diff options
Diffstat (limited to 'drivers/net/ethernet/intel/ice/ice_ptp.c')
-rw-r--r-- | drivers/net/ethernet/intel/ice/ice_ptp.c | 1269 |
1 files changed, 1269 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/ice/ice_ptp.c b/drivers/net/ethernet/intel/ice/ice_ptp.c new file mode 100644 index 000000000000..e14f81321768 --- /dev/null +++ b/drivers/net/ethernet/intel/ice/ice_ptp.c @@ -0,0 +1,1269 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright (C) 2021, Intel Corporation. */ + +#include "ice.h" +#include "ice_lib.h" + +/** + * ice_set_tx_tstamp - Enable or disable Tx timestamping + * @pf: The PF pointer to search in + * @on: bool value for whether timestamps are enabled or disabled + */ +static void ice_set_tx_tstamp(struct ice_pf *pf, bool on) +{ + struct ice_vsi *vsi; + u32 val; + u16 i; + + vsi = ice_get_main_vsi(pf); + if (!vsi) + return; + + /* Set the timestamp enable flag for all the Tx rings */ + ice_for_each_rxq(vsi, i) { + if (!vsi->tx_rings[i]) + continue; + vsi->tx_rings[i]->ptp_tx = on; + } + + /* Configure the Tx timestamp interrupt */ + val = rd32(&pf->hw, PFINT_OICR_ENA); + if (on) + val |= PFINT_OICR_TSYN_TX_M; + else + val &= ~PFINT_OICR_TSYN_TX_M; + wr32(&pf->hw, PFINT_OICR_ENA, val); +} + +/** + * ice_set_rx_tstamp - Enable or disable Rx timestamping + * @pf: The PF pointer to search in + * @on: bool value for whether timestamps are enabled or disabled + */ +static void ice_set_rx_tstamp(struct ice_pf *pf, bool on) +{ + struct ice_vsi *vsi; + u16 i; + + vsi = ice_get_main_vsi(pf); + if (!vsi) + return; + + /* Set the timestamp flag for all the Rx rings */ + ice_for_each_rxq(vsi, i) { + if (!vsi->rx_rings[i]) + continue; + vsi->rx_rings[i]->ptp_rx = on; + } +} + +/** + * ice_ptp_cfg_timestamp - Configure timestamp for init/deinit + * @pf: Board private structure + * @ena: bool value to enable or disable time stamp + * + * This function will configure timestamping during PTP initialization + * and deinitialization + */ +static void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) +{ + ice_set_tx_tstamp(pf, ena); + ice_set_rx_tstamp(pf, ena); + + if (ena) { + pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL; + pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON; + } else { + pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; + pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF; + } +} + +/** + * ice_get_ptp_clock_index - Get the PTP clock index + * @pf: the PF pointer + * + * Determine the clock index of the PTP clock associated with this device. If + * this is the PF controlling the clock, just use the local access to the + * clock device pointer. + * + * Otherwise, read from the driver shared parameters to determine the clock + * index value. + * + * Returns: the index of the PTP clock associated with this device, or -1 if + * there is no associated clock. + */ +int ice_get_ptp_clock_index(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + enum ice_aqc_driver_params param_idx; + struct ice_hw *hw = &pf->hw; + u8 tmr_idx; + u32 value; + int err; + + /* Use the ptp_clock structure if we're the main PF */ + if (pf->ptp.clock) + return ptp_clock_index(pf->ptp.clock); + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; + if (!tmr_idx) + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; + else + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; + + err = ice_aq_get_driver_param(hw, param_idx, &value, NULL); + if (err) { + dev_err(dev, "Failed to read PTP clock index parameter, err %d aq_err %s\n", + err, ice_aq_str(hw->adminq.sq_last_status)); + return -1; + } + + /* The PTP clock index is an integer, and will be between 0 and + * INT_MAX. The highest bit of the driver shared parameter is used to + * indicate whether or not the currently stored clock index is valid. + */ + if (!(value & PTP_SHARED_CLK_IDX_VALID)) + return -1; + + return value & ~PTP_SHARED_CLK_IDX_VALID; +} + +/** + * ice_set_ptp_clock_index - Set the PTP clock index + * @pf: the PF pointer + * + * Set the PTP clock index for this device into the shared driver parameters, + * so that other PFs associated with this device can read it. + * + * If the PF is unable to store the clock index, it will log an error, but + * will continue operating PTP. + */ +static void ice_set_ptp_clock_index(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + enum ice_aqc_driver_params param_idx; + struct ice_hw *hw = &pf->hw; + u8 tmr_idx; + u32 value; + int err; + + if (!pf->ptp.clock) + return; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; + if (!tmr_idx) + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; + else + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; + + value = (u32)ptp_clock_index(pf->ptp.clock); + if (value > INT_MAX) { + dev_err(dev, "PTP Clock index is too large to store\n"); + return; + } + value |= PTP_SHARED_CLK_IDX_VALID; + + err = ice_aq_set_driver_param(hw, param_idx, value, NULL); + if (err) { + dev_err(dev, "Failed to set PTP clock index parameter, err %d aq_err %s\n", + err, ice_aq_str(hw->adminq.sq_last_status)); + } +} + +/** + * ice_clear_ptp_clock_index - Clear the PTP clock index + * @pf: the PF pointer + * + * Clear the PTP clock index for this device. Must be called when + * unregistering the PTP clock, in order to ensure other PFs stop reporting + * a clock object that no longer exists. + */ +static void ice_clear_ptp_clock_index(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + enum ice_aqc_driver_params param_idx; + struct ice_hw *hw = &pf->hw; + u8 tmr_idx; + int err; + + /* Do not clear the index if we don't own the timer */ + if (!hw->func_caps.ts_func_info.src_tmr_owned) + return; + + tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc; + if (!tmr_idx) + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR0; + else + param_idx = ICE_AQC_DRIVER_PARAM_CLK_IDX_TMR1; + + err = ice_aq_set_driver_param(hw, param_idx, 0, NULL); + if (err) { + dev_dbg(dev, "Failed to clear PTP clock index parameter, err %d aq_err %s\n", + err, ice_aq_str(hw->adminq.sq_last_status)); + } +} + +/** + * ice_ptp_read_src_clk_reg - Read the source clock register + * @pf: Board private structure + * @sts: Optional parameter for holding a pair of system timestamps from + * the system clock. Will be ignored if NULL is given. + */ +static u64 +ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts) +{ + struct ice_hw *hw = &pf->hw; + u32 hi, lo, lo2; + u8 tmr_idx; + + tmr_idx = ice_get_ptp_src_clock_index(hw); + /* Read the system timestamp pre PHC read */ + if (sts) + ptp_read_system_prets(sts); + + lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); + + /* Read the system timestamp post PHC read */ + if (sts) + ptp_read_system_postts(sts); + + hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); + lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx)); + + if (lo2 < lo) { + /* if TIME_L rolled over read TIME_L again and update + * system timestamps + */ + if (sts) + ptp_read_system_prets(sts); + lo = rd32(hw, GLTSYN_TIME_L(tmr_idx)); + if (sts) + ptp_read_system_postts(sts); + hi = rd32(hw, GLTSYN_TIME_H(tmr_idx)); + } + + return ((u64)hi << 32) | lo; +} + +/** + * ice_ptp_update_cached_phctime - Update the cached PHC time values + * @pf: Board specific private structure + * + * This function updates the system time values which are cached in the PF + * structure and the Rx rings. + * + * This function must be called periodically to ensure that the cached value + * is never more than 2 seconds old. It must also be called whenever the PHC + * time has been changed. + */ +static void ice_ptp_update_cached_phctime(struct ice_pf *pf) +{ + u64 systime; + int i; + + /* Read the current PHC time */ + systime = ice_ptp_read_src_clk_reg(pf, NULL); + + /* Update the cached PHC time stored in the PF structure */ + WRITE_ONCE(pf->ptp.cached_phc_time, systime); + + ice_for_each_vsi(pf, i) { + struct ice_vsi *vsi = pf->vsi[i]; + int j; + + if (!vsi) + continue; + + if (vsi->type != ICE_VSI_PF) + continue; + + ice_for_each_rxq(vsi, j) { + if (!vsi->rx_rings[j]) + continue; + WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime); + } + } +} + +/** + * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b + * @cached_phc_time: recently cached copy of PHC time + * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value + * + * Hardware captures timestamps which contain only 32 bits of nominal + * nanoseconds, as opposed to the 64bit timestamps that the stack expects. + * Note that the captured timestamp values may be 40 bits, but the lower + * 8 bits are sub-nanoseconds and generally discarded. + * + * Extend the 32bit nanosecond timestamp using the following algorithm and + * assumptions: + * + * 1) have a recently cached copy of the PHC time + * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1 + * seconds) before or after the PHC time was captured. + * 3) calculate the delta between the cached time and the timestamp + * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was + * captured after the PHC time. In this case, the full timestamp is just + * the cached PHC time plus the delta. + * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the + * timestamp was captured *before* the PHC time, i.e. because the PHC + * cache was updated after the timestamp was captured by hardware. In this + * case, the full timestamp is the cached time minus the inverse delta. + * + * This algorithm works even if the PHC time was updated after a Tx timestamp + * was requested, but before the Tx timestamp event was reported from + * hardware. + * + * This calculation primarily relies on keeping the cached PHC time up to + * date. If the timestamp was captured more than 2^31 nanoseconds after the + * PHC time, it is possible that the lower 32bits of PHC time have + * overflowed more than once, and we might generate an incorrect timestamp. + * + * This is prevented by (a) periodically updating the cached PHC time once + * a second, and (b) discarding any Tx timestamp packet if it has waited for + * a timestamp for more than one second. + */ +static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp) +{ + u32 delta, phc_time_lo; + u64 ns; + + /* Extract the lower 32 bits of the PHC time */ + phc_time_lo = (u32)cached_phc_time; + + /* Calculate the delta between the lower 32bits of the cached PHC + * time and the in_tstamp value + */ + delta = (in_tstamp - phc_time_lo); + + /* Do not assume that the in_tstamp is always more recent than the + * cached PHC time. If the delta is large, it indicates that the + * in_tstamp was taken in the past, and should be converted + * forward. + */ + if (delta > (U32_MAX / 2)) { + /* reverse the delta calculation here */ + delta = (phc_time_lo - in_tstamp); + ns = cached_phc_time - delta; + } else { + ns = cached_phc_time + delta; + } + + return ns; +} + +/** + * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds + * @pf: Board private structure + * @in_tstamp: Ingress/egress 40b timestamp value + * + * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal + * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit. + * + * *--------------------------------------------------------------* + * | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v | + * *--------------------------------------------------------------* + * + * The low bit is an indicator of whether the timestamp is valid. The next + * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow, + * and the remaining 32 bits are the lower 32 bits of the PHC timer. + * + * It is assumed that the caller verifies the timestamp is valid prior to + * calling this function. + * + * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC + * time stored in the device private PTP structure as the basis for timestamp + * extension. + * + * See ice_ptp_extend_32b_ts for a detailed explanation of the extension + * algorithm. + */ +static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp) +{ + const u64 mask = GENMASK_ULL(31, 0); + + return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time, + (in_tstamp >> 8) & mask); +} + +/** + * ice_ptp_read_time - Read the time from the device + * @pf: Board private structure + * @ts: timespec structure to hold the current time value + * @sts: Optional parameter for holding a pair of system timestamps from + * the system clock. Will be ignored if NULL is given. + * + * This function reads the source clock registers and stores them in a timespec. + * However, since the registers are 64 bits of nanoseconds, we must convert the + * result to a timespec before we can return. + */ +static void +ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts, + struct ptp_system_timestamp *sts) +{ + u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts); + + *ts = ns_to_timespec64(time_ns); +} + +/** + * ice_ptp_write_init - Set PHC time to provided value + * @pf: Board private structure + * @ts: timespec structure that holds the new time value + * + * Set the PHC time to the specified time provided in the timespec. + */ +static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts) +{ + u64 ns = timespec64_to_ns(ts); + struct ice_hw *hw = &pf->hw; + + return ice_ptp_init_time(hw, ns); +} + +/** + * ice_ptp_write_adj - Adjust PHC clock time atomically + * @pf: Board private structure + * @adj: Adjustment in nanoseconds + * + * Perform an atomic adjustment of the PHC time by the specified number of + * nanoseconds. + */ +static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj) +{ + struct ice_hw *hw = &pf->hw; + + return ice_ptp_adj_clock(hw, adj); +} + +/** + * ice_ptp_adjfine - Adjust clock increment rate + * @info: the driver's PTP info structure + * @scaled_ppm: Parts per million with 16-bit fractional field + * + * Adjust the frequency of the clock by the indicated scaled ppm from the + * base frequency. + */ +static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + u64 freq, divisor = 1000000ULL; + struct ice_hw *hw = &pf->hw; + s64 incval, diff; + int neg_adj = 0; + int err; + + incval = ICE_PTP_NOMINAL_INCVAL_E810; + + if (scaled_ppm < 0) { + neg_adj = 1; + scaled_ppm = -scaled_ppm; + } + + while ((u64)scaled_ppm > div_u64(U64_MAX, incval)) { + /* handle overflow by scaling down the scaled_ppm and + * the divisor, losing some precision + */ + scaled_ppm >>= 2; + divisor >>= 2; + } + + freq = (incval * (u64)scaled_ppm) >> 16; + diff = div_u64(freq, divisor); + + if (neg_adj) + incval -= diff; + else + incval += diff; + + err = ice_ptp_write_incval_locked(hw, incval); + if (err) { + dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n", + err); + return -EIO; + } + + return 0; +} + +/** + * ice_ptp_gettimex64 - Get the time of the clock + * @info: the driver's PTP info structure + * @ts: timespec64 structure to hold the current time value + * @sts: Optional parameter for holding a pair of system timestamps from + * the system clock. Will be ignored if NULL is given. + * + * Read the device clock and return the correct value on ns, after converting it + * into a timespec struct. + */ +static int +ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts, + struct ptp_system_timestamp *sts) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct ice_hw *hw = &pf->hw; + + if (!ice_ptp_lock(hw)) { + dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n"); + return -EBUSY; + } + + ice_ptp_read_time(pf, ts, sts); + ice_ptp_unlock(hw); + + return 0; +} + +/** + * ice_ptp_settime64 - Set the time of the clock + * @info: the driver's PTP info structure + * @ts: timespec64 structure that holds the new time value + * + * Set the device clock to the user input value. The conversion from timespec + * to ns happens in the write function. + */ +static int +ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct timespec64 ts64 = *ts; + struct ice_hw *hw = &pf->hw; + int err; + + if (!ice_ptp_lock(hw)) { + err = -EBUSY; + goto exit; + } + + err = ice_ptp_write_init(pf, &ts64); + ice_ptp_unlock(hw); + + if (!err) + ice_ptp_update_cached_phctime(pf); + +exit: + if (err) { + dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err); + return err; + } + + return 0; +} + +/** + * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment + * @info: the driver's PTP info structure + * @delta: Offset in nanoseconds to adjust the time by + */ +static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta) +{ + struct timespec64 now, then; + + then = ns_to_timespec64(delta); + ice_ptp_gettimex64(info, &now, NULL); + now = timespec64_add(now, then); + + return ice_ptp_settime64(info, (const struct timespec64 *)&now); +} + +/** + * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta + * @info: the driver's PTP info structure + * @delta: Offset in nanoseconds to adjust the time by + */ +static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta) +{ + struct ice_pf *pf = ptp_info_to_pf(info); + struct ice_hw *hw = &pf->hw; + struct device *dev; + int err; + + dev = ice_pf_to_dev(pf); + + /* Hardware only supports atomic adjustments using signed 32-bit + * integers. For any adjustment outside this range, perform + * a non-atomic get->adjust->set flow. + */ + if (delta > S32_MAX || delta < S32_MIN) { + dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta); + return ice_ptp_adjtime_nonatomic(info, delta); + } + + if (!ice_ptp_lock(hw)) { + dev_err(dev, "PTP failed to acquire semaphore in adjtime\n"); + return -EBUSY; + } + + err = ice_ptp_write_adj(pf, delta); + + ice_ptp_unlock(hw); + + if (err) { + dev_err(dev, "PTP failed to adjust time, err %d\n", err); + return err; + } + + ice_ptp_update_cached_phctime(pf); + + return 0; +} + +/** + * ice_ptp_get_ts_config - ioctl interface to read the timestamping config + * @pf: Board private structure + * @ifr: ioctl data + * + * Copy the timestamping config to user buffer + */ +int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) +{ + struct hwtstamp_config *config; + + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + return -EIO; + + config = &pf->ptp.tstamp_config; + + return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? + -EFAULT : 0; +} + +/** + * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode + * @pf: Board private structure + * @config: hwtstamp settings requested or saved + */ +static int +ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config) +{ + /* Reserved for future extensions. */ + if (config->flags) + return -EINVAL; + + switch (config->tx_type) { + case HWTSTAMP_TX_OFF: + ice_set_tx_tstamp(pf, false); + break; + case HWTSTAMP_TX_ON: + ice_set_tx_tstamp(pf, true); + break; + default: + return -ERANGE; + } + + switch (config->rx_filter) { + case HWTSTAMP_FILTER_NONE: + ice_set_rx_tstamp(pf, false); + break; + case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: + case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: + case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_EVENT: + case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: + case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: + case HWTSTAMP_FILTER_PTP_V2_SYNC: + case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: + case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: + case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: + case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: + case HWTSTAMP_FILTER_NTP_ALL: + case HWTSTAMP_FILTER_ALL: + config->rx_filter = HWTSTAMP_FILTER_ALL; + ice_set_rx_tstamp(pf, true); + break; + default: + return -ERANGE; + } + + return 0; +} + +/** + * ice_ptp_set_ts_config - ioctl interface to control the timestamping + * @pf: Board private structure + * @ifr: ioctl data + * + * Get the user config and store it + */ +int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) +{ + struct hwtstamp_config config; + int err; + + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + return -EAGAIN; + + if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) + return -EFAULT; + + err = ice_ptp_set_timestamp_mode(pf, &config); + if (err) + return err; + + /* Save these settings for future reference */ + pf->ptp.tstamp_config = config; + + return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? + -EFAULT : 0; +} + +/** + * ice_ptp_rx_hwtstamp - Check for an Rx timestamp + * @rx_ring: Ring to get the VSI info + * @rx_desc: Receive descriptor + * @skb: Particular skb to send timestamp with + * + * The driver receives a notification in the receive descriptor with timestamp. + * The timestamp is in ns, so we must convert the result first. + */ +void +ice_ptp_rx_hwtstamp(struct ice_ring *rx_ring, + union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) +{ + u32 ts_high; + u64 ts_ns; + + /* Populate timesync data into skb */ + if (rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID) { + struct skb_shared_hwtstamps *hwtstamps; + + /* Use ice_ptp_extend_32b_ts directly, using the ring-specific + * cached PHC value, rather than accessing the PF. This also + * allows us to simply pass the upper 32bits of nanoseconds + * directly. Calling ice_ptp_extend_40b_ts is unnecessary as + * it would just discard these bits itself. + */ + ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high); + ts_ns = ice_ptp_extend_32b_ts(rx_ring->cached_phctime, ts_high); + + hwtstamps = skb_hwtstamps(skb); + memset(hwtstamps, 0, sizeof(*hwtstamps)); + hwtstamps->hwtstamp = ns_to_ktime(ts_ns); + } +} + +/** + * ice_ptp_set_caps - Set PTP capabilities + * @pf: Board private structure + */ +static void ice_ptp_set_caps(struct ice_pf *pf) +{ + struct ptp_clock_info *info = &pf->ptp.info; + struct device *dev = ice_pf_to_dev(pf); + + snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk", + dev_driver_string(dev), dev_name(dev)); + info->owner = THIS_MODULE; + info->max_adj = 999999999; + info->adjtime = ice_ptp_adjtime; + info->adjfine = ice_ptp_adjfine; + info->gettimex64 = ice_ptp_gettimex64; + info->settime64 = ice_ptp_settime64; +} + +/** + * ice_ptp_create_clock - Create PTP clock device for userspace + * @pf: Board private structure + * + * This function creates a new PTP clock device. It only creates one if we + * don't already have one. Will return error if it can't create one, but success + * if we already have a device. Should be used by ice_ptp_init to create clock + * initially, and prevent global resets from creating new clock devices. + */ +static long ice_ptp_create_clock(struct ice_pf *pf) +{ + struct ptp_clock_info *info; + struct ptp_clock *clock; + struct device *dev; + + /* No need to create a clock device if we already have one */ + if (pf->ptp.clock) + return 0; + + ice_ptp_set_caps(pf); + + info = &pf->ptp.info; + dev = ice_pf_to_dev(pf); + + /* Attempt to register the clock before enabling the hardware. */ + clock = ptp_clock_register(info, dev); + if (IS_ERR(clock)) + return PTR_ERR(clock); + + pf->ptp.clock = clock; + + return 0; +} + +/** + * ice_ptp_tx_tstamp_work - Process Tx timestamps for a port + * @work: pointer to the kthread_work struct + * + * Process timestamps captured by the PHY associated with this port. To do + * this, loop over each index with a waiting skb. + * + * If a given index has a valid timestamp, perform the following steps: + * + * 1) copy the timestamp out of the PHY register + * 4) clear the timestamp valid bit in the PHY register + * 5) unlock the index by clearing the associated in_use bit. + * 2) extend the 40b timestamp value to get a 64bit timestamp + * 3) send that timestamp to the stack + * + * After looping, if we still have waiting SKBs, then re-queue the work. This + * may cause us effectively poll even when not strictly necessary. We do this + * because it's possible a new timestamp was requested around the same time as + * the interrupt. In some cases hardware might not interrupt us again when the + * timestamp is captured. + * + * Note that we only take the tracking lock when clearing the bit and when + * checking if we need to re-queue this task. The only place where bits can be + * set is the hard xmit routine where an SKB has a request flag set. The only + * places where we clear bits are this work function, or the periodic cleanup + * thread. If the cleanup thread clears a bit we're processing we catch it + * when we lock to clear the bit and then grab the SKB pointer. If a Tx thread + * starts a new timestamp, we might not begin processing it right away but we + * will notice it at the end when we re-queue the work item. If a Tx thread + * starts a new timestamp just after this function exits without re-queuing, + * the interrupt when the timestamp finishes should trigger. Avoiding holding + * the lock for the entire function is important in order to ensure that Tx + * threads do not get blocked while waiting for the lock. + */ +static void ice_ptp_tx_tstamp_work(struct kthread_work *work) +{ + struct ice_ptp_port *ptp_port; + struct ice_ptp_tx *tx; + struct ice_pf *pf; + struct ice_hw *hw; + u8 idx; + + tx = container_of(work, struct ice_ptp_tx, work); + if (!tx->init) + return; + + ptp_port = container_of(tx, struct ice_ptp_port, tx); + pf = ptp_port_to_pf(ptp_port); + hw = &pf->hw; + + for_each_set_bit(idx, tx->in_use, tx->len) { + struct skb_shared_hwtstamps shhwtstamps = {}; + u8 phy_idx = idx + tx->quad_offset; + u64 raw_tstamp, tstamp; + struct sk_buff *skb; + int err; + + err = ice_read_phy_tstamp(hw, tx->quad, phy_idx, + &raw_tstamp); + if (err) + continue; + + /* Check if the timestamp is valid */ + if (!(raw_tstamp & ICE_PTP_TS_VALID)) + continue; + + /* clear the timestamp register, so that it won't show valid + * again when re-used. + */ + ice_clear_phy_tstamp(hw, tx->quad, phy_idx); + + /* The timestamp is valid, so we'll go ahead and clear this + * index and then send the timestamp up to the stack. + */ + spin_lock(&tx->lock); + clear_bit(idx, tx->in_use); + skb = tx->tstamps[idx].skb; + tx->tstamps[idx].skb = NULL; + spin_unlock(&tx->lock); + + /* it's (unlikely but) possible we raced with the cleanup + * thread for discarding old timestamp requests. + */ + if (!skb) + continue; + + /* Extend the timestamp using cached PHC time */ + tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp); + shhwtstamps.hwtstamp = ns_to_ktime(tstamp); + + skb_tstamp_tx(skb, &shhwtstamps); + dev_kfree_skb_any(skb); + } + + /* Check if we still have work to do. If so, re-queue this task to + * poll for remaining timestamps. + */ + spin_lock(&tx->lock); + if (!bitmap_empty(tx->in_use, tx->len)) + kthread_queue_work(pf->ptp.kworker, &tx->work); + spin_unlock(&tx->lock); +} + +/** + * ice_ptp_request_ts - Request an available Tx timestamp index + * @tx: the PTP Tx timestamp tracker to request from + * @skb: the SKB to associate with this timestamp request + */ +s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) +{ + u8 idx; + + /* Check if this tracker is initialized */ + if (!tx->init) + return -1; + + spin_lock(&tx->lock); + /* Find and set the first available index */ + idx = find_first_zero_bit(tx->in_use, tx->len); + if (idx < tx->len) { + /* We got a valid index that no other thread could have set. Store + * a reference to the skb and the start time to allow discarding old + * requests. + */ + set_bit(idx, tx->in_use); + tx->tstamps[idx].start = jiffies; + tx->tstamps[idx].skb = skb_get(skb); + skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; + } + + spin_unlock(&tx->lock); + + /* return the appropriate PHY timestamp register index, -1 if no + * indexes were available. + */ + if (idx >= tx->len) + return -1; + else + return idx + tx->quad_offset; +} + +/** + * ice_ptp_process_ts - Spawn kthread work to handle timestamps + * @pf: Board private structure + * + * Queue work required to process the PTP Tx timestamps outside of interrupt + * context. + */ +void ice_ptp_process_ts(struct ice_pf *pf) +{ + if (pf->ptp.port.tx.init) + kthread_queue_work(pf->ptp.kworker, &pf->ptp.port.tx.work); +} + +/** + * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps + * @tx: Tx tracking structure to initialize + * + * Assumes that the length has already been initialized. Do not call directly, + * use the ice_ptp_init_tx_e822 or ice_ptp_init_tx_e810 instead. + */ +static int +ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx) +{ + tx->tstamps = kcalloc(tx->len, sizeof(*tx->tstamps), GFP_KERNEL); + if (!tx->tstamps) + return -ENOMEM; + + tx->in_use = bitmap_zalloc(tx->len, GFP_KERNEL); + if (!tx->in_use) { + kfree(tx->tstamps); + tx->tstamps = NULL; + return -ENOMEM; + } + + spin_lock_init(&tx->lock); + kthread_init_work(&tx->work, ice_ptp_tx_tstamp_work); + + tx->init = 1; + + return 0; +} + +/** + * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker + * @pf: Board private structure + * @tx: the tracker to flush + */ +static void +ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) +{ + u8 idx; + + for (idx = 0; idx < tx->len; idx++) { + u8 phy_idx = idx + tx->quad_offset; + + /* Clear any potential residual timestamp in the PHY block */ + if (!pf->hw.reset_ongoing) + ice_clear_phy_tstamp(&pf->hw, tx->quad, phy_idx); + + if (tx->tstamps[idx].skb) { + dev_kfree_skb_any(tx->tstamps[idx].skb); + tx->tstamps[idx].skb = NULL; + } + } +} + +/** + * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker + * @pf: Board private structure + * @tx: Tx tracking structure to release + * + * Free memory associated with the Tx timestamp tracker. + */ +static void +ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx) +{ + tx->init = 0; + + kthread_cancel_work_sync(&tx->work); + + ice_ptp_flush_tx_tracker(pf, tx); + + kfree(tx->tstamps); + tx->tstamps = NULL; + + kfree(tx->in_use); + tx->in_use = NULL; + + tx->len = 0; +} + +/** + * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps + * @pf: Board private structure + * @tx: the Tx tracking structure to initialize + * + * Initialize the Tx timestamp tracker for this PF. For E810 devices, each + * port has its own block of timestamps, independent of the other ports. + */ +static int +ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx) +{ + tx->quad = pf->hw.port_info->lport; + tx->quad_offset = 0; + tx->len = INDEX_PER_QUAD; + + return ice_ptp_alloc_tx_tracker(tx); +} + +/** + * ice_ptp_tx_tstamp_cleanup - Cleanup old timestamp requests that got dropped + * @tx: PTP Tx tracker to clean up + * + * Loop through the Tx timestamp requests and see if any of them have been + * waiting for a long time. Discard any SKBs that have been waiting for more + * than 2 seconds. This is long enough to be reasonably sure that the + * timestamp will never be captured. This might happen if the packet gets + * discarded before it reaches the PHY timestamping block. + */ +static void ice_ptp_tx_tstamp_cleanup(struct ice_ptp_tx *tx) +{ + u8 idx; + + if (!tx->init) + return; + + for_each_set_bit(idx, tx->in_use, tx->len) { + struct sk_buff *skb; + + /* Check if this SKB has been waiting for too long */ + if (time_is_after_jiffies(tx->tstamps[idx].start + 2 * HZ)) + continue; + + spin_lock(&tx->lock); + skb = tx->tstamps[idx].skb; + tx->tstamps[idx].skb = NULL; + clear_bit(idx, tx->in_use); + spin_unlock(&tx->lock); + + /* Free the SKB after we've cleared the bit */ + dev_kfree_skb_any(skb); + } +} + +static void ice_ptp_periodic_work(struct kthread_work *work) +{ + struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work); + struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp); + + if (!test_bit(ICE_FLAG_PTP, pf->flags)) + return; + + ice_ptp_update_cached_phctime(pf); + + ice_ptp_tx_tstamp_cleanup(&pf->ptp.port.tx); + + /* Run twice a second */ + kthread_queue_delayed_work(ptp->kworker, &ptp->work, + msecs_to_jiffies(500)); +} + +/** + * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device + * @pf: Board private structure + * + * Setup and initialize a PTP clock device that represents the device hardware + * clock. Save the clock index for other functions connected to the same + * hardware resource. + */ +static int ice_ptp_init_owner(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + struct ice_hw *hw = &pf->hw; + struct timespec64 ts; + u8 src_idx; + int err; + + wr32(hw, GLTSYN_SYNC_DLAY, 0); + + /* Clear some HW residue and enable source clock */ + src_idx = hw->func_caps.ts_func_info.tmr_index_owned; + + /* Enable source clocks */ + wr32(hw, GLTSYN_ENA(src_idx), GLTSYN_ENA_TSYN_ENA_M); + + /* Enable PHY time sync */ + err = ice_ptp_init_phy_e810(hw); + if (err) + goto err_exit; + + /* Clear event status indications for auxiliary pins */ + (void)rd32(hw, GLTSYN_STAT(src_idx)); + + /* Acquire the global hardware lock */ + if (!ice_ptp_lock(hw)) { + err = -EBUSY; + goto err_exit; + } + + /* Write the increment time value to PHY and LAN */ + err = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810); + if (err) { + ice_ptp_unlock(hw); + goto err_exit; + } + + ts = ktime_to_timespec64(ktime_get_real()); + /* Write the initial Time value to PHY and LAN */ + err = ice_ptp_write_init(pf, &ts); + if (err) { + ice_ptp_unlock(hw); + goto err_exit; + } + + /* Release the global hardware lock */ + ice_ptp_unlock(hw); + + /* Ensure we have a clock device */ + err = ice_ptp_create_clock(pf); + if (err) + goto err_clk; + + /* Store the PTP clock index for other PFs */ + ice_set_ptp_clock_index(pf); + + return 0; + +err_clk: + pf->ptp.clock = NULL; +err_exit: + dev_err(dev, "PTP failed to register clock, err %d\n", err); + + return err; +} + +/** + * ice_ptp_init - Initialize the PTP support after device probe or reset + * @pf: Board private structure + * + * This function sets device up for PTP support. The first time it is run, it + * will create a clock device. It does not create a clock device if one + * already exists. It also reconfigures the device after a reset. + */ +void ice_ptp_init(struct ice_pf *pf) +{ + struct device *dev = ice_pf_to_dev(pf); + struct kthread_worker *kworker; + struct ice_hw *hw = &pf->hw; + int err; + + /* PTP is currently only supported on E810 devices */ + if (!ice_is_e810(hw)) + return; + + /* Check if this PF owns the source timer */ + if (hw->func_caps.ts_func_info.src_tmr_owned) { + err = ice_ptp_init_owner(pf); + if (err) + return; + } + + /* Disable timestamping for both Tx and Rx */ + ice_ptp_cfg_timestamp(pf, false); + + /* Initialize the PTP port Tx timestamp tracker */ + ice_ptp_init_tx_e810(pf, &pf->ptp.port.tx); + + /* Initialize work functions */ + kthread_init_delayed_work(&pf->ptp.work, ice_ptp_periodic_work); + + /* Allocate a kworker for handling work required for the ports + * connected to the PTP hardware clock. + */ + kworker = kthread_create_worker(0, "ice-ptp-%s", dev_name(dev)); + if (IS_ERR(kworker)) { + err = PTR_ERR(kworker); + goto err_kworker; + } + pf->ptp.kworker = kworker; + + set_bit(ICE_FLAG_PTP, pf->flags); + + /* Start periodic work going */ + kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work, 0); + + dev_info(dev, "PTP init successful\n"); + return; + +err_kworker: + /* If we registered a PTP clock, release it */ + if (pf->ptp.clock) { + ptp_clock_unregister(pf->ptp.clock); + pf->ptp.clock = NULL; + } + dev_err(dev, "PTP failed %d\n", err); +} + +/** + * ice_ptp_release - Disable the driver/HW support and unregister the clock + * @pf: Board private structure + * + * This function handles the cleanup work required from the initialization by + * clearing out the important information and unregistering the clock + */ +void ice_ptp_release(struct ice_pf *pf) +{ + /* Disable timestamping for both Tx and Rx */ + ice_ptp_cfg_timestamp(pf, false); + + ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx); + + clear_bit(ICE_FLAG_PTP, pf->flags); + + kthread_cancel_delayed_work_sync(&pf->ptp.work); + + if (pf->ptp.kworker) { + kthread_destroy_worker(pf->ptp.kworker); + pf->ptp.kworker = NULL; + } + + if (!pf->ptp.clock) + return; + + ice_clear_ptp_clock_index(pf); + ptp_clock_unregister(pf->ptp.clock); + pf->ptp.clock = NULL; + + dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n"); +} |