diff options
Diffstat (limited to 'drivers/net/ethernet/intel/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/ethernet/intel/e1000/e1000_hw.c | 5830 |
1 files changed, 5830 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000/e1000_hw.c b/drivers/net/ethernet/intel/e1000/e1000_hw.c new file mode 100644 index 000000000000..36ee76bf4cba --- /dev/null +++ b/drivers/net/ethernet/intel/e1000/e1000_hw.c @@ -0,0 +1,5830 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2006 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + + */ + +/* e1000_hw.c + * Shared functions for accessing and configuring the MAC + */ + +#include "e1000.h" + +static s32 e1000_check_downshift(struct e1000_hw *hw); +static s32 e1000_check_polarity(struct e1000_hw *hw, + e1000_rev_polarity *polarity); +static void e1000_clear_hw_cntrs(struct e1000_hw *hw); +static void e1000_clear_vfta(struct e1000_hw *hw); +static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, + bool link_up); +static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); +static s32 e1000_detect_gig_phy(struct e1000_hw *hw); +static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); +static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, + u16 *max_length); +static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); +static s32 e1000_id_led_init(struct e1000_hw *hw); +static void e1000_init_rx_addrs(struct e1000_hw *hw); +static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info); +static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info); +static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); +static s32 e1000_wait_autoneg(struct e1000_hw *hw); +static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); +static s32 e1000_set_phy_type(struct e1000_hw *hw); +static void e1000_phy_init_script(struct e1000_hw *hw); +static s32 e1000_setup_copper_link(struct e1000_hw *hw); +static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); +static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); +static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); +static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); +static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); +static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); +static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); +static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); +static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); +static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data); +static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); +static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); +static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); +static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); +static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, + u16 phy_data); +static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, + u16 *phy_data); +static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); +static s32 e1000_acquire_eeprom(struct e1000_hw *hw); +static void e1000_release_eeprom(struct e1000_hw *hw); +static void e1000_standby_eeprom(struct e1000_hw *hw); +static s32 e1000_set_vco_speed(struct e1000_hw *hw); +static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); +static s32 e1000_set_phy_mode(struct e1000_hw *hw); +static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); + +/* IGP cable length table */ +static const +u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, + 120, 120 +}; + +static DEFINE_SPINLOCK(e1000_eeprom_lock); + +/** + * e1000_set_phy_type - Set the phy type member in the hw struct. + * @hw: Struct containing variables accessed by shared code + */ +static s32 e1000_set_phy_type(struct e1000_hw *hw) +{ + e_dbg("e1000_set_phy_type"); + + if (hw->mac_type == e1000_undefined) + return -E1000_ERR_PHY_TYPE; + + switch (hw->phy_id) { + case M88E1000_E_PHY_ID: + case M88E1000_I_PHY_ID: + case M88E1011_I_PHY_ID: + case M88E1111_I_PHY_ID: + case M88E1118_E_PHY_ID: + hw->phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: + if (hw->mac_type == e1000_82541 || + hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82547_rev_2) + hw->phy_type = e1000_phy_igp; + break; + case RTL8211B_PHY_ID: + hw->phy_type = e1000_phy_8211; + break; + case RTL8201N_PHY_ID: + hw->phy_type = e1000_phy_8201; + break; + default: + /* Should never have loaded on this device */ + hw->phy_type = e1000_phy_undefined; + return -E1000_ERR_PHY_TYPE; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY + * @hw: Struct containing variables accessed by shared code + */ +static void e1000_phy_init_script(struct e1000_hw *hw) +{ + u32 ret_val; + u16 phy_saved_data; + + e_dbg("e1000_phy_init_script"); + + if (hw->phy_init_script) { + msleep(20); + + /* Save off the current value of register 0x2F5B to be restored at + * the end of this routine. */ + ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + msleep(20); + + e1000_write_phy_reg(hw, 0x0000, 0x0140); + msleep(5); + + switch (hw->mac_type) { + case e1000_82541: + case e1000_82547: + e1000_write_phy_reg(hw, 0x1F95, 0x0001); + e1000_write_phy_reg(hw, 0x1F71, 0xBD21); + e1000_write_phy_reg(hw, 0x1F79, 0x0018); + e1000_write_phy_reg(hw, 0x1F30, 0x1600); + e1000_write_phy_reg(hw, 0x1F31, 0x0014); + e1000_write_phy_reg(hw, 0x1F32, 0x161C); + e1000_write_phy_reg(hw, 0x1F94, 0x0003); + e1000_write_phy_reg(hw, 0x1F96, 0x003F); + e1000_write_phy_reg(hw, 0x2010, 0x0008); + break; + + case e1000_82541_rev_2: + case e1000_82547_rev_2: + e1000_write_phy_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } + + e1000_write_phy_reg(hw, 0x0000, 0x3300); + msleep(20); + + /* Now enable the transmitter */ + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac_type == e1000_82547) { + u16 fused, fine, coarse; + + /* Move to analog registers page */ + e1000_read_phy_reg(hw, + IGP01E1000_ANALOG_SPARE_FUSE_STATUS, + &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + e1000_read_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_STATUS, + &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = + fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= + IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse == + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = + (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & + IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + e1000_write_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_CONTROL, + fused); + e1000_write_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + } +} + +/** + * e1000_set_mac_type - Set the mac type member in the hw struct. + * @hw: Struct containing variables accessed by shared code + */ +s32 e1000_set_mac_type(struct e1000_hw *hw) +{ + e_dbg("e1000_set_mac_type"); + + switch (hw->device_id) { + case E1000_DEV_ID_82542: + switch (hw->revision_id) { + case E1000_82542_2_0_REV_ID: + hw->mac_type = e1000_82542_rev2_0; + break; + case E1000_82542_2_1_REV_ID: + hw->mac_type = e1000_82542_rev2_1; + break; + default: + /* Invalid 82542 revision ID */ + return -E1000_ERR_MAC_TYPE; + } + break; + case E1000_DEV_ID_82543GC_FIBER: + case E1000_DEV_ID_82543GC_COPPER: + hw->mac_type = e1000_82543; + break; + case E1000_DEV_ID_82544EI_COPPER: + case E1000_DEV_ID_82544EI_FIBER: + case E1000_DEV_ID_82544GC_COPPER: + case E1000_DEV_ID_82544GC_LOM: + hw->mac_type = e1000_82544; + break; + case E1000_DEV_ID_82540EM: + case E1000_DEV_ID_82540EM_LOM: + case E1000_DEV_ID_82540EP: + case E1000_DEV_ID_82540EP_LOM: + case E1000_DEV_ID_82540EP_LP: + hw->mac_type = e1000_82540; + break; + case E1000_DEV_ID_82545EM_COPPER: + case E1000_DEV_ID_82545EM_FIBER: + hw->mac_type = e1000_82545; + break; + case E1000_DEV_ID_82545GM_COPPER: + case E1000_DEV_ID_82545GM_FIBER: + case E1000_DEV_ID_82545GM_SERDES: + hw->mac_type = e1000_82545_rev_3; + break; + case E1000_DEV_ID_82546EB_COPPER: + case E1000_DEV_ID_82546EB_FIBER: + case E1000_DEV_ID_82546EB_QUAD_COPPER: + hw->mac_type = e1000_82546; + break; + case E1000_DEV_ID_82546GB_COPPER: + case E1000_DEV_ID_82546GB_FIBER: + case E1000_DEV_ID_82546GB_SERDES: + case E1000_DEV_ID_82546GB_PCIE: + case E1000_DEV_ID_82546GB_QUAD_COPPER: + case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: + hw->mac_type = e1000_82546_rev_3; + break; + case E1000_DEV_ID_82541EI: + case E1000_DEV_ID_82541EI_MOBILE: + case E1000_DEV_ID_82541ER_LOM: + hw->mac_type = e1000_82541; + break; + case E1000_DEV_ID_82541ER: + case E1000_DEV_ID_82541GI: + case E1000_DEV_ID_82541GI_LF: + case E1000_DEV_ID_82541GI_MOBILE: + hw->mac_type = e1000_82541_rev_2; + break; + case E1000_DEV_ID_82547EI: + case E1000_DEV_ID_82547EI_MOBILE: + hw->mac_type = e1000_82547; + break; + case E1000_DEV_ID_82547GI: + hw->mac_type = e1000_82547_rev_2; + break; + case E1000_DEV_ID_INTEL_CE4100_GBE: + hw->mac_type = e1000_ce4100; + break; + default: + /* Should never have loaded on this device */ + return -E1000_ERR_MAC_TYPE; + } + + switch (hw->mac_type) { + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + hw->asf_firmware_present = true; + break; + default: + break; + } + + /* The 82543 chip does not count tx_carrier_errors properly in + * FD mode + */ + if (hw->mac_type == e1000_82543) + hw->bad_tx_carr_stats_fd = true; + + if (hw->mac_type > e1000_82544) + hw->has_smbus = true; + + return E1000_SUCCESS; +} + +/** + * e1000_set_media_type - Set media type and TBI compatibility. + * @hw: Struct containing variables accessed by shared code + */ +void e1000_set_media_type(struct e1000_hw *hw) +{ + u32 status; + + e_dbg("e1000_set_media_type"); + + if (hw->mac_type != e1000_82543) { + /* tbi_compatibility is only valid on 82543 */ + hw->tbi_compatibility_en = false; + } + + switch (hw->device_id) { + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + hw->media_type = e1000_media_type_internal_serdes; + break; + default: + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + hw->media_type = e1000_media_type_fiber; + break; + case e1000_ce4100: + hw->media_type = e1000_media_type_copper; + break; + default: + status = er32(STATUS); + if (status & E1000_STATUS_TBIMODE) { + hw->media_type = e1000_media_type_fiber; + /* tbi_compatibility not valid on fiber */ + hw->tbi_compatibility_en = false; + } else { + hw->media_type = e1000_media_type_copper; + } + break; + } + } +} + +/** + * e1000_reset_hw: reset the hardware completely + * @hw: Struct containing variables accessed by shared code + * + * Reset the transmit and receive units; mask and clear all interrupts. + */ +s32 e1000_reset_hw(struct e1000_hw *hw) +{ + u32 ctrl; + u32 ctrl_ext; + u32 icr; + u32 manc; + u32 led_ctrl; + s32 ret_val; + + e_dbg("e1000_reset_hw"); + + /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ + if (hw->mac_type == e1000_82542_rev2_0) { + e_dbg("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + e_dbg("Masking off all interrupts\n"); + ew32(IMC, 0xffffffff); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC with + * the global reset. + */ + ew32(RCTL, 0); + ew32(TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(); + + /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ + hw->tbi_compatibility_on = false; + + /* Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msleep(10); + + ctrl = er32(CTRL); + + /* Must reset the PHY before resetting the MAC */ + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); + E1000_WRITE_FLUSH(); + msleep(5); + } + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + e_dbg("Issuing a global reset to MAC\n"); + + switch (hw->mac_type) { + case e1000_82544: + case e1000_82540: + case e1000_82545: + case e1000_82546: + case e1000_82541: + case e1000_82541_rev_2: + /* These controllers can't ack the 64-bit write when issuing the + * reset, so use IO-mapping as a workaround to issue the reset */ + E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + case e1000_82545_rev_3: + case e1000_82546_rev_3: + /* Reset is performed on a shadow of the control register */ + ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); + break; + case e1000_ce4100: + default: + ew32(CTRL, (ctrl | E1000_CTRL_RST)); + break; + } + + /* After MAC reset, force reload of EEPROM to restore power-on settings to + * device. Later controllers reload the EEPROM automatically, so just wait + * for reload to complete. + */ + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* Wait for reset to complete */ + udelay(10); + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + ew32(CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(); + /* Wait for EEPROM reload */ + msleep(2); + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + /* Wait for EEPROM reload */ + msleep(20); + break; + default: + /* Auto read done will delay 5ms or poll based on mac type */ + ret_val = e1000_get_auto_rd_done(hw); + if (ret_val) + return ret_val; + break; + } + + /* Disable HW ARPs on ASF enabled adapters */ + if (hw->mac_type >= e1000_82540) { + manc = er32(MANC); + manc &= ~(E1000_MANC_ARP_EN); + ew32(MANC, manc); + } + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + e1000_phy_init_script(hw); + + /* Configure activity LED after PHY reset */ + led_ctrl = er32(LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + ew32(LEDCTL, led_ctrl); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + e_dbg("Masking off all interrupts\n"); + ew32(IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + icr = er32(ICR); + + /* If MWI was previously enabled, reenable it. */ + if (hw->mac_type == e1000_82542_rev2_0) { + if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + return E1000_SUCCESS; +} + +/** + * e1000_init_hw: Performs basic configuration of the adapter. + * @hw: Struct containing variables accessed by shared code + * + * Assumes that the controller has previously been reset and is in a + * post-reset uninitialized state. Initializes the receive address registers, + * multicast table, and VLAN filter table. Calls routines to setup link + * configuration and flow control settings. Clears all on-chip counters. Leaves + * the transmit and receive units disabled and uninitialized. + */ +s32 e1000_init_hw(struct e1000_hw *hw) +{ + u32 ctrl; + u32 i; + s32 ret_val; + u32 mta_size; + u32 ctrl_ext; + + e_dbg("e1000_init_hw"); + + /* Initialize Identification LED */ + ret_val = e1000_id_led_init(hw); + if (ret_val) { + e_dbg("Error Initializing Identification LED\n"); + return ret_val; + } + + /* Set the media type and TBI compatibility */ + e1000_set_media_type(hw); + + /* Disabling VLAN filtering. */ + e_dbg("Initializing the IEEE VLAN\n"); + if (hw->mac_type < e1000_82545_rev_3) + ew32(VET, 0); + e1000_clear_vfta(hw); + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->mac_type == e1000_82542_rev2_0) { + e_dbg("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + ew32(RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(); + msleep(5); + } + + /* Setup the receive address. This involves initializing all of the Receive + * Address Registers (RARs 0 - 15). + */ + e1000_init_rx_addrs(hw); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if (hw->mac_type == e1000_82542_rev2_0) { + ew32(RCTL, 0); + E1000_WRITE_FLUSH(); + msleep(1); + if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + /* Zero out the Multicast HASH table */ + e_dbg("Zeroing the MTA\n"); + mta_size = E1000_MC_TBL_SIZE; + for (i = 0; i < mta_size; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + /* use write flush to prevent Memory Write Block (MWB) from + * occurring when accessing our register space */ + E1000_WRITE_FLUSH(); + } + + /* Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. Valid only on + * 82542 and 82543 silicon. + */ + if (hw->dma_fairness && hw->mac_type <= e1000_82543) { + ctrl = er32(CTRL); + ew32(CTRL, ctrl | E1000_CTRL_PRIOR); + } + + switch (hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ + if (hw->bus_type == e1000_bus_type_pcix + && e1000_pcix_get_mmrbc(hw) > 2048) + e1000_pcix_set_mmrbc(hw, 2048); + break; + } + + /* Call a subroutine to configure the link and setup flow control. */ + ret_val = e1000_setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + if (hw->mac_type > e1000_82544) { + ctrl = er32(TXDCTL); + ctrl = + (ctrl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + ew32(TXDCTL, ctrl); + } + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs(hw); + + if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || + hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { + ctrl_ext = er32(CTRL_EXT); + /* Relaxed ordering must be disabled to avoid a parity + * error crash in a PCI slot. */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + ew32(CTRL_EXT, ctrl_ext); + } + + return ret_val; +} + +/** + * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. + * @hw: Struct containing variables accessed by shared code. + */ +static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) +{ + u16 eeprom_data; + s32 ret_val; + + e_dbg("e1000_adjust_serdes_amplitude"); + + if (hw->media_type != e1000_media_type_internal_serdes) + return E1000_SUCCESS; + + switch (hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, + &eeprom_data); + if (ret_val) { + return ret_val; + } + + if (eeprom_data != EEPROM_RESERVED_WORD) { + /* Adjust SERDES output amplitude only. */ + eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_setup_link - Configures flow control and link settings. + * @hw: Struct containing variables accessed by shared code + * + * Determines which flow control settings to use. Calls the appropriate media- + * specific link configuration function. Configures the flow control settings. + * Assuming the adapter has a valid link partner, a valid link should be + * established. Assumes the hardware has previously been reset and the + * transmitter and receiver are not enabled. + */ +s32 e1000_setup_link(struct e1000_hw *hw) +{ + u32 ctrl_ext; + s32 ret_val; + u16 eeprom_data; + + e_dbg("e1000_setup_link"); + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if (hw->fc == E1000_FC_DEFAULT) { + ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + e_dbg("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) + hw->fc = E1000_FC_NONE; + else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == + EEPROM_WORD0F_ASM_DIR) + hw->fc = E1000_FC_TX_PAUSE; + else + hw->fc = E1000_FC_FULL; + } + + /* We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + if (hw->mac_type == e1000_82542_rev2_0) + hw->fc &= (~E1000_FC_TX_PAUSE); + + if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) + hw->fc &= (~E1000_FC_RX_PAUSE); + + hw->original_fc = hw->fc; + + e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc); + + /* Take the 4 bits from EEPROM word 0x0F that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before e1000_setup_pcs_link() + * or e1000_phy_setup() is called. + */ + if (hw->mac_type == e1000_82543) { + ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + e_dbg("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << + SWDPIO__EXT_SHIFT); + ew32(CTRL_EXT, ctrl_ext); + } + + /* Call the necessary subroutine to configure the link. */ + ret_val = (hw->media_type == e1000_media_type_copper) ? + e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + e_dbg("Initializing the Flow Control address, type and timer regs\n"); + + ew32(FCT, FLOW_CONTROL_TYPE); + ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); + ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); + + ew32(FCTTV, hw->fc_pause_time); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames in not enabled, then these + * registers will be set to 0. + */ + if (!(hw->fc & E1000_FC_TX_PAUSE)) { + ew32(FCRTL, 0); + ew32(FCRTH, 0); + } else { + /* We need to set up the Receive Threshold high and low water marks + * as well as (optionally) enabling the transmission of XON frames. + */ + if (hw->fc_send_xon) { + ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); + ew32(FCRTH, hw->fc_high_water); + } else { + ew32(FCRTL, hw->fc_low_water); + ew32(FCRTH, hw->fc_high_water); + } + } + return ret_val; +} + +/** + * e1000_setup_fiber_serdes_link - prepare fiber or serdes link + * @hw: Struct containing variables accessed by shared code + * + * Manipulates Physical Coding Sublayer functions in order to configure + * link. Assumes the hardware has been previously reset and the transmitter + * and receiver are not enabled. + */ +static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) +{ + u32 ctrl; + u32 status; + u32 txcw = 0; + u32 i; + u32 signal = 0; + s32 ret_val; + + e_dbg("e1000_setup_fiber_serdes_link"); + + /* On adapters with a MAC newer than 82544, SWDP 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + * If we're on serdes media, adjust the output amplitude to value + * set in the EEPROM. + */ + ctrl = er32(CTRL); + if (hw->media_type == e1000_media_type_fiber) + signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; + + ret_val = e1000_adjust_serdes_amplitude(hw); + if (ret_val) + return ret_val; + + /* Take the link out of reset */ + ctrl &= ~(E1000_CTRL_LRST); + + /* Adjust VCO speed to improve BER performance */ + ret_val = e1000_set_vco_speed(hw); + if (ret_val) + return ret_val; + + e1000_config_collision_dist(hw); + + /* Check for a software override of the flow control settings, and setup + * the device accordingly. If auto-negotiation is enabled, then software + * will have to set the "PAUSE" bits to the correct value in the Tranmsit + * Config Word Register (TXCW) and re-start auto-negotiation. However, if + * auto-negotiation is disabled, then software will have to manually + * configure the two flow control enable bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, but + * not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we do + * not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + */ + switch (hw->fc) { + case E1000_FC_NONE: + /* Flow control is completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case E1000_FC_RX_PAUSE: + /* RX Flow control is enabled and TX Flow control is disabled by a + * software over-ride. Since there really isn't a way to advertise + * that we are capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later, we will + * disable the adapter's ability to send PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case E1000_FC_TX_PAUSE: + /* TX Flow control is enabled, and RX Flow control is disabled, by a + * software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case E1000_FC_FULL: + /* Flow control (both RX and TX) is enabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + /* Since auto-negotiation is enabled, take the link out of reset (the link + * will be in reset, because we previously reset the chip). This will + * restart auto-negotiation. If auto-negotiation is successful then the + * link-up status bit will be set and the flow control enable bits (RFCE + * and TFCE) will be set according to their negotiated value. + */ + e_dbg("Auto-negotiation enabled\n"); + + ew32(TXCW, txcw); + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + hw->txcw = txcw; + msleep(1); + + /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" + * indication in the Device Status Register. Time-out if a link isn't + * seen in 500 milliseconds seconds (Auto-negotiation should complete in + * less than 500 milliseconds even if the other end is doing it in SW). + * For internal serdes, we just assume a signal is present, then poll. + */ + if (hw->media_type == e1000_media_type_internal_serdes || + (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { + e_dbg("Looking for Link\n"); + for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + msleep(10); + status = er32(STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == (LINK_UP_TIMEOUT / 10)) { + e_dbg("Never got a valid link from auto-neg!!!\n"); + hw->autoneg_failed = 1; + /* AutoNeg failed to achieve a link, so we'll call + * e1000_check_for_link. This routine will force the link up if + * we detect a signal. This will allow us to communicate with + * non-autonegotiating link partners. + */ + ret_val = e1000_check_for_link(hw); + if (ret_val) { + e_dbg("Error while checking for link\n"); + return ret_val; + } + hw->autoneg_failed = 0; + } else { + hw->autoneg_failed = 0; + e_dbg("Valid Link Found\n"); + } + } else { + e_dbg("No Signal Detected\n"); + } + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series. + * @hw: Struct containing variables accessed by shared code + * + * Commits changes to PHY configuration by calling e1000_phy_reset(). + */ +static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw) +{ + s32 ret_val; + + /* SW reset the PHY so all changes take effect */ + ret_val = e1000_phy_reset(hw); + if (ret_val) { + e_dbg("Error Resetting the PHY\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +static s32 gbe_dhg_phy_setup(struct e1000_hw *hw) +{ + s32 ret_val; + u32 ctrl_aux; + + switch (hw->phy_type) { + case e1000_phy_8211: + ret_val = e1000_copper_link_rtl_setup(hw); + if (ret_val) { + e_dbg("e1000_copper_link_rtl_setup failed!\n"); + return ret_val; + } + break; + case e1000_phy_8201: + /* Set RMII mode */ + ctrl_aux = er32(CTL_AUX); + ctrl_aux |= E1000_CTL_AUX_RMII; + ew32(CTL_AUX, ctrl_aux); + E1000_WRITE_FLUSH(); + + /* Disable the J/K bits required for receive */ + ctrl_aux = er32(CTL_AUX); + ctrl_aux |= 0x4; + ctrl_aux &= ~0x2; + ew32(CTL_AUX, ctrl_aux); + E1000_WRITE_FLUSH(); + ret_val = e1000_copper_link_rtl_setup(hw); + + if (ret_val) { + e_dbg("e1000_copper_link_rtl_setup failed!\n"); + return ret_val; + } + break; + default: + e_dbg("Error Resetting the PHY\n"); + return E1000_ERR_PHY_TYPE; + } + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_preconfig - early configuration for copper + * @hw: Struct containing variables accessed by shared code + * + * Make sure we have a valid PHY and change PHY mode before link setup. + */ +static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_copper_link_preconfig"); + + ctrl = er32(CTRL); + /* With 82543, we need to force speed and duplex on the MAC equal to what + * the PHY speed and duplex configuration is. In addition, we need to + * perform a hardware reset on the PHY to take it out of reset. + */ + if (hw->mac_type > e1000_82543) { + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ew32(CTRL, ctrl); + } else { + ctrl |= + (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); + ew32(CTRL, ctrl); + ret_val = e1000_phy_hw_reset(hw); + if (ret_val) + return ret_val; + } + + /* Make sure we have a valid PHY */ + ret_val = e1000_detect_gig_phy(hw); + if (ret_val) { + e_dbg("Error, did not detect valid phy.\n"); + return ret_val; + } + e_dbg("Phy ID = %x\n", hw->phy_id); + + /* Set PHY to class A mode (if necessary) */ + ret_val = e1000_set_phy_mode(hw); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82545_rev_3) || + (hw->mac_type == e1000_82546_rev_3)) { + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + phy_data |= 0x00000008; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + } + + if (hw->mac_type <= e1000_82543 || + hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82541_rev_2 + || hw->mac_type == e1000_82547_rev_2) + hw->phy_reset_disable = false; + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. + * @hw: Struct containing variables accessed by shared code + */ +static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) +{ + u32 led_ctrl; + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_copper_link_igp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + ret_val = e1000_phy_reset(hw); + if (ret_val) { + e_dbg("Error Resetting the PHY\n"); + return ret_val; + } + + /* Wait 15ms for MAC to configure PHY from eeprom settings */ + msleep(15); + /* Configure activity LED after PHY reset */ + led_ctrl = er32(LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + ew32(LEDCTL, led_ctrl); + + /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ + if (hw->phy_type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = e1000_set_d3_lplu_state(hw, false); + if (ret_val) { + e_dbg("Error Disabling LPLU D3\n"); + return ret_val; + } + } + + /* Configure mdi-mdix settings */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + hw->dsp_config_state = e1000_dsp_config_disabled; + /* Force MDI for earlier revs of the IGP PHY */ + phy_data &= + ~(IGP01E1000_PSCR_AUTO_MDIX | + IGP01E1000_PSCR_FORCE_MDI_MDIX); + hw->mdix = 1; + + } else { + hw->dsp_config_state = e1000_dsp_config_enabled; + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (hw->mdix) { + case 1: + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + phy_data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + } + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->autoneg) { + e1000_ms_type phy_ms_setting = hw->master_slave; + + if (hw->ffe_config_state == e1000_ffe_config_active) + hw->ffe_config_state = e1000_ffe_config_enabled; + + if (hw->dsp_config_state == e1000_dsp_config_activated) + hw->dsp_config_state = e1000_dsp_config_enabled; + + /* when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. */ + if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + /* Set auto Master/Slave resolution process */ + ret_val = + e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~CR_1000T_MS_ENABLE; + ret_val = + e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : e1000_ms_auto; + + switch (phy_ms_setting) { + case e1000_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + default: + break; + } + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. + * @hw: Struct containing variables accessed by shared code + */ +static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_copper_link_mgp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (hw->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (hw->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if (hw->phy_revision < M88E1011_I_REV_4) { + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = + e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((hw->phy_revision == E1000_REVISION_2) && + (hw->phy_id == M88E1111_I_PHY_ID)) { + /* Vidalia Phy, set the downshift counter to 5x */ + phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + } + + /* SW Reset the PHY so all changes take effect */ + ret_val = e1000_phy_reset(hw); + if (ret_val) { + e_dbg("Error Resetting the PHY\n"); + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_autoneg - setup auto-neg + * @hw: Struct containing variables accessed by shared code + * + * Setup auto-negotiation and flow control advertisements, + * and then perform auto-negotiation. + */ +static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_copper_link_autoneg"); + + /* Perform some bounds checking on the hw->autoneg_advertised + * parameter. If this variable is zero, then set it to the default. + */ + hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (hw->autoneg_advertised == 0) + hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* IFE/RTL8201N PHY only supports 10/100 */ + if (hw->phy_type == e1000_phy_8201) + hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; + + e_dbg("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + e_dbg("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + e_dbg("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (hw->wait_autoneg_complete) { + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + e_dbg + ("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + + hw->get_link_status = true; + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_postconfig - post link setup + * @hw: Struct containing variables accessed by shared code + * + * Config the MAC and the PHY after link is up. + * 1) Set up the MAC to the current PHY speed/duplex + * if we are on 82543. If we + * are on newer silicon, we only need to configure + * collision distance in the Transmit Control Register. + * 2) Set up flow control on the MAC to that established with + * the link partner. + * 3) Config DSP to improve Gigabit link quality for some PHY revisions. + */ +static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) +{ + s32 ret_val; + e_dbg("e1000_copper_link_postconfig"); + + if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) { + e1000_config_collision_dist(hw); + } else { + ret_val = e1000_config_mac_to_phy(hw); + if (ret_val) { + e_dbg("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + ret_val = e1000_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error Configuring Flow Control\n"); + return ret_val; + } + + /* Config DSP to improve Giga link quality */ + if (hw->phy_type == e1000_phy_igp) { + ret_val = e1000_config_dsp_after_link_change(hw, true); + if (ret_val) { + e_dbg("Error Configuring DSP after link up\n"); + return ret_val; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_setup_copper_link - phy/speed/duplex setting + * @hw: Struct containing variables accessed by shared code + * + * Detects which PHY is present and sets up the speed and duplex + */ +static s32 e1000_setup_copper_link(struct e1000_hw *hw) +{ + s32 ret_val; + u16 i; + u16 phy_data; + + e_dbg("e1000_setup_copper_link"); + + /* Check if it is a valid PHY and set PHY mode if necessary. */ + ret_val = e1000_copper_link_preconfig(hw); + if (ret_val) + return ret_val; + + if (hw->phy_type == e1000_phy_igp) { + ret_val = e1000_copper_link_igp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == e1000_phy_m88) { + ret_val = e1000_copper_link_mgp_setup(hw); + if (ret_val) + return ret_val; + } else { + ret_val = gbe_dhg_phy_setup(hw); + if (ret_val) { + e_dbg("gbe_dhg_phy_setup failed!\n"); + return ret_val; + } + } + + if (hw->autoneg) { + /* Setup autoneg and flow control advertisement + * and perform autonegotiation */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* PHY will be set to 10H, 10F, 100H,or 100F + * depending on value from forced_speed_duplex. */ + e_dbg("Forcing speed and duplex\n"); + ret_val = e1000_phy_force_speed_duplex(hw); + if (ret_val) { + e_dbg("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + for (i = 0; i < 10; i++) { + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & MII_SR_LINK_STATUS) { + /* Config the MAC and PHY after link is up */ + ret_val = e1000_copper_link_postconfig(hw); + if (ret_val) + return ret_val; + + e_dbg("Valid link established!!!\n"); + return E1000_SUCCESS; + } + udelay(10); + } + + e_dbg("Unable to establish link!!!\n"); + return E1000_SUCCESS; +} + +/** + * e1000_phy_setup_autoneg - phy settings + * @hw: Struct containing variables accessed by shared code + * + * Configures PHY autoneg and flow control advertisement settings + */ +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg; + + e_dbg("e1000_phy_setup_autoneg"); + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + else if (hw->phy_type == e1000_phy_8201) + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_HALF) { + e_dbg("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_FULL) { + e_dbg("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_HALF) { + e_dbg("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_FULL) { + e_dbg("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { + e_dbg + ("Advertise 1000mb Half duplex requested, request denied!\n"); + } + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { + e_dbg("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc) { + case E1000_FC_NONE: /* 0 */ + /* Flow control (RX & TX) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_RX_PAUSE: /* 1 */ + /* RX Flow control is enabled, and TX Flow control is + * disabled, by a software over-ride. + */ + /* Since there really isn't a way to advertise that we are + * capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + *hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_TX_PAUSE: /* 2 */ + /* TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case E1000_FC_FULL: /* 3 */ + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (hw->phy_type == e1000_phy_8201) { + mii_1000t_ctrl_reg = 0; + } else { + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_force_speed_duplex - force link settings + * @hw: Struct containing variables accessed by shared code + * + * Force PHY speed and duplex settings to hw->forced_speed_duplex + */ +static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 mii_ctrl_reg; + u16 mii_status_reg; + u16 phy_data; + u16 i; + + e_dbg("e1000_phy_force_speed_duplex"); + + /* Turn off Flow control if we are forcing speed and duplex. */ + hw->fc = E1000_FC_NONE; + + e_dbg("hw->fc = %d\n", hw->fc); + + /* Read the Device Control Register. */ + ctrl = er32(CTRL); + + /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(DEVICE_SPEED_MASK); + + /* Clear the Auto Speed Detect Enable bit. */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Read the MII Control Register. */ + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); + if (ret_val) + return ret_val; + + /* We need to disable autoneg in order to force link and duplex. */ + + mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; + + /* Are we forcing Full or Half Duplex? */ + if (hw->forced_speed_duplex == e1000_100_full || + hw->forced_speed_duplex == e1000_10_full) { + /* We want to force full duplex so we SET the full duplex bits in the + * Device and MII Control Registers. + */ + ctrl |= E1000_CTRL_FD; + mii_ctrl_reg |= MII_CR_FULL_DUPLEX; + e_dbg("Full Duplex\n"); + } else { + /* We want to force half duplex so we CLEAR the full duplex bits in + * the Device and MII Control Registers. + */ + ctrl &= ~E1000_CTRL_FD; + mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; + e_dbg("Half Duplex\n"); + } + + /* Are we forcing 100Mbps??? */ + if (hw->forced_speed_duplex == e1000_100_full || + hw->forced_speed_duplex == e1000_100_half) { + /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ + ctrl |= E1000_CTRL_SPD_100; + mii_ctrl_reg |= MII_CR_SPEED_100; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + e_dbg("Forcing 100mb "); + } else { + /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + mii_ctrl_reg |= MII_CR_SPEED_10; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + e_dbg("Forcing 10mb "); + } + + e1000_config_collision_dist(hw); + + /* Write the configured values back to the Device Control Reg. */ + ew32(CTRL, ctrl); + + if (hw->phy_type == e1000_phy_m88) { + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed are duplex are forced. + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + e_dbg("M88E1000 PSCR: %x\n", phy_data); + + /* Need to reset the PHY or these changes will be ignored */ + mii_ctrl_reg |= MII_CR_RESET; + + /* Disable MDI-X support for 10/100 */ + } else { + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed or duplex are forced. + */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + /* Write back the modified PHY MII control register. */ + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); + if (ret_val) + return ret_val; + + udelay(1); + + /* The wait_autoneg_complete flag may be a little misleading here. + * Since we are forcing speed and duplex, Auto-Neg is not enabled. + * But we do want to delay for a period while forcing only so we + * don't generate false No Link messages. So we will wait here + * only if the user has set wait_autoneg_complete to 1, which is + * the default. + */ + if (hw->wait_autoneg_complete) { + /* We will wait for autoneg to complete. */ + e_dbg("Waiting for forced speed/duplex link.\n"); + mii_status_reg = 0; + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msleep(100); + } + if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { + /* We didn't get link. Reset the DSP and wait again for link. */ + ret_val = e1000_phy_reset_dsp(hw); + if (ret_val) { + e_dbg("Error Resetting PHY DSP\n"); + return ret_val; + } + } + /* This loop will early-out if the link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msleep(100); + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + } + } + + if (hw->phy_type == e1000_phy_m88) { + /* Because we reset the PHY above, we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock. This value + * defaults back to a 2.5MHz clock when the PHY is reset. + */ + ret_val = + e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = + e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + /* In addition, because of the s/w reset above, we need to enable CRS on + * TX. This must be set for both full and half duplex operation. + */ + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) + && (!hw->autoneg) + && (hw->forced_speed_duplex == e1000_10_full + || hw->forced_speed_duplex == e1000_10_half)) { + ret_val = e1000_polarity_reversal_workaround(hw); + if (ret_val) + return ret_val; + } + } + return E1000_SUCCESS; +} + +/** + * e1000_config_collision_dist - set collision distance register + * @hw: Struct containing variables accessed by shared code + * + * Sets the collision distance in the Transmit Control register. + * Link should have been established previously. Reads the speed and duplex + * information from the Device Status register. + */ +void e1000_config_collision_dist(struct e1000_hw *hw) +{ + u32 tctl, coll_dist; + + e_dbg("e1000_config_collision_dist"); + + if (hw->mac_type < e1000_82543) + coll_dist = E1000_COLLISION_DISTANCE_82542; + else + coll_dist = E1000_COLLISION_DISTANCE; + + tctl = er32(TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= coll_dist << E1000_COLD_SHIFT; + + ew32(TCTL, tctl); + E1000_WRITE_FLUSH(); +} + +/** + * e1000_config_mac_to_phy - sync phy and mac settings + * @hw: Struct containing variables accessed by shared code + * @mii_reg: data to write to the MII control register + * + * Sets MAC speed and duplex settings to reflect the those in the PHY + * The contents of the PHY register containing the needed information need to + * be passed in. + */ +static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_config_mac_to_phy"); + + /* 82544 or newer MAC, Auto Speed Detection takes care of + * MAC speed/duplex configuration.*/ + if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) + return E1000_SUCCESS; + + /* Read the Device Control Register and set the bits to Force Speed + * and Duplex. + */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + switch (hw->phy_type) { + case e1000_phy_8201: + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & RTL_PHY_CTRL_FD) + ctrl |= E1000_CTRL_FD; + else + ctrl &= ~E1000_CTRL_FD; + + if (phy_data & RTL_PHY_CTRL_SPD_100) + ctrl |= E1000_CTRL_SPD_100; + else + ctrl |= E1000_CTRL_SPD_10; + + e1000_config_collision_dist(hw); + break; + default: + /* Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + else + ctrl &= ~E1000_CTRL_FD; + + e1000_config_collision_dist(hw); + + /* Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == + M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + } + + /* Write the configured values back to the Device Control Reg. */ + ew32(CTRL, ctrl); + return E1000_SUCCESS; +} + +/** + * e1000_force_mac_fc - force flow control settings + * @hw: Struct containing variables accessed by shared code + * + * Forces the MAC's flow control settings. + * Sets the TFCE and RFCE bits in the device control register to reflect + * the adapter settings. TFCE and RFCE need to be explicitly set by + * software when a Copper PHY is used because autonegotiation is managed + * by the PHY rather than the MAC. Software must also configure these + * bits when link is forced on a fiber connection. + */ +s32 e1000_force_mac_fc(struct e1000_hw *hw) +{ + u32 ctrl; + + e_dbg("e1000_force_mac_fc"); + + /* Get the current configuration of the Device Control Register */ + ctrl = er32(CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + + switch (hw->fc) { + case E1000_FC_NONE: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case E1000_FC_RX_PAUSE: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case E1000_FC_TX_PAUSE: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case E1000_FC_FULL: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + e_dbg("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + /* Disable TX Flow Control for 82542 (rev 2.0) */ + if (hw->mac_type == e1000_82542_rev2_0) + ctrl &= (~E1000_CTRL_TFCE); + + ew32(CTRL, ctrl); + return E1000_SUCCESS; +} + +/** + * e1000_config_fc_after_link_up - configure flow control after autoneg + * @hw: Struct containing variables accessed by shared code + * + * Configures flow control settings after link is established + * Should be called immediately after a valid link has been established. + * Forces MAC flow control settings if link was forced. When in MII/GMII mode + * and autonegotiation is enabled, the MAC flow control settings will be set + * based on the flow control negotiated by the PHY. In TBI mode, the TFCE + * and RFCE bits will be automatically set to the negotiated flow control mode. + */ +static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) +{ + s32 ret_val; + u16 mii_status_reg; + u16 mii_nway_adv_reg; + u16 mii_nway_lp_ability_reg; + u16 speed; + u16 duplex; + + e_dbg("e1000_config_fc_after_link_up"); + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) + || ((hw->media_type == e1000_media_type_internal_serdes) + && (hw->autoneg_failed)) + || ((hw->media_type == e1000_media_type_copper) + && (!hw->autoneg))) { + ret_val = e1000_force_mac_fc(hw); + if (ret_val) { + e_dbg("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement Register + * (Address 4) and the Auto_Negotiation Base Page Ability + * Register (Address 5) to determine how flow control was + * negotiated. + */ + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | E1000_FC_NONE + * 0 | 1 | 0 | DC | E1000_FC_NONE + * 0 | 1 | 1 | 0 | E1000_FC_NONE + * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE + * 1 | 0 | 0 | DC | E1000_FC_NONE + * 1 | DC | 1 | DC | E1000_FC_FULL + * 1 | 1 | 0 | 0 | E1000_FC_NONE + * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE + * + */ + /* Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_FC_FULL + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->original_fc == E1000_FC_FULL) { + hw->fc = E1000_FC_FULL; + e_dbg("Flow Control = FULL.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + e_dbg + ("Flow Control = RX PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE + * + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) + { + hw->fc = E1000_FC_TX_PAUSE; + e_dbg + ("Flow Control = TX PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE + * + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) + { + hw->fc = E1000_FC_RX_PAUSE; + e_dbg + ("Flow Control = RX PAUSE frames only.\n"); + } + /* Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if ((hw->original_fc == E1000_FC_NONE || + hw->original_fc == E1000_FC_TX_PAUSE) || + hw->fc_strict_ieee) { + hw->fc = E1000_FC_NONE; + e_dbg("Flow Control = NONE.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + e_dbg + ("Flow Control = RX PAUSE frames only.\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = + e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + e_dbg + ("Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + hw->fc = E1000_FC_NONE; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc(hw); + if (ret_val) { + e_dbg + ("Error forcing flow control settings\n"); + return ret_val; + } + } else { + e_dbg + ("Copper PHY and Auto Neg has not completed.\n"); + } + } + return E1000_SUCCESS; +} + +/** + * e1000_check_for_serdes_link_generic - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + */ +static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) +{ + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val = E1000_SUCCESS; + + e_dbg("e1000_check_for_serdes_link_generic"); + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + /* + * If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { + if (hw->autoneg_failed == 0) { + hw->autoneg_failed = 1; + goto out; + } + e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error configuring flow control\n"); + goto out; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* + * If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n"); + ew32(TXCW, hw->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + + hw->serdes_has_link = true; + } else if (!(E1000_TXCW_ANE & er32(TXCW))) { + /* + * If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + udelay(10); + rxcw = er32(RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + hw->serdes_has_link = true; + e_dbg("SERDES: Link up - forced.\n"); + } + } else { + hw->serdes_has_link = false; + e_dbg("SERDES: Link down - force failed.\n"); + } + } + + if (E1000_TXCW_ANE & er32(TXCW)) { + status = er32(STATUS); + if (status & E1000_STATUS_LU) { + /* SYNCH bit and IV bit are sticky, so reread rxcw. */ + udelay(10); + rxcw = er32(RXCW); + if (rxcw & E1000_RXCW_SYNCH) { + if (!(rxcw & E1000_RXCW_IV)) { + hw->serdes_has_link = true; + e_dbg("SERDES: Link up - autoneg " + "completed successfully.\n"); + } else { + hw->serdes_has_link = false; + e_dbg("SERDES: Link down - invalid" + "codewords detected in autoneg.\n"); + } + } else { + hw->serdes_has_link = false; + e_dbg("SERDES: Link down - no sync.\n"); + } + } else { + hw->serdes_has_link = false; + e_dbg("SERDES: Link down - autoneg failed\n"); + } + } + + out: + return ret_val; +} + +/** + * e1000_check_for_link + * @hw: Struct containing variables accessed by shared code + * + * Checks to see if the link status of the hardware has changed. + * Called by any function that needs to check the link status of the adapter. + */ +s32 e1000_check_for_link(struct e1000_hw *hw) +{ + u32 rxcw = 0; + u32 ctrl; + u32 status; + u32 rctl; + u32 icr; + u32 signal = 0; + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_check_for_link"); + + ctrl = er32(CTRL); + status = er32(STATUS); + + /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + */ + if ((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) { + rxcw = er32(RXCW); + + if (hw->media_type == e1000_media_type_fiber) { + signal = + (hw->mac_type > + e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; + if (status & E1000_STATUS_LU) + hw->get_link_status = false; + } + } + + /* If we have a copper PHY then we only want to go out to the PHY + * registers to see if Auto-Neg has completed and/or if our link + * status has changed. The get_link_status flag will be set if we + * receive a Link Status Change interrupt or we have Rx Sequence + * Errors. + */ + if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + * Read the register twice since the link bit is sticky. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & MII_SR_LINK_STATUS) { + hw->get_link_status = false; + /* Check if there was DownShift, must be checked immediately after + * link-up */ + e1000_check_downshift(hw); + + /* If we are on 82544 or 82543 silicon and speed/duplex + * are forced to 10H or 10F, then we will implement the polarity + * reversal workaround. We disable interrupts first, and upon + * returning, place the devices interrupt state to its previous + * value except for the link status change interrupt which will + * happen due to the execution of this workaround. + */ + + if ((hw->mac_type == e1000_82544 + || hw->mac_type == e1000_82543) && (!hw->autoneg) + && (hw->forced_speed_duplex == e1000_10_full + || hw->forced_speed_duplex == e1000_10_half)) { + ew32(IMC, 0xffffffff); + ret_val = + e1000_polarity_reversal_workaround(hw); + icr = er32(ICR); + ew32(ICS, (icr & ~E1000_ICS_LSC)); + ew32(IMS, IMS_ENABLE_MASK); + } + + } else { + /* No link detected */ + e1000_config_dsp_after_link_change(hw, false); + return 0; + } + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!hw->autoneg) + return -E1000_ERR_CONFIG; + + /* optimize the dsp settings for the igp phy */ + e1000_config_dsp_after_link_change(hw, true); + + /* We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if ((hw->mac_type >= e1000_82544) && + (hw->mac_type != e1000_ce4100)) + e1000_config_collision_dist(hw); + else { + ret_val = e1000_config_mac_to_phy(hw); + if (ret_val) { + e_dbg + ("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + + /* Configure Flow Control now that Auto-Neg has completed. First, we + * need to restore the desired flow control settings because we may + * have had to re-autoneg with a different link partner. + */ + ret_val = e1000_config_fc_after_link_up(hw); + if (ret_val) { + e_dbg("Error configuring flow control\n"); + return ret_val; + } + + /* At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * partner capability register. We use the link speed to determine if + * TBI compatibility needs to be turned on or off. If the link is not + * at gigabit speed, then TBI compatibility is not needed. If we are + * at gigabit speed, we turn on TBI compatibility. + */ + if (hw->tbi_compatibility_en) { + u16 speed, duplex; + ret_val = + e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + e_dbg + ("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { + /* If link speed is not set to gigabit speed, we do not need + * to enable TBI compatibility. + */ + if (hw->tbi_compatibility_on) { + /* If we previously were in the mode, turn it off. */ + rctl = er32(RCTL); + rctl &= ~E1000_RCTL_SBP; + ew32(RCTL, rctl); + hw->tbi_compatibility_on = false; + } + } else { + /* If TBI compatibility is was previously off, turn it on. For + * compatibility with a TBI link partner, we will store bad + * packets. Some frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if (!hw->tbi_compatibility_on) { + hw->tbi_compatibility_on = true; + rctl = er32(RCTL); + rctl |= E1000_RCTL_SBP; + ew32(RCTL, rctl); + } + } + } + } + + if ((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) + e1000_check_for_serdes_link_generic(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_get_speed_and_duplex + * @hw: Struct containing variables accessed by shared code + * @speed: Speed of the connection + * @duplex: Duplex setting of the connection + + * Detects the current speed and duplex settings of the hardware. + */ +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + u32 status; + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_get_speed_and_duplex"); + + if (hw->mac_type >= e1000_82543) { + status = er32(STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + e_dbg("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + e_dbg("100 Mbs, "); + } else { + *speed = SPEED_10; + e_dbg("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + e_dbg("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + e_dbg(" Half Duplex\n"); + } + } else { + e_dbg("1000 Mbs, Full Duplex\n"); + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + } + + /* IGP01 PHY may advertise full duplex operation after speed downgrade even + * if it is operating at half duplex. Here we set the duplex settings to + * match the duplex in the link partner's capabilities. + */ + if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); + if (ret_val) + return ret_val; + + if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + *duplex = HALF_DUPLEX; + else { + ret_val = + e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); + if (ret_val) + return ret_val; + if ((*speed == SPEED_100 + && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) + || (*speed == SPEED_10 + && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) + *duplex = HALF_DUPLEX; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_wait_autoneg + * @hw: Struct containing variables accessed by shared code + * + * Blocks until autoneg completes or times out (~4.5 seconds) + */ +static s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ + s32 ret_val; + u16 i; + u16 phy_data; + + e_dbg("e1000_wait_autoneg"); + e_dbg("Waiting for Auto-Neg to complete.\n"); + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + if (phy_data & MII_SR_AUTONEG_COMPLETE) { + return E1000_SUCCESS; + } + msleep(100); + } + return E1000_SUCCESS; +} + +/** + * e1000_raise_mdi_clk - Raises the Management Data Clock + * @hw: Struct containing variables accessed by shared code + * @ctrl: Device control register's current value + */ +static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) +{ + /* Raise the clock input to the Management Data Clock (by setting the MDC + * bit), and then delay 10 microseconds. + */ + ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(); + udelay(10); +} + +/** + * e1000_lower_mdi_clk - Lowers the Management Data Clock + * @hw: Struct containing variables accessed by shared code + * @ctrl: Device control register's current value + */ +static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) +{ + /* Lower the clock input to the Management Data Clock (by clearing the MDC + * bit), and then delay 10 microseconds. + */ + ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(); + udelay(10); +} + +/** + * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY + * @hw: Struct containing variables accessed by shared code + * @data: Data to send out to the PHY + * @count: Number of bits to shift out + * + * Bits are shifted out in MSB to LSB order. + */ +static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) +{ + u32 ctrl; + u32 mask; + + /* We need to shift "count" number of bits out to the PHY. So, the value + * in the "data" parameter will be shifted out to the PHY one bit at a + * time. In order to do this, "data" must be broken down into bits. + */ + mask = 0x01; + mask <<= (count - 1); + + ctrl = er32(CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and + * then raising and lowering the Management Data Clock. A "0" is + * shifted out to the PHY by setting the MDIO bit to "0" and then + * raising and lowering the clock. + */ + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; + + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + udelay(10); + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + mask = mask >> 1; + } +} + +/** + * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY + * @hw: Struct containing variables accessed by shared code + * + * Bits are shifted in in MSB to LSB order. + */ +static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) +{ + u32 ctrl; + u16 data = 0; + u8 i; + + /* In order to read a register from the PHY, we need to shift in a total + * of 18 bits from the PHY. The first two bit (turnaround) times are used + * to avoid contention on the MDIO pin when a read operation is performed. + * These two bits are ignored by us and thrown away. Bits are "shifted in" + * by raising the input to the Management Data Clock (setting the MDC bit), + * and then reading the value of the MDIO bit. + */ + ctrl = er32(CTRL); + + /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + /* Raise and Lower the clock before reading in the data. This accounts for + * the turnaround bits. The first clock occurred when we clocked out the + * last bit of the Register Address. + */ + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data = data << 1; + e1000_raise_mdi_clk(hw, &ctrl); + ctrl = er32(CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + e1000_lower_mdi_clk(hw, &ctrl); + } + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + return data; +} + + +/** + * e1000_read_phy_reg - read a phy register + * @hw: Struct containing variables accessed by shared code + * @reg_addr: address of the PHY register to read + * + * Reads the value from a PHY register, if the value is on a specific non zero + * page, sets the page first. + */ +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) +{ + u32 ret_val; + + e_dbg("e1000_read_phy_reg"); + + if ((hw->phy_type == e1000_phy_igp) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (u16) reg_addr); + if (ret_val) + return ret_val; + } + + ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + return ret_val; +} + +static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, + u16 *phy_data) +{ + u32 i; + u32 mdic = 0; + const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; + + e_dbg("e1000_read_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + e_dbg("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if (hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, and register address in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + if (hw->mac_type == e1000_ce4100) { + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (INTEL_CE_GBE_MDIC_OP_READ) | + (INTEL_CE_GBE_MDIC_GO)); + + writel(mdic, E1000_MDIO_CMD); + + /* Poll the ready bit to see if the MDI read + * completed + */ + for (i = 0; i < 64; i++) { + udelay(50); + mdic = readl(E1000_MDIO_CMD); + if (!(mdic & INTEL_CE_GBE_MDIC_GO)) + break; + } + + if (mdic & INTEL_CE_GBE_MDIC_GO) { + e_dbg("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + + mdic = readl(E1000_MDIO_STS); + if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) { + e_dbg("MDI Read Error\n"); + return -E1000_ERR_PHY; + } + *phy_data = (u16) mdic; + } else { + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + ew32(MDIC, mdic); + + /* Poll the ready bit to see if the MDI read + * completed + */ + for (i = 0; i < 64; i++) { + udelay(50); + mdic = er32(MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + e_dbg("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + e_dbg("MDI Error\n"); + return -E1000_ERR_PHY; + } + *phy_data = (u16) mdic; + } + } else { + /* We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine five different times. The format of + * a MII read instruction consists of a shift out of 14 bits and is + * defined as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = ((reg_addr) | (phy_addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + e1000_shift_out_mdi_bits(hw, mdic, 14); + + /* Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *phy_data = e1000_shift_in_mdi_bits(hw); + } + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg - write a phy register + * + * @hw: Struct containing variables accessed by shared code + * @reg_addr: address of the PHY register to write + * @data: data to write to the PHY + + * Writes a value to a PHY register + */ +s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) +{ + u32 ret_val; + + e_dbg("e1000_write_phy_reg"); + + if ((hw->phy_type == e1000_phy_igp) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (u16) reg_addr); + if (ret_val) + return ret_val; + } + + ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); + + return ret_val; +} + +static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, + u16 phy_data) +{ + u32 i; + u32 mdic = 0; + const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1; + + e_dbg("e1000_write_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + e_dbg("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if (hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, register address, and data + * intended for the PHY register in the MDI Control register. + * The MAC will take care of interfacing with the PHY to send + * the desired data. + */ + if (hw->mac_type == e1000_ce4100) { + mdic = (((u32) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (INTEL_CE_GBE_MDIC_OP_WRITE) | + (INTEL_CE_GBE_MDIC_GO)); + + writel(mdic, E1000_MDIO_CMD); + + /* Poll the ready bit to see if the MDI read + * completed + */ + for (i = 0; i < 640; i++) { + udelay(5); + mdic = readl(E1000_MDIO_CMD); + if (!(mdic & INTEL_CE_GBE_MDIC_GO)) + break; + } + if (mdic & INTEL_CE_GBE_MDIC_GO) { + e_dbg("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } else { + mdic = (((u32) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + ew32(MDIC, mdic); + + /* Poll the ready bit to see if the MDI read + * completed + */ + for (i = 0; i < 641; i++) { + udelay(5); + mdic = er32(MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + e_dbg("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } + } else { + /* We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. + */ + mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (u32) phy_data; + + e1000_shift_out_mdi_bits(hw, mdic, 32); + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_hw_reset - reset the phy, hardware style + * @hw: Struct containing variables accessed by shared code + * + * Returns the PHY to the power-on reset state + */ +s32 e1000_phy_hw_reset(struct e1000_hw *hw) +{ + u32 ctrl, ctrl_ext; + u32 led_ctrl; + + e_dbg("e1000_phy_hw_reset"); + + e_dbg("Resetting Phy...\n"); + + if (hw->mac_type > e1000_82543) { + /* Read the device control register and assert the E1000_CTRL_PHY_RST + * bit. Then, take it out of reset. + * For e1000 hardware, we delay for 10ms between the assert + * and deassert. + */ + ctrl = er32(CTRL); + ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(); + + msleep(10); + + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + } else { + /* Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset. Then, take it out of reset. + */ + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + ew32(CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(); + msleep(10); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + ew32(CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(); + } + udelay(150); + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + /* Configure activity LED after PHY reset */ + led_ctrl = er32(LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + ew32(LEDCTL, led_ctrl); + } + + /* Wait for FW to finish PHY configuration. */ + return e1000_get_phy_cfg_done(hw); +} + +/** + * e1000_phy_reset - reset the phy to commit settings + * @hw: Struct containing variables accessed by shared code + * + * Resets the PHY + * Sets bit 15 of the MII Control register + */ +s32 e1000_phy_reset(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_phy_reset"); + + switch (hw->phy_type) { + case e1000_phy_igp: + ret_val = e1000_phy_hw_reset(hw); + if (ret_val) + return ret_val; + break; + default: + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= MII_CR_RESET; + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + udelay(1); + break; + } + + if (hw->phy_type == e1000_phy_igp) + e1000_phy_init_script(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_detect_gig_phy - check the phy type + * @hw: Struct containing variables accessed by shared code + * + * Probes the expected PHY address for known PHY IDs + */ +static s32 e1000_detect_gig_phy(struct e1000_hw *hw) +{ + s32 phy_init_status, ret_val; + u16 phy_id_high, phy_id_low; + bool match = false; + + e_dbg("e1000_detect_gig_phy"); + + if (hw->phy_id != 0) + return E1000_SUCCESS; + + /* Read the PHY ID Registers to identify which PHY is onboard. */ + ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); + if (ret_val) + return ret_val; + + hw->phy_id = (u32) (phy_id_high << 16); + udelay(20); + ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); + if (ret_val) + return ret_val; + + hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); + hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; + + switch (hw->mac_type) { + case e1000_82543: + if (hw->phy_id == M88E1000_E_PHY_ID) + match = true; + break; + case e1000_82544: + if (hw->phy_id == M88E1000_I_PHY_ID) + match = true; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + if (hw->phy_id == M88E1011_I_PHY_ID) + match = true; + break; + case e1000_ce4100: + if ((hw->phy_id == RTL8211B_PHY_ID) || + (hw->phy_id == RTL8201N_PHY_ID) || + (hw->phy_id == M88E1118_E_PHY_ID)) + match = true; + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if (hw->phy_id == IGP01E1000_I_PHY_ID) + match = true; + break; + default: + e_dbg("Invalid MAC type %d\n", hw->mac_type); + return -E1000_ERR_CONFIG; + } + phy_init_status = e1000_set_phy_type(hw); + + if ((match) && (phy_init_status == E1000_SUCCESS)) { + e_dbg("PHY ID 0x%X detected\n", hw->phy_id); + return E1000_SUCCESS; + } + e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id); + return -E1000_ERR_PHY; +} + +/** + * e1000_phy_reset_dsp - reset DSP + * @hw: Struct containing variables accessed by shared code + * + * Resets the PHY's DSP + */ +static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) +{ + s32 ret_val; + e_dbg("e1000_phy_reset_dsp"); + + do { + ret_val = e1000_write_phy_reg(hw, 29, 0x001d); + if (ret_val) + break; + ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); + if (ret_val) + break; + ret_val = e1000_write_phy_reg(hw, 30, 0x0000); + if (ret_val) + break; + ret_val = E1000_SUCCESS; + } while (0); + + return ret_val; +} + +/** + * e1000_phy_igp_get_info - get igp specific registers + * @hw: Struct containing variables accessed by shared code + * @phy_info: PHY information structure + * + * Get PHY information from various PHY registers for igp PHY only. + */ +static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info) +{ + s32 ret_val; + u16 phy_data, min_length, max_length, average; + e1000_rev_polarity polarity; + + e_dbg("e1000_phy_igp_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = (e1000_downshift) hw->speed_downgraded; + + /* IGP01E1000 does not need to support it. */ + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; + + /* IGP01E1000 always correct polarity reversal */ + phy_info->polarity_correction = e1000_polarity_reversal_enabled; + + /* Check polarity status */ + ret_val = e1000_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = + (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> + IGP01E1000_PSSR_MDIX_SHIFT); + + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + /* Local/Remote Receiver Information are only valid at 1000 Mbps */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + + /* Get cable length */ + ret_val = e1000_get_cable_length(hw, &min_length, &max_length); + if (ret_val) + return ret_val; + + /* Translate to old method */ + average = (max_length + min_length) / 2; + + if (average <= e1000_igp_cable_length_50) + phy_info->cable_length = e1000_cable_length_50; + else if (average <= e1000_igp_cable_length_80) + phy_info->cable_length = e1000_cable_length_50_80; + else if (average <= e1000_igp_cable_length_110) + phy_info->cable_length = e1000_cable_length_80_110; + else if (average <= e1000_igp_cable_length_140) + phy_info->cable_length = e1000_cable_length_110_140; + else + phy_info->cable_length = e1000_cable_length_140; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_m88_get_info - get m88 specific registers + * @hw: Struct containing variables accessed by shared code + * @phy_info: PHY information structure + * + * Get PHY information from various PHY registers for m88 PHY only. + */ +static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, + struct e1000_phy_info *phy_info) +{ + s32 ret_val; + u16 phy_data; + e1000_rev_polarity polarity; + + e_dbg("e1000_phy_m88_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = (e1000_downshift) hw->speed_downgraded; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_info->extended_10bt_distance = + ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> + M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? + e1000_10bt_ext_dist_enable_lower : + e1000_10bt_ext_dist_enable_normal; + + phy_info->polarity_correction = + ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> + M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? + e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; + + /* Check polarity status */ + ret_val = e1000_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = + (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> + M88E1000_PSSR_MDIX_SHIFT); + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + /* Cable Length Estimation and Local/Remote Receiver Information + * are only valid at 1000 Mbps. + */ + phy_info->cable_length = + (e1000_cable_length) ((phy_data & + M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT); + + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_get_info - request phy info + * @hw: Struct containing variables accessed by shared code + * @phy_info: PHY information structure + * + * Get PHY information from various PHY registers + */ +s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) +{ + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_phy_get_info"); + + phy_info->cable_length = e1000_cable_length_undefined; + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; + phy_info->cable_polarity = e1000_rev_polarity_undefined; + phy_info->downshift = e1000_downshift_undefined; + phy_info->polarity_correction = e1000_polarity_reversal_undefined; + phy_info->mdix_mode = e1000_auto_x_mode_undefined; + phy_info->local_rx = e1000_1000t_rx_status_undefined; + phy_info->remote_rx = e1000_1000t_rx_status_undefined; + + if (hw->media_type != e1000_media_type_copper) { + e_dbg("PHY info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + e_dbg("PHY info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + if (hw->phy_type == e1000_phy_igp) + return e1000_phy_igp_get_info(hw, phy_info); + else if ((hw->phy_type == e1000_phy_8211) || + (hw->phy_type == e1000_phy_8201)) + return E1000_SUCCESS; + else + return e1000_phy_m88_get_info(hw, phy_info); +} + +s32 e1000_validate_mdi_setting(struct e1000_hw *hw) +{ + e_dbg("e1000_validate_mdi_settings"); + + if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + e_dbg("Invalid MDI setting detected\n"); + hw->mdix = 1; + return -E1000_ERR_CONFIG; + } + return E1000_SUCCESS; +} + +/** + * e1000_init_eeprom_params - initialize sw eeprom vars + * @hw: Struct containing variables accessed by shared code + * + * Sets up eeprom variables in the hw struct. Must be called after mac_type + * is configured. + */ +s32 e1000_init_eeprom_params(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd = er32(EECD); + s32 ret_val = E1000_SUCCESS; + u16 eeprom_size; + + e_dbg("e1000_init_eeprom_params"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + eeprom->type = e1000_eeprom_microwire; + eeprom->word_size = 64; + eeprom->opcode_bits = 3; + eeprom->address_bits = 6; + eeprom->delay_usec = 50; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_SIZE) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if (eecd & E1000_EECD_TYPE) { + eeprom->type = e1000_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + } else { + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + } + break; + default: + break; + } + + if (eeprom->type == e1000_eeprom_spi) { + /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to + * 32KB (incremented by powers of 2). + */ + /* Set to default value for initial eeprom read. */ + eeprom->word_size = 64; + ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); + if (ret_val) + return ret_val; + eeprom_size = + (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; + /* 256B eeprom size was not supported in earlier hardware, so we + * bump eeprom_size up one to ensure that "1" (which maps to 256B) + * is never the result used in the shifting logic below. */ + if (eeprom_size) + eeprom_size++; + + eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); + } + return ret_val; +} + +/** + * e1000_raise_ee_clk - Raises the EEPROM's clock input. + * @hw: Struct containing variables accessed by shared code + * @eecd: EECD's current value + */ +static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) +{ + /* Raise the clock input to the EEPROM (by setting the SK bit), and then + * wait <delay> microseconds. + */ + *eecd = *eecd | E1000_EECD_SK; + ew32(EECD, *eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); +} + +/** + * e1000_lower_ee_clk - Lowers the EEPROM's clock input. + * @hw: Struct containing variables accessed by shared code + * @eecd: EECD's current value + */ +static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) +{ + /* Lower the clock input to the EEPROM (by clearing the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd & ~E1000_EECD_SK; + ew32(EECD, *eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); +} + +/** + * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. + * @hw: Struct containing variables accessed by shared code + * @data: data to send to the EEPROM + * @count: number of bits to shift out + */ +static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd; + u32 mask; + + /* We need to shift "count" bits out to the EEPROM. So, value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + */ + mask = 0x01 << (count - 1); + eecd = er32(EECD); + if (eeprom->type == e1000_eeprom_microwire) { + eecd &= ~E1000_EECD_DO; + } else if (eeprom->type == e1000_eeprom_spi) { + eecd |= E1000_EECD_DO; + } + do { + /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", + * and then raising and then lowering the clock (the SK bit controls + * the clock input to the EEPROM). A "0" is shifted out to the EEPROM + * by setting "DI" to "0" and then raising and then lowering the clock. + */ + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + + udelay(eeprom->delay_usec); + + e1000_raise_ee_clk(hw, &eecd); + e1000_lower_ee_clk(hw, &eecd); + + mask = mask >> 1; + + } while (mask); + + /* We leave the "DI" bit set to "0" when we leave this routine. */ + eecd &= ~E1000_EECD_DI; + ew32(EECD, eecd); +} + +/** + * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM + * @hw: Struct containing variables accessed by shared code + * @count: number of bits to shift in + */ +static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + /* In order to read a register from the EEPROM, we need to shift 'count' + * bits in from the EEPROM. Bits are "shifted in" by raising the clock + * input to the EEPROM (setting the SK bit), and then reading the value of + * the "DO" bit. During this "shifting in" process the "DI" bit should + * always be clear. + */ + + eecd = er32(EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data = data << 1; + e1000_raise_ee_clk(hw, &eecd); + + eecd = er32(EECD); + + eecd &= ~(E1000_EECD_DI); + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_ee_clk(hw, &eecd); + } + + return data; +} + +/** + * e1000_acquire_eeprom - Prepares EEPROM for access + * @hw: Struct containing variables accessed by shared code + * + * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This + * function should be called before issuing a command to the EEPROM. + */ +static s32 e1000_acquire_eeprom(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd, i = 0; + + e_dbg("e1000_acquire_eeprom"); + + eecd = er32(EECD); + + /* Request EEPROM Access */ + if (hw->mac_type > e1000_82544) { + eecd |= E1000_EECD_REQ; + ew32(EECD, eecd); + eecd = er32(EECD); + while ((!(eecd & E1000_EECD_GNT)) && + (i < E1000_EEPROM_GRANT_ATTEMPTS)) { + i++; + udelay(5); + eecd = er32(EECD); + } + if (!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); + e_dbg("Could not acquire EEPROM grant\n"); + return -E1000_ERR_EEPROM; + } + } + + /* Setup EEPROM for Read/Write */ + + if (eeprom->type == e1000_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + ew32(EECD, eecd); + + /* Set CS */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + } else if (eeprom->type == e1000_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(1); + } + + return E1000_SUCCESS; +} + +/** + * e1000_standby_eeprom - Returns EEPROM to a "standby" state + * @hw: Struct containing variables accessed by shared code + */ +static void e1000_standby_eeprom(struct e1000_hw *hw) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd; + + eecd = er32(EECD); + + if (eeprom->type == e1000_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + + /* Clock high */ + eecd |= E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + + /* Clock low */ + eecd &= ~E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + } else if (eeprom->type == e1000_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + eecd &= ~E1000_EECD_CS; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + } +} + +/** + * e1000_release_eeprom - drop chip select + * @hw: Struct containing variables accessed by shared code + * + * Terminates a command by inverting the EEPROM's chip select pin + */ +static void e1000_release_eeprom(struct e1000_hw *hw) +{ + u32 eecd; + + e_dbg("e1000_release_eeprom"); + + eecd = er32(EECD); + + if (hw->eeprom.type == e1000_eeprom_spi) { + eecd |= E1000_EECD_CS; /* Pull CS high */ + eecd &= ~E1000_EECD_SK; /* Lower SCK */ + + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + + udelay(hw->eeprom.delay_usec); + } else if (hw->eeprom.type == e1000_eeprom_microwire) { + /* cleanup eeprom */ + + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + + ew32(EECD, eecd); + + /* Rising edge of clock */ + eecd |= E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); + + /* Falling edge of clock */ + eecd &= ~E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); + } + + /* Stop requesting EEPROM access */ + if (hw->mac_type > e1000_82544) { + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); + } +} + +/** + * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. + * @hw: Struct containing variables accessed by shared code + */ +static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) +{ + u16 retry_count = 0; + u8 spi_stat_reg; + + e_dbg("e1000_spi_eeprom_ready"); + + /* Read "Status Register" repeatedly until the LSB is cleared. The + * EEPROM will signal that the command has been completed by clearing + * bit 0 of the internal status register. If it's not cleared within + * 5 milliseconds, then error out. + */ + retry_count = 0; + do { + e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, + hw->eeprom.opcode_bits); + spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); + if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) + break; + + udelay(5); + retry_count += 5; + + e1000_standby_eeprom(hw); + } while (retry_count < EEPROM_MAX_RETRY_SPI); + + /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and + * only 0-5mSec on 5V devices) + */ + if (retry_count >= EEPROM_MAX_RETRY_SPI) { + e_dbg("SPI EEPROM Status error\n"); + return -E1000_ERR_EEPROM; + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. + * @hw: Struct containing variables accessed by shared code + * @offset: offset of word in the EEPROM to read + * @data: word read from the EEPROM + * @words: number of words to read + */ +s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + s32 ret; + spin_lock(&e1000_eeprom_lock); + ret = e1000_do_read_eeprom(hw, offset, words, data); + spin_unlock(&e1000_eeprom_lock); + return ret; +} + +static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 i = 0; + + e_dbg("e1000_read_eeprom"); + + if (hw->mac_type == e1000_ce4100) { + GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words, + data); + return E1000_SUCCESS; + } + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + e1000_init_eeprom_params(hw); + + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if ((offset >= eeprom->word_size) + || (words > eeprom->word_size - offset) || (words == 0)) { + e_dbg("\"words\" parameter out of bounds. Words = %d," + "size = %d\n", offset, eeprom->word_size); + return -E1000_ERR_EEPROM; + } + + /* EEPROM's that don't use EERD to read require us to bit-bang the SPI + * directly. In this case, we need to acquire the EEPROM so that + * FW or other port software does not interrupt. + */ + /* Prepare the EEPROM for bit-bang reading */ + if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + + /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have + * acquired the EEPROM at this point, so any returns should release it */ + if (eeprom->type == e1000_eeprom_spi) { + u16 word_in; + u8 read_opcode = EEPROM_READ_OPCODE_SPI; + + if (e1000_spi_eeprom_ready(hw)) { + e1000_release_eeprom(hw); + return -E1000_ERR_EEPROM; + } + + e1000_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + read_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (u16) (offset * 2), + eeprom->address_bits); + + /* Read the data. The address of the eeprom internally increments with + * each byte (spi) being read, saving on the overhead of eeprom setup + * and tear-down. The address counter will roll over if reading beyond + * the size of the eeprom, thus allowing the entire memory to be read + * starting from any offset. */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_ee_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + } else if (eeprom->type == e1000_eeprom_microwire) { + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, + EEPROM_READ_OPCODE_MICROWIRE, + eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (u16) (offset + i), + eeprom->address_bits); + + /* Read the data. For microwire, each word requires the overhead + * of eeprom setup and tear-down. */ + data[i] = e1000_shift_in_ee_bits(hw, 16); + e1000_standby_eeprom(hw); + } + } + + /* End this read operation */ + e1000_release_eeprom(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum + * @hw: Struct containing variables accessed by shared code + * + * Reads the first 64 16 bit words of the EEPROM and sums the values read. + * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is + * valid. + */ +s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) +{ + u16 checksum = 0; + u16 i, eeprom_data; + + e_dbg("e1000_validate_eeprom_checksum"); + + for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + e_dbg("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + +#ifdef CONFIG_PARISC + /* This is a signature and not a checksum on HP c8000 */ + if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6)) + return E1000_SUCCESS; + +#endif + if (checksum == (u16) EEPROM_SUM) + return E1000_SUCCESS; + else { + e_dbg("EEPROM Checksum Invalid\n"); + return -E1000_ERR_EEPROM; + } +} + +/** + * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum + * @hw: Struct containing variables accessed by shared code + * + * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. + * Writes the difference to word offset 63 of the EEPROM. + */ +s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) +{ + u16 checksum = 0; + u16 i, eeprom_data; + + e_dbg("e1000_update_eeprom_checksum"); + + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + e_dbg("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + checksum = (u16) EEPROM_SUM - checksum; + if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + e_dbg("EEPROM Write Error\n"); + return -E1000_ERR_EEPROM; + } + return E1000_SUCCESS; +} + +/** + * e1000_write_eeprom - write words to the different EEPROM types. + * @hw: Struct containing variables accessed by shared code + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word to be written to the EEPROM + * + * If e1000_update_eeprom_checksum is not called after this function, the + * EEPROM will most likely contain an invalid checksum. + */ +s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + s32 ret; + spin_lock(&e1000_eeprom_lock); + ret = e1000_do_write_eeprom(hw, offset, words, data); + spin_unlock(&e1000_eeprom_lock); + return ret; +} + +static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + s32 status = 0; + + e_dbg("e1000_write_eeprom"); + + if (hw->mac_type == e1000_ce4100) { + GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words, + data); + return E1000_SUCCESS; + } + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + e1000_init_eeprom_params(hw); + + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if ((offset >= eeprom->word_size) + || (words > eeprom->word_size - offset) || (words == 0)) { + e_dbg("\"words\" parameter out of bounds\n"); + return -E1000_ERR_EEPROM; + } + + /* Prepare the EEPROM for writing */ + if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + + if (eeprom->type == e1000_eeprom_microwire) { + status = e1000_write_eeprom_microwire(hw, offset, words, data); + } else { + status = e1000_write_eeprom_spi(hw, offset, words, data); + msleep(10); + } + + /* Done with writing */ + e1000_release_eeprom(hw); + + return status; +} + +/** + * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. + * @hw: Struct containing variables accessed by shared code + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: pointer to array of 8 bit words to be written to the EEPROM + */ +static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u16 widx = 0; + + e_dbg("e1000_write_eeprom_spi"); + + while (widx < words) { + u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; + + if (e1000_spi_eeprom_ready(hw)) + return -E1000_ERR_EEPROM; + + e1000_standby_eeprom(hw); + + /* Send the WRITE ENABLE command (8 bit opcode ) */ + e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, + eeprom->opcode_bits); + + e1000_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + write_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); + + e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), + eeprom->address_bits); + + /* Send the data */ + + /* Loop to allow for up to whole page write (32 bytes) of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_ee_bits(hw, word_out, 16); + widx++; + + /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE + * operation, while the smaller eeproms are capable of an 8-byte + * PAGE WRITE operation. Break the inner loop to pass new address + */ + if ((((offset + widx) * 2) % eeprom->page_size) == 0) { + e1000_standby_eeprom(hw); + break; + } + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. + * @hw: Struct containing variables accessed by shared code + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: pointer to array of 8 bit words to be written to the EEPROM + */ +static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, + u16 words, u16 *data) +{ + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd; + u16 words_written = 0; + u16 i = 0; + + e_dbg("e1000_write_eeprom_microwire"); + + /* Send the write enable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 11). It's less work to include + * the 11 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This puts the + * EEPROM into write/erase mode. + */ + e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, + (u16) (eeprom->opcode_bits + 2)); + + e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); + + /* Prepare the EEPROM */ + e1000_standby_eeprom(hw); + + while (words_written < words) { + /* Send the Write command (3-bit opcode + addr) */ + e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, + eeprom->opcode_bits); + + e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), + eeprom->address_bits); + + /* Send the data */ + e1000_shift_out_ee_bits(hw, data[words_written], 16); + + /* Toggle the CS line. This in effect tells the EEPROM to execute + * the previous command. + */ + e1000_standby_eeprom(hw); + + /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will + * signal that the command has been completed by raising the DO signal. + * If DO does not go high in 10 milliseconds, then error out. + */ + for (i = 0; i < 200; i++) { + eecd = er32(EECD); + if (eecd & E1000_EECD_DO) + break; + udelay(50); + } + if (i == 200) { + e_dbg("EEPROM Write did not complete\n"); + return -E1000_ERR_EEPROM; + } + + /* Recover from write */ + e1000_standby_eeprom(hw); + + words_written++; + } + + /* Send the write disable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 10). It's less work to include + * the 10 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This takes the + * EEPROM out of write/erase mode. + */ + e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, + (u16) (eeprom->opcode_bits + 2)); + + e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); + + return E1000_SUCCESS; +} + +/** + * e1000_read_mac_addr - read the adapters MAC from eeprom + * @hw: Struct containing variables accessed by shared code + * + * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the + * second function of dual function devices + */ +s32 e1000_read_mac_addr(struct e1000_hw *hw) +{ + u16 offset; + u16 eeprom_data, i; + + e_dbg("e1000_read_mac_addr"); + + for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + offset = i >> 1; + if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + e_dbg("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); + hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); + } + + switch (hw->mac_type) { + default: + break; + case e1000_82546: + case e1000_82546_rev_3: + if (er32(STATUS) & E1000_STATUS_FUNC_1) + hw->perm_mac_addr[5] ^= 0x01; + break; + } + + for (i = 0; i < NODE_ADDRESS_SIZE; i++) + hw->mac_addr[i] = hw->perm_mac_addr[i]; + return E1000_SUCCESS; +} + +/** + * e1000_init_rx_addrs - Initializes receive address filters. + * @hw: Struct containing variables accessed by shared code + * + * Places the MAC address in receive address register 0 and clears the rest + * of the receive address registers. Clears the multicast table. Assumes + * the receiver is in reset when the routine is called. + */ +static void e1000_init_rx_addrs(struct e1000_hw *hw) +{ + u32 i; + u32 rar_num; + + e_dbg("e1000_init_rx_addrs"); + + /* Setup the receive address. */ + e_dbg("Programming MAC Address into RAR[0]\n"); + + e1000_rar_set(hw, hw->mac_addr, 0); + + rar_num = E1000_RAR_ENTRIES; + + /* Zero out the other 15 receive addresses. */ + e_dbg("Clearing RAR[1-15]\n"); + for (i = 1; i < rar_num; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(); + } +} + +/** + * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table + * @hw: Struct containing variables accessed by shared code + * @mc_addr: the multicast address to hash + */ +u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value = 0; + + /* The portion of the address that is used for the hash table is + * determined by the mc_filter_type setting. + */ + switch (hw->mc_filter_type) { + /* [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + */ + case 0: + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); + break; + case 1: + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); + break; + case 2: + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); + break; + case 3: + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); + break; + } + + hash_value &= 0xFFF; + return hash_value; +} + +/** + * e1000_rar_set - Puts an ethernet address into a receive address register. + * @hw: Struct containing variables accessed by shared code + * @addr: Address to put into receive address register + * @index: Receive address register to write + */ +void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx + * unit hang. + * + * Description: + * If there are any Rx frames queued up or otherwise present in the HW + * before RSS is enabled, and then we enable RSS, the HW Rx unit will + * hang. To work around this issue, we have to disable receives and + * flush out all Rx frames before we enable RSS. To do so, we modify we + * redirect all Rx traffic to manageability and then reset the HW. + * This flushes away Rx frames, and (since the redirections to + * manageability persists across resets) keeps new ones from coming in + * while we work. Then, we clear the Address Valid AV bit for all MAC + * addresses and undo the re-direction to manageability. + * Now, frames are coming in again, but the MAC won't accept them, so + * far so good. We now proceed to initialize RSS (if necessary) and + * configure the Rx unit. Last, we re-enable the AV bits and continue + * on our merry way. + */ + switch (hw->mac_type) { + default: + /* Indicate to hardware the Address is Valid. */ + rar_high |= E1000_RAH_AV; + break; + } + + E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_FLUSH(); + E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); + E1000_WRITE_FLUSH(); +} + +/** + * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. + * @hw: Struct containing variables accessed by shared code + * @offset: Offset in VLAN filer table to write + * @value: Value to write into VLAN filter table + */ +void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + u32 temp; + + if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(); + E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); + E1000_WRITE_FLUSH(); + } else { + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(); + } +} + +/** + * e1000_clear_vfta - Clears the VLAN filer table + * @hw: Struct containing variables accessed by shared code + */ +static void e1000_clear_vfta(struct e1000_hw *hw) +{ + u32 offset; + u32 vfta_value = 0; + u32 vfta_offset = 0; + u32 vfta_bit_in_reg = 0; + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of the + * manageability unit */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(); + } +} + +static s32 e1000_id_led_init(struct e1000_hw *hw) +{ + u32 ledctl; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 eeprom_data, i, temp; + const u16 led_mask = 0x0F; + + e_dbg("e1000_id_led_init"); + + if (hw->mac_type < e1000_82540) { + /* Nothing to do */ + return E1000_SUCCESS; + } + + ledctl = er32(LEDCTL); + hw->ledctl_default = ledctl; + hw->ledctl_mode1 = hw->ledctl_default; + hw->ledctl_mode2 = hw->ledctl_default; + + if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + e_dbg("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + + if ((eeprom_data == ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) { + eeprom_data = ID_LED_DEFAULT; + } + + for (i = 0; i < 4; i++) { + temp = (eeprom_data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + return E1000_SUCCESS; +} + +/** + * e1000_setup_led + * @hw: Struct containing variables accessed by shared code + * + * Prepares SW controlable LED for use and saves the current state of the LED. + */ +s32 e1000_setup_led(struct e1000_hw *hw) +{ + u32 ledctl; + s32 ret_val = E1000_SUCCESS; + + e_dbg("e1000_setup_led"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* No setup necessary */ + break; + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + /* Turn off PHY Smart Power Down (if enabled) */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, + &hw->phy_spd_default); + if (ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + (u16) (hw->phy_spd_default & + ~IGP01E1000_GMII_SPD)); + if (ret_val) + return ret_val; + /* Fall Through */ + default: + if (hw->media_type == e1000_media_type_fiber) { + ledctl = er32(LEDCTL); + /* Save current LEDCTL settings */ + hw->ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | + E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + ew32(LEDCTL, ledctl); + } else if (hw->media_type == e1000_media_type_copper) + ew32(LEDCTL, hw->ledctl_mode1); + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_cleanup_led - Restores the saved state of the SW controlable LED. + * @hw: Struct containing variables accessed by shared code + */ +s32 e1000_cleanup_led(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + + e_dbg("e1000_cleanup_led"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* No cleanup necessary */ + break; + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + /* Turn on PHY Smart Power Down (if previously enabled) */ + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + hw->phy_spd_default); + if (ret_val) + return ret_val; + /* Fall Through */ + default: + /* Restore LEDCTL settings */ + ew32(LEDCTL, hw->ledctl_default); + break; + } + + return E1000_SUCCESS; +} + +/** + * e1000_led_on - Turns on the software controllable LED + * @hw: Struct containing variables accessed by shared code + */ +s32 e1000_led_on(struct e1000_hw *hw) +{ + u32 ctrl = er32(CTRL); + + e_dbg("e1000_led_on"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case e1000_82544: + if (hw->media_type == e1000_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if (hw->media_type == e1000_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if (hw->media_type == e1000_media_type_copper) { + ew32(LEDCTL, hw->ledctl_mode2); + return E1000_SUCCESS; + } + break; + } + + ew32(CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_led_off - Turns off the software controllable LED + * @hw: Struct containing variables accessed by shared code + */ +s32 e1000_led_off(struct e1000_hw *hw) +{ + u32 ctrl = er32(CTRL); + + e_dbg("e1000_led_off"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case e1000_82544: + if (hw->media_type == e1000_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if (hw->media_type == e1000_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if (hw->media_type == e1000_media_type_copper) { + ew32(LEDCTL, hw->ledctl_mode1); + return E1000_SUCCESS; + } + break; + } + + ew32(CTRL, ctrl); + + return E1000_SUCCESS; +} + +/** + * e1000_clear_hw_cntrs - Clears all hardware statistics counters. + * @hw: Struct containing variables accessed by shared code + */ +static void e1000_clear_hw_cntrs(struct e1000_hw *hw) +{ + volatile u32 temp; + + temp = er32(CRCERRS); + temp = er32(SYMERRS); + temp = er32(MPC); + temp = er32(SCC); + temp = er32(ECOL); + temp = er32(MCC); + temp = er32(LATECOL); + temp = er32(COLC); + temp = er32(DC); + temp = er32(SEC); + temp = er32(RLEC); + temp = er32(XONRXC); + temp = er32(XONTXC); + temp = er32(XOFFRXC); + temp = er32(XOFFTXC); + temp = er32(FCRUC); + + temp = er32(PRC64); + temp = er32(PRC127); + temp = er32(PRC255); + temp = er32(PRC511); + temp = er32(PRC1023); + temp = er32(PRC1522); + + temp = er32(GPRC); + temp = er32(BPRC); + temp = er32(MPRC); + temp = er32(GPTC); + temp = er32(GORCL); + temp = er32(GORCH); + temp = er32(GOTCL); + temp = er32(GOTCH); + temp = er32(RNBC); + temp = er32(RUC); + temp = er32(RFC); + temp = er32(ROC); + temp = er32(RJC); + temp = er32(TORL); + temp = er32(TORH); + temp = er32(TOTL); + temp = er32(TOTH); + temp = er32(TPR); + temp = er32(TPT); + + temp = er32(PTC64); + temp = er32(PTC127); + temp = er32(PTC255); + temp = er32(PTC511); + temp = er32(PTC1023); + temp = er32(PTC1522); + + temp = er32(MPTC); + temp = er32(BPTC); + + if (hw->mac_type < e1000_82543) + return; + + temp = er32(ALGNERRC); + temp = er32(RXERRC); + temp = er32(TNCRS); + temp = er32(CEXTERR); + temp = er32(TSCTC); + temp = er32(TSCTFC); + + if (hw->mac_type <= e1000_82544) + return; + + temp = er32(MGTPRC); + temp = er32(MGTPDC); + temp = er32(MGTPTC); +} + +/** + * e1000_reset_adaptive - Resets Adaptive IFS to its default state. + * @hw: Struct containing variables accessed by shared code + * + * Call this after e1000_init_hw. You may override the IFS defaults by setting + * hw->ifs_params_forced to true. However, you must initialize hw-> + * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio + * before calling this function. + */ +void e1000_reset_adaptive(struct e1000_hw *hw) +{ + e_dbg("e1000_reset_adaptive"); + + if (hw->adaptive_ifs) { + if (!hw->ifs_params_forced) { + hw->current_ifs_val = 0; + hw->ifs_min_val = IFS_MIN; + hw->ifs_max_val = IFS_MAX; + hw->ifs_step_size = IFS_STEP; + hw->ifs_ratio = IFS_RATIO; + } + hw->in_ifs_mode = false; + ew32(AIT, 0); + } else { + e_dbg("Not in Adaptive IFS mode!\n"); + } +} + +/** + * e1000_update_adaptive - update adaptive IFS + * @hw: Struct containing variables accessed by shared code + * @tx_packets: Number of transmits since last callback + * @total_collisions: Number of collisions since last callback + * + * Called during the callback/watchdog routine to update IFS value based on + * the ratio of transmits to collisions. + */ +void e1000_update_adaptive(struct e1000_hw *hw) +{ + e_dbg("e1000_update_adaptive"); + + if (hw->adaptive_ifs) { + if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { + if (hw->tx_packet_delta > MIN_NUM_XMITS) { + hw->in_ifs_mode = true; + if (hw->current_ifs_val < hw->ifs_max_val) { + if (hw->current_ifs_val == 0) + hw->current_ifs_val = + hw->ifs_min_val; + else + hw->current_ifs_val += + hw->ifs_step_size; + ew32(AIT, hw->current_ifs_val); + } + } + } else { + if (hw->in_ifs_mode + && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + hw->current_ifs_val = 0; + hw->in_ifs_mode = false; + ew32(AIT, 0); + } + } + } else { + e_dbg("Not in Adaptive IFS mode!\n"); + } +} + +/** + * e1000_tbi_adjust_stats + * @hw: Struct containing variables accessed by shared code + * @frame_len: The length of the frame in question + * @mac_addr: The Ethernet destination address of the frame in question + * + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + */ +void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, + u32 frame_len, u8 *mac_addr) +{ + u64 carry_bit; + + /* First adjust the frame length. */ + frame_len--; + /* We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + carry_bit = 0x80000000 & stats->gorcl; + stats->gorcl += frame_len; + /* If the high bit of Gorcl (the low 32 bits of the Good Octets + * Received Count) was one before the addition, + * AND it is zero after, then we lost the carry out, + * need to add one to Gorch (Good Octets Received Count High). + * This could be simplified if all environments supported + * 64-bit integers. + */ + if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) + stats->gorch++; + /* Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if (*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + if (frame_len == hw->max_frame_size) { + /* In this case, the hardware has overcounted the number of + * oversize frames. + */ + if (stats->roc > 0) + stats->roc--; + } + + /* Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if (frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if (frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if (frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if (frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if (frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if (frame_len == 1522) { + stats->prc1522++; + } +} + +/** + * e1000_get_bus_info + * @hw: Struct containing variables accessed by shared code + * + * Gets the current PCI bus type, speed, and width of the hardware + */ +void e1000_get_bus_info(struct e1000_hw *hw) +{ + u32 status; + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + hw->bus_type = e1000_bus_type_pci; + hw->bus_speed = e1000_bus_speed_unknown; + hw->bus_width = e1000_bus_width_unknown; + break; + default: + status = er32(STATUS); + hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? + e1000_bus_type_pcix : e1000_bus_type_pci; + + if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? + e1000_bus_speed_66 : e1000_bus_speed_120; + } else if (hw->bus_type == e1000_bus_type_pci) { + hw->bus_speed = (status & E1000_STATUS_PCI66) ? + e1000_bus_speed_66 : e1000_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + hw->bus_speed = e1000_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + hw->bus_speed = e1000_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + hw->bus_speed = e1000_bus_speed_133; + break; + default: + hw->bus_speed = e1000_bus_speed_reserved; + break; + } + } + hw->bus_width = (status & E1000_STATUS_BUS64) ? + e1000_bus_width_64 : e1000_bus_width_32; + break; + } +} + +/** + * e1000_write_reg_io + * @hw: Struct containing variables accessed by shared code + * @offset: offset to write to + * @value: value to write + * + * Writes a value to one of the devices registers using port I/O (as opposed to + * memory mapped I/O). Only 82544 and newer devices support port I/O. + */ +static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) +{ + unsigned long io_addr = hw->io_base; + unsigned long io_data = hw->io_base + 4; + + e1000_io_write(hw, io_addr, offset); + e1000_io_write(hw, io_data, value); +} + +/** + * e1000_get_cable_length - Estimates the cable length. + * @hw: Struct containing variables accessed by shared code + * @min_length: The estimated minimum length + * @max_length: The estimated maximum length + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * This function always returns a ranged length (minimum & maximum). + * So for M88 phy's, this function interprets the one value returned from the + * register to the minimum and maximum range. + * For IGP phy's, the function calculates the range by the AGC registers. + */ +static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, + u16 *max_length) +{ + s32 ret_val; + u16 agc_value = 0; + u16 i, phy_data; + u16 cable_length; + + e_dbg("e1000_get_cable_length"); + + *min_length = *max_length = 0; + + /* Use old method for Phy older than IGP */ + if (hw->phy_type == e1000_phy_m88) { + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + /* Convert the enum value to ranged values */ + switch (cable_length) { + case e1000_cable_length_50: + *min_length = 0; + *max_length = e1000_igp_cable_length_50; + break; + case e1000_cable_length_50_80: + *min_length = e1000_igp_cable_length_50; + *max_length = e1000_igp_cable_length_80; + break; + case e1000_cable_length_80_110: + *min_length = e1000_igp_cable_length_80; + *max_length = e1000_igp_cable_length_110; + break; + case e1000_cable_length_110_140: + *min_length = e1000_igp_cable_length_110; + *max_length = e1000_igp_cable_length_140; + break; + case e1000_cable_length_140: + *min_length = e1000_igp_cable_length_140; + *max_length = e1000_igp_cable_length_170; + break; + default: + return -E1000_ERR_PHY; + break; + } + } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ + u16 cur_agc_value; + u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { + IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D + }; + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + + ret_val = + e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; + + /* Value bound check. */ + if ((cur_agc_value >= + IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) + || (cur_agc_value == 0)) + return -E1000_ERR_PHY; + + agc_value += cur_agc_value; + + /* Update minimal AGC value. */ + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; + } + + /* Remove the minimal AGC result for length < 50m */ + if (agc_value < + IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { + agc_value -= min_agc_value; + + /* Get the average length of the remaining 3 channels */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Get the average length of all the 4 channels. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + /* Set the range of the calculated length. */ + *min_length = ((e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) > 0) ? + (e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) : 0; + *max_length = e1000_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + } + + return E1000_SUCCESS; +} + +/** + * e1000_check_polarity - Check the cable polarity + * @hw: Struct containing variables accessed by shared code + * @polarity: output parameter : 0 - Polarity is not reversed + * 1 - Polarity is reversed. + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * For phy's older than IGP, this function simply reads the polarity bit in the + * Phy Status register. For IGP phy's, this bit is valid only if link speed is + * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will + * return 0. If the link speed is 1000 Mbps the polarity status is in the + * IGP01E1000_PHY_PCS_INIT_REG. + */ +static s32 e1000_check_polarity(struct e1000_hw *hw, + e1000_rev_polarity *polarity) +{ + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_check_polarity"); + + if (hw->phy_type == e1000_phy_m88) { + /* return the Polarity bit in the Status register. */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> + M88E1000_PSSR_REV_POLARITY_SHIFT) ? + e1000_rev_polarity_reversed : e1000_rev_polarity_normal; + + } else if (hw->phy_type == e1000_phy_igp) { + /* Read the Status register to check the speed */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to + * find the polarity status */ + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + + /* Read the GIG initialization PCS register (0x00B4) */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, + &phy_data); + if (ret_val) + return ret_val; + + /* Check the polarity bits */ + *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? + e1000_rev_polarity_reversed : + e1000_rev_polarity_normal; + } else { + /* For 10 Mbps, read the polarity bit in the status register. (for + * 100 Mbps this bit is always 0) */ + *polarity = + (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? + e1000_rev_polarity_reversed : + e1000_rev_polarity_normal; + } + } + return E1000_SUCCESS; +} + +/** + * e1000_check_downshift - Check if Downshift occurred + * @hw: Struct containing variables accessed by shared code + * @downshift: output parameter : 0 - No Downshift occurred. + * 1 - Downshift occurred. + * + * returns: - E1000_ERR_XXX + * E1000_SUCCESS + * + * For phy's older than IGP, this function reads the Downshift bit in the Phy + * Specific Status register. For IGP phy's, it reads the Downgrade bit in the + * Link Health register. In IGP this bit is latched high, so the driver must + * read it immediately after link is established. + */ +static s32 e1000_check_downshift(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + e_dbg("e1000_check_downshift"); + + if (hw->phy_type == e1000_phy_igp) { + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = + (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; + } else if (hw->phy_type == e1000_phy_m88) { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> + M88E1000_PSSR_DOWNSHIFT_SHIFT; + } + + return E1000_SUCCESS; +} + +/** + * e1000_config_dsp_after_link_change + * @hw: Struct containing variables accessed by shared code + * @link_up: was link up at the time this was called + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + * + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + */ + +static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) +{ + s32 ret_val; + u16 phy_data, phy_saved_data, speed, duplex, i; + static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { + IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D + }; + u16 min_length, max_length; + + e_dbg("e1000_config_dsp_after_link_change"); + + if (hw->phy_type != e1000_phy_igp) + return E1000_SUCCESS; + + if (link_up) { + ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + e_dbg("Error getting link speed and duplex\n"); + return ret_val; + } + + if (speed == SPEED_1000) { + + ret_val = + e1000_get_cable_length(hw, &min_length, + &max_length); + if (ret_val) + return ret_val; + + if ((hw->dsp_config_state == e1000_dsp_config_enabled) + && min_length >= e1000_igp_cable_length_50) { + + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = + e1000_read_phy_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= + ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = + e1000_write_phy_reg(hw, + dsp_reg_array + [i], phy_data); + if (ret_val) + return ret_val; + } + hw->dsp_config_state = + e1000_dsp_config_activated; + } + + if ((hw->ffe_config_state == e1000_ffe_config_enabled) + && (min_length < e1000_igp_cable_length_50)) { + + u16 ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_20; + u32 idle_errs = 0; + + /* clear previous idle error counts */ + ret_val = + e1000_read_phy_reg(hw, PHY_1000T_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + for (i = 0; i < ffe_idle_err_timeout; i++) { + udelay(1000); + ret_val = + e1000_read_phy_reg(hw, + PHY_1000T_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + idle_errs += + (phy_data & + SR_1000T_IDLE_ERROR_CNT); + if (idle_errs > + SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) + { + hw->ffe_config_state = + e1000_ffe_config_active; + + ret_val = + e1000_write_phy_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if (ret_val) + return ret_val; + break; + } + + if (idle_errs) + ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } + } + } else { + if (hw->dsp_config_state == e1000_dsp_config_activated) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = + e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + msleep(20); + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = + e1000_read_phy_reg(hw, dsp_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = + e1000_write_phy_reg(hw, dsp_reg_array[i], + phy_data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + msleep(20); + + /* Now enable the transmitter */ + ret_val = + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->dsp_config_state = e1000_dsp_config_enabled; + } + + if (hw->ffe_config_state == e1000_ffe_config_active) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = + e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + msleep(20); + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + msleep(20); + + /* Now enable the transmitter */ + ret_val = + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->ffe_config_state = e1000_ffe_config_enabled; + } + } + return E1000_SUCCESS; +} + +/** + * e1000_set_phy_mode - Set PHY to class A mode + * @hw: Struct containing variables accessed by shared code + * + * Assumes the following operations will follow to enable the new class mode. + * 1. Do a PHY soft reset + * 2. Restart auto-negotiation or force link. + */ +static s32 e1000_set_phy_mode(struct e1000_hw *hw) +{ + s32 ret_val; + u16 eeprom_data; + + e_dbg("e1000_set_phy_mode"); + + if ((hw->mac_type == e1000_82545_rev_3) && + (hw->media_type == e1000_media_type_copper)) { + ret_val = + e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, + &eeprom_data); + if (ret_val) { + return ret_val; + } + + if ((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, + 0x000B); + if (ret_val) + return ret_val; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, + 0x8104); + if (ret_val) + return ret_val; + + hw->phy_reset_disable = false; + } + } + + return E1000_SUCCESS; +} + +/** + * e1000_set_d3_lplu_state - set d3 link power state + * @hw: Struct containing variables accessed by shared code + * @active: true to enable lplu false to disable lplu. + * + * This function sets the lplu state according to the active flag. When + * activating lplu this function also disables smart speed and vise versa. + * lplu will not be activated unless the device autonegotiation advertisement + * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. + * + * returns: - E1000_ERR_PHY if fail to read/write the PHY + * E1000_SUCCESS at any other case. + */ +static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) +{ + s32 ret_val; + u16 phy_data; + e_dbg("e1000_set_d3_lplu_state"); + + if (hw->phy_type != e1000_phy_igp) + return E1000_SUCCESS; + + /* During driver activity LPLU should not be used or it will attain link + * from the lowest speeds starting from 10Mbps. The capability is used for + * Dx transitions and states */ + if (hw->mac_type == e1000_82541_rev_2 + || hw->mac_type == e1000_82547_rev_2) { + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); + if (ret_val) + return ret_val; + } + + if (!active) { + if (hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547_rev_2) { + phy_data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + phy_data); + if (ret_val) + return ret_val; + } + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during + * Dx states where the power conservation is most important. During + * driver activity we should enable SmartSpeed, so performance is + * maintained. */ + if (hw->smart_speed == e1000_smart_speed_on) { + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } else if (hw->smart_speed == e1000_smart_speed_off) { + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } + } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) + || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) + || (hw->autoneg_advertised == + AUTONEG_ADVERTISE_10_100_ALL)) { + + if (hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547_rev_2) { + phy_data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + phy_data); + if (ret_val) + return ret_val; + } + + /* When LPLU is enabled we should disable SmartSpeed */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + + } + return E1000_SUCCESS; +} + +/** + * e1000_set_vco_speed + * @hw: Struct containing variables accessed by shared code + * + * Change VCO speed register to improve Bit Error Rate performance of SERDES. + */ +static s32 e1000_set_vco_speed(struct e1000_hw *hw) +{ + s32 ret_val; + u16 default_page = 0; + u16 phy_data; + + e_dbg("e1000_set_vco_speed"); + + switch (hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + /* Set PHY register 30, page 5, bit 8 to 0 */ + + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Set PHY register 30, page 4, bit 11 to 1 */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; + + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} + + +/** + * e1000_enable_mng_pass_thru - check for bmc pass through + * @hw: Struct containing variables accessed by shared code + * + * Verifies the hardware needs to allow ARPs to be processed by the host + * returns: - true/false + */ +u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + + if (hw->asf_firmware_present) { + manc = er32(MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN) || + !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) + return false; + if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) + return true; + } + return false; +} + +static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) +{ + s32 ret_val; + u16 mii_status_reg; + u16 i; + + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the NO link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) + break; + msleep(100); + } + + /* Recommended delay time after link has been lost */ + msleep(1000); + + /* Now we will re-enable th transmitter on the PHY */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + msleep(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if (ret_val) + return ret_val; + msleep(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if (ret_val) + return ret_val; + msleep(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be set. + */ + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msleep(100); + } + return E1000_SUCCESS; +} + +/** + * e1000_get_auto_rd_done + * @hw: Struct containing variables accessed by shared code + * + * Check for EEPROM Auto Read bit done. + * returns: - E1000_ERR_RESET if fail to reset MAC + * E1000_SUCCESS at any other case. + */ +static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) +{ + e_dbg("e1000_get_auto_rd_done"); + msleep(5); + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_cfg_done + * @hw: Struct containing variables accessed by shared code + * + * Checks if the PHY configuration is done + * returns: - E1000_ERR_RESET if fail to reset MAC + * E1000_SUCCESS at any other case. + */ +static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) +{ + e_dbg("e1000_get_phy_cfg_done"); + msleep(10); + return E1000_SUCCESS; +} |