+ c.rw.metadata = cpu_to_le64(meta_dma);
+
+ status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
+ (void __user *)(uintptr_t)io.addr, length, NULL, 0);
+ unmap:
+ if (meta) {
+ if (status == NVME_SC_SUCCESS && !write) {
+ if (copy_to_user(metadata, meta, meta_len))
+ status = -EFAULT;
+ }
+ dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
+ }
+ return status;
+}
+
+static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
+ struct nvme_passthru_cmd __user *ucmd)
+{
+ struct nvme_passthru_cmd cmd;
+ struct nvme_command c;
+ unsigned timeout = 0;
+ int status;
+
+ if (!capable(CAP_SYS_ADMIN))
+ return -EACCES;
+ if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
+ return -EFAULT;
+
+ memset(&c, 0, sizeof(c));
+ c.common.opcode = cmd.opcode;
+ c.common.flags = cmd.flags;
+ c.common.nsid = cpu_to_le32(cmd.nsid);
+ c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
+ c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
+ c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
+ c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
+ c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
+ c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
+ c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
+ c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
+
+ if (cmd.timeout_ms)
+ timeout = msecs_to_jiffies(cmd.timeout_ms);
+
+ status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
+ NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
+ &cmd.result, timeout);
+ if (status >= 0) {
+ if (put_user(cmd.result, &ucmd->result))
+ return -EFAULT;
+ }
+
+ return status;
+}
+
+static int nvme_subsys_reset(struct nvme_dev *dev)
+{
+ if (!dev->subsystem)
+ return -ENOTTY;
+
+ writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
+ return 0;
+}
+
+static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
+ unsigned long arg)
+{
+ struct nvme_ns *ns = bdev->bd_disk->private_data;
+
+ switch (cmd) {
+ case NVME_IOCTL_ID:
+ force_successful_syscall_return();
+ return ns->ns_id;
+ case NVME_IOCTL_ADMIN_CMD:
+ return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
+ case NVME_IOCTL_IO_CMD:
+ return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
+ case NVME_IOCTL_SUBMIT_IO:
+ return nvme_submit_io(ns, (void __user *)arg);
+ case SG_GET_VERSION_NUM:
+ return nvme_sg_get_version_num((void __user *)arg);
+ case SG_IO:
+ return nvme_sg_io(ns, (void __user *)arg);
+ default:
+ return -ENOTTY;
+ }
+}
+
+#ifdef CONFIG_COMPAT
+static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
+ unsigned int cmd, unsigned long arg)
+{
+ switch (cmd) {
+ case SG_IO:
+ return -ENOIOCTLCMD;
+ }
+ return nvme_ioctl(bdev, mode, cmd, arg);
+}
+#else
+#define nvme_compat_ioctl NULL
+#endif
+
+static void nvme_free_dev(struct kref *kref);
+static void nvme_free_ns(struct kref *kref)
+{
+ struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
+
+ if (ns->type == NVME_NS_LIGHTNVM)
+ nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
+
+ spin_lock(&dev_list_lock);
+ ns->disk->private_data = NULL;
+ spin_unlock(&dev_list_lock);
+
+ kref_put(&ns->dev->kref, nvme_free_dev);
+ put_disk(ns->disk);
+ kfree(ns);
+}
+
+static int nvme_open(struct block_device *bdev, fmode_t mode)
+{
+ int ret = 0;
+ struct nvme_ns *ns;
+
+ spin_lock(&dev_list_lock);
+ ns = bdev->bd_disk->private_data;
+ if (!ns)
+ ret = -ENXIO;
+ else if (!kref_get_unless_zero(&ns->kref))
+ ret = -ENXIO;
+ spin_unlock(&dev_list_lock);
+
+ return ret;
+}
+
+static void nvme_release(struct gendisk *disk, fmode_t mode)
+{
+ struct nvme_ns *ns = disk->private_data;
+ kref_put(&ns->kref, nvme_free_ns);
+}
+
+static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
+{
+ /* some standard values */
+ geo->heads = 1 << 6;
+ geo->sectors = 1 << 5;
+ geo->cylinders = get_capacity(bd->bd_disk) >> 11;
+ return 0;
+}
+
+static void nvme_config_discard(struct nvme_ns *ns)
+{
+ u32 logical_block_size = queue_logical_block_size(ns->queue);
+ ns->queue->limits.discard_zeroes_data = 0;
+ ns->queue->limits.discard_alignment = logical_block_size;
+ ns->queue->limits.discard_granularity = logical_block_size;
+ blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
+ queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
+}
+
+static int nvme_revalidate_disk(struct gendisk *disk)
+{
+ struct nvme_ns *ns = disk->private_data;
+ struct nvme_dev *dev = ns->dev;
+ struct nvme_id_ns *id;
+ u8 lbaf, pi_type;
+ u16 old_ms;
+ unsigned short bs;
+
+ if (nvme_identify_ns(dev, ns->ns_id, &id)) {
+ dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
+ dev->instance, ns->ns_id);
+ return -ENODEV;
+ }
+ if (id->ncap == 0) {
+ kfree(id);
+ return -ENODEV;
+ }
+
+ if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
+ if (nvme_nvm_register(ns->queue, disk->disk_name)) {
+ dev_warn(dev->dev,
+ "%s: LightNVM init failure\n", __func__);
+ kfree(id);
+ return -ENODEV;
+ }
+ ns->type = NVME_NS_LIGHTNVM;
+ }
+
+ old_ms = ns->ms;
+ lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
+ ns->lba_shift = id->lbaf[lbaf].ds;
+ ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
+ ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
+
+ /*
+ * If identify namespace failed, use default 512 byte block size so
+ * block layer can use before failing read/write for 0 capacity.
+ */
+ if (ns->lba_shift == 0)
+ ns->lba_shift = 9;
+ bs = 1 << ns->lba_shift;
+
+ /* XXX: PI implementation requires metadata equal t10 pi tuple size */
+ pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
+ id->dps & NVME_NS_DPS_PI_MASK : 0;
+
+ blk_mq_freeze_queue(disk->queue);
+ if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
+ ns->ms != old_ms ||
+ bs != queue_logical_block_size(disk->queue) ||
+ (ns->ms && ns->ext)))
+ blk_integrity_unregister(disk);
+
+ ns->pi_type = pi_type;
+ blk_queue_logical_block_size(ns->queue, bs);
+
+ if (ns->ms && !ns->ext)
+ nvme_init_integrity(ns);
+
+ if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
+ !blk_get_integrity(disk)) ||
+ ns->type == NVME_NS_LIGHTNVM)
+ set_capacity(disk, 0);
+ else
+ set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
+
+ if (dev->oncs & NVME_CTRL_ONCS_DSM)
+ nvme_config_discard(ns);
+ blk_mq_unfreeze_queue(disk->queue);
+
+ kfree(id);
+ return 0;
+}
+
+static char nvme_pr_type(enum pr_type type)
+{
+ switch (type) {
+ case PR_WRITE_EXCLUSIVE:
+ return 1;
+ case PR_EXCLUSIVE_ACCESS:
+ return 2;
+ case PR_WRITE_EXCLUSIVE_REG_ONLY:
+ return 3;
+ case PR_EXCLUSIVE_ACCESS_REG_ONLY:
+ return 4;
+ case PR_WRITE_EXCLUSIVE_ALL_REGS:
+ return 5;
+ case PR_EXCLUSIVE_ACCESS_ALL_REGS:
+ return 6;
+ default:
+ return 0;
+ }
+};
+
+static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
+ u64 key, u64 sa_key, u8 op)
+{
+ struct nvme_ns *ns = bdev->bd_disk->private_data;
+ struct nvme_command c;
+ u8 data[16] = { 0, };
+
+ put_unaligned_le64(key, &data[0]);
+ put_unaligned_le64(sa_key, &data[8]);
+
+ memset(&c, 0, sizeof(c));
+ c.common.opcode = op;
+ c.common.nsid = cpu_to_le32(ns->ns_id);
+ c.common.cdw10[0] = cpu_to_le32(cdw10);
+
+ return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
+}
+
+static int nvme_pr_register(struct block_device *bdev, u64 old,
+ u64 new, unsigned flags)
+{
+ u32 cdw10;
+
+ if (flags & ~PR_FL_IGNORE_KEY)
+ return -EOPNOTSUPP;
+
+ cdw10 = old ? 2 : 0;
+ cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
+ cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
+ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
+}
+
+static int nvme_pr_reserve(struct block_device *bdev, u64 key,
+ enum pr_type type, unsigned flags)
+{
+ u32 cdw10;
+
+ if (flags & ~PR_FL_IGNORE_KEY)
+ return -EOPNOTSUPP;
+
+ cdw10 = nvme_pr_type(type) << 8;
+ cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
+ return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
+}
+
+static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
+ enum pr_type type, bool abort)
+{
+ u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
+ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
+}
+
+static int nvme_pr_clear(struct block_device *bdev, u64 key)
+{
+ u32 cdw10 = 1 | (key ? 1 << 3 : 0);
+ return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
+}
+
+static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
+{
+ u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
+ return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
+}
+
+static const struct pr_ops nvme_pr_ops = {
+ .pr_register = nvme_pr_register,
+ .pr_reserve = nvme_pr_reserve,
+ .pr_release = nvme_pr_release,
+ .pr_preempt = nvme_pr_preempt,
+ .pr_clear = nvme_pr_clear,
+};
+
+static const struct block_device_operations nvme_fops = {
+ .owner = THIS_MODULE,
+ .ioctl = nvme_ioctl,
+ .compat_ioctl = nvme_compat_ioctl,
+ .open = nvme_open,
+ .release = nvme_release,
+ .getgeo = nvme_getgeo,
+ .revalidate_disk= nvme_revalidate_disk,
+ .pr_ops = &nvme_pr_ops,
+};
+
+static int nvme_kthread(void *data)
+{
+ struct nvme_dev *dev, *next;
+
+ while (!kthread_should_stop()) {
+ set_current_state(TASK_INTERRUPTIBLE);
+ spin_lock(&dev_list_lock);
+ list_for_each_entry_safe(dev, next, &dev_list, node) {
+ int i;
+ u32 csts = readl(&dev->bar->csts);
+
+ if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
+ csts & NVME_CSTS_CFS) {
+ if (!__nvme_reset(dev)) {
+ dev_warn(dev->dev,
+ "Failed status: %x, reset controller\n",
+ readl(&dev->bar->csts));
+ }
+ continue;
+ }
+ for (i = 0; i < dev->queue_count; i++) {
+ struct nvme_queue *nvmeq = dev->queues[i];
+ if (!nvmeq)
+ continue;
+ spin_lock_irq(&nvmeq->q_lock);
+ nvme_process_cq(nvmeq);
+
+ while ((i == 0) && (dev->event_limit > 0)) {
+ if (nvme_submit_async_admin_req(dev))
+ break;
+ dev->event_limit--;
+ }
+ spin_unlock_irq(&nvmeq->q_lock);
+ }
+ }
+ spin_unlock(&dev_list_lock);
+ schedule_timeout(round_jiffies_relative(HZ));
+ }
+ return 0;
+}
+
+static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
+{
+ struct nvme_ns *ns;
+ struct gendisk *disk;
+ int node = dev_to_node(dev->dev);
+
+ ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
+ if (!ns)
+ return;
+
+ ns->queue = blk_mq_init_queue(&dev->tagset);
+ if (IS_ERR(ns->queue))
+ goto out_free_ns;
+ queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
+ queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
+ ns->dev = dev;
+ ns->queue->queuedata = ns;
+
+ disk = alloc_disk_node(0, node);
+ if (!disk)
+ goto out_free_queue;
+
+ kref_init(&ns->kref);
+ ns->ns_id = nsid;
+ ns->disk = disk;
+ ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
+ list_add_tail(&ns->list, &dev->namespaces);
+
+ blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
+ if (dev->max_hw_sectors) {
+ blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
+ blk_queue_max_segments(ns->queue,
+ ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
+ }
+ if (dev->stripe_size)
+ blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
+ if (dev->vwc & NVME_CTRL_VWC_PRESENT)
+ blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
+ blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
+
+ disk->major = nvme_major;
+ disk->first_minor = 0;
+ disk->fops = &nvme_fops;
+ disk->private_data = ns;
+ disk->queue = ns->queue;
+ disk->driverfs_dev = dev->device;
+ disk->flags = GENHD_FL_EXT_DEVT;
+ sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
+
+ /*
+ * Initialize capacity to 0 until we establish the namespace format and
+ * setup integrity extentions if necessary. The revalidate_disk after
+ * add_disk allows the driver to register with integrity if the format
+ * requires it.
+ */
+ set_capacity(disk, 0);
+ if (nvme_revalidate_disk(ns->disk))
+ goto out_free_disk;
+
+ kref_get(&dev->kref);
+ if (ns->type != NVME_NS_LIGHTNVM) {
+ add_disk(ns->disk);
+ if (ns->ms) {
+ struct block_device *bd = bdget_disk(ns->disk, 0);
+ if (!bd)
+ return;
+ if (blkdev_get(bd, FMODE_READ, NULL)) {
+ bdput(bd);
+ return;
+ }
+ blkdev_reread_part(bd);
+ blkdev_put(bd, FMODE_READ);
+ }
+ }
+ return;
+ out_free_disk:
+ kfree(disk);
+ list_del(&ns->list);
+ out_free_queue:
+ blk_cleanup_queue(ns->queue);
+ out_free_ns:
+ kfree(ns);
+}
+
+/*
+ * Create I/O queues. Failing to create an I/O queue is not an issue,
+ * we can continue with less than the desired amount of queues, and
+ * even a controller without I/O queues an still be used to issue
+ * admin commands. This might be useful to upgrade a buggy firmware
+ * for example.
+ */
+static void nvme_create_io_queues(struct nvme_dev *dev)
+{
+ unsigned i;
+
+ for (i = dev->queue_count; i <= dev->max_qid; i++)
+ if (!nvme_alloc_queue(dev, i, dev->q_depth))
+ break;
+
+ for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
+ if (nvme_create_queue(dev->queues[i], i)) {
+ nvme_free_queues(dev, i);
+ break;
+ }
+}
+
+static int set_queue_count(struct nvme_dev *dev, int count)
+{
+ int status;
+ u32 result;
+ u32 q_count = (count - 1) | ((count - 1) << 16);
+
+ status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
+ &result);
+ if (status < 0)
+ return status;
+ if (status > 0) {
+ dev_err(dev->dev, "Could not set queue count (%d)\n", status);
+ return 0;
+ }
+ return min(result & 0xffff, result >> 16) + 1;
+}
+
+static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
+{
+ u64 szu, size, offset;
+ u32 cmbloc;
+ resource_size_t bar_size;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ void __iomem *cmb;
+ dma_addr_t dma_addr;
+
+ if (!use_cmb_sqes)
+ return NULL;
+
+ dev->cmbsz = readl(&dev->bar->cmbsz);
+ if (!(NVME_CMB_SZ(dev->cmbsz)))
+ return NULL;
+
+ cmbloc = readl(&dev->bar->cmbloc);
+
+ szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
+ size = szu * NVME_CMB_SZ(dev->cmbsz);
+ offset = szu * NVME_CMB_OFST(cmbloc);
+ bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
+
+ if (offset > bar_size)
+ return NULL;
+
+ /*
+ * Controllers may support a CMB size larger than their BAR,
+ * for example, due to being behind a bridge. Reduce the CMB to
+ * the reported size of the BAR
+ */
+ if (size > bar_size - offset)
+ size = bar_size - offset;
+
+ dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
+ cmb = ioremap_wc(dma_addr, size);
+ if (!cmb)
+ return NULL;
+
+ dev->cmb_dma_addr = dma_addr;
+ dev->cmb_size = size;
+ return cmb;
+}
+
+static inline void nvme_release_cmb(struct nvme_dev *dev)
+{
+ if (dev->cmb) {
+ iounmap(dev->cmb);
+ dev->cmb = NULL;
+ }
+}
+
+static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
+{
+ return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
+}
+
+static int nvme_setup_io_queues(struct nvme_dev *dev)
+{
+ struct nvme_queue *adminq = dev->queues[0];
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ int result, i, vecs, nr_io_queues, size;
+
+ nr_io_queues = num_possible_cpus();
+ result = set_queue_count(dev, nr_io_queues);
+ if (result <= 0)
+ return result;
+ if (result < nr_io_queues)
+ nr_io_queues = result;
+
+ if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
+ result = nvme_cmb_qdepth(dev, nr_io_queues,
+ sizeof(struct nvme_command));
+ if (result > 0)
+ dev->q_depth = result;
+ else
+ nvme_release_cmb(dev);
+ }
+
+ size = db_bar_size(dev, nr_io_queues);
+ if (size > 8192) {
+ iounmap(dev->bar);
+ do {
+ dev->bar = ioremap(pci_resource_start(pdev, 0), size);
+ if (dev->bar)
+ break;
+ if (!--nr_io_queues)
+ return -ENOMEM;
+ size = db_bar_size(dev, nr_io_queues);
+ } while (1);
+ dev->dbs = ((void __iomem *)dev->bar) + 4096;
+ adminq->q_db = dev->dbs;
+ }
+
+ /* Deregister the admin queue's interrupt */
+ free_irq(dev->entry[0].vector, adminq);
+
+ /*
+ * If we enable msix early due to not intx, disable it again before
+ * setting up the full range we need.
+ */
+ if (!pdev->irq)
+ pci_disable_msix(pdev);
+
+ for (i = 0; i < nr_io_queues; i++)
+ dev->entry[i].entry = i;
+ vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
+ if (vecs < 0) {
+ vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
+ if (vecs < 0) {
+ vecs = 1;
+ } else {
+ for (i = 0; i < vecs; i++)
+ dev->entry[i].vector = i + pdev->irq;
+ }
+ }
+
+ /*
+ * Should investigate if there's a performance win from allocating
+ * more queues than interrupt vectors; it might allow the submission
+ * path to scale better, even if the receive path is limited by the
+ * number of interrupts.
+ */
+ nr_io_queues = vecs;
+ dev->max_qid = nr_io_queues;
+
+ result = queue_request_irq(dev, adminq, adminq->irqname);
+ if (result) {
+ adminq->cq_vector = -1;
+ goto free_queues;
+ }
+
+ /* Free previously allocated queues that are no longer usable */
+ nvme_free_queues(dev, nr_io_queues + 1);
+ nvme_create_io_queues(dev);
+
+ return 0;
+
+ free_queues:
+ nvme_free_queues(dev, 1);
+ return result;
+}
+
+static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
+{
+ struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
+ struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
+
+ return nsa->ns_id - nsb->ns_id;
+}
+
+static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
+{
+ struct nvme_ns *ns;
+
+ list_for_each_entry(ns, &dev->namespaces, list) {
+ if (ns->ns_id == nsid)
+ return ns;
+ if (ns->ns_id > nsid)
+ break;
+ }
+ return NULL;
+}
+
+static inline bool nvme_io_incapable(struct nvme_dev *dev)
+{
+ return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
+ dev->online_queues < 2);
+}
+
+static void nvme_ns_remove(struct nvme_ns *ns)
+{
+ bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
+
+ if (kill)
+ blk_set_queue_dying(ns->queue);
+ if (ns->disk->flags & GENHD_FL_UP)
+ del_gendisk(ns->disk);
+ if (kill || !blk_queue_dying(ns->queue)) {
+ blk_mq_abort_requeue_list(ns->queue);
+ blk_cleanup_queue(ns->queue);
+ }
+ list_del_init(&ns->list);
+ kref_put(&ns->kref, nvme_free_ns);
+}
+
+static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
+{
+ struct nvme_ns *ns, *next;
+ unsigned i;
+
+ for (i = 1; i <= nn; i++) {
+ ns = nvme_find_ns(dev, i);
+ if (ns) {
+ if (revalidate_disk(ns->disk))
+ nvme_ns_remove(ns);
+ } else
+ nvme_alloc_ns(dev, i);
+ }
+ list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
+ if (ns->ns_id > nn)
+ nvme_ns_remove(ns);
+ }
+ list_sort(NULL, &dev->namespaces, ns_cmp);
+}
+
+static void nvme_set_irq_hints(struct nvme_dev *dev)
+{
+ struct nvme_queue *nvmeq;
+ int i;
+
+ for (i = 0; i < dev->online_queues; i++) {
+ nvmeq = dev->queues[i];
+
+ if (!nvmeq->tags || !(*nvmeq->tags))
+ continue;
+
+ irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
+ blk_mq_tags_cpumask(*nvmeq->tags));
+ }
+}
+
+static void nvme_dev_scan(struct work_struct *work)
+{
+ struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
+ struct nvme_id_ctrl *ctrl;
+
+ if (!dev->tagset.tags)
+ return;
+ if (nvme_identify_ctrl(dev, &ctrl))
+ return;
+ nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
+ kfree(ctrl);
+ nvme_set_irq_hints(dev);
+}
+
+/*
+ * Return: error value if an error occurred setting up the queues or calling
+ * Identify Device. 0 if these succeeded, even if adding some of the
+ * namespaces failed. At the moment, these failures are silent. TBD which
+ * failures should be reported.
+ */
+static int nvme_dev_add(struct nvme_dev *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+ int res;
+ struct nvme_id_ctrl *ctrl;
+ int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
+
+ res = nvme_identify_ctrl(dev, &ctrl);
+ if (res) {
+ dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
+ return -EIO;
+ }
+
+ dev->oncs = le16_to_cpup(&ctrl->oncs);
+ dev->abort_limit = ctrl->acl + 1;
+ dev->vwc = ctrl->vwc;
+ memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
+ memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
+ memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
+ if (ctrl->mdts)
+ dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
+ if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
+ (pdev->device == 0x0953) && ctrl->vs[3]) {
+ unsigned int max_hw_sectors;
+
+ dev->stripe_size = 1 << (ctrl->vs[3] + shift);
+ max_hw_sectors = dev->stripe_size >> (shift - 9);
+ if (dev->max_hw_sectors) {
+ dev->max_hw_sectors = min(max_hw_sectors,
+ dev->max_hw_sectors);
+ } else
+ dev->max_hw_sectors = max_hw_sectors;
+ }
+ kfree(ctrl);
+
+ if (!dev->tagset.tags) {
+ dev->tagset.ops = &nvme_mq_ops;
+ dev->tagset.nr_hw_queues = dev->online_queues - 1;
+ dev->tagset.timeout = NVME_IO_TIMEOUT;
+ dev->tagset.numa_node = dev_to_node(dev->dev);
+ dev->tagset.queue_depth =
+ min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
+ dev->tagset.cmd_size = nvme_cmd_size(dev);
+ dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
+ dev->tagset.driver_data = dev;
+
+ if (blk_mq_alloc_tag_set(&dev->tagset))
+ return 0;
+ }
+ schedule_work(&dev->scan_work);
+ return 0;
+}
+
+static int nvme_dev_map(struct nvme_dev *dev)
+{
+ u64 cap;
+ int bars, result = -ENOMEM;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (pci_enable_device_mem(pdev))
+ return result;
+
+ dev->entry[0].vector = pdev->irq;
+ pci_set_master(pdev);
+ bars = pci_select_bars(pdev, IORESOURCE_MEM);
+ if (!bars)
+ goto disable_pci;
+
+ if (pci_request_selected_regions(pdev, bars, "nvme"))
+ goto disable_pci;
+
+ if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
+ dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
+ goto disable;
+
+ dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
+ if (!dev->bar)
+ goto disable;
+
+ if (readl(&dev->bar->csts) == -1) {
+ result = -ENODEV;
+ goto unmap;
+ }
+
+ /*
+ * Some devices don't advertse INTx interrupts, pre-enable a single
+ * MSIX vec for setup. We'll adjust this later.
+ */
+ if (!pdev->irq) {
+ result = pci_enable_msix(pdev, dev->entry, 1);
+ if (result < 0)
+ goto unmap;
+ }
+
+ cap = readq(&dev->bar->cap);
+ dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
+ dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
+ dev->dbs = ((void __iomem *)dev->bar) + 4096;
+ if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
+ dev->cmb = nvme_map_cmb(dev);
+
+ return 0;
+
+ unmap:
+ iounmap(dev->bar);
+ dev->bar = NULL;
+ disable:
+ pci_release_regions(pdev);
+ disable_pci:
+ pci_disable_device(pdev);
+ return result;
+}
+
+static void nvme_dev_unmap(struct nvme_dev *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (pdev->msi_enabled)
+ pci_disable_msi(pdev);
+ else if (pdev->msix_enabled)
+ pci_disable_msix(pdev);
+
+ if (dev->bar) {
+ iounmap(dev->bar);
+ dev->bar = NULL;
+ pci_release_regions(pdev);
+ }
+
+ if (pci_is_enabled(pdev))
+ pci_disable_device(pdev);
+}
+
+struct nvme_delq_ctx {
+ struct task_struct *waiter;
+ struct kthread_worker *worker;
+ atomic_t refcount;
+};
+
+static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
+{
+ dq->waiter = current;
+ mb();
+
+ for (;;) {
+ set_current_state(TASK_KILLABLE);
+ if (!atomic_read(&dq->refcount))
+ break;
+ if (!schedule_timeout(ADMIN_TIMEOUT) ||
+ fatal_signal_pending(current)) {
+ /*
+ * Disable the controller first since we can't trust it
+ * at this point, but leave the admin queue enabled
+ * until all queue deletion requests are flushed.
+ * FIXME: This may take a while if there are more h/w
+ * queues than admin tags.
+ */
+ set_current_state(TASK_RUNNING);
+ nvme_disable_ctrl(dev, readq(&dev->bar->cap));
+ nvme_clear_queue(dev->queues[0]);
+ flush_kthread_worker(dq->worker);
+ nvme_disable_queue(dev, 0);
+ return;
+ }
+ }
+ set_current_state(TASK_RUNNING);
+}
+
+static void nvme_put_dq(struct nvme_delq_ctx *dq)
+{
+ atomic_dec(&dq->refcount);
+ if (dq->waiter)
+ wake_up_process(dq->waiter);
+}
+
+static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
+{
+ atomic_inc(&dq->refcount);
+ return dq;
+}
+
+static void nvme_del_queue_end(struct nvme_queue *nvmeq)
+{
+ struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
+ nvme_put_dq(dq);
+}
+
+static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
+ kthread_work_func_t fn)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.delete_queue.opcode = opcode;
+ c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
+
+ init_kthread_work(&nvmeq->cmdinfo.work, fn);
+ return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
+ ADMIN_TIMEOUT);
+}
+
+static void nvme_del_cq_work_handler(struct kthread_work *work)
+{
+ struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
+ cmdinfo.work);
+ nvme_del_queue_end(nvmeq);
+}
+
+static int nvme_delete_cq(struct nvme_queue *nvmeq)
+{
+ return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
+ nvme_del_cq_work_handler);
+}
+
+static void nvme_del_sq_work_handler(struct kthread_work *work)
+{
+ struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
+ cmdinfo.work);
+ int status = nvmeq->cmdinfo.status;
+
+ if (!status)
+ status = nvme_delete_cq(nvmeq);
+ if (status)
+ nvme_del_queue_end(nvmeq);
+}
+
+static int nvme_delete_sq(struct nvme_queue *nvmeq)
+{
+ return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
+ nvme_del_sq_work_handler);
+}
+
+static void nvme_del_queue_start(struct kthread_work *work)
+{
+ struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
+ cmdinfo.work);
+ if (nvme_delete_sq(nvmeq))
+ nvme_del_queue_end(nvmeq);
+}
+
+static void nvme_disable_io_queues(struct nvme_dev *dev)
+{
+ int i;
+ DEFINE_KTHREAD_WORKER_ONSTACK(worker);
+ struct nvme_delq_ctx dq;
+ struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
+ &worker, "nvme%d", dev->instance);
+
+ if (IS_ERR(kworker_task)) {
+ dev_err(dev->dev,
+ "Failed to create queue del task\n");
+ for (i = dev->queue_count - 1; i > 0; i--)
+ nvme_disable_queue(dev, i);
+ return;
+ }
+
+ dq.waiter = NULL;
+ atomic_set(&dq.refcount, 0);
+ dq.worker = &worker;
+ for (i = dev->queue_count - 1; i > 0; i--) {
+ struct nvme_queue *nvmeq = dev->queues[i];
+
+ if (nvme_suspend_queue(nvmeq))
+ continue;
+ nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
+ nvmeq->cmdinfo.worker = dq.worker;
+ init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
+ queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
+ }
+ nvme_wait_dq(&dq, dev);
+ kthread_stop(kworker_task);
+}
+
+/*
+* Remove the node from the device list and check
+* for whether or not we need to stop the nvme_thread.
+*/
+static void nvme_dev_list_remove(struct nvme_dev *dev)
+{
+ struct task_struct *tmp = NULL;
+
+ spin_lock(&dev_list_lock);
+ list_del_init(&dev->node);
+ if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
+ tmp = nvme_thread;
+ nvme_thread = NULL;
+ }
+ spin_unlock(&dev_list_lock);
+
+ if (tmp)
+ kthread_stop(tmp);
+}
+
+static void nvme_freeze_queues(struct nvme_dev *dev)
+{
+ struct nvme_ns *ns;
+
+ list_for_each_entry(ns, &dev->namespaces, list) {
+ blk_mq_freeze_queue_start(ns->queue);
+
+ spin_lock_irq(ns->queue->queue_lock);
+ queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
+ spin_unlock_irq(ns->queue->queue_lock);
+
+ blk_mq_cancel_requeue_work(ns->queue);
+ blk_mq_stop_hw_queues(ns->queue);
+ }
+}
+
+static void nvme_unfreeze_queues(struct nvme_dev *dev)
+{
+ struct nvme_ns *ns;
+
+ list_for_each_entry(ns, &dev->namespaces, list) {
+ queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
+ blk_mq_unfreeze_queue(ns->queue);
+ blk_mq_start_stopped_hw_queues(ns->queue, true);
+ blk_mq_kick_requeue_list(ns->queue);
+ }
+}
+
+static void nvme_dev_shutdown(struct nvme_dev *dev)
+{
+ int i;
+ u32 csts = -1;
+
+ nvme_dev_list_remove(dev);
+
+ if (dev->bar) {
+ nvme_freeze_queues(dev);
+ csts = readl(&dev->bar->csts);
+ }
+ if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
+ for (i = dev->queue_count - 1; i >= 0; i--) {
+ struct nvme_queue *nvmeq = dev->queues[i];
+ nvme_suspend_queue(nvmeq);
+ }
+ } else {
+ nvme_disable_io_queues(dev);
+ nvme_shutdown_ctrl(dev);
+ nvme_disable_queue(dev, 0);
+ }
+ nvme_dev_unmap(dev);
+
+ for (i = dev->queue_count - 1; i >= 0; i--)
+ nvme_clear_queue(dev->queues[i]);
+}
+
+static void nvme_dev_remove(struct nvme_dev *dev)
+{
+ struct nvme_ns *ns, *next;
+
+ list_for_each_entry_safe(ns, next, &dev->namespaces, list)
+ nvme_ns_remove(ns);
+}
+
+static int nvme_setup_prp_pools(struct nvme_dev *dev)
+{
+ dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
+ PAGE_SIZE, PAGE_SIZE, 0);
+ if (!dev->prp_page_pool)
+ return -ENOMEM;
+
+ /* Optimisation for I/Os between 4k and 128k */
+ dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
+ 256, 256, 0);
+ if (!dev->prp_small_pool) {
+ dma_pool_destroy(dev->prp_page_pool);
+ return -ENOMEM;
+ }
+ return 0;
+}
+
+static void nvme_release_prp_pools(struct nvme_dev *dev)
+{
+ dma_pool_destroy(dev->prp_page_pool);
+ dma_pool_destroy(dev->prp_small_pool);
+}
+
+static DEFINE_IDA(nvme_instance_ida);
+
+static int nvme_set_instance(struct nvme_dev *dev)
+{
+ int instance, error;
+
+ do {
+ if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
+ return -ENODEV;
+
+ spin_lock(&dev_list_lock);
+ error = ida_get_new(&nvme_instance_ida, &instance);
+ spin_unlock(&dev_list_lock);
+ } while (error == -EAGAIN);
+
+ if (error)
+ return -ENODEV;
+
+ dev->instance = instance;
+ return 0;
+}
+
+static void nvme_release_instance(struct nvme_dev *dev)
+{
+ spin_lock(&dev_list_lock);
+ ida_remove(&nvme_instance_ida, dev->instance);
+ spin_unlock(&dev_list_lock);
+}
+
+static void nvme_free_dev(struct kref *kref)
+{
+ struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
+
+ put_device(dev->dev);
+ put_device(dev->device);
+ nvme_release_instance(dev);
+ if (dev->tagset.tags)
+ blk_mq_free_tag_set(&dev->tagset);
+ if (dev->admin_q)
+ blk_put_queue(dev->admin_q);
+ kfree(dev->queues);
+ kfree(dev->entry);
+ kfree(dev);
+}
+
+static int nvme_dev_open(struct inode *inode, struct file *f)
+{
+ struct nvme_dev *dev;
+ int instance = iminor(inode);
+ int ret = -ENODEV;
+
+ spin_lock(&dev_list_lock);
+ list_for_each_entry(dev, &dev_list, node) {
+ if (dev->instance == instance) {
+ if (!dev->admin_q) {
+ ret = -EWOULDBLOCK;
+ break;
+ }
+ if (!kref_get_unless_zero(&dev->kref))
+ break;
+ f->private_data = dev;
+ ret = 0;
+ break;
+ }
+ }
+ spin_unlock(&dev_list_lock);
+
+ return ret;
+}
+
+static int nvme_dev_release(struct inode *inode, struct file *f)
+{
+ struct nvme_dev *dev = f->private_data;
+ kref_put(&dev->kref, nvme_free_dev);
+ return 0;
+}
+
+static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
+{
+ struct nvme_dev *dev = f->private_data;
+ struct nvme_ns *ns;
+
+ switch (cmd) {
+ case NVME_IOCTL_ADMIN_CMD:
+ return nvme_user_cmd(dev, NULL, (void __user *)arg);
+ case NVME_IOCTL_IO_CMD:
+ if (list_empty(&dev->namespaces))
+ return -ENOTTY;
+ ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
+ return nvme_user_cmd(dev, ns, (void __user *)arg);
+ case NVME_IOCTL_RESET:
+ dev_warn(dev->dev, "resetting controller\n");
+ return nvme_reset(dev);
+ case NVME_IOCTL_SUBSYS_RESET:
+ return nvme_subsys_reset(dev);
+ default:
+ return -ENOTTY;
+ }
+}
+
+static const struct file_operations nvme_dev_fops = {
+ .owner = THIS_MODULE,
+ .open = nvme_dev_open,
+ .release = nvme_dev_release,
+ .unlocked_ioctl = nvme_dev_ioctl,
+ .compat_ioctl = nvme_dev_ioctl,
+};
+
+static void nvme_probe_work(struct work_struct *work)
+{
+ struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
+ bool start_thread = false;
+ int result;
+
+ result = nvme_dev_map(dev);
+ if (result)
+ goto out;
+
+ result = nvme_configure_admin_queue(dev);
+ if (result)
+ goto unmap;
+
+ spin_lock(&dev_list_lock);
+ if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
+ start_thread = true;
+ nvme_thread = NULL;
+ }
+ list_add(&dev->node, &dev_list);
+ spin_unlock(&dev_list_lock);
+
+ if (start_thread) {
+ nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
+ wake_up_all(&nvme_kthread_wait);
+ } else
+ wait_event_killable(nvme_kthread_wait, nvme_thread);
+
+ if (IS_ERR_OR_NULL(nvme_thread)) {
+ result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
+ goto disable;
+ }
+
+ nvme_init_queue(dev->queues[0], 0);
+ result = nvme_alloc_admin_tags(dev);
+ if (result)
+ goto disable;
+
+ result = nvme_setup_io_queues(dev);
+ if (result)
+ goto free_tags;
+
+ dev->event_limit = 1;
+
+ /*
+ * Keep the controller around but remove all namespaces if we don't have
+ * any working I/O queue.
+ */
+ if (dev->online_queues < 2) {
+ dev_warn(dev->dev, "IO queues not created\n");
+ nvme_dev_remove(dev);
+ } else {
+ nvme_unfreeze_queues(dev);
+ nvme_dev_add(dev);
+ }
+
+ return;
+
+ free_tags:
+ nvme_dev_remove_admin(dev);
+ blk_put_queue(dev->admin_q);
+ dev->admin_q = NULL;
+ dev->queues[0]->tags = NULL;
+ disable:
+ nvme_disable_queue(dev, 0);
+ nvme_dev_list_remove(dev);
+ unmap:
+ nvme_dev_unmap(dev);
+ out:
+ if (!work_busy(&dev->reset_work))
+ nvme_dead_ctrl(dev);
+}
+
+static int nvme_remove_dead_ctrl(void *arg)
+{
+ struct nvme_dev *dev = (struct nvme_dev *)arg;
+ struct pci_dev *pdev = to_pci_dev(dev->dev);
+
+ if (pci_get_drvdata(pdev))
+ pci_stop_and_remove_bus_device_locked(pdev);
+ kref_put(&dev->kref, nvme_free_dev);
+ return 0;
+}
+
+static void nvme_dead_ctrl(struct nvme_dev *dev)
+{
+ dev_warn(dev->dev, "Device failed to resume\n");
+ kref_get(&dev->kref);
+ if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
+ dev->instance))) {
+ dev_err(dev->dev,
+ "Failed to start controller remove task\n");
+ kref_put(&dev->kref, nvme_free_dev);
+ }
+}
+
+static void nvme_reset_work(struct work_struct *ws)
+{
+ struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
+ bool in_probe = work_busy(&dev->probe_work);
+
+ nvme_dev_shutdown(dev);
+
+ /* Synchronize with device probe so that work will see failure status
+ * and exit gracefully without trying to schedule another reset */
+ flush_work(&dev->probe_work);
+
+ /* Fail this device if reset occured during probe to avoid
+ * infinite initialization loops. */
+ if (in_probe) {
+ nvme_dead_ctrl(dev);
+ return;
+ }
+ /* Schedule device resume asynchronously so the reset work is available
+ * to cleanup errors that may occur during reinitialization */
+ schedule_work(&dev->probe_work);
+}
+
+static int __nvme_reset(struct nvme_dev *dev)
+{
+ if (work_pending(&dev->reset_work))
+ return -EBUSY;
+ list_del_init(&dev->node);
+ queue_work(nvme_workq, &dev->reset_work);
+ return 0;
+}
+
+static int nvme_reset(struct nvme_dev *dev)
+{
+ int ret;
+
+ if (!dev->admin_q || blk_queue_dying(dev->admin_q))
+ return -ENODEV;
+
+ spin_lock(&dev_list_lock);
+ ret = __nvme_reset(dev);
+ spin_unlock(&dev_list_lock);
+
+ if (!ret) {
+ flush_work(&dev->reset_work);
+ flush_work(&dev->probe_work);
+ return 0;
+ }
+
+ return ret;
+}
+
+static ssize_t nvme_sysfs_reset(struct device *dev,
+ struct device_attribute *attr, const char *buf,
+ size_t count)
+{
+ struct nvme_dev *ndev = dev_get_drvdata(dev);
+ int ret;
+
+ ret = nvme_reset(ndev);
+ if (ret < 0)
+ return ret;
+
+ return count;
+}
+static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
+
+static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
+{
+ int node, result = -ENOMEM;
+ struct nvme_dev *dev;
+
+ node = dev_to_node(&pdev->dev);
+ if (node == NUMA_NO_NODE)
+ set_dev_node(&pdev->dev, 0);
+
+ dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
+ if (!dev)
+ return -ENOMEM;
+ dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
+ GFP_KERNEL, node);
+ if (!dev->entry)
+ goto free;
+ dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
+ GFP_KERNEL, node);
+ if (!dev->queues)
+ goto free;
+
+ INIT_LIST_HEAD(&dev->namespaces);
+ INIT_WORK(&dev->reset_work, nvme_reset_work);
+ dev->dev = get_device(&pdev->dev);
+ pci_set_drvdata(pdev, dev);
+ result = nvme_set_instance(dev);
+ if (result)
+ goto put_pci;
+
+ result = nvme_setup_prp_pools(dev);
+ if (result)
+ goto release;
+
+ kref_init(&dev->kref);
+ dev->device = device_create(nvme_class, &pdev->dev,
+ MKDEV(nvme_char_major, dev->instance),
+ dev, "nvme%d", dev->instance);
+ if (IS_ERR(dev->device)) {
+ result = PTR_ERR(dev->device);
+ goto release_pools;
+ }
+ get_device(dev->device);
+ dev_set_drvdata(dev->device, dev);
+
+ result = device_create_file(dev->device, &dev_attr_reset_controller);
+ if (result)
+ goto put_dev;
+
+ INIT_LIST_HEAD(&dev->node);
+ INIT_WORK(&dev->scan_work, nvme_dev_scan);
+ INIT_WORK(&dev->probe_work, nvme_probe_work);
+ schedule_work(&dev->probe_work);
+ return 0;
+
+ put_dev:
+ device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
+ put_device(dev->device);
+ release_pools:
+ nvme_release_prp_pools(dev);
+ release:
+ nvme_release_instance(dev);
+ put_pci:
+ put_device(dev->dev);
+ free:
+ kfree(dev->queues);
+ kfree(dev->entry);
+ kfree(dev);
+ return result;
+}
+
+static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ if (prepare)
+ nvme_dev_shutdown(dev);
+ else
+ schedule_work(&dev->probe_work);
+}
+
+static void nvme_shutdown(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+ nvme_dev_shutdown(dev);
+}
+
+static void nvme_remove(struct pci_dev *pdev)
+{
+ struct nvme_dev *dev = pci_get_drvdata(pdev);
+
+ spin_lock(&dev_list_lock);
+ list_del_init(&dev->node);
+ spin_unlock(&dev_list_lock);
+
+ pci_set_drvdata(pdev, NULL);
+ flush_work(&dev->probe_work);
+ flush_work(&dev->reset_work);
+ flush_work(&dev->scan_work);
+ device_remove_file(dev->device, &dev_attr_reset_controller);
+ nvme_dev_remove(dev);
+ nvme_dev_shutdown(dev);
+ nvme_dev_remove_admin(dev);
+ device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
+ nvme_free_queues(dev, 0);
+ nvme_release_cmb(dev);
+ nvme_release_prp_pools(dev);
+ kref_put(&dev->kref, nvme_free_dev);
+}
+
+/* These functions are yet to be implemented */
+#define nvme_error_detected NULL
+#define nvme_dump_registers NULL
+#define nvme_link_reset NULL
+#define nvme_slot_reset NULL
+#define nvme_error_resume NULL
+
+#ifdef CONFIG_PM_SLEEP
+static int nvme_suspend(struct device *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev);
+ struct nvme_dev *ndev = pci_get_drvdata(pdev);
+
+ nvme_dev_shutdown(ndev);
+ return 0;
+}
+
+static int nvme_resume(struct device *dev)
+{
+ struct pci_dev *pdev = to_pci_dev(dev);
+ struct nvme_dev *ndev = pci_get_drvdata(pdev);
+
+ schedule_work(&ndev->probe_work);
+ return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
+
+static const struct pci_error_handlers nvme_err_handler = {
+ .error_detected = nvme_error_detected,
+ .mmio_enabled = nvme_dump_registers,
+ .link_reset = nvme_link_reset,
+ .slot_reset = nvme_slot_reset,
+ .resume = nvme_error_resume,
+ .reset_notify = nvme_reset_notify,
+};
+
+/* Move to pci_ids.h later */
+#define PCI_CLASS_STORAGE_EXPRESS 0x010802
+
+static const struct pci_device_id nvme_id_table[] = {
+ { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
+ { 0, }
+};
+MODULE_DEVICE_TABLE(pci, nvme_id_table);
+
+static struct pci_driver nvme_driver = {
+ .name = "nvme",
+ .id_table = nvme_id_table,
+ .probe = nvme_probe,
+ .remove = nvme_remove,
+ .shutdown = nvme_shutdown,
+ .driver = {
+ .pm = &nvme_dev_pm_ops,
+ },
+ .err_handler = &nvme_err_handler,
+};
+
+static int __init nvme_init(void)
+{
+ int result;
+
+ init_waitqueue_head(&nvme_kthread_wait);
+
+ nvme_workq = create_singlethread_workqueue("nvme");
+ if (!nvme_workq)
+ return -ENOMEM;
+
+ result = register_blkdev(nvme_major, "nvme");
+ if (result < 0)
+ goto kill_workq;
+ else if (result > 0)
+ nvme_major = result;
+
+ result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
+ &nvme_dev_fops);
+ if (result < 0)
+ goto unregister_blkdev;
+ else if (result > 0)
+ nvme_char_major = result;
+
+ nvme_class = class_create(THIS_MODULE, "nvme");
+ if (IS_ERR(nvme_class)) {
+ result = PTR_ERR(nvme_class);
+ goto unregister_chrdev;
+ }
+
+ result = pci_register_driver(&nvme_driver);
+ if (result)
+ goto destroy_class;
+ return 0;
+
+ destroy_class:
+ class_destroy(nvme_class);
+ unregister_chrdev:
+ __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
+ unregister_blkdev:
+ unregister_blkdev(nvme_major, "nvme");
+ kill_workq:
+ destroy_workqueue(nvme_workq);
+ return result;
+}
+
+static void __exit nvme_exit(void)
+{
+ pci_unregister_driver(&nvme_driver);
+ unregister_blkdev(nvme_major, "nvme");
+ destroy_workqueue(nvme_workq);
+ class_destroy(nvme_class);
+ __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
+ BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
+ _nvme_check_size();
+}
+
+MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
+MODULE_LICENSE("GPL");
+MODULE_VERSION("1.0");
+module_init(nvme_init);
+module_exit(nvme_exit);