summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/sfc/efx.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/sfc/efx.c')
-rw-r--r--drivers/net/ethernet/sfc/efx.c2714
1 files changed, 2714 insertions, 0 deletions
diff --git a/drivers/net/ethernet/sfc/efx.c b/drivers/net/ethernet/sfc/efx.c
new file mode 100644
index 000000000000..faca764aa21b
--- /dev/null
+++ b/drivers/net/ethernet/sfc/efx.c
@@ -0,0 +1,2714 @@
+/****************************************************************************
+ * Driver for Solarflare Solarstorm network controllers and boards
+ * Copyright 2005-2006 Fen Systems Ltd.
+ * Copyright 2005-2011 Solarflare Communications Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation, incorporated herein by reference.
+ */
+
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/delay.h>
+#include <linux/notifier.h>
+#include <linux/ip.h>
+#include <linux/tcp.h>
+#include <linux/in.h>
+#include <linux/crc32.h>
+#include <linux/ethtool.h>
+#include <linux/topology.h>
+#include <linux/gfp.h>
+#include <linux/cpu_rmap.h>
+#include "net_driver.h"
+#include "efx.h"
+#include "nic.h"
+
+#include "mcdi.h"
+#include "workarounds.h"
+
+/**************************************************************************
+ *
+ * Type name strings
+ *
+ **************************************************************************
+ */
+
+/* Loopback mode names (see LOOPBACK_MODE()) */
+const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
+const char *efx_loopback_mode_names[] = {
+ [LOOPBACK_NONE] = "NONE",
+ [LOOPBACK_DATA] = "DATAPATH",
+ [LOOPBACK_GMAC] = "GMAC",
+ [LOOPBACK_XGMII] = "XGMII",
+ [LOOPBACK_XGXS] = "XGXS",
+ [LOOPBACK_XAUI] = "XAUI",
+ [LOOPBACK_GMII] = "GMII",
+ [LOOPBACK_SGMII] = "SGMII",
+ [LOOPBACK_XGBR] = "XGBR",
+ [LOOPBACK_XFI] = "XFI",
+ [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
+ [LOOPBACK_GMII_FAR] = "GMII_FAR",
+ [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
+ [LOOPBACK_XFI_FAR] = "XFI_FAR",
+ [LOOPBACK_GPHY] = "GPHY",
+ [LOOPBACK_PHYXS] = "PHYXS",
+ [LOOPBACK_PCS] = "PCS",
+ [LOOPBACK_PMAPMD] = "PMA/PMD",
+ [LOOPBACK_XPORT] = "XPORT",
+ [LOOPBACK_XGMII_WS] = "XGMII_WS",
+ [LOOPBACK_XAUI_WS] = "XAUI_WS",
+ [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
+ [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
+ [LOOPBACK_GMII_WS] = "GMII_WS",
+ [LOOPBACK_XFI_WS] = "XFI_WS",
+ [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
+ [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
+};
+
+const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
+const char *efx_reset_type_names[] = {
+ [RESET_TYPE_INVISIBLE] = "INVISIBLE",
+ [RESET_TYPE_ALL] = "ALL",
+ [RESET_TYPE_WORLD] = "WORLD",
+ [RESET_TYPE_DISABLE] = "DISABLE",
+ [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
+ [RESET_TYPE_INT_ERROR] = "INT_ERROR",
+ [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
+ [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
+ [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
+ [RESET_TYPE_TX_SKIP] = "TX_SKIP",
+ [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
+};
+
+#define EFX_MAX_MTU (9 * 1024)
+
+/* Reset workqueue. If any NIC has a hardware failure then a reset will be
+ * queued onto this work queue. This is not a per-nic work queue, because
+ * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
+ */
+static struct workqueue_struct *reset_workqueue;
+
+/**************************************************************************
+ *
+ * Configurable values
+ *
+ *************************************************************************/
+
+/*
+ * Use separate channels for TX and RX events
+ *
+ * Set this to 1 to use separate channels for TX and RX. It allows us
+ * to control interrupt affinity separately for TX and RX.
+ *
+ * This is only used in MSI-X interrupt mode
+ */
+static unsigned int separate_tx_channels;
+module_param(separate_tx_channels, uint, 0444);
+MODULE_PARM_DESC(separate_tx_channels,
+ "Use separate channels for TX and RX");
+
+/* This is the weight assigned to each of the (per-channel) virtual
+ * NAPI devices.
+ */
+static int napi_weight = 64;
+
+/* This is the time (in jiffies) between invocations of the hardware
+ * monitor. On Falcon-based NICs, this will:
+ * - Check the on-board hardware monitor;
+ * - Poll the link state and reconfigure the hardware as necessary.
+ */
+static unsigned int efx_monitor_interval = 1 * HZ;
+
+/* This controls whether or not the driver will initialise devices
+ * with invalid MAC addresses stored in the EEPROM or flash. If true,
+ * such devices will be initialised with a random locally-generated
+ * MAC address. This allows for loading the sfc_mtd driver to
+ * reprogram the flash, even if the flash contents (including the MAC
+ * address) have previously been erased.
+ */
+static unsigned int allow_bad_hwaddr;
+
+/* Initial interrupt moderation settings. They can be modified after
+ * module load with ethtool.
+ *
+ * The default for RX should strike a balance between increasing the
+ * round-trip latency and reducing overhead.
+ */
+static unsigned int rx_irq_mod_usec = 60;
+
+/* Initial interrupt moderation settings. They can be modified after
+ * module load with ethtool.
+ *
+ * This default is chosen to ensure that a 10G link does not go idle
+ * while a TX queue is stopped after it has become full. A queue is
+ * restarted when it drops below half full. The time this takes (assuming
+ * worst case 3 descriptors per packet and 1024 descriptors) is
+ * 512 / 3 * 1.2 = 205 usec.
+ */
+static unsigned int tx_irq_mod_usec = 150;
+
+/* This is the first interrupt mode to try out of:
+ * 0 => MSI-X
+ * 1 => MSI
+ * 2 => legacy
+ */
+static unsigned int interrupt_mode;
+
+/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
+ * i.e. the number of CPUs among which we may distribute simultaneous
+ * interrupt handling.
+ *
+ * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
+ * The default (0) means to assign an interrupt to each package (level II cache)
+ */
+static unsigned int rss_cpus;
+module_param(rss_cpus, uint, 0444);
+MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
+
+static int phy_flash_cfg;
+module_param(phy_flash_cfg, int, 0644);
+MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
+
+static unsigned irq_adapt_low_thresh = 10000;
+module_param(irq_adapt_low_thresh, uint, 0644);
+MODULE_PARM_DESC(irq_adapt_low_thresh,
+ "Threshold score for reducing IRQ moderation");
+
+static unsigned irq_adapt_high_thresh = 20000;
+module_param(irq_adapt_high_thresh, uint, 0644);
+MODULE_PARM_DESC(irq_adapt_high_thresh,
+ "Threshold score for increasing IRQ moderation");
+
+static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
+ NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
+ NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
+ NETIF_MSG_TX_ERR | NETIF_MSG_HW);
+module_param(debug, uint, 0);
+MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
+
+/**************************************************************************
+ *
+ * Utility functions and prototypes
+ *
+ *************************************************************************/
+
+static void efx_remove_channels(struct efx_nic *efx);
+static void efx_remove_port(struct efx_nic *efx);
+static void efx_init_napi(struct efx_nic *efx);
+static void efx_fini_napi(struct efx_nic *efx);
+static void efx_fini_napi_channel(struct efx_channel *channel);
+static void efx_fini_struct(struct efx_nic *efx);
+static void efx_start_all(struct efx_nic *efx);
+static void efx_stop_all(struct efx_nic *efx);
+
+#define EFX_ASSERT_RESET_SERIALISED(efx) \
+ do { \
+ if ((efx->state == STATE_RUNNING) || \
+ (efx->state == STATE_DISABLED)) \
+ ASSERT_RTNL(); \
+ } while (0)
+
+/**************************************************************************
+ *
+ * Event queue processing
+ *
+ *************************************************************************/
+
+/* Process channel's event queue
+ *
+ * This function is responsible for processing the event queue of a
+ * single channel. The caller must guarantee that this function will
+ * never be concurrently called more than once on the same channel,
+ * though different channels may be being processed concurrently.
+ */
+static int efx_process_channel(struct efx_channel *channel, int budget)
+{
+ struct efx_nic *efx = channel->efx;
+ int spent;
+
+ if (unlikely(efx->reset_pending || !channel->enabled))
+ return 0;
+
+ spent = efx_nic_process_eventq(channel, budget);
+ if (spent == 0)
+ return 0;
+
+ /* Deliver last RX packet. */
+ if (channel->rx_pkt) {
+ __efx_rx_packet(channel, channel->rx_pkt,
+ channel->rx_pkt_csummed);
+ channel->rx_pkt = NULL;
+ }
+
+ efx_rx_strategy(channel);
+
+ efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
+
+ return spent;
+}
+
+/* Mark channel as finished processing
+ *
+ * Note that since we will not receive further interrupts for this
+ * channel before we finish processing and call the eventq_read_ack()
+ * method, there is no need to use the interrupt hold-off timers.
+ */
+static inline void efx_channel_processed(struct efx_channel *channel)
+{
+ /* The interrupt handler for this channel may set work_pending
+ * as soon as we acknowledge the events we've seen. Make sure
+ * it's cleared before then. */
+ channel->work_pending = false;
+ smp_wmb();
+
+ efx_nic_eventq_read_ack(channel);
+}
+
+/* NAPI poll handler
+ *
+ * NAPI guarantees serialisation of polls of the same device, which
+ * provides the guarantee required by efx_process_channel().
+ */
+static int efx_poll(struct napi_struct *napi, int budget)
+{
+ struct efx_channel *channel =
+ container_of(napi, struct efx_channel, napi_str);
+ struct efx_nic *efx = channel->efx;
+ int spent;
+
+ netif_vdbg(efx, intr, efx->net_dev,
+ "channel %d NAPI poll executing on CPU %d\n",
+ channel->channel, raw_smp_processor_id());
+
+ spent = efx_process_channel(channel, budget);
+
+ if (spent < budget) {
+ if (channel->channel < efx->n_rx_channels &&
+ efx->irq_rx_adaptive &&
+ unlikely(++channel->irq_count == 1000)) {
+ if (unlikely(channel->irq_mod_score <
+ irq_adapt_low_thresh)) {
+ if (channel->irq_moderation > 1) {
+ channel->irq_moderation -= 1;
+ efx->type->push_irq_moderation(channel);
+ }
+ } else if (unlikely(channel->irq_mod_score >
+ irq_adapt_high_thresh)) {
+ if (channel->irq_moderation <
+ efx->irq_rx_moderation) {
+ channel->irq_moderation += 1;
+ efx->type->push_irq_moderation(channel);
+ }
+ }
+ channel->irq_count = 0;
+ channel->irq_mod_score = 0;
+ }
+
+ efx_filter_rfs_expire(channel);
+
+ /* There is no race here; although napi_disable() will
+ * only wait for napi_complete(), this isn't a problem
+ * since efx_channel_processed() will have no effect if
+ * interrupts have already been disabled.
+ */
+ napi_complete(napi);
+ efx_channel_processed(channel);
+ }
+
+ return spent;
+}
+
+/* Process the eventq of the specified channel immediately on this CPU
+ *
+ * Disable hardware generated interrupts, wait for any existing
+ * processing to finish, then directly poll (and ack ) the eventq.
+ * Finally reenable NAPI and interrupts.
+ *
+ * This is for use only during a loopback self-test. It must not
+ * deliver any packets up the stack as this can result in deadlock.
+ */
+void efx_process_channel_now(struct efx_channel *channel)
+{
+ struct efx_nic *efx = channel->efx;
+
+ BUG_ON(channel->channel >= efx->n_channels);
+ BUG_ON(!channel->enabled);
+ BUG_ON(!efx->loopback_selftest);
+
+ /* Disable interrupts and wait for ISRs to complete */
+ efx_nic_disable_interrupts(efx);
+ if (efx->legacy_irq) {
+ synchronize_irq(efx->legacy_irq);
+ efx->legacy_irq_enabled = false;
+ }
+ if (channel->irq)
+ synchronize_irq(channel->irq);
+
+ /* Wait for any NAPI processing to complete */
+ napi_disable(&channel->napi_str);
+
+ /* Poll the channel */
+ efx_process_channel(channel, channel->eventq_mask + 1);
+
+ /* Ack the eventq. This may cause an interrupt to be generated
+ * when they are reenabled */
+ efx_channel_processed(channel);
+
+ napi_enable(&channel->napi_str);
+ if (efx->legacy_irq)
+ efx->legacy_irq_enabled = true;
+ efx_nic_enable_interrupts(efx);
+}
+
+/* Create event queue
+ * Event queue memory allocations are done only once. If the channel
+ * is reset, the memory buffer will be reused; this guards against
+ * errors during channel reset and also simplifies interrupt handling.
+ */
+static int efx_probe_eventq(struct efx_channel *channel)
+{
+ struct efx_nic *efx = channel->efx;
+ unsigned long entries;
+
+ netif_dbg(channel->efx, probe, channel->efx->net_dev,
+ "chan %d create event queue\n", channel->channel);
+
+ /* Build an event queue with room for one event per tx and rx buffer,
+ * plus some extra for link state events and MCDI completions. */
+ entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
+ EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
+ channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
+
+ return efx_nic_probe_eventq(channel);
+}
+
+/* Prepare channel's event queue */
+static void efx_init_eventq(struct efx_channel *channel)
+{
+ netif_dbg(channel->efx, drv, channel->efx->net_dev,
+ "chan %d init event queue\n", channel->channel);
+
+ channel->eventq_read_ptr = 0;
+
+ efx_nic_init_eventq(channel);
+}
+
+static void efx_fini_eventq(struct efx_channel *channel)
+{
+ netif_dbg(channel->efx, drv, channel->efx->net_dev,
+ "chan %d fini event queue\n", channel->channel);
+
+ efx_nic_fini_eventq(channel);
+}
+
+static void efx_remove_eventq(struct efx_channel *channel)
+{
+ netif_dbg(channel->efx, drv, channel->efx->net_dev,
+ "chan %d remove event queue\n", channel->channel);
+
+ efx_nic_remove_eventq(channel);
+}
+
+/**************************************************************************
+ *
+ * Channel handling
+ *
+ *************************************************************************/
+
+/* Allocate and initialise a channel structure, optionally copying
+ * parameters (but not resources) from an old channel structure. */
+static struct efx_channel *
+efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
+{
+ struct efx_channel *channel;
+ struct efx_rx_queue *rx_queue;
+ struct efx_tx_queue *tx_queue;
+ int j;
+
+ if (old_channel) {
+ channel = kmalloc(sizeof(*channel), GFP_KERNEL);
+ if (!channel)
+ return NULL;
+
+ *channel = *old_channel;
+
+ channel->napi_dev = NULL;
+ memset(&channel->eventq, 0, sizeof(channel->eventq));
+
+ rx_queue = &channel->rx_queue;
+ rx_queue->buffer = NULL;
+ memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
+
+ for (j = 0; j < EFX_TXQ_TYPES; j++) {
+ tx_queue = &channel->tx_queue[j];
+ if (tx_queue->channel)
+ tx_queue->channel = channel;
+ tx_queue->buffer = NULL;
+ memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
+ }
+ } else {
+ channel = kzalloc(sizeof(*channel), GFP_KERNEL);
+ if (!channel)
+ return NULL;
+
+ channel->efx = efx;
+ channel->channel = i;
+
+ for (j = 0; j < EFX_TXQ_TYPES; j++) {
+ tx_queue = &channel->tx_queue[j];
+ tx_queue->efx = efx;
+ tx_queue->queue = i * EFX_TXQ_TYPES + j;
+ tx_queue->channel = channel;
+ }
+ }
+
+ rx_queue = &channel->rx_queue;
+ rx_queue->efx = efx;
+ setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
+ (unsigned long)rx_queue);
+
+ return channel;
+}
+
+static int efx_probe_channel(struct efx_channel *channel)
+{
+ struct efx_tx_queue *tx_queue;
+ struct efx_rx_queue *rx_queue;
+ int rc;
+
+ netif_dbg(channel->efx, probe, channel->efx->net_dev,
+ "creating channel %d\n", channel->channel);
+
+ rc = efx_probe_eventq(channel);
+ if (rc)
+ goto fail1;
+
+ efx_for_each_channel_tx_queue(tx_queue, channel) {
+ rc = efx_probe_tx_queue(tx_queue);
+ if (rc)
+ goto fail2;
+ }
+
+ efx_for_each_channel_rx_queue(rx_queue, channel) {
+ rc = efx_probe_rx_queue(rx_queue);
+ if (rc)
+ goto fail3;
+ }
+
+ channel->n_rx_frm_trunc = 0;
+
+ return 0;
+
+ fail3:
+ efx_for_each_channel_rx_queue(rx_queue, channel)
+ efx_remove_rx_queue(rx_queue);
+ fail2:
+ efx_for_each_channel_tx_queue(tx_queue, channel)
+ efx_remove_tx_queue(tx_queue);
+ fail1:
+ return rc;
+}
+
+
+static void efx_set_channel_names(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+ const char *type = "";
+ int number;
+
+ efx_for_each_channel(channel, efx) {
+ number = channel->channel;
+ if (efx->n_channels > efx->n_rx_channels) {
+ if (channel->channel < efx->n_rx_channels) {
+ type = "-rx";
+ } else {
+ type = "-tx";
+ number -= efx->n_rx_channels;
+ }
+ }
+ snprintf(efx->channel_name[channel->channel],
+ sizeof(efx->channel_name[0]),
+ "%s%s-%d", efx->name, type, number);
+ }
+}
+
+static int efx_probe_channels(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+ int rc;
+
+ /* Restart special buffer allocation */
+ efx->next_buffer_table = 0;
+
+ efx_for_each_channel(channel, efx) {
+ rc = efx_probe_channel(channel);
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev,
+ "failed to create channel %d\n",
+ channel->channel);
+ goto fail;
+ }
+ }
+ efx_set_channel_names(efx);
+
+ return 0;
+
+fail:
+ efx_remove_channels(efx);
+ return rc;
+}
+
+/* Channels are shutdown and reinitialised whilst the NIC is running
+ * to propagate configuration changes (mtu, checksum offload), or
+ * to clear hardware error conditions
+ */
+static void efx_init_channels(struct efx_nic *efx)
+{
+ struct efx_tx_queue *tx_queue;
+ struct efx_rx_queue *rx_queue;
+ struct efx_channel *channel;
+
+ /* Calculate the rx buffer allocation parameters required to
+ * support the current MTU, including padding for header
+ * alignment and overruns.
+ */
+ efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
+ EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
+ efx->type->rx_buffer_hash_size +
+ efx->type->rx_buffer_padding);
+ efx->rx_buffer_order = get_order(efx->rx_buffer_len +
+ sizeof(struct efx_rx_page_state));
+
+ /* Initialise the channels */
+ efx_for_each_channel(channel, efx) {
+ netif_dbg(channel->efx, drv, channel->efx->net_dev,
+ "init chan %d\n", channel->channel);
+
+ efx_init_eventq(channel);
+
+ efx_for_each_channel_tx_queue(tx_queue, channel)
+ efx_init_tx_queue(tx_queue);
+
+ /* The rx buffer allocation strategy is MTU dependent */
+ efx_rx_strategy(channel);
+
+ efx_for_each_channel_rx_queue(rx_queue, channel)
+ efx_init_rx_queue(rx_queue);
+
+ WARN_ON(channel->rx_pkt != NULL);
+ efx_rx_strategy(channel);
+ }
+}
+
+/* This enables event queue processing and packet transmission.
+ *
+ * Note that this function is not allowed to fail, since that would
+ * introduce too much complexity into the suspend/resume path.
+ */
+static void efx_start_channel(struct efx_channel *channel)
+{
+ struct efx_rx_queue *rx_queue;
+
+ netif_dbg(channel->efx, ifup, channel->efx->net_dev,
+ "starting chan %d\n", channel->channel);
+
+ /* The interrupt handler for this channel may set work_pending
+ * as soon as we enable it. Make sure it's cleared before
+ * then. Similarly, make sure it sees the enabled flag set. */
+ channel->work_pending = false;
+ channel->enabled = true;
+ smp_wmb();
+
+ /* Fill the queues before enabling NAPI */
+ efx_for_each_channel_rx_queue(rx_queue, channel)
+ efx_fast_push_rx_descriptors(rx_queue);
+
+ napi_enable(&channel->napi_str);
+}
+
+/* This disables event queue processing and packet transmission.
+ * This function does not guarantee that all queue processing
+ * (e.g. RX refill) is complete.
+ */
+static void efx_stop_channel(struct efx_channel *channel)
+{
+ if (!channel->enabled)
+ return;
+
+ netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
+ "stop chan %d\n", channel->channel);
+
+ channel->enabled = false;
+ napi_disable(&channel->napi_str);
+}
+
+static void efx_fini_channels(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+ struct efx_tx_queue *tx_queue;
+ struct efx_rx_queue *rx_queue;
+ int rc;
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+ BUG_ON(efx->port_enabled);
+
+ rc = efx_nic_flush_queues(efx);
+ if (rc && EFX_WORKAROUND_7803(efx)) {
+ /* Schedule a reset to recover from the flush failure. The
+ * descriptor caches reference memory we're about to free,
+ * but falcon_reconfigure_mac_wrapper() won't reconnect
+ * the MACs because of the pending reset. */
+ netif_err(efx, drv, efx->net_dev,
+ "Resetting to recover from flush failure\n");
+ efx_schedule_reset(efx, RESET_TYPE_ALL);
+ } else if (rc) {
+ netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
+ } else {
+ netif_dbg(efx, drv, efx->net_dev,
+ "successfully flushed all queues\n");
+ }
+
+ efx_for_each_channel(channel, efx) {
+ netif_dbg(channel->efx, drv, channel->efx->net_dev,
+ "shut down chan %d\n", channel->channel);
+
+ efx_for_each_channel_rx_queue(rx_queue, channel)
+ efx_fini_rx_queue(rx_queue);
+ efx_for_each_possible_channel_tx_queue(tx_queue, channel)
+ efx_fini_tx_queue(tx_queue);
+ efx_fini_eventq(channel);
+ }
+}
+
+static void efx_remove_channel(struct efx_channel *channel)
+{
+ struct efx_tx_queue *tx_queue;
+ struct efx_rx_queue *rx_queue;
+
+ netif_dbg(channel->efx, drv, channel->efx->net_dev,
+ "destroy chan %d\n", channel->channel);
+
+ efx_for_each_channel_rx_queue(rx_queue, channel)
+ efx_remove_rx_queue(rx_queue);
+ efx_for_each_possible_channel_tx_queue(tx_queue, channel)
+ efx_remove_tx_queue(tx_queue);
+ efx_remove_eventq(channel);
+}
+
+static void efx_remove_channels(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+
+ efx_for_each_channel(channel, efx)
+ efx_remove_channel(channel);
+}
+
+int
+efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
+{
+ struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
+ u32 old_rxq_entries, old_txq_entries;
+ unsigned i;
+ int rc;
+
+ efx_stop_all(efx);
+ efx_fini_channels(efx);
+
+ /* Clone channels */
+ memset(other_channel, 0, sizeof(other_channel));
+ for (i = 0; i < efx->n_channels; i++) {
+ channel = efx_alloc_channel(efx, i, efx->channel[i]);
+ if (!channel) {
+ rc = -ENOMEM;
+ goto out;
+ }
+ other_channel[i] = channel;
+ }
+
+ /* Swap entry counts and channel pointers */
+ old_rxq_entries = efx->rxq_entries;
+ old_txq_entries = efx->txq_entries;
+ efx->rxq_entries = rxq_entries;
+ efx->txq_entries = txq_entries;
+ for (i = 0; i < efx->n_channels; i++) {
+ channel = efx->channel[i];
+ efx->channel[i] = other_channel[i];
+ other_channel[i] = channel;
+ }
+
+ rc = efx_probe_channels(efx);
+ if (rc)
+ goto rollback;
+
+ efx_init_napi(efx);
+
+ /* Destroy old channels */
+ for (i = 0; i < efx->n_channels; i++) {
+ efx_fini_napi_channel(other_channel[i]);
+ efx_remove_channel(other_channel[i]);
+ }
+out:
+ /* Free unused channel structures */
+ for (i = 0; i < efx->n_channels; i++)
+ kfree(other_channel[i]);
+
+ efx_init_channels(efx);
+ efx_start_all(efx);
+ return rc;
+
+rollback:
+ /* Swap back */
+ efx->rxq_entries = old_rxq_entries;
+ efx->txq_entries = old_txq_entries;
+ for (i = 0; i < efx->n_channels; i++) {
+ channel = efx->channel[i];
+ efx->channel[i] = other_channel[i];
+ other_channel[i] = channel;
+ }
+ goto out;
+}
+
+void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
+{
+ mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
+}
+
+/**************************************************************************
+ *
+ * Port handling
+ *
+ **************************************************************************/
+
+/* This ensures that the kernel is kept informed (via
+ * netif_carrier_on/off) of the link status, and also maintains the
+ * link status's stop on the port's TX queue.
+ */
+void efx_link_status_changed(struct efx_nic *efx)
+{
+ struct efx_link_state *link_state = &efx->link_state;
+
+ /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
+ * that no events are triggered between unregister_netdev() and the
+ * driver unloading. A more general condition is that NETDEV_CHANGE
+ * can only be generated between NETDEV_UP and NETDEV_DOWN */
+ if (!netif_running(efx->net_dev))
+ return;
+
+ if (link_state->up != netif_carrier_ok(efx->net_dev)) {
+ efx->n_link_state_changes++;
+
+ if (link_state->up)
+ netif_carrier_on(efx->net_dev);
+ else
+ netif_carrier_off(efx->net_dev);
+ }
+
+ /* Status message for kernel log */
+ if (link_state->up) {
+ netif_info(efx, link, efx->net_dev,
+ "link up at %uMbps %s-duplex (MTU %d)%s\n",
+ link_state->speed, link_state->fd ? "full" : "half",
+ efx->net_dev->mtu,
+ (efx->promiscuous ? " [PROMISC]" : ""));
+ } else {
+ netif_info(efx, link, efx->net_dev, "link down\n");
+ }
+
+}
+
+void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
+{
+ efx->link_advertising = advertising;
+ if (advertising) {
+ if (advertising & ADVERTISED_Pause)
+ efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
+ else
+ efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
+ if (advertising & ADVERTISED_Asym_Pause)
+ efx->wanted_fc ^= EFX_FC_TX;
+ }
+}
+
+void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
+{
+ efx->wanted_fc = wanted_fc;
+ if (efx->link_advertising) {
+ if (wanted_fc & EFX_FC_RX)
+ efx->link_advertising |= (ADVERTISED_Pause |
+ ADVERTISED_Asym_Pause);
+ else
+ efx->link_advertising &= ~(ADVERTISED_Pause |
+ ADVERTISED_Asym_Pause);
+ if (wanted_fc & EFX_FC_TX)
+ efx->link_advertising ^= ADVERTISED_Asym_Pause;
+ }
+}
+
+static void efx_fini_port(struct efx_nic *efx);
+
+/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
+ * the MAC appropriately. All other PHY configuration changes are pushed
+ * through phy_op->set_settings(), and pushed asynchronously to the MAC
+ * through efx_monitor().
+ *
+ * Callers must hold the mac_lock
+ */
+int __efx_reconfigure_port(struct efx_nic *efx)
+{
+ enum efx_phy_mode phy_mode;
+ int rc;
+
+ WARN_ON(!mutex_is_locked(&efx->mac_lock));
+
+ /* Serialise the promiscuous flag with efx_set_multicast_list. */
+ if (efx_dev_registered(efx)) {
+ netif_addr_lock_bh(efx->net_dev);
+ netif_addr_unlock_bh(efx->net_dev);
+ }
+
+ /* Disable PHY transmit in mac level loopbacks */
+ phy_mode = efx->phy_mode;
+ if (LOOPBACK_INTERNAL(efx))
+ efx->phy_mode |= PHY_MODE_TX_DISABLED;
+ else
+ efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
+
+ rc = efx->type->reconfigure_port(efx);
+
+ if (rc)
+ efx->phy_mode = phy_mode;
+
+ return rc;
+}
+
+/* Reinitialise the MAC to pick up new PHY settings, even if the port is
+ * disabled. */
+int efx_reconfigure_port(struct efx_nic *efx)
+{
+ int rc;
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ mutex_lock(&efx->mac_lock);
+ rc = __efx_reconfigure_port(efx);
+ mutex_unlock(&efx->mac_lock);
+
+ return rc;
+}
+
+/* Asynchronous work item for changing MAC promiscuity and multicast
+ * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
+ * MAC directly. */
+static void efx_mac_work(struct work_struct *data)
+{
+ struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
+
+ mutex_lock(&efx->mac_lock);
+ if (efx->port_enabled) {
+ efx->type->push_multicast_hash(efx);
+ efx->mac_op->reconfigure(efx);
+ }
+ mutex_unlock(&efx->mac_lock);
+}
+
+static int efx_probe_port(struct efx_nic *efx)
+{
+ unsigned char *perm_addr;
+ int rc;
+
+ netif_dbg(efx, probe, efx->net_dev, "create port\n");
+
+ if (phy_flash_cfg)
+ efx->phy_mode = PHY_MODE_SPECIAL;
+
+ /* Connect up MAC/PHY operations table */
+ rc = efx->type->probe_port(efx);
+ if (rc)
+ return rc;
+
+ /* Sanity check MAC address */
+ perm_addr = efx->net_dev->perm_addr;
+ if (is_valid_ether_addr(perm_addr)) {
+ memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
+ } else {
+ netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
+ perm_addr);
+ if (!allow_bad_hwaddr) {
+ rc = -EINVAL;
+ goto err;
+ }
+ random_ether_addr(efx->net_dev->dev_addr);
+ netif_info(efx, probe, efx->net_dev,
+ "using locally-generated MAC %pM\n",
+ efx->net_dev->dev_addr);
+ }
+
+ return 0;
+
+ err:
+ efx->type->remove_port(efx);
+ return rc;
+}
+
+static int efx_init_port(struct efx_nic *efx)
+{
+ int rc;
+
+ netif_dbg(efx, drv, efx->net_dev, "init port\n");
+
+ mutex_lock(&efx->mac_lock);
+
+ rc = efx->phy_op->init(efx);
+ if (rc)
+ goto fail1;
+
+ efx->port_initialized = true;
+
+ /* Reconfigure the MAC before creating dma queues (required for
+ * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
+ efx->mac_op->reconfigure(efx);
+
+ /* Ensure the PHY advertises the correct flow control settings */
+ rc = efx->phy_op->reconfigure(efx);
+ if (rc)
+ goto fail2;
+
+ mutex_unlock(&efx->mac_lock);
+ return 0;
+
+fail2:
+ efx->phy_op->fini(efx);
+fail1:
+ mutex_unlock(&efx->mac_lock);
+ return rc;
+}
+
+static void efx_start_port(struct efx_nic *efx)
+{
+ netif_dbg(efx, ifup, efx->net_dev, "start port\n");
+ BUG_ON(efx->port_enabled);
+
+ mutex_lock(&efx->mac_lock);
+ efx->port_enabled = true;
+
+ /* efx_mac_work() might have been scheduled after efx_stop_port(),
+ * and then cancelled by efx_flush_all() */
+ efx->type->push_multicast_hash(efx);
+ efx->mac_op->reconfigure(efx);
+
+ mutex_unlock(&efx->mac_lock);
+}
+
+/* Prevent efx_mac_work() and efx_monitor() from working */
+static void efx_stop_port(struct efx_nic *efx)
+{
+ netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
+
+ mutex_lock(&efx->mac_lock);
+ efx->port_enabled = false;
+ mutex_unlock(&efx->mac_lock);
+
+ /* Serialise against efx_set_multicast_list() */
+ if (efx_dev_registered(efx)) {
+ netif_addr_lock_bh(efx->net_dev);
+ netif_addr_unlock_bh(efx->net_dev);
+ }
+}
+
+static void efx_fini_port(struct efx_nic *efx)
+{
+ netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
+
+ if (!efx->port_initialized)
+ return;
+
+ efx->phy_op->fini(efx);
+ efx->port_initialized = false;
+
+ efx->link_state.up = false;
+ efx_link_status_changed(efx);
+}
+
+static void efx_remove_port(struct efx_nic *efx)
+{
+ netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
+
+ efx->type->remove_port(efx);
+}
+
+/**************************************************************************
+ *
+ * NIC handling
+ *
+ **************************************************************************/
+
+/* This configures the PCI device to enable I/O and DMA. */
+static int efx_init_io(struct efx_nic *efx)
+{
+ struct pci_dev *pci_dev = efx->pci_dev;
+ dma_addr_t dma_mask = efx->type->max_dma_mask;
+ bool use_wc;
+ int rc;
+
+ netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
+
+ rc = pci_enable_device(pci_dev);
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev,
+ "failed to enable PCI device\n");
+ goto fail1;
+ }
+
+ pci_set_master(pci_dev);
+
+ /* Set the PCI DMA mask. Try all possibilities from our
+ * genuine mask down to 32 bits, because some architectures
+ * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
+ * masks event though they reject 46 bit masks.
+ */
+ while (dma_mask > 0x7fffffffUL) {
+ if (pci_dma_supported(pci_dev, dma_mask) &&
+ ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
+ break;
+ dma_mask >>= 1;
+ }
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev,
+ "could not find a suitable DMA mask\n");
+ goto fail2;
+ }
+ netif_dbg(efx, probe, efx->net_dev,
+ "using DMA mask %llx\n", (unsigned long long) dma_mask);
+ rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
+ if (rc) {
+ /* pci_set_consistent_dma_mask() is not *allowed* to
+ * fail with a mask that pci_set_dma_mask() accepted,
+ * but just in case...
+ */
+ netif_err(efx, probe, efx->net_dev,
+ "failed to set consistent DMA mask\n");
+ goto fail2;
+ }
+
+ efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
+ rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev,
+ "request for memory BAR failed\n");
+ rc = -EIO;
+ goto fail3;
+ }
+
+ /* bug22643: If SR-IOV is enabled then tx push over a write combined
+ * mapping is unsafe. We need to disable write combining in this case.
+ * MSI is unsupported when SR-IOV is enabled, and the firmware will
+ * have removed the MSI capability. So write combining is safe if
+ * there is an MSI capability.
+ */
+ use_wc = (!EFX_WORKAROUND_22643(efx) ||
+ pci_find_capability(pci_dev, PCI_CAP_ID_MSI));
+ if (use_wc)
+ efx->membase = ioremap_wc(efx->membase_phys,
+ efx->type->mem_map_size);
+ else
+ efx->membase = ioremap_nocache(efx->membase_phys,
+ efx->type->mem_map_size);
+ if (!efx->membase) {
+ netif_err(efx, probe, efx->net_dev,
+ "could not map memory BAR at %llx+%x\n",
+ (unsigned long long)efx->membase_phys,
+ efx->type->mem_map_size);
+ rc = -ENOMEM;
+ goto fail4;
+ }
+ netif_dbg(efx, probe, efx->net_dev,
+ "memory BAR at %llx+%x (virtual %p)\n",
+ (unsigned long long)efx->membase_phys,
+ efx->type->mem_map_size, efx->membase);
+
+ return 0;
+
+ fail4:
+ pci_release_region(efx->pci_dev, EFX_MEM_BAR);
+ fail3:
+ efx->membase_phys = 0;
+ fail2:
+ pci_disable_device(efx->pci_dev);
+ fail1:
+ return rc;
+}
+
+static void efx_fini_io(struct efx_nic *efx)
+{
+ netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
+
+ if (efx->membase) {
+ iounmap(efx->membase);
+ efx->membase = NULL;
+ }
+
+ if (efx->membase_phys) {
+ pci_release_region(efx->pci_dev, EFX_MEM_BAR);
+ efx->membase_phys = 0;
+ }
+
+ pci_disable_device(efx->pci_dev);
+}
+
+/* Get number of channels wanted. Each channel will have its own IRQ,
+ * 1 RX queue and/or 2 TX queues. */
+static int efx_wanted_channels(void)
+{
+ cpumask_var_t core_mask;
+ int count;
+ int cpu;
+
+ if (rss_cpus)
+ return rss_cpus;
+
+ if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
+ printk(KERN_WARNING
+ "sfc: RSS disabled due to allocation failure\n");
+ return 1;
+ }
+
+ count = 0;
+ for_each_online_cpu(cpu) {
+ if (!cpumask_test_cpu(cpu, core_mask)) {
+ ++count;
+ cpumask_or(core_mask, core_mask,
+ topology_core_cpumask(cpu));
+ }
+ }
+
+ free_cpumask_var(core_mask);
+ return count;
+}
+
+static int
+efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
+{
+#ifdef CONFIG_RFS_ACCEL
+ int i, rc;
+
+ efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
+ if (!efx->net_dev->rx_cpu_rmap)
+ return -ENOMEM;
+ for (i = 0; i < efx->n_rx_channels; i++) {
+ rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
+ xentries[i].vector);
+ if (rc) {
+ free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
+ efx->net_dev->rx_cpu_rmap = NULL;
+ return rc;
+ }
+ }
+#endif
+ return 0;
+}
+
+/* Probe the number and type of interrupts we are able to obtain, and
+ * the resulting numbers of channels and RX queues.
+ */
+static int efx_probe_interrupts(struct efx_nic *efx)
+{
+ int max_channels =
+ min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
+ int rc, i;
+
+ if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
+ struct msix_entry xentries[EFX_MAX_CHANNELS];
+ int n_channels;
+
+ n_channels = efx_wanted_channels();
+ if (separate_tx_channels)
+ n_channels *= 2;
+ n_channels = min(n_channels, max_channels);
+
+ for (i = 0; i < n_channels; i++)
+ xentries[i].entry = i;
+ rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
+ if (rc > 0) {
+ netif_err(efx, drv, efx->net_dev,
+ "WARNING: Insufficient MSI-X vectors"
+ " available (%d < %d).\n", rc, n_channels);
+ netif_err(efx, drv, efx->net_dev,
+ "WARNING: Performance may be reduced.\n");
+ EFX_BUG_ON_PARANOID(rc >= n_channels);
+ n_channels = rc;
+ rc = pci_enable_msix(efx->pci_dev, xentries,
+ n_channels);
+ }
+
+ if (rc == 0) {
+ efx->n_channels = n_channels;
+ if (separate_tx_channels) {
+ efx->n_tx_channels =
+ max(efx->n_channels / 2, 1U);
+ efx->n_rx_channels =
+ max(efx->n_channels -
+ efx->n_tx_channels, 1U);
+ } else {
+ efx->n_tx_channels = efx->n_channels;
+ efx->n_rx_channels = efx->n_channels;
+ }
+ rc = efx_init_rx_cpu_rmap(efx, xentries);
+ if (rc) {
+ pci_disable_msix(efx->pci_dev);
+ return rc;
+ }
+ for (i = 0; i < n_channels; i++)
+ efx_get_channel(efx, i)->irq =
+ xentries[i].vector;
+ } else {
+ /* Fall back to single channel MSI */
+ efx->interrupt_mode = EFX_INT_MODE_MSI;
+ netif_err(efx, drv, efx->net_dev,
+ "could not enable MSI-X\n");
+ }
+ }
+
+ /* Try single interrupt MSI */
+ if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
+ efx->n_channels = 1;
+ efx->n_rx_channels = 1;
+ efx->n_tx_channels = 1;
+ rc = pci_enable_msi(efx->pci_dev);
+ if (rc == 0) {
+ efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
+ } else {
+ netif_err(efx, drv, efx->net_dev,
+ "could not enable MSI\n");
+ efx->interrupt_mode = EFX_INT_MODE_LEGACY;
+ }
+ }
+
+ /* Assume legacy interrupts */
+ if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
+ efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
+ efx->n_rx_channels = 1;
+ efx->n_tx_channels = 1;
+ efx->legacy_irq = efx->pci_dev->irq;
+ }
+
+ return 0;
+}
+
+static void efx_remove_interrupts(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+
+ /* Remove MSI/MSI-X interrupts */
+ efx_for_each_channel(channel, efx)
+ channel->irq = 0;
+ pci_disable_msi(efx->pci_dev);
+ pci_disable_msix(efx->pci_dev);
+
+ /* Remove legacy interrupt */
+ efx->legacy_irq = 0;
+}
+
+static void efx_set_channels(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+ struct efx_tx_queue *tx_queue;
+
+ efx->tx_channel_offset =
+ separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
+
+ /* We need to adjust the TX queue numbers if we have separate
+ * RX-only and TX-only channels.
+ */
+ efx_for_each_channel(channel, efx) {
+ efx_for_each_channel_tx_queue(tx_queue, channel)
+ tx_queue->queue -= (efx->tx_channel_offset *
+ EFX_TXQ_TYPES);
+ }
+}
+
+static int efx_probe_nic(struct efx_nic *efx)
+{
+ size_t i;
+ int rc;
+
+ netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
+
+ /* Carry out hardware-type specific initialisation */
+ rc = efx->type->probe(efx);
+ if (rc)
+ return rc;
+
+ /* Determine the number of channels and queues by trying to hook
+ * in MSI-X interrupts. */
+ rc = efx_probe_interrupts(efx);
+ if (rc)
+ goto fail;
+
+ if (efx->n_channels > 1)
+ get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
+ for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
+ efx->rx_indir_table[i] = i % efx->n_rx_channels;
+
+ efx_set_channels(efx);
+ netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
+ netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
+
+ /* Initialise the interrupt moderation settings */
+ efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
+
+ return 0;
+
+fail:
+ efx->type->remove(efx);
+ return rc;
+}
+
+static void efx_remove_nic(struct efx_nic *efx)
+{
+ netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
+
+ efx_remove_interrupts(efx);
+ efx->type->remove(efx);
+}
+
+/**************************************************************************
+ *
+ * NIC startup/shutdown
+ *
+ *************************************************************************/
+
+static int efx_probe_all(struct efx_nic *efx)
+{
+ int rc;
+
+ rc = efx_probe_nic(efx);
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
+ goto fail1;
+ }
+
+ rc = efx_probe_port(efx);
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev, "failed to create port\n");
+ goto fail2;
+ }
+
+ efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
+ rc = efx_probe_channels(efx);
+ if (rc)
+ goto fail3;
+
+ rc = efx_probe_filters(efx);
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev,
+ "failed to create filter tables\n");
+ goto fail4;
+ }
+
+ return 0;
+
+ fail4:
+ efx_remove_channels(efx);
+ fail3:
+ efx_remove_port(efx);
+ fail2:
+ efx_remove_nic(efx);
+ fail1:
+ return rc;
+}
+
+/* Called after previous invocation(s) of efx_stop_all, restarts the
+ * port, kernel transmit queue, NAPI processing and hardware interrupts,
+ * and ensures that the port is scheduled to be reconfigured.
+ * This function is safe to call multiple times when the NIC is in any
+ * state. */
+static void efx_start_all(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ /* Check that it is appropriate to restart the interface. All
+ * of these flags are safe to read under just the rtnl lock */
+ if (efx->port_enabled)
+ return;
+ if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
+ return;
+ if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
+ return;
+
+ /* Mark the port as enabled so port reconfigurations can start, then
+ * restart the transmit interface early so the watchdog timer stops */
+ efx_start_port(efx);
+
+ if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
+ netif_tx_wake_all_queues(efx->net_dev);
+
+ efx_for_each_channel(channel, efx)
+ efx_start_channel(channel);
+
+ if (efx->legacy_irq)
+ efx->legacy_irq_enabled = true;
+ efx_nic_enable_interrupts(efx);
+
+ /* Switch to event based MCDI completions after enabling interrupts.
+ * If a reset has been scheduled, then we need to stay in polled mode.
+ * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
+ * reset_pending [modified from an atomic context], we instead guarantee
+ * that efx_mcdi_mode_poll() isn't reverted erroneously */
+ efx_mcdi_mode_event(efx);
+ if (efx->reset_pending)
+ efx_mcdi_mode_poll(efx);
+
+ /* Start the hardware monitor if there is one. Otherwise (we're link
+ * event driven), we have to poll the PHY because after an event queue
+ * flush, we could have a missed a link state change */
+ if (efx->type->monitor != NULL) {
+ queue_delayed_work(efx->workqueue, &efx->monitor_work,
+ efx_monitor_interval);
+ } else {
+ mutex_lock(&efx->mac_lock);
+ if (efx->phy_op->poll(efx))
+ efx_link_status_changed(efx);
+ mutex_unlock(&efx->mac_lock);
+ }
+
+ efx->type->start_stats(efx);
+}
+
+/* Flush all delayed work. Should only be called when no more delayed work
+ * will be scheduled. This doesn't flush pending online resets (efx_reset),
+ * since we're holding the rtnl_lock at this point. */
+static void efx_flush_all(struct efx_nic *efx)
+{
+ /* Make sure the hardware monitor is stopped */
+ cancel_delayed_work_sync(&efx->monitor_work);
+ /* Stop scheduled port reconfigurations */
+ cancel_work_sync(&efx->mac_work);
+}
+
+/* Quiesce hardware and software without bringing the link down.
+ * Safe to call multiple times, when the nic and interface is in any
+ * state. The caller is guaranteed to subsequently be in a position
+ * to modify any hardware and software state they see fit without
+ * taking locks. */
+static void efx_stop_all(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ /* port_enabled can be read safely under the rtnl lock */
+ if (!efx->port_enabled)
+ return;
+
+ efx->type->stop_stats(efx);
+
+ /* Switch to MCDI polling on Siena before disabling interrupts */
+ efx_mcdi_mode_poll(efx);
+
+ /* Disable interrupts and wait for ISR to complete */
+ efx_nic_disable_interrupts(efx);
+ if (efx->legacy_irq) {
+ synchronize_irq(efx->legacy_irq);
+ efx->legacy_irq_enabled = false;
+ }
+ efx_for_each_channel(channel, efx) {
+ if (channel->irq)
+ synchronize_irq(channel->irq);
+ }
+
+ /* Stop all NAPI processing and synchronous rx refills */
+ efx_for_each_channel(channel, efx)
+ efx_stop_channel(channel);
+
+ /* Stop all asynchronous port reconfigurations. Since all
+ * event processing has already been stopped, there is no
+ * window to loose phy events */
+ efx_stop_port(efx);
+
+ /* Flush efx_mac_work(), refill_workqueue, monitor_work */
+ efx_flush_all(efx);
+
+ /* Stop the kernel transmit interface late, so the watchdog
+ * timer isn't ticking over the flush */
+ if (efx_dev_registered(efx)) {
+ netif_tx_stop_all_queues(efx->net_dev);
+ netif_tx_lock_bh(efx->net_dev);
+ netif_tx_unlock_bh(efx->net_dev);
+ }
+}
+
+static void efx_remove_all(struct efx_nic *efx)
+{
+ efx_remove_filters(efx);
+ efx_remove_channels(efx);
+ efx_remove_port(efx);
+ efx_remove_nic(efx);
+}
+
+/**************************************************************************
+ *
+ * Interrupt moderation
+ *
+ **************************************************************************/
+
+static unsigned irq_mod_ticks(int usecs, int resolution)
+{
+ if (usecs <= 0)
+ return 0; /* cannot receive interrupts ahead of time :-) */
+ if (usecs < resolution)
+ return 1; /* never round down to 0 */
+ return usecs / resolution;
+}
+
+/* Set interrupt moderation parameters */
+void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
+ bool rx_adaptive)
+{
+ struct efx_channel *channel;
+ unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
+ unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ efx->irq_rx_adaptive = rx_adaptive;
+ efx->irq_rx_moderation = rx_ticks;
+ efx_for_each_channel(channel, efx) {
+ if (efx_channel_has_rx_queue(channel))
+ channel->irq_moderation = rx_ticks;
+ else if (efx_channel_has_tx_queues(channel))
+ channel->irq_moderation = tx_ticks;
+ }
+}
+
+/**************************************************************************
+ *
+ * Hardware monitor
+ *
+ **************************************************************************/
+
+/* Run periodically off the general workqueue */
+static void efx_monitor(struct work_struct *data)
+{
+ struct efx_nic *efx = container_of(data, struct efx_nic,
+ monitor_work.work);
+
+ netif_vdbg(efx, timer, efx->net_dev,
+ "hardware monitor executing on CPU %d\n",
+ raw_smp_processor_id());
+ BUG_ON(efx->type->monitor == NULL);
+
+ /* If the mac_lock is already held then it is likely a port
+ * reconfiguration is already in place, which will likely do
+ * most of the work of monitor() anyway. */
+ if (mutex_trylock(&efx->mac_lock)) {
+ if (efx->port_enabled)
+ efx->type->monitor(efx);
+ mutex_unlock(&efx->mac_lock);
+ }
+
+ queue_delayed_work(efx->workqueue, &efx->monitor_work,
+ efx_monitor_interval);
+}
+
+/**************************************************************************
+ *
+ * ioctls
+ *
+ *************************************************************************/
+
+/* Net device ioctl
+ * Context: process, rtnl_lock() held.
+ */
+static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+ struct mii_ioctl_data *data = if_mii(ifr);
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ /* Convert phy_id from older PRTAD/DEVAD format */
+ if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
+ (data->phy_id & 0xfc00) == 0x0400)
+ data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
+
+ return mdio_mii_ioctl(&efx->mdio, data, cmd);
+}
+
+/**************************************************************************
+ *
+ * NAPI interface
+ *
+ **************************************************************************/
+
+static void efx_init_napi(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+
+ efx_for_each_channel(channel, efx) {
+ channel->napi_dev = efx->net_dev;
+ netif_napi_add(channel->napi_dev, &channel->napi_str,
+ efx_poll, napi_weight);
+ }
+}
+
+static void efx_fini_napi_channel(struct efx_channel *channel)
+{
+ if (channel->napi_dev)
+ netif_napi_del(&channel->napi_str);
+ channel->napi_dev = NULL;
+}
+
+static void efx_fini_napi(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+
+ efx_for_each_channel(channel, efx)
+ efx_fini_napi_channel(channel);
+}
+
+/**************************************************************************
+ *
+ * Kernel netpoll interface
+ *
+ *************************************************************************/
+
+#ifdef CONFIG_NET_POLL_CONTROLLER
+
+/* Although in the common case interrupts will be disabled, this is not
+ * guaranteed. However, all our work happens inside the NAPI callback,
+ * so no locking is required.
+ */
+static void efx_netpoll(struct net_device *net_dev)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+ struct efx_channel *channel;
+
+ efx_for_each_channel(channel, efx)
+ efx_schedule_channel(channel);
+}
+
+#endif
+
+/**************************************************************************
+ *
+ * Kernel net device interface
+ *
+ *************************************************************************/
+
+/* Context: process, rtnl_lock() held. */
+static int efx_net_open(struct net_device *net_dev)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
+ raw_smp_processor_id());
+
+ if (efx->state == STATE_DISABLED)
+ return -EIO;
+ if (efx->phy_mode & PHY_MODE_SPECIAL)
+ return -EBUSY;
+ if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
+ return -EIO;
+
+ /* Notify the kernel of the link state polled during driver load,
+ * before the monitor starts running */
+ efx_link_status_changed(efx);
+
+ efx_start_all(efx);
+ return 0;
+}
+
+/* Context: process, rtnl_lock() held.
+ * Note that the kernel will ignore our return code; this method
+ * should really be a void.
+ */
+static int efx_net_stop(struct net_device *net_dev)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+
+ netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
+ raw_smp_processor_id());
+
+ if (efx->state != STATE_DISABLED) {
+ /* Stop the device and flush all the channels */
+ efx_stop_all(efx);
+ efx_fini_channels(efx);
+ efx_init_channels(efx);
+ }
+
+ return 0;
+}
+
+/* Context: process, dev_base_lock or RTNL held, non-blocking. */
+static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+ struct efx_mac_stats *mac_stats = &efx->mac_stats;
+
+ spin_lock_bh(&efx->stats_lock);
+ efx->type->update_stats(efx);
+ spin_unlock_bh(&efx->stats_lock);
+
+ stats->rx_packets = mac_stats->rx_packets;
+ stats->tx_packets = mac_stats->tx_packets;
+ stats->rx_bytes = mac_stats->rx_bytes;
+ stats->tx_bytes = mac_stats->tx_bytes;
+ stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
+ stats->multicast = mac_stats->rx_multicast;
+ stats->collisions = mac_stats->tx_collision;
+ stats->rx_length_errors = (mac_stats->rx_gtjumbo +
+ mac_stats->rx_length_error);
+ stats->rx_crc_errors = mac_stats->rx_bad;
+ stats->rx_frame_errors = mac_stats->rx_align_error;
+ stats->rx_fifo_errors = mac_stats->rx_overflow;
+ stats->rx_missed_errors = mac_stats->rx_missed;
+ stats->tx_window_errors = mac_stats->tx_late_collision;
+
+ stats->rx_errors = (stats->rx_length_errors +
+ stats->rx_crc_errors +
+ stats->rx_frame_errors +
+ mac_stats->rx_symbol_error);
+ stats->tx_errors = (stats->tx_window_errors +
+ mac_stats->tx_bad);
+
+ return stats;
+}
+
+/* Context: netif_tx_lock held, BHs disabled. */
+static void efx_watchdog(struct net_device *net_dev)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+
+ netif_err(efx, tx_err, efx->net_dev,
+ "TX stuck with port_enabled=%d: resetting channels\n",
+ efx->port_enabled);
+
+ efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
+}
+
+
+/* Context: process, rtnl_lock() held. */
+static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+ int rc = 0;
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ if (new_mtu > EFX_MAX_MTU)
+ return -EINVAL;
+
+ efx_stop_all(efx);
+
+ netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
+
+ efx_fini_channels(efx);
+
+ mutex_lock(&efx->mac_lock);
+ /* Reconfigure the MAC before enabling the dma queues so that
+ * the RX buffers don't overflow */
+ net_dev->mtu = new_mtu;
+ efx->mac_op->reconfigure(efx);
+ mutex_unlock(&efx->mac_lock);
+
+ efx_init_channels(efx);
+
+ efx_start_all(efx);
+ return rc;
+}
+
+static int efx_set_mac_address(struct net_device *net_dev, void *data)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+ struct sockaddr *addr = data;
+ char *new_addr = addr->sa_data;
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ if (!is_valid_ether_addr(new_addr)) {
+ netif_err(efx, drv, efx->net_dev,
+ "invalid ethernet MAC address requested: %pM\n",
+ new_addr);
+ return -EINVAL;
+ }
+
+ memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
+
+ /* Reconfigure the MAC */
+ mutex_lock(&efx->mac_lock);
+ efx->mac_op->reconfigure(efx);
+ mutex_unlock(&efx->mac_lock);
+
+ return 0;
+}
+
+/* Context: netif_addr_lock held, BHs disabled. */
+static void efx_set_multicast_list(struct net_device *net_dev)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+ struct netdev_hw_addr *ha;
+ union efx_multicast_hash *mc_hash = &efx->multicast_hash;
+ u32 crc;
+ int bit;
+
+ efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
+
+ /* Build multicast hash table */
+ if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
+ memset(mc_hash, 0xff, sizeof(*mc_hash));
+ } else {
+ memset(mc_hash, 0x00, sizeof(*mc_hash));
+ netdev_for_each_mc_addr(ha, net_dev) {
+ crc = ether_crc_le(ETH_ALEN, ha->addr);
+ bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
+ set_bit_le(bit, mc_hash->byte);
+ }
+
+ /* Broadcast packets go through the multicast hash filter.
+ * ether_crc_le() of the broadcast address is 0xbe2612ff
+ * so we always add bit 0xff to the mask.
+ */
+ set_bit_le(0xff, mc_hash->byte);
+ }
+
+ if (efx->port_enabled)
+ queue_work(efx->workqueue, &efx->mac_work);
+ /* Otherwise efx_start_port() will do this */
+}
+
+static int efx_set_features(struct net_device *net_dev, u32 data)
+{
+ struct efx_nic *efx = netdev_priv(net_dev);
+
+ /* If disabling RX n-tuple filtering, clear existing filters */
+ if (net_dev->features & ~data & NETIF_F_NTUPLE)
+ efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
+
+ return 0;
+}
+
+static const struct net_device_ops efx_netdev_ops = {
+ .ndo_open = efx_net_open,
+ .ndo_stop = efx_net_stop,
+ .ndo_get_stats64 = efx_net_stats,
+ .ndo_tx_timeout = efx_watchdog,
+ .ndo_start_xmit = efx_hard_start_xmit,
+ .ndo_validate_addr = eth_validate_addr,
+ .ndo_do_ioctl = efx_ioctl,
+ .ndo_change_mtu = efx_change_mtu,
+ .ndo_set_mac_address = efx_set_mac_address,
+ .ndo_set_multicast_list = efx_set_multicast_list,
+ .ndo_set_features = efx_set_features,
+#ifdef CONFIG_NET_POLL_CONTROLLER
+ .ndo_poll_controller = efx_netpoll,
+#endif
+ .ndo_setup_tc = efx_setup_tc,
+#ifdef CONFIG_RFS_ACCEL
+ .ndo_rx_flow_steer = efx_filter_rfs,
+#endif
+};
+
+static void efx_update_name(struct efx_nic *efx)
+{
+ strcpy(efx->name, efx->net_dev->name);
+ efx_mtd_rename(efx);
+ efx_set_channel_names(efx);
+}
+
+static int efx_netdev_event(struct notifier_block *this,
+ unsigned long event, void *ptr)
+{
+ struct net_device *net_dev = ptr;
+
+ if (net_dev->netdev_ops == &efx_netdev_ops &&
+ event == NETDEV_CHANGENAME)
+ efx_update_name(netdev_priv(net_dev));
+
+ return NOTIFY_DONE;
+}
+
+static struct notifier_block efx_netdev_notifier = {
+ .notifier_call = efx_netdev_event,
+};
+
+static ssize_t
+show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
+{
+ struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
+ return sprintf(buf, "%d\n", efx->phy_type);
+}
+static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
+
+static int efx_register_netdev(struct efx_nic *efx)
+{
+ struct net_device *net_dev = efx->net_dev;
+ struct efx_channel *channel;
+ int rc;
+
+ net_dev->watchdog_timeo = 5 * HZ;
+ net_dev->irq = efx->pci_dev->irq;
+ net_dev->netdev_ops = &efx_netdev_ops;
+ SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
+
+ /* Clear MAC statistics */
+ efx->mac_op->update_stats(efx);
+ memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
+
+ rtnl_lock();
+
+ rc = dev_alloc_name(net_dev, net_dev->name);
+ if (rc < 0)
+ goto fail_locked;
+ efx_update_name(efx);
+
+ rc = register_netdevice(net_dev);
+ if (rc)
+ goto fail_locked;
+
+ efx_for_each_channel(channel, efx) {
+ struct efx_tx_queue *tx_queue;
+ efx_for_each_channel_tx_queue(tx_queue, channel)
+ efx_init_tx_queue_core_txq(tx_queue);
+ }
+
+ /* Always start with carrier off; PHY events will detect the link */
+ netif_carrier_off(efx->net_dev);
+
+ rtnl_unlock();
+
+ rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
+ if (rc) {
+ netif_err(efx, drv, efx->net_dev,
+ "failed to init net dev attributes\n");
+ goto fail_registered;
+ }
+
+ return 0;
+
+fail_locked:
+ rtnl_unlock();
+ netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
+ return rc;
+
+fail_registered:
+ unregister_netdev(net_dev);
+ return rc;
+}
+
+static void efx_unregister_netdev(struct efx_nic *efx)
+{
+ struct efx_channel *channel;
+ struct efx_tx_queue *tx_queue;
+
+ if (!efx->net_dev)
+ return;
+
+ BUG_ON(netdev_priv(efx->net_dev) != efx);
+
+ /* Free up any skbs still remaining. This has to happen before
+ * we try to unregister the netdev as running their destructors
+ * may be needed to get the device ref. count to 0. */
+ efx_for_each_channel(channel, efx) {
+ efx_for_each_channel_tx_queue(tx_queue, channel)
+ efx_release_tx_buffers(tx_queue);
+ }
+
+ if (efx_dev_registered(efx)) {
+ strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
+ device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
+ unregister_netdev(efx->net_dev);
+ }
+}
+
+/**************************************************************************
+ *
+ * Device reset and suspend
+ *
+ **************************************************************************/
+
+/* Tears down the entire software state and most of the hardware state
+ * before reset. */
+void efx_reset_down(struct efx_nic *efx, enum reset_type method)
+{
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ efx_stop_all(efx);
+ mutex_lock(&efx->mac_lock);
+
+ efx_fini_channels(efx);
+ if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
+ efx->phy_op->fini(efx);
+ efx->type->fini(efx);
+}
+
+/* This function will always ensure that the locks acquired in
+ * efx_reset_down() are released. A failure return code indicates
+ * that we were unable to reinitialise the hardware, and the
+ * driver should be disabled. If ok is false, then the rx and tx
+ * engines are not restarted, pending a RESET_DISABLE. */
+int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
+{
+ int rc;
+
+ EFX_ASSERT_RESET_SERIALISED(efx);
+
+ rc = efx->type->init(efx);
+ if (rc) {
+ netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
+ goto fail;
+ }
+
+ if (!ok)
+ goto fail;
+
+ if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
+ rc = efx->phy_op->init(efx);
+ if (rc)
+ goto fail;
+ if (efx->phy_op->reconfigure(efx))
+ netif_err(efx, drv, efx->net_dev,
+ "could not restore PHY settings\n");
+ }
+
+ efx->mac_op->reconfigure(efx);
+
+ efx_init_channels(efx);
+ efx_restore_filters(efx);
+
+ mutex_unlock(&efx->mac_lock);
+
+ efx_start_all(efx);
+
+ return 0;
+
+fail:
+ efx->port_initialized = false;
+
+ mutex_unlock(&efx->mac_lock);
+
+ return rc;
+}
+
+/* Reset the NIC using the specified method. Note that the reset may
+ * fail, in which case the card will be left in an unusable state.
+ *
+ * Caller must hold the rtnl_lock.
+ */
+int efx_reset(struct efx_nic *efx, enum reset_type method)
+{
+ int rc, rc2;
+ bool disabled;
+
+ netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
+ RESET_TYPE(method));
+
+ netif_device_detach(efx->net_dev);
+ efx_reset_down(efx, method);
+
+ rc = efx->type->reset(efx, method);
+ if (rc) {
+ netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
+ goto out;
+ }
+
+ /* Clear flags for the scopes we covered. We assume the NIC and
+ * driver are now quiescent so that there is no race here.
+ */
+ efx->reset_pending &= -(1 << (method + 1));
+
+ /* Reinitialise bus-mastering, which may have been turned off before
+ * the reset was scheduled. This is still appropriate, even in the
+ * RESET_TYPE_DISABLE since this driver generally assumes the hardware
+ * can respond to requests. */
+ pci_set_master(efx->pci_dev);
+
+out:
+ /* Leave device stopped if necessary */
+ disabled = rc || method == RESET_TYPE_DISABLE;
+ rc2 = efx_reset_up(efx, method, !disabled);
+ if (rc2) {
+ disabled = true;
+ if (!rc)
+ rc = rc2;
+ }
+
+ if (disabled) {
+ dev_close(efx->net_dev);
+ netif_err(efx, drv, efx->net_dev, "has been disabled\n");
+ efx->state = STATE_DISABLED;
+ } else {
+ netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
+ netif_device_attach(efx->net_dev);
+ }
+ return rc;
+}
+
+/* The worker thread exists so that code that cannot sleep can
+ * schedule a reset for later.
+ */
+static void efx_reset_work(struct work_struct *data)
+{
+ struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
+ unsigned long pending = ACCESS_ONCE(efx->reset_pending);
+
+ if (!pending)
+ return;
+
+ /* If we're not RUNNING then don't reset. Leave the reset_pending
+ * flags set so that efx_pci_probe_main will be retried */
+ if (efx->state != STATE_RUNNING) {
+ netif_info(efx, drv, efx->net_dev,
+ "scheduled reset quenched. NIC not RUNNING\n");
+ return;
+ }
+
+ rtnl_lock();
+ (void)efx_reset(efx, fls(pending) - 1);
+ rtnl_unlock();
+}
+
+void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
+{
+ enum reset_type method;
+
+ switch (type) {
+ case RESET_TYPE_INVISIBLE:
+ case RESET_TYPE_ALL:
+ case RESET_TYPE_WORLD:
+ case RESET_TYPE_DISABLE:
+ method = type;
+ netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
+ RESET_TYPE(method));
+ break;
+ default:
+ method = efx->type->map_reset_reason(type);
+ netif_dbg(efx, drv, efx->net_dev,
+ "scheduling %s reset for %s\n",
+ RESET_TYPE(method), RESET_TYPE(type));
+ break;
+ }
+
+ set_bit(method, &efx->reset_pending);
+
+ /* efx_process_channel() will no longer read events once a
+ * reset is scheduled. So switch back to poll'd MCDI completions. */
+ efx_mcdi_mode_poll(efx);
+
+ queue_work(reset_workqueue, &efx->reset_work);
+}
+
+/**************************************************************************
+ *
+ * List of NICs we support
+ *
+ **************************************************************************/
+
+/* PCI device ID table */
+static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
+ {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
+ .driver_data = (unsigned long) &falcon_a1_nic_type},
+ {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
+ .driver_data = (unsigned long) &falcon_b0_nic_type},
+ {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
+ .driver_data = (unsigned long) &siena_a0_nic_type},
+ {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
+ .driver_data = (unsigned long) &siena_a0_nic_type},
+ {0} /* end of list */
+};
+
+/**************************************************************************
+ *
+ * Dummy PHY/MAC operations
+ *
+ * Can be used for some unimplemented operations
+ * Needed so all function pointers are valid and do not have to be tested
+ * before use
+ *
+ **************************************************************************/
+int efx_port_dummy_op_int(struct efx_nic *efx)
+{
+ return 0;
+}
+void efx_port_dummy_op_void(struct efx_nic *efx) {}
+
+static bool efx_port_dummy_op_poll(struct efx_nic *efx)
+{
+ return false;
+}
+
+static const struct efx_phy_operations efx_dummy_phy_operations = {
+ .init = efx_port_dummy_op_int,
+ .reconfigure = efx_port_dummy_op_int,
+ .poll = efx_port_dummy_op_poll,
+ .fini = efx_port_dummy_op_void,
+};
+
+/**************************************************************************
+ *
+ * Data housekeeping
+ *
+ **************************************************************************/
+
+/* This zeroes out and then fills in the invariants in a struct
+ * efx_nic (including all sub-structures).
+ */
+static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
+ struct pci_dev *pci_dev, struct net_device *net_dev)
+{
+ int i;
+
+ /* Initialise common structures */
+ memset(efx, 0, sizeof(*efx));
+ spin_lock_init(&efx->biu_lock);
+#ifdef CONFIG_SFC_MTD
+ INIT_LIST_HEAD(&efx->mtd_list);
+#endif
+ INIT_WORK(&efx->reset_work, efx_reset_work);
+ INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
+ efx->pci_dev = pci_dev;
+ efx->msg_enable = debug;
+ efx->state = STATE_INIT;
+ strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
+
+ efx->net_dev = net_dev;
+ spin_lock_init(&efx->stats_lock);
+ mutex_init(&efx->mac_lock);
+ efx->mac_op = type->default_mac_ops;
+ efx->phy_op = &efx_dummy_phy_operations;
+ efx->mdio.dev = net_dev;
+ INIT_WORK(&efx->mac_work, efx_mac_work);
+
+ for (i = 0; i < EFX_MAX_CHANNELS; i++) {
+ efx->channel[i] = efx_alloc_channel(efx, i, NULL);
+ if (!efx->channel[i])
+ goto fail;
+ }
+
+ efx->type = type;
+
+ EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
+
+ /* Higher numbered interrupt modes are less capable! */
+ efx->interrupt_mode = max(efx->type->max_interrupt_mode,
+ interrupt_mode);
+
+ /* Would be good to use the net_dev name, but we're too early */
+ snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
+ pci_name(pci_dev));
+ efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
+ if (!efx->workqueue)
+ goto fail;
+
+ return 0;
+
+fail:
+ efx_fini_struct(efx);
+ return -ENOMEM;
+}
+
+static void efx_fini_struct(struct efx_nic *efx)
+{
+ int i;
+
+ for (i = 0; i < EFX_MAX_CHANNELS; i++)
+ kfree(efx->channel[i]);
+
+ if (efx->workqueue) {
+ destroy_workqueue(efx->workqueue);
+ efx->workqueue = NULL;
+ }
+}
+
+/**************************************************************************
+ *
+ * PCI interface
+ *
+ **************************************************************************/
+
+/* Main body of final NIC shutdown code
+ * This is called only at module unload (or hotplug removal).
+ */
+static void efx_pci_remove_main(struct efx_nic *efx)
+{
+#ifdef CONFIG_RFS_ACCEL
+ free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
+ efx->net_dev->rx_cpu_rmap = NULL;
+#endif
+ efx_nic_fini_interrupt(efx);
+ efx_fini_channels(efx);
+ efx_fini_port(efx);
+ efx->type->fini(efx);
+ efx_fini_napi(efx);
+ efx_remove_all(efx);
+}
+
+/* Final NIC shutdown
+ * This is called only at module unload (or hotplug removal).
+ */
+static void efx_pci_remove(struct pci_dev *pci_dev)
+{
+ struct efx_nic *efx;
+
+ efx = pci_get_drvdata(pci_dev);
+ if (!efx)
+ return;
+
+ /* Mark the NIC as fini, then stop the interface */
+ rtnl_lock();
+ efx->state = STATE_FINI;
+ dev_close(efx->net_dev);
+
+ /* Allow any queued efx_resets() to complete */
+ rtnl_unlock();
+
+ efx_unregister_netdev(efx);
+
+ efx_mtd_remove(efx);
+
+ /* Wait for any scheduled resets to complete. No more will be
+ * scheduled from this point because efx_stop_all() has been
+ * called, we are no longer registered with driverlink, and
+ * the net_device's have been removed. */
+ cancel_work_sync(&efx->reset_work);
+
+ efx_pci_remove_main(efx);
+
+ efx_fini_io(efx);
+ netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
+
+ pci_set_drvdata(pci_dev, NULL);
+ efx_fini_struct(efx);
+ free_netdev(efx->net_dev);
+};
+
+/* Main body of NIC initialisation
+ * This is called at module load (or hotplug insertion, theoretically).
+ */
+static int efx_pci_probe_main(struct efx_nic *efx)
+{
+ int rc;
+
+ /* Do start-of-day initialisation */
+ rc = efx_probe_all(efx);
+ if (rc)
+ goto fail1;
+
+ efx_init_napi(efx);
+
+ rc = efx->type->init(efx);
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev,
+ "failed to initialise NIC\n");
+ goto fail3;
+ }
+
+ rc = efx_init_port(efx);
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev,
+ "failed to initialise port\n");
+ goto fail4;
+ }
+
+ efx_init_channels(efx);
+
+ rc = efx_nic_init_interrupt(efx);
+ if (rc)
+ goto fail5;
+
+ return 0;
+
+ fail5:
+ efx_fini_channels(efx);
+ efx_fini_port(efx);
+ fail4:
+ efx->type->fini(efx);
+ fail3:
+ efx_fini_napi(efx);
+ efx_remove_all(efx);
+ fail1:
+ return rc;
+}
+
+/* NIC initialisation
+ *
+ * This is called at module load (or hotplug insertion,
+ * theoretically). It sets up PCI mappings, tests and resets the NIC,
+ * sets up and registers the network devices with the kernel and hooks
+ * the interrupt service routine. It does not prepare the device for
+ * transmission; this is left to the first time one of the network
+ * interfaces is brought up (i.e. efx_net_open).
+ */
+static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
+ const struct pci_device_id *entry)
+{
+ const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
+ struct net_device *net_dev;
+ struct efx_nic *efx;
+ int i, rc;
+
+ /* Allocate and initialise a struct net_device and struct efx_nic */
+ net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
+ EFX_MAX_RX_QUEUES);
+ if (!net_dev)
+ return -ENOMEM;
+ net_dev->features |= (type->offload_features | NETIF_F_SG |
+ NETIF_F_HIGHDMA | NETIF_F_TSO |
+ NETIF_F_RXCSUM);
+ if (type->offload_features & NETIF_F_V6_CSUM)
+ net_dev->features |= NETIF_F_TSO6;
+ /* Mask for features that also apply to VLAN devices */
+ net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
+ NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
+ NETIF_F_RXCSUM);
+ /* All offloads can be toggled */
+ net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
+ efx = netdev_priv(net_dev);
+ pci_set_drvdata(pci_dev, efx);
+ SET_NETDEV_DEV(net_dev, &pci_dev->dev);
+ rc = efx_init_struct(efx, type, pci_dev, net_dev);
+ if (rc)
+ goto fail1;
+
+ netif_info(efx, probe, efx->net_dev,
+ "Solarflare NIC detected\n");
+
+ /* Set up basic I/O (BAR mappings etc) */
+ rc = efx_init_io(efx);
+ if (rc)
+ goto fail2;
+
+ /* No serialisation is required with the reset path because
+ * we're in STATE_INIT. */
+ for (i = 0; i < 5; i++) {
+ rc = efx_pci_probe_main(efx);
+
+ /* Serialise against efx_reset(). No more resets will be
+ * scheduled since efx_stop_all() has been called, and we
+ * have not and never have been registered with either
+ * the rtnetlink or driverlink layers. */
+ cancel_work_sync(&efx->reset_work);
+
+ if (rc == 0) {
+ if (efx->reset_pending) {
+ /* If there was a scheduled reset during
+ * probe, the NIC is probably hosed anyway */
+ efx_pci_remove_main(efx);
+ rc = -EIO;
+ } else {
+ break;
+ }
+ }
+
+ /* Retry if a recoverably reset event has been scheduled */
+ if (efx->reset_pending &
+ ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
+ !efx->reset_pending)
+ goto fail3;
+
+ efx->reset_pending = 0;
+ }
+
+ if (rc) {
+ netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
+ goto fail4;
+ }
+
+ /* Switch to the running state before we expose the device to the OS,
+ * so that dev_open()|efx_start_all() will actually start the device */
+ efx->state = STATE_RUNNING;
+
+ rc = efx_register_netdev(efx);
+ if (rc)
+ goto fail5;
+
+ netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
+
+ rtnl_lock();
+ efx_mtd_probe(efx); /* allowed to fail */
+ rtnl_unlock();
+ return 0;
+
+ fail5:
+ efx_pci_remove_main(efx);
+ fail4:
+ fail3:
+ efx_fini_io(efx);
+ fail2:
+ efx_fini_struct(efx);
+ fail1:
+ WARN_ON(rc > 0);
+ netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
+ free_netdev(net_dev);
+ return rc;
+}
+
+static int efx_pm_freeze(struct device *dev)
+{
+ struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
+
+ efx->state = STATE_FINI;
+
+ netif_device_detach(efx->net_dev);
+
+ efx_stop_all(efx);
+ efx_fini_channels(efx);
+
+ return 0;
+}
+
+static int efx_pm_thaw(struct device *dev)
+{
+ struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
+
+ efx->state = STATE_INIT;
+
+ efx_init_channels(efx);
+
+ mutex_lock(&efx->mac_lock);
+ efx->phy_op->reconfigure(efx);
+ mutex_unlock(&efx->mac_lock);
+
+ efx_start_all(efx);
+
+ netif_device_attach(efx->net_dev);
+
+ efx->state = STATE_RUNNING;
+
+ efx->type->resume_wol(efx);
+
+ /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
+ queue_work(reset_workqueue, &efx->reset_work);
+
+ return 0;
+}
+
+static int efx_pm_poweroff(struct device *dev)
+{
+ struct pci_dev *pci_dev = to_pci_dev(dev);
+ struct efx_nic *efx = pci_get_drvdata(pci_dev);
+
+ efx->type->fini(efx);
+
+ efx->reset_pending = 0;
+
+ pci_save_state(pci_dev);
+ return pci_set_power_state(pci_dev, PCI_D3hot);
+}
+
+/* Used for both resume and restore */
+static int efx_pm_resume(struct device *dev)
+{
+ struct pci_dev *pci_dev = to_pci_dev(dev);
+ struct efx_nic *efx = pci_get_drvdata(pci_dev);
+ int rc;
+
+ rc = pci_set_power_state(pci_dev, PCI_D0);
+ if (rc)
+ return rc;
+ pci_restore_state(pci_dev);
+ rc = pci_enable_device(pci_dev);
+ if (rc)
+ return rc;
+ pci_set_master(efx->pci_dev);
+ rc = efx->type->reset(efx, RESET_TYPE_ALL);
+ if (rc)
+ return rc;
+ rc = efx->type->init(efx);
+ if (rc)
+ return rc;
+ efx_pm_thaw(dev);
+ return 0;
+}
+
+static int efx_pm_suspend(struct device *dev)
+{
+ int rc;
+
+ efx_pm_freeze(dev);
+ rc = efx_pm_poweroff(dev);
+ if (rc)
+ efx_pm_resume(dev);
+ return rc;
+}
+
+static struct dev_pm_ops efx_pm_ops = {
+ .suspend = efx_pm_suspend,
+ .resume = efx_pm_resume,
+ .freeze = efx_pm_freeze,
+ .thaw = efx_pm_thaw,
+ .poweroff = efx_pm_poweroff,
+ .restore = efx_pm_resume,
+};
+
+static struct pci_driver efx_pci_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = efx_pci_table,
+ .probe = efx_pci_probe,
+ .remove = efx_pci_remove,
+ .driver.pm = &efx_pm_ops,
+};
+
+/**************************************************************************
+ *
+ * Kernel module interface
+ *
+ *************************************************************************/
+
+module_param(interrupt_mode, uint, 0444);
+MODULE_PARM_DESC(interrupt_mode,
+ "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
+
+static int __init efx_init_module(void)
+{
+ int rc;
+
+ printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
+
+ rc = register_netdevice_notifier(&efx_netdev_notifier);
+ if (rc)
+ goto err_notifier;
+
+ reset_workqueue = create_singlethread_workqueue("sfc_reset");
+ if (!reset_workqueue) {
+ rc = -ENOMEM;
+ goto err_reset;
+ }
+
+ rc = pci_register_driver(&efx_pci_driver);
+ if (rc < 0)
+ goto err_pci;
+
+ return 0;
+
+ err_pci:
+ destroy_workqueue(reset_workqueue);
+ err_reset:
+ unregister_netdevice_notifier(&efx_netdev_notifier);
+ err_notifier:
+ return rc;
+}
+
+static void __exit efx_exit_module(void)
+{
+ printk(KERN_INFO "Solarflare NET driver unloading\n");
+
+ pci_unregister_driver(&efx_pci_driver);
+ destroy_workqueue(reset_workqueue);
+ unregister_netdevice_notifier(&efx_netdev_notifier);
+
+}
+
+module_init(efx_init_module);
+module_exit(efx_exit_module);
+
+MODULE_AUTHOR("Solarflare Communications and "
+ "Michael Brown <mbrown@fensystems.co.uk>");
+MODULE_DESCRIPTION("Solarflare Communications network driver");
+MODULE_LICENSE("GPL");
+MODULE_DEVICE_TABLE(pci, efx_pci_table);