summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/alteon
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/alteon')
-rw-r--r--drivers/net/ethernet/alteon/Kconfig47
-rw-r--r--drivers/net/ethernet/alteon/Makefile5
-rw-r--r--drivers/net/ethernet/alteon/acenic.c3206
-rw-r--r--drivers/net/ethernet/alteon/acenic.h790
4 files changed, 4048 insertions, 0 deletions
diff --git a/drivers/net/ethernet/alteon/Kconfig b/drivers/net/ethernet/alteon/Kconfig
new file mode 100644
index 000000000000..68862e4d145c
--- /dev/null
+++ b/drivers/net/ethernet/alteon/Kconfig
@@ -0,0 +1,47 @@
+#
+# Alteon network device configuration
+#
+
+config NET_VENDOR_ALTEON
+ bool "Alteon devices"
+ depends on PCI
+ ---help---
+ If you have a network (Ethernet) card belonging to this class, say Y
+ and read the Ethernet-HOWTO, available from
+ <http://www.tldp.org/docs.html#howto>.
+
+ Note that the answer to this question doesn't directly affect the
+ kernel: saying N will just cause the configurator to skip all
+ the questions about Alteon cards. If you say Y, you will be asked for
+ your specific card in the following questions.
+
+if NET_VENDOR_ALTEON
+
+config ACENIC
+ tristate "Alteon AceNIC/3Com 3C985/NetGear GA620 Gigabit support"
+ depends on PCI
+ ---help---
+ Say Y here if you have an Alteon AceNIC, 3Com 3C985(B), NetGear
+ GA620, SGI Gigabit or Farallon PN9000-SX PCI Gigabit Ethernet
+ adapter. The driver allows for using the Jumbo Frame option (9000
+ bytes/frame) however it requires that your switches can handle this
+ as well. To enable Jumbo Frames, add `mtu 9000' to your ifconfig
+ line.
+
+ To compile this driver as a module, choose M here: the
+ module will be called acenic.
+
+config ACENIC_OMIT_TIGON_I
+ bool "Omit support for old Tigon I based AceNICs"
+ depends on ACENIC
+ ---help---
+ Say Y here if you only have Tigon II based AceNICs and want to leave
+ out support for the older Tigon I based cards which are no longer
+ being sold (ie. the original Alteon AceNIC and 3Com 3C985 (non B
+ version)). This will reduce the size of the driver object by
+ app. 100KB. If you are not sure whether your card is a Tigon I or a
+ Tigon II, say N here.
+
+ The safe and default value for this is N.
+
+endif # NET_VENDOR_ALTEON
diff --git a/drivers/net/ethernet/alteon/Makefile b/drivers/net/ethernet/alteon/Makefile
new file mode 100644
index 000000000000..a2ca173f2a50
--- /dev/null
+++ b/drivers/net/ethernet/alteon/Makefile
@@ -0,0 +1,5 @@
+#
+# Makefile for the Alteon network device drivers.
+#
+
+obj-$(CONFIG_ACENIC) += acenic.o
diff --git a/drivers/net/ethernet/alteon/acenic.c b/drivers/net/ethernet/alteon/acenic.c
new file mode 100644
index 000000000000..31798f5f5d06
--- /dev/null
+++ b/drivers/net/ethernet/alteon/acenic.c
@@ -0,0 +1,3206 @@
+/*
+ * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
+ * and other Tigon based cards.
+ *
+ * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
+ *
+ * Thanks to Alteon and 3Com for providing hardware and documentation
+ * enabling me to write this driver.
+ *
+ * A mailing list for discussing the use of this driver has been
+ * setup, please subscribe to the lists if you have any questions
+ * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
+ * see how to subscribe.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Additional credits:
+ * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
+ * dump support. The trace dump support has not been
+ * integrated yet however.
+ * Troy Benjegerdes: Big Endian (PPC) patches.
+ * Nate Stahl: Better out of memory handling and stats support.
+ * Aman Singla: Nasty race between interrupt handler and tx code dealing
+ * with 'testing the tx_ret_csm and setting tx_full'
+ * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
+ * infrastructure and Sparc support
+ * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
+ * driver under Linux/Sparc64
+ * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
+ * ETHTOOL_GDRVINFO support
+ * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
+ * handler and close() cleanup.
+ * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
+ * memory mapped IO is enabled to
+ * make the driver work on RS/6000.
+ * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
+ * where the driver would disable
+ * bus master mode if it had to disable
+ * write and invalidate.
+ * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
+ * endian systems.
+ * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
+ * rx producer index when
+ * flushing the Jumbo ring.
+ * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
+ * driver init path.
+ * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
+ */
+
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/ioport.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <linux/kernel.h>
+#include <linux/netdevice.h>
+#include <linux/etherdevice.h>
+#include <linux/skbuff.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/sockios.h>
+#include <linux/firmware.h>
+#include <linux/slab.h>
+#include <linux/prefetch.h>
+#include <linux/if_vlan.h>
+
+#ifdef SIOCETHTOOL
+#include <linux/ethtool.h>
+#endif
+
+#include <net/sock.h>
+#include <net/ip.h>
+
+#include <asm/system.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/byteorder.h>
+#include <asm/uaccess.h>
+
+
+#define DRV_NAME "acenic"
+
+#undef INDEX_DEBUG
+
+#ifdef CONFIG_ACENIC_OMIT_TIGON_I
+#define ACE_IS_TIGON_I(ap) 0
+#define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
+#else
+#define ACE_IS_TIGON_I(ap) (ap->version == 1)
+#define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
+#endif
+
+#ifndef PCI_VENDOR_ID_ALTEON
+#define PCI_VENDOR_ID_ALTEON 0x12ae
+#endif
+#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
+#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
+#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
+#endif
+#ifndef PCI_DEVICE_ID_3COM_3C985
+#define PCI_DEVICE_ID_3COM_3C985 0x0001
+#endif
+#ifndef PCI_VENDOR_ID_NETGEAR
+#define PCI_VENDOR_ID_NETGEAR 0x1385
+#define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
+#endif
+#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
+#define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
+#endif
+
+
+/*
+ * Farallon used the DEC vendor ID by mistake and they seem not
+ * to care - stinky!
+ */
+#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
+#define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
+#endif
+#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
+#define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
+#endif
+#ifndef PCI_VENDOR_ID_SGI
+#define PCI_VENDOR_ID_SGI 0x10a9
+#endif
+#ifndef PCI_DEVICE_ID_SGI_ACENIC
+#define PCI_DEVICE_ID_SGI_ACENIC 0x0009
+#endif
+
+static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
+ { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ /*
+ * Farallon used the DEC vendor ID on their cards incorrectly,
+ * then later Alteon's ID.
+ */
+ { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
+ PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
+ { }
+};
+MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
+
+#define ace_sync_irq(irq) synchronize_irq(irq)
+
+#ifndef offset_in_page
+#define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
+#endif
+
+#define ACE_MAX_MOD_PARMS 8
+#define BOARD_IDX_STATIC 0
+#define BOARD_IDX_OVERFLOW -1
+
+#include "acenic.h"
+
+/*
+ * These must be defined before the firmware is included.
+ */
+#define MAX_TEXT_LEN 96*1024
+#define MAX_RODATA_LEN 8*1024
+#define MAX_DATA_LEN 2*1024
+
+#ifndef tigon2FwReleaseLocal
+#define tigon2FwReleaseLocal 0
+#endif
+
+/*
+ * This driver currently supports Tigon I and Tigon II based cards
+ * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
+ * GA620. The driver should also work on the SGI, DEC and Farallon
+ * versions of the card, however I have not been able to test that
+ * myself.
+ *
+ * This card is really neat, it supports receive hardware checksumming
+ * and jumbo frames (up to 9000 bytes) and does a lot of work in the
+ * firmware. Also the programming interface is quite neat, except for
+ * the parts dealing with the i2c eeprom on the card ;-)
+ *
+ * Using jumbo frames:
+ *
+ * To enable jumbo frames, simply specify an mtu between 1500 and 9000
+ * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
+ * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
+ * interface number and <MTU> being the MTU value.
+ *
+ * Module parameters:
+ *
+ * When compiled as a loadable module, the driver allows for a number
+ * of module parameters to be specified. The driver supports the
+ * following module parameters:
+ *
+ * trace=<val> - Firmware trace level. This requires special traced
+ * firmware to replace the firmware supplied with
+ * the driver - for debugging purposes only.
+ *
+ * link=<val> - Link state. Normally you want to use the default link
+ * parameters set by the driver. This can be used to
+ * override these in case your switch doesn't negotiate
+ * the link properly. Valid values are:
+ * 0x0001 - Force half duplex link.
+ * 0x0002 - Do not negotiate line speed with the other end.
+ * 0x0010 - 10Mbit/sec link.
+ * 0x0020 - 100Mbit/sec link.
+ * 0x0040 - 1000Mbit/sec link.
+ * 0x0100 - Do not negotiate flow control.
+ * 0x0200 - Enable RX flow control Y
+ * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
+ * Default value is 0x0270, ie. enable link+flow
+ * control negotiation. Negotiating the highest
+ * possible link speed with RX flow control enabled.
+ *
+ * When disabling link speed negotiation, only one link
+ * speed is allowed to be specified!
+ *
+ * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
+ * to wait for more packets to arive before
+ * interrupting the host, from the time the first
+ * packet arrives.
+ *
+ * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
+ * to wait for more packets to arive in the transmit ring,
+ * before interrupting the host, after transmitting the
+ * first packet in the ring.
+ *
+ * max_tx_desc=<val> - maximum number of transmit descriptors
+ * (packets) transmitted before interrupting the host.
+ *
+ * max_rx_desc=<val> - maximum number of receive descriptors
+ * (packets) received before interrupting the host.
+ *
+ * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
+ * increments of the NIC's on board memory to be used for
+ * transmit and receive buffers. For the 1MB NIC app. 800KB
+ * is available, on the 1/2MB NIC app. 300KB is available.
+ * 68KB will always be available as a minimum for both
+ * directions. The default value is a 50/50 split.
+ * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
+ * operations, default (1) is to always disable this as
+ * that is what Alteon does on NT. I have not been able
+ * to measure any real performance differences with
+ * this on my systems. Set <val>=0 if you want to
+ * enable these operations.
+ *
+ * If you use more than one NIC, specify the parameters for the
+ * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
+ * run tracing on NIC #2 but not on NIC #1 and #3.
+ *
+ * TODO:
+ *
+ * - Proper multicast support.
+ * - NIC dump support.
+ * - More tuning parameters.
+ *
+ * The mini ring is not used under Linux and I am not sure it makes sense
+ * to actually use it.
+ *
+ * New interrupt handler strategy:
+ *
+ * The old interrupt handler worked using the traditional method of
+ * replacing an skbuff with a new one when a packet arrives. However
+ * the rx rings do not need to contain a static number of buffer
+ * descriptors, thus it makes sense to move the memory allocation out
+ * of the main interrupt handler and do it in a bottom half handler
+ * and only allocate new buffers when the number of buffers in the
+ * ring is below a certain threshold. In order to avoid starving the
+ * NIC under heavy load it is however necessary to force allocation
+ * when hitting a minimum threshold. The strategy for alloction is as
+ * follows:
+ *
+ * RX_LOW_BUF_THRES - allocate buffers in the bottom half
+ * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
+ * the buffers in the interrupt handler
+ * RX_RING_THRES - maximum number of buffers in the rx ring
+ * RX_MINI_THRES - maximum number of buffers in the mini ring
+ * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
+ *
+ * One advantagous side effect of this allocation approach is that the
+ * entire rx processing can be done without holding any spin lock
+ * since the rx rings and registers are totally independent of the tx
+ * ring and its registers. This of course includes the kmalloc's of
+ * new skb's. Thus start_xmit can run in parallel with rx processing
+ * and the memory allocation on SMP systems.
+ *
+ * Note that running the skb reallocation in a bottom half opens up
+ * another can of races which needs to be handled properly. In
+ * particular it can happen that the interrupt handler tries to run
+ * the reallocation while the bottom half is either running on another
+ * CPU or was interrupted on the same CPU. To get around this the
+ * driver uses bitops to prevent the reallocation routines from being
+ * reentered.
+ *
+ * TX handling can also be done without holding any spin lock, wheee
+ * this is fun! since tx_ret_csm is only written to by the interrupt
+ * handler. The case to be aware of is when shutting down the device
+ * and cleaning up where it is necessary to make sure that
+ * start_xmit() is not running while this is happening. Well DaveM
+ * informs me that this case is already protected against ... bye bye
+ * Mr. Spin Lock, it was nice to know you.
+ *
+ * TX interrupts are now partly disabled so the NIC will only generate
+ * TX interrupts for the number of coal ticks, not for the number of
+ * TX packets in the queue. This should reduce the number of TX only,
+ * ie. when no RX processing is done, interrupts seen.
+ */
+
+/*
+ * Threshold values for RX buffer allocation - the low water marks for
+ * when to start refilling the rings are set to 75% of the ring
+ * sizes. It seems to make sense to refill the rings entirely from the
+ * intrrupt handler once it gets below the panic threshold, that way
+ * we don't risk that the refilling is moved to another CPU when the
+ * one running the interrupt handler just got the slab code hot in its
+ * cache.
+ */
+#define RX_RING_SIZE 72
+#define RX_MINI_SIZE 64
+#define RX_JUMBO_SIZE 48
+
+#define RX_PANIC_STD_THRES 16
+#define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
+#define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
+#define RX_PANIC_MINI_THRES 12
+#define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
+#define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
+#define RX_PANIC_JUMBO_THRES 6
+#define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
+#define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
+
+
+/*
+ * Size of the mini ring entries, basically these just should be big
+ * enough to take TCP ACKs
+ */
+#define ACE_MINI_SIZE 100
+
+#define ACE_MINI_BUFSIZE ACE_MINI_SIZE
+#define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
+#define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
+
+/*
+ * There seems to be a magic difference in the effect between 995 and 996
+ * but little difference between 900 and 995 ... no idea why.
+ *
+ * There is now a default set of tuning parameters which is set, depending
+ * on whether or not the user enables Jumbo frames. It's assumed that if
+ * Jumbo frames are enabled, the user wants optimal tuning for that case.
+ */
+#define DEF_TX_COAL 400 /* 996 */
+#define DEF_TX_MAX_DESC 60 /* was 40 */
+#define DEF_RX_COAL 120 /* 1000 */
+#define DEF_RX_MAX_DESC 25
+#define DEF_TX_RATIO 21 /* 24 */
+
+#define DEF_JUMBO_TX_COAL 20
+#define DEF_JUMBO_TX_MAX_DESC 60
+#define DEF_JUMBO_RX_COAL 30
+#define DEF_JUMBO_RX_MAX_DESC 6
+#define DEF_JUMBO_TX_RATIO 21
+
+#if tigon2FwReleaseLocal < 20001118
+/*
+ * Standard firmware and early modifications duplicate
+ * IRQ load without this flag (coal timer is never reset).
+ * Note that with this flag tx_coal should be less than
+ * time to xmit full tx ring.
+ * 400usec is not so bad for tx ring size of 128.
+ */
+#define TX_COAL_INTS_ONLY 1 /* worth it */
+#else
+/*
+ * With modified firmware, this is not necessary, but still useful.
+ */
+#define TX_COAL_INTS_ONLY 1
+#endif
+
+#define DEF_TRACE 0
+#define DEF_STAT (2 * TICKS_PER_SEC)
+
+
+static int link_state[ACE_MAX_MOD_PARMS];
+static int trace[ACE_MAX_MOD_PARMS];
+static int tx_coal_tick[ACE_MAX_MOD_PARMS];
+static int rx_coal_tick[ACE_MAX_MOD_PARMS];
+static int max_tx_desc[ACE_MAX_MOD_PARMS];
+static int max_rx_desc[ACE_MAX_MOD_PARMS];
+static int tx_ratio[ACE_MAX_MOD_PARMS];
+static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
+
+MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
+#ifndef CONFIG_ACENIC_OMIT_TIGON_I
+MODULE_FIRMWARE("acenic/tg1.bin");
+#endif
+MODULE_FIRMWARE("acenic/tg2.bin");
+
+module_param_array_named(link, link_state, int, NULL, 0);
+module_param_array(trace, int, NULL, 0);
+module_param_array(tx_coal_tick, int, NULL, 0);
+module_param_array(max_tx_desc, int, NULL, 0);
+module_param_array(rx_coal_tick, int, NULL, 0);
+module_param_array(max_rx_desc, int, NULL, 0);
+module_param_array(tx_ratio, int, NULL, 0);
+MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
+MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
+MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
+MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
+MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
+MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
+MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
+
+
+static const char version[] __devinitconst =
+ "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
+ " http://home.cern.ch/~jes/gige/acenic.html\n";
+
+static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
+static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
+static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
+
+static const struct ethtool_ops ace_ethtool_ops = {
+ .get_settings = ace_get_settings,
+ .set_settings = ace_set_settings,
+ .get_drvinfo = ace_get_drvinfo,
+};
+
+static void ace_watchdog(struct net_device *dev);
+
+static const struct net_device_ops ace_netdev_ops = {
+ .ndo_open = ace_open,
+ .ndo_stop = ace_close,
+ .ndo_tx_timeout = ace_watchdog,
+ .ndo_get_stats = ace_get_stats,
+ .ndo_start_xmit = ace_start_xmit,
+ .ndo_set_multicast_list = ace_set_multicast_list,
+ .ndo_validate_addr = eth_validate_addr,
+ .ndo_set_mac_address = ace_set_mac_addr,
+ .ndo_change_mtu = ace_change_mtu,
+};
+
+static int __devinit acenic_probe_one(struct pci_dev *pdev,
+ const struct pci_device_id *id)
+{
+ struct net_device *dev;
+ struct ace_private *ap;
+ static int boards_found;
+
+ dev = alloc_etherdev(sizeof(struct ace_private));
+ if (dev == NULL) {
+ printk(KERN_ERR "acenic: Unable to allocate "
+ "net_device structure!\n");
+ return -ENOMEM;
+ }
+
+ SET_NETDEV_DEV(dev, &pdev->dev);
+
+ ap = netdev_priv(dev);
+ ap->pdev = pdev;
+ ap->name = pci_name(pdev);
+
+ dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
+ dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
+
+ dev->watchdog_timeo = 5*HZ;
+
+ dev->netdev_ops = &ace_netdev_ops;
+ SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
+
+ /* we only display this string ONCE */
+ if (!boards_found)
+ printk(version);
+
+ if (pci_enable_device(pdev))
+ goto fail_free_netdev;
+
+ /*
+ * Enable master mode before we start playing with the
+ * pci_command word since pci_set_master() will modify
+ * it.
+ */
+ pci_set_master(pdev);
+
+ pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
+
+ /* OpenFirmware on Mac's does not set this - DOH.. */
+ if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
+ printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
+ "access - was not enabled by BIOS/Firmware\n",
+ ap->name);
+ ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
+ pci_write_config_word(ap->pdev, PCI_COMMAND,
+ ap->pci_command);
+ wmb();
+ }
+
+ pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
+ if (ap->pci_latency <= 0x40) {
+ ap->pci_latency = 0x40;
+ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
+ }
+
+ /*
+ * Remap the regs into kernel space - this is abuse of
+ * dev->base_addr since it was means for I/O port
+ * addresses but who gives a damn.
+ */
+ dev->base_addr = pci_resource_start(pdev, 0);
+ ap->regs = ioremap(dev->base_addr, 0x4000);
+ if (!ap->regs) {
+ printk(KERN_ERR "%s: Unable to map I/O register, "
+ "AceNIC %i will be disabled.\n",
+ ap->name, boards_found);
+ goto fail_free_netdev;
+ }
+
+ switch(pdev->vendor) {
+ case PCI_VENDOR_ID_ALTEON:
+ if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
+ printk(KERN_INFO "%s: Farallon PN9100-T ",
+ ap->name);
+ } else {
+ printk(KERN_INFO "%s: Alteon AceNIC ",
+ ap->name);
+ }
+ break;
+ case PCI_VENDOR_ID_3COM:
+ printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
+ break;
+ case PCI_VENDOR_ID_NETGEAR:
+ printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
+ break;
+ case PCI_VENDOR_ID_DEC:
+ if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
+ printk(KERN_INFO "%s: Farallon PN9000-SX ",
+ ap->name);
+ break;
+ }
+ case PCI_VENDOR_ID_SGI:
+ printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
+ break;
+ default:
+ printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
+ break;
+ }
+
+ printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
+ printk("irq %d\n", pdev->irq);
+
+#ifdef CONFIG_ACENIC_OMIT_TIGON_I
+ if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
+ printk(KERN_ERR "%s: Driver compiled without Tigon I"
+ " support - NIC disabled\n", dev->name);
+ goto fail_uninit;
+ }
+#endif
+
+ if (ace_allocate_descriptors(dev))
+ goto fail_free_netdev;
+
+#ifdef MODULE
+ if (boards_found >= ACE_MAX_MOD_PARMS)
+ ap->board_idx = BOARD_IDX_OVERFLOW;
+ else
+ ap->board_idx = boards_found;
+#else
+ ap->board_idx = BOARD_IDX_STATIC;
+#endif
+
+ if (ace_init(dev))
+ goto fail_free_netdev;
+
+ if (register_netdev(dev)) {
+ printk(KERN_ERR "acenic: device registration failed\n");
+ goto fail_uninit;
+ }
+ ap->name = dev->name;
+
+ if (ap->pci_using_dac)
+ dev->features |= NETIF_F_HIGHDMA;
+
+ pci_set_drvdata(pdev, dev);
+
+ boards_found++;
+ return 0;
+
+ fail_uninit:
+ ace_init_cleanup(dev);
+ fail_free_netdev:
+ free_netdev(dev);
+ return -ENODEV;
+}
+
+static void __devexit acenic_remove_one(struct pci_dev *pdev)
+{
+ struct net_device *dev = pci_get_drvdata(pdev);
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ short i;
+
+ unregister_netdev(dev);
+
+ writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
+ if (ap->version >= 2)
+ writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
+
+ /*
+ * This clears any pending interrupts
+ */
+ writel(1, &regs->Mb0Lo);
+ readl(&regs->CpuCtrl); /* flush */
+
+ /*
+ * Make sure no other CPUs are processing interrupts
+ * on the card before the buffers are being released.
+ * Otherwise one might experience some `interesting'
+ * effects.
+ *
+ * Then release the RX buffers - jumbo buffers were
+ * already released in ace_close().
+ */
+ ace_sync_irq(dev->irq);
+
+ for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
+ struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
+
+ if (skb) {
+ struct ring_info *ringp;
+ dma_addr_t mapping;
+
+ ringp = &ap->skb->rx_std_skbuff[i];
+ mapping = dma_unmap_addr(ringp, mapping);
+ pci_unmap_page(ap->pdev, mapping,
+ ACE_STD_BUFSIZE,
+ PCI_DMA_FROMDEVICE);
+
+ ap->rx_std_ring[i].size = 0;
+ ap->skb->rx_std_skbuff[i].skb = NULL;
+ dev_kfree_skb(skb);
+ }
+ }
+
+ if (ap->version >= 2) {
+ for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
+ struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
+
+ if (skb) {
+ struct ring_info *ringp;
+ dma_addr_t mapping;
+
+ ringp = &ap->skb->rx_mini_skbuff[i];
+ mapping = dma_unmap_addr(ringp,mapping);
+ pci_unmap_page(ap->pdev, mapping,
+ ACE_MINI_BUFSIZE,
+ PCI_DMA_FROMDEVICE);
+
+ ap->rx_mini_ring[i].size = 0;
+ ap->skb->rx_mini_skbuff[i].skb = NULL;
+ dev_kfree_skb(skb);
+ }
+ }
+ }
+
+ for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
+ struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
+ if (skb) {
+ struct ring_info *ringp;
+ dma_addr_t mapping;
+
+ ringp = &ap->skb->rx_jumbo_skbuff[i];
+ mapping = dma_unmap_addr(ringp, mapping);
+ pci_unmap_page(ap->pdev, mapping,
+ ACE_JUMBO_BUFSIZE,
+ PCI_DMA_FROMDEVICE);
+
+ ap->rx_jumbo_ring[i].size = 0;
+ ap->skb->rx_jumbo_skbuff[i].skb = NULL;
+ dev_kfree_skb(skb);
+ }
+ }
+
+ ace_init_cleanup(dev);
+ free_netdev(dev);
+}
+
+static struct pci_driver acenic_pci_driver = {
+ .name = "acenic",
+ .id_table = acenic_pci_tbl,
+ .probe = acenic_probe_one,
+ .remove = __devexit_p(acenic_remove_one),
+};
+
+static int __init acenic_init(void)
+{
+ return pci_register_driver(&acenic_pci_driver);
+}
+
+static void __exit acenic_exit(void)
+{
+ pci_unregister_driver(&acenic_pci_driver);
+}
+
+module_init(acenic_init);
+module_exit(acenic_exit);
+
+static void ace_free_descriptors(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ int size;
+
+ if (ap->rx_std_ring != NULL) {
+ size = (sizeof(struct rx_desc) *
+ (RX_STD_RING_ENTRIES +
+ RX_JUMBO_RING_ENTRIES +
+ RX_MINI_RING_ENTRIES +
+ RX_RETURN_RING_ENTRIES));
+ pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
+ ap->rx_ring_base_dma);
+ ap->rx_std_ring = NULL;
+ ap->rx_jumbo_ring = NULL;
+ ap->rx_mini_ring = NULL;
+ ap->rx_return_ring = NULL;
+ }
+ if (ap->evt_ring != NULL) {
+ size = (sizeof(struct event) * EVT_RING_ENTRIES);
+ pci_free_consistent(ap->pdev, size, ap->evt_ring,
+ ap->evt_ring_dma);
+ ap->evt_ring = NULL;
+ }
+ if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
+ size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
+ pci_free_consistent(ap->pdev, size, ap->tx_ring,
+ ap->tx_ring_dma);
+ }
+ ap->tx_ring = NULL;
+
+ if (ap->evt_prd != NULL) {
+ pci_free_consistent(ap->pdev, sizeof(u32),
+ (void *)ap->evt_prd, ap->evt_prd_dma);
+ ap->evt_prd = NULL;
+ }
+ if (ap->rx_ret_prd != NULL) {
+ pci_free_consistent(ap->pdev, sizeof(u32),
+ (void *)ap->rx_ret_prd,
+ ap->rx_ret_prd_dma);
+ ap->rx_ret_prd = NULL;
+ }
+ if (ap->tx_csm != NULL) {
+ pci_free_consistent(ap->pdev, sizeof(u32),
+ (void *)ap->tx_csm, ap->tx_csm_dma);
+ ap->tx_csm = NULL;
+ }
+}
+
+
+static int ace_allocate_descriptors(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ int size;
+
+ size = (sizeof(struct rx_desc) *
+ (RX_STD_RING_ENTRIES +
+ RX_JUMBO_RING_ENTRIES +
+ RX_MINI_RING_ENTRIES +
+ RX_RETURN_RING_ENTRIES));
+
+ ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
+ &ap->rx_ring_base_dma);
+ if (ap->rx_std_ring == NULL)
+ goto fail;
+
+ ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
+ ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
+ ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
+
+ size = (sizeof(struct event) * EVT_RING_ENTRIES);
+
+ ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
+
+ if (ap->evt_ring == NULL)
+ goto fail;
+
+ /*
+ * Only allocate a host TX ring for the Tigon II, the Tigon I
+ * has to use PCI registers for this ;-(
+ */
+ if (!ACE_IS_TIGON_I(ap)) {
+ size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
+
+ ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
+ &ap->tx_ring_dma);
+
+ if (ap->tx_ring == NULL)
+ goto fail;
+ }
+
+ ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
+ &ap->evt_prd_dma);
+ if (ap->evt_prd == NULL)
+ goto fail;
+
+ ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
+ &ap->rx_ret_prd_dma);
+ if (ap->rx_ret_prd == NULL)
+ goto fail;
+
+ ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
+ &ap->tx_csm_dma);
+ if (ap->tx_csm == NULL)
+ goto fail;
+
+ return 0;
+
+fail:
+ /* Clean up. */
+ ace_init_cleanup(dev);
+ return 1;
+}
+
+
+/*
+ * Generic cleanup handling data allocated during init. Used when the
+ * module is unloaded or if an error occurs during initialization
+ */
+static void ace_init_cleanup(struct net_device *dev)
+{
+ struct ace_private *ap;
+
+ ap = netdev_priv(dev);
+
+ ace_free_descriptors(dev);
+
+ if (ap->info)
+ pci_free_consistent(ap->pdev, sizeof(struct ace_info),
+ ap->info, ap->info_dma);
+ kfree(ap->skb);
+ kfree(ap->trace_buf);
+
+ if (dev->irq)
+ free_irq(dev->irq, dev);
+
+ iounmap(ap->regs);
+}
+
+
+/*
+ * Commands are considered to be slow.
+ */
+static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
+{
+ u32 idx;
+
+ idx = readl(&regs->CmdPrd);
+
+ writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
+ idx = (idx + 1) % CMD_RING_ENTRIES;
+
+ writel(idx, &regs->CmdPrd);
+}
+
+
+static int __devinit ace_init(struct net_device *dev)
+{
+ struct ace_private *ap;
+ struct ace_regs __iomem *regs;
+ struct ace_info *info = NULL;
+ struct pci_dev *pdev;
+ unsigned long myjif;
+ u64 tmp_ptr;
+ u32 tig_ver, mac1, mac2, tmp, pci_state;
+ int board_idx, ecode = 0;
+ short i;
+ unsigned char cache_size;
+
+ ap = netdev_priv(dev);
+ regs = ap->regs;
+
+ board_idx = ap->board_idx;
+
+ /*
+ * aman@sgi.com - its useful to do a NIC reset here to
+ * address the `Firmware not running' problem subsequent
+ * to any crashes involving the NIC
+ */
+ writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
+ readl(&regs->HostCtrl); /* PCI write posting */
+ udelay(5);
+
+ /*
+ * Don't access any other registers before this point!
+ */
+#ifdef __BIG_ENDIAN
+ /*
+ * This will most likely need BYTE_SWAP once we switch
+ * to using __raw_writel()
+ */
+ writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
+ &regs->HostCtrl);
+#else
+ writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
+ &regs->HostCtrl);
+#endif
+ readl(&regs->HostCtrl); /* PCI write posting */
+
+ /*
+ * Stop the NIC CPU and clear pending interrupts
+ */
+ writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
+ readl(&regs->CpuCtrl); /* PCI write posting */
+ writel(0, &regs->Mb0Lo);
+
+ tig_ver = readl(&regs->HostCtrl) >> 28;
+
+ switch(tig_ver){
+#ifndef CONFIG_ACENIC_OMIT_TIGON_I
+ case 4:
+ case 5:
+ printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
+ tig_ver, ap->firmware_major, ap->firmware_minor,
+ ap->firmware_fix);
+ writel(0, &regs->LocalCtrl);
+ ap->version = 1;
+ ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
+ break;
+#endif
+ case 6:
+ printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
+ tig_ver, ap->firmware_major, ap->firmware_minor,
+ ap->firmware_fix);
+ writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
+ readl(&regs->CpuBCtrl); /* PCI write posting */
+ /*
+ * The SRAM bank size does _not_ indicate the amount
+ * of memory on the card, it controls the _bank_ size!
+ * Ie. a 1MB AceNIC will have two banks of 512KB.
+ */
+ writel(SRAM_BANK_512K, &regs->LocalCtrl);
+ writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
+ ap->version = 2;
+ ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
+ break;
+ default:
+ printk(KERN_WARNING " Unsupported Tigon version detected "
+ "(%i)\n", tig_ver);
+ ecode = -ENODEV;
+ goto init_error;
+ }
+
+ /*
+ * ModeStat _must_ be set after the SRAM settings as this change
+ * seems to corrupt the ModeStat and possible other registers.
+ * The SRAM settings survive resets and setting it to the same
+ * value a second time works as well. This is what caused the
+ * `Firmware not running' problem on the Tigon II.
+ */
+#ifdef __BIG_ENDIAN
+ writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
+ ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
+#else
+ writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
+ ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
+#endif
+ readl(&regs->ModeStat); /* PCI write posting */
+
+ mac1 = 0;
+ for(i = 0; i < 4; i++) {
+ int t;
+
+ mac1 = mac1 << 8;
+ t = read_eeprom_byte(dev, 0x8c+i);
+ if (t < 0) {
+ ecode = -EIO;
+ goto init_error;
+ } else
+ mac1 |= (t & 0xff);
+ }
+ mac2 = 0;
+ for(i = 4; i < 8; i++) {
+ int t;
+
+ mac2 = mac2 << 8;
+ t = read_eeprom_byte(dev, 0x8c+i);
+ if (t < 0) {
+ ecode = -EIO;
+ goto init_error;
+ } else
+ mac2 |= (t & 0xff);
+ }
+
+ writel(mac1, &regs->MacAddrHi);
+ writel(mac2, &regs->MacAddrLo);
+
+ dev->dev_addr[0] = (mac1 >> 8) & 0xff;
+ dev->dev_addr[1] = mac1 & 0xff;
+ dev->dev_addr[2] = (mac2 >> 24) & 0xff;
+ dev->dev_addr[3] = (mac2 >> 16) & 0xff;
+ dev->dev_addr[4] = (mac2 >> 8) & 0xff;
+ dev->dev_addr[5] = mac2 & 0xff;
+
+ printk("MAC: %pM\n", dev->dev_addr);
+
+ /*
+ * Looks like this is necessary to deal with on all architectures,
+ * even this %$#%$# N440BX Intel based thing doesn't get it right.
+ * Ie. having two NICs in the machine, one will have the cache
+ * line set at boot time, the other will not.
+ */
+ pdev = ap->pdev;
+ pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
+ cache_size <<= 2;
+ if (cache_size != SMP_CACHE_BYTES) {
+ printk(KERN_INFO " PCI cache line size set incorrectly "
+ "(%i bytes) by BIOS/FW, ", cache_size);
+ if (cache_size > SMP_CACHE_BYTES)
+ printk("expecting %i\n", SMP_CACHE_BYTES);
+ else {
+ printk("correcting to %i\n", SMP_CACHE_BYTES);
+ pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
+ SMP_CACHE_BYTES >> 2);
+ }
+ }
+
+ pci_state = readl(&regs->PciState);
+ printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
+ "latency: %i clks\n",
+ (pci_state & PCI_32BIT) ? 32 : 64,
+ (pci_state & PCI_66MHZ) ? 66 : 33,
+ ap->pci_latency);
+
+ /*
+ * Set the max DMA transfer size. Seems that for most systems
+ * the performance is better when no MAX parameter is
+ * set. However for systems enabling PCI write and invalidate,
+ * DMA writes must be set to the L1 cache line size to get
+ * optimal performance.
+ *
+ * The default is now to turn the PCI write and invalidate off
+ * - that is what Alteon does for NT.
+ */
+ tmp = READ_CMD_MEM | WRITE_CMD_MEM;
+ if (ap->version >= 2) {
+ tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
+ /*
+ * Tuning parameters only supported for 8 cards
+ */
+ if (board_idx == BOARD_IDX_OVERFLOW ||
+ dis_pci_mem_inval[board_idx]) {
+ if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
+ ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
+ pci_write_config_word(pdev, PCI_COMMAND,
+ ap->pci_command);
+ printk(KERN_INFO " Disabling PCI memory "
+ "write and invalidate\n");
+ }
+ } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
+ printk(KERN_INFO " PCI memory write & invalidate "
+ "enabled by BIOS, enabling counter measures\n");
+
+ switch(SMP_CACHE_BYTES) {
+ case 16:
+ tmp |= DMA_WRITE_MAX_16;
+ break;
+ case 32:
+ tmp |= DMA_WRITE_MAX_32;
+ break;
+ case 64:
+ tmp |= DMA_WRITE_MAX_64;
+ break;
+ case 128:
+ tmp |= DMA_WRITE_MAX_128;
+ break;
+ default:
+ printk(KERN_INFO " Cache line size %i not "
+ "supported, PCI write and invalidate "
+ "disabled\n", SMP_CACHE_BYTES);
+ ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
+ pci_write_config_word(pdev, PCI_COMMAND,
+ ap->pci_command);
+ }
+ }
+ }
+
+#ifdef __sparc__
+ /*
+ * On this platform, we know what the best dma settings
+ * are. We use 64-byte maximum bursts, because if we
+ * burst larger than the cache line size (or even cross
+ * a 64byte boundary in a single burst) the UltraSparc
+ * PCI controller will disconnect at 64-byte multiples.
+ *
+ * Read-multiple will be properly enabled above, and when
+ * set will give the PCI controller proper hints about
+ * prefetching.
+ */
+ tmp &= ~DMA_READ_WRITE_MASK;
+ tmp |= DMA_READ_MAX_64;
+ tmp |= DMA_WRITE_MAX_64;
+#endif
+#ifdef __alpha__
+ tmp &= ~DMA_READ_WRITE_MASK;
+ tmp |= DMA_READ_MAX_128;
+ /*
+ * All the docs say MUST NOT. Well, I did.
+ * Nothing terrible happens, if we load wrong size.
+ * Bit w&i still works better!
+ */
+ tmp |= DMA_WRITE_MAX_128;
+#endif
+ writel(tmp, &regs->PciState);
+
+#if 0
+ /*
+ * The Host PCI bus controller driver has to set FBB.
+ * If all devices on that PCI bus support FBB, then the controller
+ * can enable FBB support in the Host PCI Bus controller (or on
+ * the PCI-PCI bridge if that applies).
+ * -ggg
+ */
+ /*
+ * I have received reports from people having problems when this
+ * bit is enabled.
+ */
+ if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
+ printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
+ ap->pci_command |= PCI_COMMAND_FAST_BACK;
+ pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
+ }
+#endif
+
+ /*
+ * Configure DMA attributes.
+ */
+ if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
+ ap->pci_using_dac = 1;
+ } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
+ ap->pci_using_dac = 0;
+ } else {
+ ecode = -ENODEV;
+ goto init_error;
+ }
+
+ /*
+ * Initialize the generic info block and the command+event rings
+ * and the control blocks for the transmit and receive rings
+ * as they need to be setup once and for all.
+ */
+ if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
+ &ap->info_dma))) {
+ ecode = -EAGAIN;
+ goto init_error;
+ }
+ ap->info = info;
+
+ /*
+ * Get the memory for the skb rings.
+ */
+ if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
+ ecode = -EAGAIN;
+ goto init_error;
+ }
+
+ ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
+ DRV_NAME, dev);
+ if (ecode) {
+ printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
+ DRV_NAME, pdev->irq);
+ goto init_error;
+ } else
+ dev->irq = pdev->irq;
+
+#ifdef INDEX_DEBUG
+ spin_lock_init(&ap->debug_lock);
+ ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
+ ap->last_std_rx = 0;
+ ap->last_mini_rx = 0;
+#endif
+
+ memset(ap->info, 0, sizeof(struct ace_info));
+ memset(ap->skb, 0, sizeof(struct ace_skb));
+
+ ecode = ace_load_firmware(dev);
+ if (ecode)
+ goto init_error;
+
+ ap->fw_running = 0;
+
+ tmp_ptr = ap->info_dma;
+ writel(tmp_ptr >> 32, &regs->InfoPtrHi);
+ writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
+
+ memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
+
+ set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
+ info->evt_ctrl.flags = 0;
+
+ *(ap->evt_prd) = 0;
+ wmb();
+ set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
+ writel(0, &regs->EvtCsm);
+
+ set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
+ info->cmd_ctrl.flags = 0;
+ info->cmd_ctrl.max_len = 0;
+
+ for (i = 0; i < CMD_RING_ENTRIES; i++)
+ writel(0, &regs->CmdRng[i]);
+
+ writel(0, &regs->CmdPrd);
+ writel(0, &regs->CmdCsm);
+
+ tmp_ptr = ap->info_dma;
+ tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
+ set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
+
+ set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
+ info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
+ info->rx_std_ctrl.flags =
+ RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
+
+ memset(ap->rx_std_ring, 0,
+ RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
+
+ for (i = 0; i < RX_STD_RING_ENTRIES; i++)
+ ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
+
+ ap->rx_std_skbprd = 0;
+ atomic_set(&ap->cur_rx_bufs, 0);
+
+ set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
+ (ap->rx_ring_base_dma +
+ (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
+ info->rx_jumbo_ctrl.max_len = 0;
+ info->rx_jumbo_ctrl.flags =
+ RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
+
+ memset(ap->rx_jumbo_ring, 0,
+ RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
+
+ for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
+ ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
+
+ ap->rx_jumbo_skbprd = 0;
+ atomic_set(&ap->cur_jumbo_bufs, 0);
+
+ memset(ap->rx_mini_ring, 0,
+ RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
+
+ if (ap->version >= 2) {
+ set_aceaddr(&info->rx_mini_ctrl.rngptr,
+ (ap->rx_ring_base_dma +
+ (sizeof(struct rx_desc) *
+ (RX_STD_RING_ENTRIES +
+ RX_JUMBO_RING_ENTRIES))));
+ info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
+ info->rx_mini_ctrl.flags =
+ RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
+
+ for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
+ ap->rx_mini_ring[i].flags =
+ BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
+ } else {
+ set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
+ info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
+ info->rx_mini_ctrl.max_len = 0;
+ }
+
+ ap->rx_mini_skbprd = 0;
+ atomic_set(&ap->cur_mini_bufs, 0);
+
+ set_aceaddr(&info->rx_return_ctrl.rngptr,
+ (ap->rx_ring_base_dma +
+ (sizeof(struct rx_desc) *
+ (RX_STD_RING_ENTRIES +
+ RX_JUMBO_RING_ENTRIES +
+ RX_MINI_RING_ENTRIES))));
+ info->rx_return_ctrl.flags = 0;
+ info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
+
+ memset(ap->rx_return_ring, 0,
+ RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
+
+ set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
+ *(ap->rx_ret_prd) = 0;
+
+ writel(TX_RING_BASE, &regs->WinBase);
+
+ if (ACE_IS_TIGON_I(ap)) {
+ ap->tx_ring = (__force struct tx_desc *) regs->Window;
+ for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
+ * sizeof(struct tx_desc)) / sizeof(u32); i++)
+ writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
+
+ set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
+ } else {
+ memset(ap->tx_ring, 0,
+ MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
+
+ set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
+ }
+
+ info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
+ tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
+
+ /*
+ * The Tigon I does not like having the TX ring in host memory ;-(
+ */
+ if (!ACE_IS_TIGON_I(ap))
+ tmp |= RCB_FLG_TX_HOST_RING;
+#if TX_COAL_INTS_ONLY
+ tmp |= RCB_FLG_COAL_INT_ONLY;
+#endif
+ info->tx_ctrl.flags = tmp;
+
+ set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
+
+ /*
+ * Potential item for tuning parameter
+ */
+#if 0 /* NO */
+ writel(DMA_THRESH_16W, &regs->DmaReadCfg);
+ writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
+#else
+ writel(DMA_THRESH_8W, &regs->DmaReadCfg);
+ writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
+#endif
+
+ writel(0, &regs->MaskInt);
+ writel(1, &regs->IfIdx);
+#if 0
+ /*
+ * McKinley boxes do not like us fiddling with AssistState
+ * this early
+ */
+ writel(1, &regs->AssistState);
+#endif
+
+ writel(DEF_STAT, &regs->TuneStatTicks);
+ writel(DEF_TRACE, &regs->TuneTrace);
+
+ ace_set_rxtx_parms(dev, 0);
+
+ if (board_idx == BOARD_IDX_OVERFLOW) {
+ printk(KERN_WARNING "%s: more than %i NICs detected, "
+ "ignoring module parameters!\n",
+ ap->name, ACE_MAX_MOD_PARMS);
+ } else if (board_idx >= 0) {
+ if (tx_coal_tick[board_idx])
+ writel(tx_coal_tick[board_idx],
+ &regs->TuneTxCoalTicks);
+ if (max_tx_desc[board_idx])
+ writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
+
+ if (rx_coal_tick[board_idx])
+ writel(rx_coal_tick[board_idx],
+ &regs->TuneRxCoalTicks);
+ if (max_rx_desc[board_idx])
+ writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
+
+ if (trace[board_idx])
+ writel(trace[board_idx], &regs->TuneTrace);
+
+ if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
+ writel(tx_ratio[board_idx], &regs->TxBufRat);
+ }
+
+ /*
+ * Default link parameters
+ */
+ tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
+ LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
+ if(ap->version >= 2)
+ tmp |= LNK_TX_FLOW_CTL_Y;
+
+ /*
+ * Override link default parameters
+ */
+ if ((board_idx >= 0) && link_state[board_idx]) {
+ int option = link_state[board_idx];
+
+ tmp = LNK_ENABLE;
+
+ if (option & 0x01) {
+ printk(KERN_INFO "%s: Setting half duplex link\n",
+ ap->name);
+ tmp &= ~LNK_FULL_DUPLEX;
+ }
+ if (option & 0x02)
+ tmp &= ~LNK_NEGOTIATE;
+ if (option & 0x10)
+ tmp |= LNK_10MB;
+ if (option & 0x20)
+ tmp |= LNK_100MB;
+ if (option & 0x40)
+ tmp |= LNK_1000MB;
+ if ((option & 0x70) == 0) {
+ printk(KERN_WARNING "%s: No media speed specified, "
+ "forcing auto negotiation\n", ap->name);
+ tmp |= LNK_NEGOTIATE | LNK_1000MB |
+ LNK_100MB | LNK_10MB;
+ }
+ if ((option & 0x100) == 0)
+ tmp |= LNK_NEG_FCTL;
+ else
+ printk(KERN_INFO "%s: Disabling flow control "
+ "negotiation\n", ap->name);
+ if (option & 0x200)
+ tmp |= LNK_RX_FLOW_CTL_Y;
+ if ((option & 0x400) && (ap->version >= 2)) {
+ printk(KERN_INFO "%s: Enabling TX flow control\n",
+ ap->name);
+ tmp |= LNK_TX_FLOW_CTL_Y;
+ }
+ }
+
+ ap->link = tmp;
+ writel(tmp, &regs->TuneLink);
+ if (ap->version >= 2)
+ writel(tmp, &regs->TuneFastLink);
+
+ writel(ap->firmware_start, &regs->Pc);
+
+ writel(0, &regs->Mb0Lo);
+
+ /*
+ * Set tx_csm before we start receiving interrupts, otherwise
+ * the interrupt handler might think it is supposed to process
+ * tx ints before we are up and running, which may cause a null
+ * pointer access in the int handler.
+ */
+ ap->cur_rx = 0;
+ ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
+
+ wmb();
+ ace_set_txprd(regs, ap, 0);
+ writel(0, &regs->RxRetCsm);
+
+ /*
+ * Enable DMA engine now.
+ * If we do this sooner, Mckinley box pukes.
+ * I assume it's because Tigon II DMA engine wants to check
+ * *something* even before the CPU is started.
+ */
+ writel(1, &regs->AssistState); /* enable DMA */
+
+ /*
+ * Start the NIC CPU
+ */
+ writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
+ readl(&regs->CpuCtrl);
+
+ /*
+ * Wait for the firmware to spin up - max 3 seconds.
+ */
+ myjif = jiffies + 3 * HZ;
+ while (time_before(jiffies, myjif) && !ap->fw_running)
+ cpu_relax();
+
+ if (!ap->fw_running) {
+ printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
+
+ ace_dump_trace(ap);
+ writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
+ readl(&regs->CpuCtrl);
+
+ /* aman@sgi.com - account for badly behaving firmware/NIC:
+ * - have observed that the NIC may continue to generate
+ * interrupts for some reason; attempt to stop it - halt
+ * second CPU for Tigon II cards, and also clear Mb0
+ * - if we're a module, we'll fail to load if this was
+ * the only GbE card in the system => if the kernel does
+ * see an interrupt from the NIC, code to handle it is
+ * gone and OOps! - so free_irq also
+ */
+ if (ap->version >= 2)
+ writel(readl(&regs->CpuBCtrl) | CPU_HALT,
+ &regs->CpuBCtrl);
+ writel(0, &regs->Mb0Lo);
+ readl(&regs->Mb0Lo);
+
+ ecode = -EBUSY;
+ goto init_error;
+ }
+
+ /*
+ * We load the ring here as there seem to be no way to tell the
+ * firmware to wipe the ring without re-initializing it.
+ */
+ if (!test_and_set_bit(0, &ap->std_refill_busy))
+ ace_load_std_rx_ring(dev, RX_RING_SIZE);
+ else
+ printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
+ ap->name);
+ if (ap->version >= 2) {
+ if (!test_and_set_bit(0, &ap->mini_refill_busy))
+ ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
+ else
+ printk(KERN_ERR "%s: Someone is busy refilling "
+ "the RX mini ring\n", ap->name);
+ }
+ return 0;
+
+ init_error:
+ ace_init_cleanup(dev);
+ return ecode;
+}
+
+
+static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ int board_idx = ap->board_idx;
+
+ if (board_idx >= 0) {
+ if (!jumbo) {
+ if (!tx_coal_tick[board_idx])
+ writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
+ if (!max_tx_desc[board_idx])
+ writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
+ if (!rx_coal_tick[board_idx])
+ writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
+ if (!max_rx_desc[board_idx])
+ writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
+ if (!tx_ratio[board_idx])
+ writel(DEF_TX_RATIO, &regs->TxBufRat);
+ } else {
+ if (!tx_coal_tick[board_idx])
+ writel(DEF_JUMBO_TX_COAL,
+ &regs->TuneTxCoalTicks);
+ if (!max_tx_desc[board_idx])
+ writel(DEF_JUMBO_TX_MAX_DESC,
+ &regs->TuneMaxTxDesc);
+ if (!rx_coal_tick[board_idx])
+ writel(DEF_JUMBO_RX_COAL,
+ &regs->TuneRxCoalTicks);
+ if (!max_rx_desc[board_idx])
+ writel(DEF_JUMBO_RX_MAX_DESC,
+ &regs->TuneMaxRxDesc);
+ if (!tx_ratio[board_idx])
+ writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
+ }
+ }
+}
+
+
+static void ace_watchdog(struct net_device *data)
+{
+ struct net_device *dev = data;
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+
+ /*
+ * We haven't received a stats update event for more than 2.5
+ * seconds and there is data in the transmit queue, thus we
+ * assume the card is stuck.
+ */
+ if (*ap->tx_csm != ap->tx_ret_csm) {
+ printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
+ dev->name, (unsigned int)readl(&regs->HostCtrl));
+ /* This can happen due to ieee flow control. */
+ } else {
+ printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
+ dev->name);
+#if 0
+ netif_wake_queue(dev);
+#endif
+ }
+}
+
+
+static void ace_tasklet(unsigned long arg)
+{
+ struct net_device *dev = (struct net_device *) arg;
+ struct ace_private *ap = netdev_priv(dev);
+ int cur_size;
+
+ cur_size = atomic_read(&ap->cur_rx_bufs);
+ if ((cur_size < RX_LOW_STD_THRES) &&
+ !test_and_set_bit(0, &ap->std_refill_busy)) {
+#ifdef DEBUG
+ printk("refilling buffers (current %i)\n", cur_size);
+#endif
+ ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
+ }
+
+ if (ap->version >= 2) {
+ cur_size = atomic_read(&ap->cur_mini_bufs);
+ if ((cur_size < RX_LOW_MINI_THRES) &&
+ !test_and_set_bit(0, &ap->mini_refill_busy)) {
+#ifdef DEBUG
+ printk("refilling mini buffers (current %i)\n",
+ cur_size);
+#endif
+ ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
+ }
+ }
+
+ cur_size = atomic_read(&ap->cur_jumbo_bufs);
+ if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
+ !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
+#ifdef DEBUG
+ printk("refilling jumbo buffers (current %i)\n", cur_size);
+#endif
+ ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
+ }
+ ap->tasklet_pending = 0;
+}
+
+
+/*
+ * Copy the contents of the NIC's trace buffer to kernel memory.
+ */
+static void ace_dump_trace(struct ace_private *ap)
+{
+#if 0
+ if (!ap->trace_buf)
+ if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
+ return;
+#endif
+}
+
+
+/*
+ * Load the standard rx ring.
+ *
+ * Loading rings is safe without holding the spin lock since this is
+ * done only before the device is enabled, thus no interrupts are
+ * generated and by the interrupt handler/tasklet handler.
+ */
+static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ short i, idx;
+
+
+ prefetchw(&ap->cur_rx_bufs);
+
+ idx = ap->rx_std_skbprd;
+
+ for (i = 0; i < nr_bufs; i++) {
+ struct sk_buff *skb;
+ struct rx_desc *rd;
+ dma_addr_t mapping;
+
+ skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
+ if (!skb)
+ break;
+
+ mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
+ offset_in_page(skb->data),
+ ACE_STD_BUFSIZE,
+ PCI_DMA_FROMDEVICE);
+ ap->skb->rx_std_skbuff[idx].skb = skb;
+ dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
+ mapping, mapping);
+
+ rd = &ap->rx_std_ring[idx];
+ set_aceaddr(&rd->addr, mapping);
+ rd->size = ACE_STD_BUFSIZE;
+ rd->idx = idx;
+ idx = (idx + 1) % RX_STD_RING_ENTRIES;
+ }
+
+ if (!i)
+ goto error_out;
+
+ atomic_add(i, &ap->cur_rx_bufs);
+ ap->rx_std_skbprd = idx;
+
+ if (ACE_IS_TIGON_I(ap)) {
+ struct cmd cmd;
+ cmd.evt = C_SET_RX_PRD_IDX;
+ cmd.code = 0;
+ cmd.idx = ap->rx_std_skbprd;
+ ace_issue_cmd(regs, &cmd);
+ } else {
+ writel(idx, &regs->RxStdPrd);
+ wmb();
+ }
+
+ out:
+ clear_bit(0, &ap->std_refill_busy);
+ return;
+
+ error_out:
+ printk(KERN_INFO "Out of memory when allocating "
+ "standard receive buffers\n");
+ goto out;
+}
+
+
+static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ short i, idx;
+
+ prefetchw(&ap->cur_mini_bufs);
+
+ idx = ap->rx_mini_skbprd;
+ for (i = 0; i < nr_bufs; i++) {
+ struct sk_buff *skb;
+ struct rx_desc *rd;
+ dma_addr_t mapping;
+
+ skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
+ if (!skb)
+ break;
+
+ mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
+ offset_in_page(skb->data),
+ ACE_MINI_BUFSIZE,
+ PCI_DMA_FROMDEVICE);
+ ap->skb->rx_mini_skbuff[idx].skb = skb;
+ dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
+ mapping, mapping);
+
+ rd = &ap->rx_mini_ring[idx];
+ set_aceaddr(&rd->addr, mapping);
+ rd->size = ACE_MINI_BUFSIZE;
+ rd->idx = idx;
+ idx = (idx + 1) % RX_MINI_RING_ENTRIES;
+ }
+
+ if (!i)
+ goto error_out;
+
+ atomic_add(i, &ap->cur_mini_bufs);
+
+ ap->rx_mini_skbprd = idx;
+
+ writel(idx, &regs->RxMiniPrd);
+ wmb();
+
+ out:
+ clear_bit(0, &ap->mini_refill_busy);
+ return;
+ error_out:
+ printk(KERN_INFO "Out of memory when allocating "
+ "mini receive buffers\n");
+ goto out;
+}
+
+
+/*
+ * Load the jumbo rx ring, this may happen at any time if the MTU
+ * is changed to a value > 1500.
+ */
+static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ short i, idx;
+
+ idx = ap->rx_jumbo_skbprd;
+
+ for (i = 0; i < nr_bufs; i++) {
+ struct sk_buff *skb;
+ struct rx_desc *rd;
+ dma_addr_t mapping;
+
+ skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
+ if (!skb)
+ break;
+
+ mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
+ offset_in_page(skb->data),
+ ACE_JUMBO_BUFSIZE,
+ PCI_DMA_FROMDEVICE);
+ ap->skb->rx_jumbo_skbuff[idx].skb = skb;
+ dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
+ mapping, mapping);
+
+ rd = &ap->rx_jumbo_ring[idx];
+ set_aceaddr(&rd->addr, mapping);
+ rd->size = ACE_JUMBO_BUFSIZE;
+ rd->idx = idx;
+ idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
+ }
+
+ if (!i)
+ goto error_out;
+
+ atomic_add(i, &ap->cur_jumbo_bufs);
+ ap->rx_jumbo_skbprd = idx;
+
+ if (ACE_IS_TIGON_I(ap)) {
+ struct cmd cmd;
+ cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
+ cmd.code = 0;
+ cmd.idx = ap->rx_jumbo_skbprd;
+ ace_issue_cmd(regs, &cmd);
+ } else {
+ writel(idx, &regs->RxJumboPrd);
+ wmb();
+ }
+
+ out:
+ clear_bit(0, &ap->jumbo_refill_busy);
+ return;
+ error_out:
+ if (net_ratelimit())
+ printk(KERN_INFO "Out of memory when allocating "
+ "jumbo receive buffers\n");
+ goto out;
+}
+
+
+/*
+ * All events are considered to be slow (RX/TX ints do not generate
+ * events) and are handled here, outside the main interrupt handler,
+ * to reduce the size of the handler.
+ */
+static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
+{
+ struct ace_private *ap;
+
+ ap = netdev_priv(dev);
+
+ while (evtcsm != evtprd) {
+ switch (ap->evt_ring[evtcsm].evt) {
+ case E_FW_RUNNING:
+ printk(KERN_INFO "%s: Firmware up and running\n",
+ ap->name);
+ ap->fw_running = 1;
+ wmb();
+ break;
+ case E_STATS_UPDATED:
+ break;
+ case E_LNK_STATE:
+ {
+ u16 code = ap->evt_ring[evtcsm].code;
+ switch (code) {
+ case E_C_LINK_UP:
+ {
+ u32 state = readl(&ap->regs->GigLnkState);
+ printk(KERN_WARNING "%s: Optical link UP "
+ "(%s Duplex, Flow Control: %s%s)\n",
+ ap->name,
+ state & LNK_FULL_DUPLEX ? "Full":"Half",
+ state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
+ state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
+ break;
+ }
+ case E_C_LINK_DOWN:
+ printk(KERN_WARNING "%s: Optical link DOWN\n",
+ ap->name);
+ break;
+ case E_C_LINK_10_100:
+ printk(KERN_WARNING "%s: 10/100BaseT link "
+ "UP\n", ap->name);
+ break;
+ default:
+ printk(KERN_ERR "%s: Unknown optical link "
+ "state %02x\n", ap->name, code);
+ }
+ break;
+ }
+ case E_ERROR:
+ switch(ap->evt_ring[evtcsm].code) {
+ case E_C_ERR_INVAL_CMD:
+ printk(KERN_ERR "%s: invalid command error\n",
+ ap->name);
+ break;
+ case E_C_ERR_UNIMP_CMD:
+ printk(KERN_ERR "%s: unimplemented command "
+ "error\n", ap->name);
+ break;
+ case E_C_ERR_BAD_CFG:
+ printk(KERN_ERR "%s: bad config error\n",
+ ap->name);
+ break;
+ default:
+ printk(KERN_ERR "%s: unknown error %02x\n",
+ ap->name, ap->evt_ring[evtcsm].code);
+ }
+ break;
+ case E_RESET_JUMBO_RNG:
+ {
+ int i;
+ for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
+ if (ap->skb->rx_jumbo_skbuff[i].skb) {
+ ap->rx_jumbo_ring[i].size = 0;
+ set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
+ dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
+ ap->skb->rx_jumbo_skbuff[i].skb = NULL;
+ }
+ }
+
+ if (ACE_IS_TIGON_I(ap)) {
+ struct cmd cmd;
+ cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
+ cmd.code = 0;
+ cmd.idx = 0;
+ ace_issue_cmd(ap->regs, &cmd);
+ } else {
+ writel(0, &((ap->regs)->RxJumboPrd));
+ wmb();
+ }
+
+ ap->jumbo = 0;
+ ap->rx_jumbo_skbprd = 0;
+ printk(KERN_INFO "%s: Jumbo ring flushed\n",
+ ap->name);
+ clear_bit(0, &ap->jumbo_refill_busy);
+ break;
+ }
+ default:
+ printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
+ ap->name, ap->evt_ring[evtcsm].evt);
+ }
+ evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
+ }
+
+ return evtcsm;
+}
+
+
+static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ u32 idx;
+ int mini_count = 0, std_count = 0;
+
+ idx = rxretcsm;
+
+ prefetchw(&ap->cur_rx_bufs);
+ prefetchw(&ap->cur_mini_bufs);
+
+ while (idx != rxretprd) {
+ struct ring_info *rip;
+ struct sk_buff *skb;
+ struct rx_desc *rxdesc, *retdesc;
+ u32 skbidx;
+ int bd_flags, desc_type, mapsize;
+ u16 csum;
+
+
+ /* make sure the rx descriptor isn't read before rxretprd */
+ if (idx == rxretcsm)
+ rmb();
+
+ retdesc = &ap->rx_return_ring[idx];
+ skbidx = retdesc->idx;
+ bd_flags = retdesc->flags;
+ desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
+
+ switch(desc_type) {
+ /*
+ * Normal frames do not have any flags set
+ *
+ * Mini and normal frames arrive frequently,
+ * so use a local counter to avoid doing
+ * atomic operations for each packet arriving.
+ */
+ case 0:
+ rip = &ap->skb->rx_std_skbuff[skbidx];
+ mapsize = ACE_STD_BUFSIZE;
+ rxdesc = &ap->rx_std_ring[skbidx];
+ std_count++;
+ break;
+ case BD_FLG_JUMBO:
+ rip = &ap->skb->rx_jumbo_skbuff[skbidx];
+ mapsize = ACE_JUMBO_BUFSIZE;
+ rxdesc = &ap->rx_jumbo_ring[skbidx];
+ atomic_dec(&ap->cur_jumbo_bufs);
+ break;
+ case BD_FLG_MINI:
+ rip = &ap->skb->rx_mini_skbuff[skbidx];
+ mapsize = ACE_MINI_BUFSIZE;
+ rxdesc = &ap->rx_mini_ring[skbidx];
+ mini_count++;
+ break;
+ default:
+ printk(KERN_INFO "%s: unknown frame type (0x%02x) "
+ "returned by NIC\n", dev->name,
+ retdesc->flags);
+ goto error;
+ }
+
+ skb = rip->skb;
+ rip->skb = NULL;
+ pci_unmap_page(ap->pdev,
+ dma_unmap_addr(rip, mapping),
+ mapsize,
+ PCI_DMA_FROMDEVICE);
+ skb_put(skb, retdesc->size);
+
+ /*
+ * Fly baby, fly!
+ */
+ csum = retdesc->tcp_udp_csum;
+
+ skb->protocol = eth_type_trans(skb, dev);
+
+ /*
+ * Instead of forcing the poor tigon mips cpu to calculate
+ * pseudo hdr checksum, we do this ourselves.
+ */
+ if (bd_flags & BD_FLG_TCP_UDP_SUM) {
+ skb->csum = htons(csum);
+ skb->ip_summed = CHECKSUM_COMPLETE;
+ } else {
+ skb_checksum_none_assert(skb);
+ }
+
+ /* send it up */
+ if ((bd_flags & BD_FLG_VLAN_TAG))
+ __vlan_hwaccel_put_tag(skb, retdesc->vlan);
+ netif_rx(skb);
+
+ dev->stats.rx_packets++;
+ dev->stats.rx_bytes += retdesc->size;
+
+ idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
+ }
+
+ atomic_sub(std_count, &ap->cur_rx_bufs);
+ if (!ACE_IS_TIGON_I(ap))
+ atomic_sub(mini_count, &ap->cur_mini_bufs);
+
+ out:
+ /*
+ * According to the documentation RxRetCsm is obsolete with
+ * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
+ */
+ if (ACE_IS_TIGON_I(ap)) {
+ writel(idx, &ap->regs->RxRetCsm);
+ }
+ ap->cur_rx = idx;
+
+ return;
+ error:
+ idx = rxretprd;
+ goto out;
+}
+
+
+static inline void ace_tx_int(struct net_device *dev,
+ u32 txcsm, u32 idx)
+{
+ struct ace_private *ap = netdev_priv(dev);
+
+ do {
+ struct sk_buff *skb;
+ struct tx_ring_info *info;
+
+ info = ap->skb->tx_skbuff + idx;
+ skb = info->skb;
+
+ if (dma_unmap_len(info, maplen)) {
+ pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
+ dma_unmap_len(info, maplen),
+ PCI_DMA_TODEVICE);
+ dma_unmap_len_set(info, maplen, 0);
+ }
+
+ if (skb) {
+ dev->stats.tx_packets++;
+ dev->stats.tx_bytes += skb->len;
+ dev_kfree_skb_irq(skb);
+ info->skb = NULL;
+ }
+
+ idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
+ } while (idx != txcsm);
+
+ if (netif_queue_stopped(dev))
+ netif_wake_queue(dev);
+
+ wmb();
+ ap->tx_ret_csm = txcsm;
+
+ /* So... tx_ret_csm is advanced _after_ check for device wakeup.
+ *
+ * We could try to make it before. In this case we would get
+ * the following race condition: hard_start_xmit on other cpu
+ * enters after we advanced tx_ret_csm and fills space,
+ * which we have just freed, so that we make illegal device wakeup.
+ * There is no good way to workaround this (at entry
+ * to ace_start_xmit detects this condition and prevents
+ * ring corruption, but it is not a good workaround.)
+ *
+ * When tx_ret_csm is advanced after, we wake up device _only_
+ * if we really have some space in ring (though the core doing
+ * hard_start_xmit can see full ring for some period and has to
+ * synchronize.) Superb.
+ * BUT! We get another subtle race condition. hard_start_xmit
+ * may think that ring is full between wakeup and advancing
+ * tx_ret_csm and will stop device instantly! It is not so bad.
+ * We are guaranteed that there is something in ring, so that
+ * the next irq will resume transmission. To speedup this we could
+ * mark descriptor, which closes ring with BD_FLG_COAL_NOW
+ * (see ace_start_xmit).
+ *
+ * Well, this dilemma exists in all lock-free devices.
+ * We, following scheme used in drivers by Donald Becker,
+ * select the least dangerous.
+ * --ANK
+ */
+}
+
+
+static irqreturn_t ace_interrupt(int irq, void *dev_id)
+{
+ struct net_device *dev = (struct net_device *)dev_id;
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ u32 idx;
+ u32 txcsm, rxretcsm, rxretprd;
+ u32 evtcsm, evtprd;
+
+ /*
+ * In case of PCI shared interrupts or spurious interrupts,
+ * we want to make sure it is actually our interrupt before
+ * spending any time in here.
+ */
+ if (!(readl(&regs->HostCtrl) & IN_INT))
+ return IRQ_NONE;
+
+ /*
+ * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
+ * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
+ * writel(0, &regs->Mb0Lo).
+ *
+ * "IRQ avoidance" recommended in docs applies to IRQs served
+ * threads and it is wrong even for that case.
+ */
+ writel(0, &regs->Mb0Lo);
+ readl(&regs->Mb0Lo);
+
+ /*
+ * There is no conflict between transmit handling in
+ * start_xmit and receive processing, thus there is no reason
+ * to take a spin lock for RX handling. Wait until we start
+ * working on the other stuff - hey we don't need a spin lock
+ * anymore.
+ */
+ rxretprd = *ap->rx_ret_prd;
+ rxretcsm = ap->cur_rx;
+
+ if (rxretprd != rxretcsm)
+ ace_rx_int(dev, rxretprd, rxretcsm);
+
+ txcsm = *ap->tx_csm;
+ idx = ap->tx_ret_csm;
+
+ if (txcsm != idx) {
+ /*
+ * If each skb takes only one descriptor this check degenerates
+ * to identity, because new space has just been opened.
+ * But if skbs are fragmented we must check that this index
+ * update releases enough of space, otherwise we just
+ * wait for device to make more work.
+ */
+ if (!tx_ring_full(ap, txcsm, ap->tx_prd))
+ ace_tx_int(dev, txcsm, idx);
+ }
+
+ evtcsm = readl(&regs->EvtCsm);
+ evtprd = *ap->evt_prd;
+
+ if (evtcsm != evtprd) {
+ evtcsm = ace_handle_event(dev, evtcsm, evtprd);
+ writel(evtcsm, &regs->EvtCsm);
+ }
+
+ /*
+ * This has to go last in the interrupt handler and run with
+ * the spin lock released ... what lock?
+ */
+ if (netif_running(dev)) {
+ int cur_size;
+ int run_tasklet = 0;
+
+ cur_size = atomic_read(&ap->cur_rx_bufs);
+ if (cur_size < RX_LOW_STD_THRES) {
+ if ((cur_size < RX_PANIC_STD_THRES) &&
+ !test_and_set_bit(0, &ap->std_refill_busy)) {
+#ifdef DEBUG
+ printk("low on std buffers %i\n", cur_size);
+#endif
+ ace_load_std_rx_ring(dev,
+ RX_RING_SIZE - cur_size);
+ } else
+ run_tasklet = 1;
+ }
+
+ if (!ACE_IS_TIGON_I(ap)) {
+ cur_size = atomic_read(&ap->cur_mini_bufs);
+ if (cur_size < RX_LOW_MINI_THRES) {
+ if ((cur_size < RX_PANIC_MINI_THRES) &&
+ !test_and_set_bit(0,
+ &ap->mini_refill_busy)) {
+#ifdef DEBUG
+ printk("low on mini buffers %i\n",
+ cur_size);
+#endif
+ ace_load_mini_rx_ring(dev,
+ RX_MINI_SIZE - cur_size);
+ } else
+ run_tasklet = 1;
+ }
+ }
+
+ if (ap->jumbo) {
+ cur_size = atomic_read(&ap->cur_jumbo_bufs);
+ if (cur_size < RX_LOW_JUMBO_THRES) {
+ if ((cur_size < RX_PANIC_JUMBO_THRES) &&
+ !test_and_set_bit(0,
+ &ap->jumbo_refill_busy)){
+#ifdef DEBUG
+ printk("low on jumbo buffers %i\n",
+ cur_size);
+#endif
+ ace_load_jumbo_rx_ring(dev,
+ RX_JUMBO_SIZE - cur_size);
+ } else
+ run_tasklet = 1;
+ }
+ }
+ if (run_tasklet && !ap->tasklet_pending) {
+ ap->tasklet_pending = 1;
+ tasklet_schedule(&ap->ace_tasklet);
+ }
+ }
+
+ return IRQ_HANDLED;
+}
+
+static int ace_open(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ struct cmd cmd;
+
+ if (!(ap->fw_running)) {
+ printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
+ return -EBUSY;
+ }
+
+ writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
+
+ cmd.evt = C_CLEAR_STATS;
+ cmd.code = 0;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+
+ cmd.evt = C_HOST_STATE;
+ cmd.code = C_C_STACK_UP;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+
+ if (ap->jumbo &&
+ !test_and_set_bit(0, &ap->jumbo_refill_busy))
+ ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
+
+ if (dev->flags & IFF_PROMISC) {
+ cmd.evt = C_SET_PROMISC_MODE;
+ cmd.code = C_C_PROMISC_ENABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+
+ ap->promisc = 1;
+ }else
+ ap->promisc = 0;
+ ap->mcast_all = 0;
+
+#if 0
+ cmd.evt = C_LNK_NEGOTIATION;
+ cmd.code = 0;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+#endif
+
+ netif_start_queue(dev);
+
+ /*
+ * Setup the bottom half rx ring refill handler
+ */
+ tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
+ return 0;
+}
+
+
+static int ace_close(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ struct cmd cmd;
+ unsigned long flags;
+ short i;
+
+ /*
+ * Without (or before) releasing irq and stopping hardware, this
+ * is an absolute non-sense, by the way. It will be reset instantly
+ * by the first irq.
+ */
+ netif_stop_queue(dev);
+
+
+ if (ap->promisc) {
+ cmd.evt = C_SET_PROMISC_MODE;
+ cmd.code = C_C_PROMISC_DISABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ ap->promisc = 0;
+ }
+
+ cmd.evt = C_HOST_STATE;
+ cmd.code = C_C_STACK_DOWN;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+
+ tasklet_kill(&ap->ace_tasklet);
+
+ /*
+ * Make sure one CPU is not processing packets while
+ * buffers are being released by another.
+ */
+
+ local_irq_save(flags);
+ ace_mask_irq(dev);
+
+ for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
+ struct sk_buff *skb;
+ struct tx_ring_info *info;
+
+ info = ap->skb->tx_skbuff + i;
+ skb = info->skb;
+
+ if (dma_unmap_len(info, maplen)) {
+ if (ACE_IS_TIGON_I(ap)) {
+ /* NB: TIGON_1 is special, tx_ring is in io space */
+ struct tx_desc __iomem *tx;
+ tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
+ writel(0, &tx->addr.addrhi);
+ writel(0, &tx->addr.addrlo);
+ writel(0, &tx->flagsize);
+ } else
+ memset(ap->tx_ring + i, 0,
+ sizeof(struct tx_desc));
+ pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
+ dma_unmap_len(info, maplen),
+ PCI_DMA_TODEVICE);
+ dma_unmap_len_set(info, maplen, 0);
+ }
+ if (skb) {
+ dev_kfree_skb(skb);
+ info->skb = NULL;
+ }
+ }
+
+ if (ap->jumbo) {
+ cmd.evt = C_RESET_JUMBO_RNG;
+ cmd.code = 0;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ }
+
+ ace_unmask_irq(dev);
+ local_irq_restore(flags);
+
+ return 0;
+}
+
+
+static inline dma_addr_t
+ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
+ struct sk_buff *tail, u32 idx)
+{
+ dma_addr_t mapping;
+ struct tx_ring_info *info;
+
+ mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
+ offset_in_page(skb->data),
+ skb->len, PCI_DMA_TODEVICE);
+
+ info = ap->skb->tx_skbuff + idx;
+ info->skb = tail;
+ dma_unmap_addr_set(info, mapping, mapping);
+ dma_unmap_len_set(info, maplen, skb->len);
+ return mapping;
+}
+
+
+static inline void
+ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
+ u32 flagsize, u32 vlan_tag)
+{
+#if !USE_TX_COAL_NOW
+ flagsize &= ~BD_FLG_COAL_NOW;
+#endif
+
+ if (ACE_IS_TIGON_I(ap)) {
+ struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
+ writel(addr >> 32, &io->addr.addrhi);
+ writel(addr & 0xffffffff, &io->addr.addrlo);
+ writel(flagsize, &io->flagsize);
+ writel(vlan_tag, &io->vlanres);
+ } else {
+ desc->addr.addrhi = addr >> 32;
+ desc->addr.addrlo = addr;
+ desc->flagsize = flagsize;
+ desc->vlanres = vlan_tag;
+ }
+}
+
+
+static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
+ struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ struct tx_desc *desc;
+ u32 idx, flagsize;
+ unsigned long maxjiff = jiffies + 3*HZ;
+
+restart:
+ idx = ap->tx_prd;
+
+ if (tx_ring_full(ap, ap->tx_ret_csm, idx))
+ goto overflow;
+
+ if (!skb_shinfo(skb)->nr_frags) {
+ dma_addr_t mapping;
+ u32 vlan_tag = 0;
+
+ mapping = ace_map_tx_skb(ap, skb, skb, idx);
+ flagsize = (skb->len << 16) | (BD_FLG_END);
+ if (skb->ip_summed == CHECKSUM_PARTIAL)
+ flagsize |= BD_FLG_TCP_UDP_SUM;
+ if (vlan_tx_tag_present(skb)) {
+ flagsize |= BD_FLG_VLAN_TAG;
+ vlan_tag = vlan_tx_tag_get(skb);
+ }
+ desc = ap->tx_ring + idx;
+ idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
+
+ /* Look at ace_tx_int for explanations. */
+ if (tx_ring_full(ap, ap->tx_ret_csm, idx))
+ flagsize |= BD_FLG_COAL_NOW;
+
+ ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
+ } else {
+ dma_addr_t mapping;
+ u32 vlan_tag = 0;
+ int i, len = 0;
+
+ mapping = ace_map_tx_skb(ap, skb, NULL, idx);
+ flagsize = (skb_headlen(skb) << 16);
+ if (skb->ip_summed == CHECKSUM_PARTIAL)
+ flagsize |= BD_FLG_TCP_UDP_SUM;
+ if (vlan_tx_tag_present(skb)) {
+ flagsize |= BD_FLG_VLAN_TAG;
+ vlan_tag = vlan_tx_tag_get(skb);
+ }
+
+ ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
+
+ idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
+
+ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
+ skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
+ struct tx_ring_info *info;
+
+ len += frag->size;
+ info = ap->skb->tx_skbuff + idx;
+ desc = ap->tx_ring + idx;
+
+ mapping = pci_map_page(ap->pdev, frag->page,
+ frag->page_offset, frag->size,
+ PCI_DMA_TODEVICE);
+
+ flagsize = (frag->size << 16);
+ if (skb->ip_summed == CHECKSUM_PARTIAL)
+ flagsize |= BD_FLG_TCP_UDP_SUM;
+ idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
+
+ if (i == skb_shinfo(skb)->nr_frags - 1) {
+ flagsize |= BD_FLG_END;
+ if (tx_ring_full(ap, ap->tx_ret_csm, idx))
+ flagsize |= BD_FLG_COAL_NOW;
+
+ /*
+ * Only the last fragment frees
+ * the skb!
+ */
+ info->skb = skb;
+ } else {
+ info->skb = NULL;
+ }
+ dma_unmap_addr_set(info, mapping, mapping);
+ dma_unmap_len_set(info, maplen, frag->size);
+ ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
+ }
+ }
+
+ wmb();
+ ap->tx_prd = idx;
+ ace_set_txprd(regs, ap, idx);
+
+ if (flagsize & BD_FLG_COAL_NOW) {
+ netif_stop_queue(dev);
+
+ /*
+ * A TX-descriptor producer (an IRQ) might have gotten
+ * between, making the ring free again. Since xmit is
+ * serialized, this is the only situation we have to
+ * re-test.
+ */
+ if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
+ netif_wake_queue(dev);
+ }
+
+ return NETDEV_TX_OK;
+
+overflow:
+ /*
+ * This race condition is unavoidable with lock-free drivers.
+ * We wake up the queue _before_ tx_prd is advanced, so that we can
+ * enter hard_start_xmit too early, while tx ring still looks closed.
+ * This happens ~1-4 times per 100000 packets, so that we can allow
+ * to loop syncing to other CPU. Probably, we need an additional
+ * wmb() in ace_tx_intr as well.
+ *
+ * Note that this race is relieved by reserving one more entry
+ * in tx ring than it is necessary (see original non-SG driver).
+ * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
+ * is already overkill.
+ *
+ * Alternative is to return with 1 not throttling queue. In this
+ * case loop becomes longer, no more useful effects.
+ */
+ if (time_before(jiffies, maxjiff)) {
+ barrier();
+ cpu_relax();
+ goto restart;
+ }
+
+ /* The ring is stuck full. */
+ printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
+ return NETDEV_TX_BUSY;
+}
+
+
+static int ace_change_mtu(struct net_device *dev, int new_mtu)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+
+ if (new_mtu > ACE_JUMBO_MTU)
+ return -EINVAL;
+
+ writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
+ dev->mtu = new_mtu;
+
+ if (new_mtu > ACE_STD_MTU) {
+ if (!(ap->jumbo)) {
+ printk(KERN_INFO "%s: Enabling Jumbo frame "
+ "support\n", dev->name);
+ ap->jumbo = 1;
+ if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
+ ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
+ ace_set_rxtx_parms(dev, 1);
+ }
+ } else {
+ while (test_and_set_bit(0, &ap->jumbo_refill_busy));
+ ace_sync_irq(dev->irq);
+ ace_set_rxtx_parms(dev, 0);
+ if (ap->jumbo) {
+ struct cmd cmd;
+
+ cmd.evt = C_RESET_JUMBO_RNG;
+ cmd.code = 0;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ }
+ }
+
+ return 0;
+}
+
+static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ u32 link;
+
+ memset(ecmd, 0, sizeof(struct ethtool_cmd));
+ ecmd->supported =
+ (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
+ SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
+ SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
+ SUPPORTED_Autoneg | SUPPORTED_FIBRE);
+
+ ecmd->port = PORT_FIBRE;
+ ecmd->transceiver = XCVR_INTERNAL;
+
+ link = readl(&regs->GigLnkState);
+ if (link & LNK_1000MB)
+ ethtool_cmd_speed_set(ecmd, SPEED_1000);
+ else {
+ link = readl(&regs->FastLnkState);
+ if (link & LNK_100MB)
+ ethtool_cmd_speed_set(ecmd, SPEED_100);
+ else if (link & LNK_10MB)
+ ethtool_cmd_speed_set(ecmd, SPEED_10);
+ else
+ ethtool_cmd_speed_set(ecmd, 0);
+ }
+ if (link & LNK_FULL_DUPLEX)
+ ecmd->duplex = DUPLEX_FULL;
+ else
+ ecmd->duplex = DUPLEX_HALF;
+
+ if (link & LNK_NEGOTIATE)
+ ecmd->autoneg = AUTONEG_ENABLE;
+ else
+ ecmd->autoneg = AUTONEG_DISABLE;
+
+#if 0
+ /*
+ * Current struct ethtool_cmd is insufficient
+ */
+ ecmd->trace = readl(&regs->TuneTrace);
+
+ ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
+ ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
+#endif
+ ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
+ ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
+
+ return 0;
+}
+
+static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ u32 link, speed;
+
+ link = readl(&regs->GigLnkState);
+ if (link & LNK_1000MB)
+ speed = SPEED_1000;
+ else {
+ link = readl(&regs->FastLnkState);
+ if (link & LNK_100MB)
+ speed = SPEED_100;
+ else if (link & LNK_10MB)
+ speed = SPEED_10;
+ else
+ speed = SPEED_100;
+ }
+
+ link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
+ LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
+ if (!ACE_IS_TIGON_I(ap))
+ link |= LNK_TX_FLOW_CTL_Y;
+ if (ecmd->autoneg == AUTONEG_ENABLE)
+ link |= LNK_NEGOTIATE;
+ if (ethtool_cmd_speed(ecmd) != speed) {
+ link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
+ switch (ethtool_cmd_speed(ecmd)) {
+ case SPEED_1000:
+ link |= LNK_1000MB;
+ break;
+ case SPEED_100:
+ link |= LNK_100MB;
+ break;
+ case SPEED_10:
+ link |= LNK_10MB;
+ break;
+ }
+ }
+
+ if (ecmd->duplex == DUPLEX_FULL)
+ link |= LNK_FULL_DUPLEX;
+
+ if (link != ap->link) {
+ struct cmd cmd;
+ printk(KERN_INFO "%s: Renegotiating link state\n",
+ dev->name);
+
+ ap->link = link;
+ writel(link, &regs->TuneLink);
+ if (!ACE_IS_TIGON_I(ap))
+ writel(link, &regs->TuneFastLink);
+ wmb();
+
+ cmd.evt = C_LNK_NEGOTIATION;
+ cmd.code = 0;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ }
+ return 0;
+}
+
+static void ace_get_drvinfo(struct net_device *dev,
+ struct ethtool_drvinfo *info)
+{
+ struct ace_private *ap = netdev_priv(dev);
+
+ strlcpy(info->driver, "acenic", sizeof(info->driver));
+ snprintf(info->version, sizeof(info->version), "%i.%i.%i",
+ ap->firmware_major, ap->firmware_minor,
+ ap->firmware_fix);
+
+ if (ap->pdev)
+ strlcpy(info->bus_info, pci_name(ap->pdev),
+ sizeof(info->bus_info));
+
+}
+
+/*
+ * Set the hardware MAC address.
+ */
+static int ace_set_mac_addr(struct net_device *dev, void *p)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ struct sockaddr *addr=p;
+ u8 *da;
+ struct cmd cmd;
+
+ if(netif_running(dev))
+ return -EBUSY;
+
+ memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
+
+ da = (u8 *)dev->dev_addr;
+
+ writel(da[0] << 8 | da[1], &regs->MacAddrHi);
+ writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
+ &regs->MacAddrLo);
+
+ cmd.evt = C_SET_MAC_ADDR;
+ cmd.code = 0;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+
+ return 0;
+}
+
+
+static void ace_set_multicast_list(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ struct cmd cmd;
+
+ if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
+ cmd.evt = C_SET_MULTICAST_MODE;
+ cmd.code = C_C_MCAST_ENABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ ap->mcast_all = 1;
+ } else if (ap->mcast_all) {
+ cmd.evt = C_SET_MULTICAST_MODE;
+ cmd.code = C_C_MCAST_DISABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ ap->mcast_all = 0;
+ }
+
+ if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
+ cmd.evt = C_SET_PROMISC_MODE;
+ cmd.code = C_C_PROMISC_ENABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ ap->promisc = 1;
+ }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
+ cmd.evt = C_SET_PROMISC_MODE;
+ cmd.code = C_C_PROMISC_DISABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ ap->promisc = 0;
+ }
+
+ /*
+ * For the time being multicast relies on the upper layers
+ * filtering it properly. The Firmware does not allow one to
+ * set the entire multicast list at a time and keeping track of
+ * it here is going to be messy.
+ */
+ if (!netdev_mc_empty(dev) && !ap->mcast_all) {
+ cmd.evt = C_SET_MULTICAST_MODE;
+ cmd.code = C_C_MCAST_ENABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ }else if (!ap->mcast_all) {
+ cmd.evt = C_SET_MULTICAST_MODE;
+ cmd.code = C_C_MCAST_DISABLE;
+ cmd.idx = 0;
+ ace_issue_cmd(regs, &cmd);
+ }
+}
+
+
+static struct net_device_stats *ace_get_stats(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_mac_stats __iomem *mac_stats =
+ (struct ace_mac_stats __iomem *)ap->regs->Stats;
+
+ dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
+ dev->stats.multicast = readl(&mac_stats->kept_mc);
+ dev->stats.collisions = readl(&mac_stats->coll);
+
+ return &dev->stats;
+}
+
+
+static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
+ u32 dest, int size)
+{
+ void __iomem *tdest;
+ short tsize, i;
+
+ if (size <= 0)
+ return;
+
+ while (size > 0) {
+ tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
+ min_t(u32, size, ACE_WINDOW_SIZE));
+ tdest = (void __iomem *) &regs->Window +
+ (dest & (ACE_WINDOW_SIZE - 1));
+ writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
+ for (i = 0; i < (tsize / 4); i++) {
+ /* Firmware is big-endian */
+ writel(be32_to_cpup(src), tdest);
+ src++;
+ tdest += 4;
+ dest += 4;
+ size -= 4;
+ }
+ }
+}
+
+
+static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
+{
+ void __iomem *tdest;
+ short tsize = 0, i;
+
+ if (size <= 0)
+ return;
+
+ while (size > 0) {
+ tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
+ min_t(u32, size, ACE_WINDOW_SIZE));
+ tdest = (void __iomem *) &regs->Window +
+ (dest & (ACE_WINDOW_SIZE - 1));
+ writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
+
+ for (i = 0; i < (tsize / 4); i++) {
+ writel(0, tdest + i*4);
+ }
+
+ dest += tsize;
+ size -= tsize;
+ }
+}
+
+
+/*
+ * Download the firmware into the SRAM on the NIC
+ *
+ * This operation requires the NIC to be halted and is performed with
+ * interrupts disabled and with the spinlock hold.
+ */
+static int __devinit ace_load_firmware(struct net_device *dev)
+{
+ const struct firmware *fw;
+ const char *fw_name = "acenic/tg2.bin";
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ const __be32 *fw_data;
+ u32 load_addr;
+ int ret;
+
+ if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
+ printk(KERN_ERR "%s: trying to download firmware while the "
+ "CPU is running!\n", ap->name);
+ return -EFAULT;
+ }
+
+ if (ACE_IS_TIGON_I(ap))
+ fw_name = "acenic/tg1.bin";
+
+ ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
+ if (ret) {
+ printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
+ ap->name, fw_name);
+ return ret;
+ }
+
+ fw_data = (void *)fw->data;
+
+ /* Firmware blob starts with version numbers, followed by
+ load and start address. Remainder is the blob to be loaded
+ contiguously from load address. We don't bother to represent
+ the BSS/SBSS sections any more, since we were clearing the
+ whole thing anyway. */
+ ap->firmware_major = fw->data[0];
+ ap->firmware_minor = fw->data[1];
+ ap->firmware_fix = fw->data[2];
+
+ ap->firmware_start = be32_to_cpu(fw_data[1]);
+ if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
+ printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
+ ap->name, ap->firmware_start, fw_name);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ load_addr = be32_to_cpu(fw_data[2]);
+ if (load_addr < 0x4000 || load_addr >= 0x80000) {
+ printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
+ ap->name, load_addr, fw_name);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /*
+ * Do not try to clear more than 512KiB or we end up seeing
+ * funny things on NICs with only 512KiB SRAM
+ */
+ ace_clear(regs, 0x2000, 0x80000-0x2000);
+ ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
+ out:
+ release_firmware(fw);
+ return ret;
+}
+
+
+/*
+ * The eeprom on the AceNIC is an Atmel i2c EEPROM.
+ *
+ * Accessing the EEPROM is `interesting' to say the least - don't read
+ * this code right after dinner.
+ *
+ * This is all about black magic and bit-banging the device .... I
+ * wonder in what hospital they have put the guy who designed the i2c
+ * specs.
+ *
+ * Oh yes, this is only the beginning!
+ *
+ * Thanks to Stevarino Webinski for helping tracking down the bugs in the
+ * code i2c readout code by beta testing all my hacks.
+ */
+static void __devinit eeprom_start(struct ace_regs __iomem *regs)
+{
+ u32 local;
+
+ readl(&regs->LocalCtrl);
+ udelay(ACE_SHORT_DELAY);
+ local = readl(&regs->LocalCtrl);
+ local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ local |= EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ local &= ~EEPROM_DATA_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ local &= ~EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+}
+
+
+static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
+{
+ short i;
+ u32 local;
+
+ udelay(ACE_SHORT_DELAY);
+ local = readl(&regs->LocalCtrl);
+ local &= ~EEPROM_DATA_OUT;
+ local |= EEPROM_WRITE_ENABLE;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+
+ for (i = 0; i < 8; i++, magic <<= 1) {
+ udelay(ACE_SHORT_DELAY);
+ if (magic & 0x80)
+ local |= EEPROM_DATA_OUT;
+ else
+ local &= ~EEPROM_DATA_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+
+ udelay(ACE_SHORT_DELAY);
+ local |= EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ }
+}
+
+
+static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
+{
+ int state;
+ u32 local;
+
+ local = readl(&regs->LocalCtrl);
+ local &= ~EEPROM_WRITE_ENABLE;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_LONG_DELAY);
+ local |= EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ /* sample data in middle of high clk */
+ state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
+ udelay(ACE_SHORT_DELAY);
+ mb();
+ writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+
+ return state;
+}
+
+
+static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
+{
+ u32 local;
+
+ udelay(ACE_SHORT_DELAY);
+ local = readl(&regs->LocalCtrl);
+ local |= EEPROM_WRITE_ENABLE;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ local &= ~EEPROM_DATA_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ local |= EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ local |= EEPROM_DATA_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_LONG_DELAY);
+ local &= ~EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ mb();
+}
+
+
+/*
+ * Read a whole byte from the EEPROM.
+ */
+static int __devinit read_eeprom_byte(struct net_device *dev,
+ unsigned long offset)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+ unsigned long flags;
+ u32 local;
+ int result = 0;
+ short i;
+
+ /*
+ * Don't take interrupts on this CPU will bit banging
+ * the %#%#@$ I2C device
+ */
+ local_irq_save(flags);
+
+ eeprom_start(regs);
+
+ eeprom_prep(regs, EEPROM_WRITE_SELECT);
+ if (eeprom_check_ack(regs)) {
+ local_irq_restore(flags);
+ printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
+ result = -EIO;
+ goto eeprom_read_error;
+ }
+
+ eeprom_prep(regs, (offset >> 8) & 0xff);
+ if (eeprom_check_ack(regs)) {
+ local_irq_restore(flags);
+ printk(KERN_ERR "%s: Unable to set address byte 0\n",
+ ap->name);
+ result = -EIO;
+ goto eeprom_read_error;
+ }
+
+ eeprom_prep(regs, offset & 0xff);
+ if (eeprom_check_ack(regs)) {
+ local_irq_restore(flags);
+ printk(KERN_ERR "%s: Unable to set address byte 1\n",
+ ap->name);
+ result = -EIO;
+ goto eeprom_read_error;
+ }
+
+ eeprom_start(regs);
+ eeprom_prep(regs, EEPROM_READ_SELECT);
+ if (eeprom_check_ack(regs)) {
+ local_irq_restore(flags);
+ printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
+ ap->name);
+ result = -EIO;
+ goto eeprom_read_error;
+ }
+
+ for (i = 0; i < 8; i++) {
+ local = readl(&regs->LocalCtrl);
+ local &= ~EEPROM_WRITE_ENABLE;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ udelay(ACE_LONG_DELAY);
+ mb();
+ local |= EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ /* sample data mid high clk */
+ result = (result << 1) |
+ ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
+ udelay(ACE_SHORT_DELAY);
+ mb();
+ local = readl(&regs->LocalCtrl);
+ local &= ~EEPROM_CLK_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ udelay(ACE_SHORT_DELAY);
+ mb();
+ if (i == 7) {
+ local |= EEPROM_WRITE_ENABLE;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ }
+ }
+
+ local |= EEPROM_DATA_OUT;
+ writel(local, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ udelay(ACE_LONG_DELAY);
+ writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
+ readl(&regs->LocalCtrl);
+ mb();
+ udelay(ACE_SHORT_DELAY);
+ eeprom_stop(regs);
+
+ local_irq_restore(flags);
+ out:
+ return result;
+
+ eeprom_read_error:
+ printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
+ ap->name, offset);
+ goto out;
+}
diff --git a/drivers/net/ethernet/alteon/acenic.h b/drivers/net/ethernet/alteon/acenic.h
new file mode 100644
index 000000000000..51c486cfbb8c
--- /dev/null
+++ b/drivers/net/ethernet/alteon/acenic.h
@@ -0,0 +1,790 @@
+#ifndef _ACENIC_H_
+#define _ACENIC_H_
+#include <linux/interrupt.h>
+
+
+/*
+ * Generate TX index update each time, when TX ring is closed.
+ * Normally, this is not useful, because results in more dma (and irqs
+ * without TX_COAL_INTS_ONLY).
+ */
+#define USE_TX_COAL_NOW 0
+
+/*
+ * Addressing:
+ *
+ * The Tigon uses 64-bit host addresses, regardless of their actual
+ * length, and it expects a big-endian format. For 32 bit systems the
+ * upper 32 bits of the address are simply ignored (zero), however for
+ * little endian 64 bit systems (Alpha) this looks strange with the
+ * two parts of the address word being swapped.
+ *
+ * The addresses are split in two 32 bit words for all architectures
+ * as some of them are in PCI shared memory and it is necessary to use
+ * readl/writel to access them.
+ *
+ * The addressing code is derived from Pete Wyckoff's work, but
+ * modified to deal properly with readl/writel usage.
+ */
+
+struct ace_regs {
+ u32 pad0[16]; /* PCI control registers */
+
+ u32 HostCtrl; /* 0x40 */
+ u32 LocalCtrl;
+
+ u32 pad1[2];
+
+ u32 MiscCfg; /* 0x50 */
+
+ u32 pad2[2];
+
+ u32 PciState;
+
+ u32 pad3[2]; /* 0x60 */
+
+ u32 WinBase;
+ u32 WinData;
+
+ u32 pad4[12]; /* 0x70 */
+
+ u32 DmaWriteState; /* 0xa0 */
+ u32 pad5[3];
+ u32 DmaReadState; /* 0xb0 */
+
+ u32 pad6[26];
+
+ u32 AssistState;
+
+ u32 pad7[8]; /* 0x120 */
+
+ u32 CpuCtrl; /* 0x140 */
+ u32 Pc;
+
+ u32 pad8[3];
+
+ u32 SramAddr; /* 0x154 */
+ u32 SramData;
+
+ u32 pad9[49];
+
+ u32 MacRxState; /* 0x220 */
+
+ u32 pad10[7];
+
+ u32 CpuBCtrl; /* 0x240 */
+ u32 PcB;
+
+ u32 pad11[3];
+
+ u32 SramBAddr; /* 0x254 */
+ u32 SramBData;
+
+ u32 pad12[105];
+
+ u32 pad13[32]; /* 0x400 */
+ u32 Stats[32];
+
+ u32 Mb0Hi; /* 0x500 */
+ u32 Mb0Lo;
+ u32 Mb1Hi;
+ u32 CmdPrd;
+ u32 Mb2Hi;
+ u32 TxPrd;
+ u32 Mb3Hi;
+ u32 RxStdPrd;
+ u32 Mb4Hi;
+ u32 RxJumboPrd;
+ u32 Mb5Hi;
+ u32 RxMiniPrd;
+ u32 Mb6Hi;
+ u32 Mb6Lo;
+ u32 Mb7Hi;
+ u32 Mb7Lo;
+ u32 Mb8Hi;
+ u32 Mb8Lo;
+ u32 Mb9Hi;
+ u32 Mb9Lo;
+ u32 MbAHi;
+ u32 MbALo;
+ u32 MbBHi;
+ u32 MbBLo;
+ u32 MbCHi;
+ u32 MbCLo;
+ u32 MbDHi;
+ u32 MbDLo;
+ u32 MbEHi;
+ u32 MbELo;
+ u32 MbFHi;
+ u32 MbFLo;
+
+ u32 pad14[32];
+
+ u32 MacAddrHi; /* 0x600 */
+ u32 MacAddrLo;
+ u32 InfoPtrHi;
+ u32 InfoPtrLo;
+ u32 MultiCastHi; /* 0x610 */
+ u32 MultiCastLo;
+ u32 ModeStat;
+ u32 DmaReadCfg;
+ u32 DmaWriteCfg; /* 0x620 */
+ u32 TxBufRat;
+ u32 EvtCsm;
+ u32 CmdCsm;
+ u32 TuneRxCoalTicks;/* 0x630 */
+ u32 TuneTxCoalTicks;
+ u32 TuneStatTicks;
+ u32 TuneMaxTxDesc;
+ u32 TuneMaxRxDesc; /* 0x640 */
+ u32 TuneTrace;
+ u32 TuneLink;
+ u32 TuneFastLink;
+ u32 TracePtr; /* 0x650 */
+ u32 TraceStrt;
+ u32 TraceLen;
+ u32 IfIdx;
+ u32 IfMtu; /* 0x660 */
+ u32 MaskInt;
+ u32 GigLnkState;
+ u32 FastLnkState;
+ u32 pad16[4]; /* 0x670 */
+ u32 RxRetCsm; /* 0x680 */
+
+ u32 pad17[31];
+
+ u32 CmdRng[64]; /* 0x700 */
+ u32 Window[0x200];
+};
+
+
+typedef struct {
+ u32 addrhi;
+ u32 addrlo;
+} aceaddr;
+
+
+#define ACE_WINDOW_SIZE 0x800
+
+#define ACE_JUMBO_MTU 9000
+#define ACE_STD_MTU 1500
+
+#define ACE_TRACE_SIZE 0x8000
+
+/*
+ * Host control register bits.
+ */
+
+#define IN_INT 0x01
+#define CLR_INT 0x02
+#define HW_RESET 0x08
+#define BYTE_SWAP 0x10
+#define WORD_SWAP 0x20
+#define MASK_INTS 0x40
+
+/*
+ * Local control register bits.
+ */
+
+#define EEPROM_DATA_IN 0x800000
+#define EEPROM_DATA_OUT 0x400000
+#define EEPROM_WRITE_ENABLE 0x200000
+#define EEPROM_CLK_OUT 0x100000
+
+#define EEPROM_BASE 0xa0000000
+
+#define EEPROM_WRITE_SELECT 0xa0
+#define EEPROM_READ_SELECT 0xa1
+
+#define SRAM_BANK_512K 0x200
+
+
+/*
+ * udelay() values for when clocking the eeprom
+ */
+#define ACE_SHORT_DELAY 2
+#define ACE_LONG_DELAY 4
+
+
+/*
+ * Misc Config bits
+ */
+
+#define SYNC_SRAM_TIMING 0x100000
+
+
+/*
+ * CPU state bits.
+ */
+
+#define CPU_RESET 0x01
+#define CPU_TRACE 0x02
+#define CPU_PROM_FAILED 0x10
+#define CPU_HALT 0x00010000
+#define CPU_HALTED 0xffff0000
+
+
+/*
+ * PCI State bits.
+ */
+
+#define DMA_READ_MAX_4 0x04
+#define DMA_READ_MAX_16 0x08
+#define DMA_READ_MAX_32 0x0c
+#define DMA_READ_MAX_64 0x10
+#define DMA_READ_MAX_128 0x14
+#define DMA_READ_MAX_256 0x18
+#define DMA_READ_MAX_1K 0x1c
+#define DMA_WRITE_MAX_4 0x20
+#define DMA_WRITE_MAX_16 0x40
+#define DMA_WRITE_MAX_32 0x60
+#define DMA_WRITE_MAX_64 0x80
+#define DMA_WRITE_MAX_128 0xa0
+#define DMA_WRITE_MAX_256 0xc0
+#define DMA_WRITE_MAX_1K 0xe0
+#define DMA_READ_WRITE_MASK 0xfc
+#define MEM_READ_MULTIPLE 0x00020000
+#define PCI_66MHZ 0x00080000
+#define PCI_32BIT 0x00100000
+#define DMA_WRITE_ALL_ALIGN 0x00800000
+#define READ_CMD_MEM 0x06000000
+#define WRITE_CMD_MEM 0x70000000
+
+
+/*
+ * Mode status
+ */
+
+#define ACE_BYTE_SWAP_BD 0x02
+#define ACE_WORD_SWAP_BD 0x04 /* not actually used */
+#define ACE_WARN 0x08
+#define ACE_BYTE_SWAP_DMA 0x10
+#define ACE_NO_JUMBO_FRAG 0x200
+#define ACE_FATAL 0x40000000
+
+
+/*
+ * DMA config
+ */
+
+#define DMA_THRESH_1W 0x10
+#define DMA_THRESH_2W 0x20
+#define DMA_THRESH_4W 0x40
+#define DMA_THRESH_8W 0x80
+#define DMA_THRESH_16W 0x100
+#define DMA_THRESH_32W 0x0 /* not described in doc, but exists. */
+
+
+/*
+ * Tuning parameters
+ */
+
+#define TICKS_PER_SEC 1000000
+
+
+/*
+ * Link bits
+ */
+
+#define LNK_PREF 0x00008000
+#define LNK_10MB 0x00010000
+#define LNK_100MB 0x00020000
+#define LNK_1000MB 0x00040000
+#define LNK_FULL_DUPLEX 0x00080000
+#define LNK_HALF_DUPLEX 0x00100000
+#define LNK_TX_FLOW_CTL_Y 0x00200000
+#define LNK_NEG_ADVANCED 0x00400000
+#define LNK_RX_FLOW_CTL_Y 0x00800000
+#define LNK_NIC 0x01000000
+#define LNK_JAM 0x02000000
+#define LNK_JUMBO 0x04000000
+#define LNK_ALTEON 0x08000000
+#define LNK_NEG_FCTL 0x10000000
+#define LNK_NEGOTIATE 0x20000000
+#define LNK_ENABLE 0x40000000
+#define LNK_UP 0x80000000
+
+
+/*
+ * Event definitions
+ */
+
+#define EVT_RING_ENTRIES 256
+#define EVT_RING_SIZE (EVT_RING_ENTRIES * sizeof(struct event))
+
+struct event {
+#ifdef __LITTLE_ENDIAN_BITFIELD
+ u32 idx:12;
+ u32 code:12;
+ u32 evt:8;
+#else
+ u32 evt:8;
+ u32 code:12;
+ u32 idx:12;
+#endif
+ u32 pad;
+};
+
+
+/*
+ * Events
+ */
+
+#define E_FW_RUNNING 0x01
+#define E_STATS_UPDATED 0x04
+
+#define E_STATS_UPDATE 0x04
+
+#define E_LNK_STATE 0x06
+#define E_C_LINK_UP 0x01
+#define E_C_LINK_DOWN 0x02
+#define E_C_LINK_10_100 0x03
+
+#define E_ERROR 0x07
+#define E_C_ERR_INVAL_CMD 0x01
+#define E_C_ERR_UNIMP_CMD 0x02
+#define E_C_ERR_BAD_CFG 0x03
+
+#define E_MCAST_LIST 0x08
+#define E_C_MCAST_ADDR_ADD 0x01
+#define E_C_MCAST_ADDR_DEL 0x02
+
+#define E_RESET_JUMBO_RNG 0x09
+
+
+/*
+ * Commands
+ */
+
+#define CMD_RING_ENTRIES 64
+
+struct cmd {
+#ifdef __LITTLE_ENDIAN_BITFIELD
+ u32 idx:12;
+ u32 code:12;
+ u32 evt:8;
+#else
+ u32 evt:8;
+ u32 code:12;
+ u32 idx:12;
+#endif
+};
+
+
+#define C_HOST_STATE 0x01
+#define C_C_STACK_UP 0x01
+#define C_C_STACK_DOWN 0x02
+
+#define C_FDR_FILTERING 0x02
+#define C_C_FDR_FILT_ENABLE 0x01
+#define C_C_FDR_FILT_DISABLE 0x02
+
+#define C_SET_RX_PRD_IDX 0x03
+#define C_UPDATE_STATS 0x04
+#define C_RESET_JUMBO_RNG 0x05
+#define C_ADD_MULTICAST_ADDR 0x08
+#define C_DEL_MULTICAST_ADDR 0x09
+
+#define C_SET_PROMISC_MODE 0x0a
+#define C_C_PROMISC_ENABLE 0x01
+#define C_C_PROMISC_DISABLE 0x02
+
+#define C_LNK_NEGOTIATION 0x0b
+#define C_C_NEGOTIATE_BOTH 0x00
+#define C_C_NEGOTIATE_GIG 0x01
+#define C_C_NEGOTIATE_10_100 0x02
+
+#define C_SET_MAC_ADDR 0x0c
+#define C_CLEAR_PROFILE 0x0d
+
+#define C_SET_MULTICAST_MODE 0x0e
+#define C_C_MCAST_ENABLE 0x01
+#define C_C_MCAST_DISABLE 0x02
+
+#define C_CLEAR_STATS 0x0f
+#define C_SET_RX_JUMBO_PRD_IDX 0x10
+#define C_REFRESH_STATS 0x11
+
+
+/*
+ * Descriptor flags
+ */
+#define BD_FLG_TCP_UDP_SUM 0x01
+#define BD_FLG_IP_SUM 0x02
+#define BD_FLG_END 0x04
+#define BD_FLG_MORE 0x08
+#define BD_FLG_JUMBO 0x10
+#define BD_FLG_UCAST 0x20
+#define BD_FLG_MCAST 0x40
+#define BD_FLG_BCAST 0x60
+#define BD_FLG_TYP_MASK 0x60
+#define BD_FLG_IP_FRAG 0x80
+#define BD_FLG_IP_FRAG_END 0x100
+#define BD_FLG_VLAN_TAG 0x200
+#define BD_FLG_FRAME_ERROR 0x400
+#define BD_FLG_COAL_NOW 0x800
+#define BD_FLG_MINI 0x1000
+
+
+/*
+ * Ring Control block flags
+ */
+#define RCB_FLG_TCP_UDP_SUM 0x01
+#define RCB_FLG_IP_SUM 0x02
+#define RCB_FLG_NO_PSEUDO_HDR 0x08
+#define RCB_FLG_VLAN_ASSIST 0x10
+#define RCB_FLG_COAL_INT_ONLY 0x20
+#define RCB_FLG_TX_HOST_RING 0x40
+#define RCB_FLG_IEEE_SNAP_SUM 0x80
+#define RCB_FLG_EXT_RX_BD 0x100
+#define RCB_FLG_RNG_DISABLE 0x200
+
+
+/*
+ * TX ring - maximum TX ring entries for Tigon I's is 128
+ */
+#define MAX_TX_RING_ENTRIES 256
+#define TIGON_I_TX_RING_ENTRIES 128
+#define TX_RING_SIZE (MAX_TX_RING_ENTRIES * sizeof(struct tx_desc))
+#define TX_RING_BASE 0x3800
+
+struct tx_desc{
+ aceaddr addr;
+ u32 flagsize;
+#if 0
+/*
+ * This is in PCI shared mem and must be accessed with readl/writel
+ * real layout is:
+ */
+#if __LITTLE_ENDIAN
+ u16 flags;
+ u16 size;
+ u16 vlan;
+ u16 reserved;
+#else
+ u16 size;
+ u16 flags;
+ u16 reserved;
+ u16 vlan;
+#endif
+#endif
+ u32 vlanres;
+};
+
+
+#define RX_STD_RING_ENTRIES 512
+#define RX_STD_RING_SIZE (RX_STD_RING_ENTRIES * sizeof(struct rx_desc))
+
+#define RX_JUMBO_RING_ENTRIES 256
+#define RX_JUMBO_RING_SIZE (RX_JUMBO_RING_ENTRIES *sizeof(struct rx_desc))
+
+#define RX_MINI_RING_ENTRIES 1024
+#define RX_MINI_RING_SIZE (RX_MINI_RING_ENTRIES *sizeof(struct rx_desc))
+
+#define RX_RETURN_RING_ENTRIES 2048
+#define RX_RETURN_RING_SIZE (RX_MAX_RETURN_RING_ENTRIES * \
+ sizeof(struct rx_desc))
+
+struct rx_desc{
+ aceaddr addr;
+#ifdef __LITTLE_ENDIAN
+ u16 size;
+ u16 idx;
+#else
+ u16 idx;
+ u16 size;
+#endif
+#ifdef __LITTLE_ENDIAN
+ u16 flags;
+ u16 type;
+#else
+ u16 type;
+ u16 flags;
+#endif
+#ifdef __LITTLE_ENDIAN
+ u16 tcp_udp_csum;
+ u16 ip_csum;
+#else
+ u16 ip_csum;
+ u16 tcp_udp_csum;
+#endif
+#ifdef __LITTLE_ENDIAN
+ u16 vlan;
+ u16 err_flags;
+#else
+ u16 err_flags;
+ u16 vlan;
+#endif
+ u32 reserved;
+ u32 opague;
+};
+
+
+/*
+ * This struct is shared with the NIC firmware.
+ */
+struct ring_ctrl {
+ aceaddr rngptr;
+#ifdef __LITTLE_ENDIAN
+ u16 flags;
+ u16 max_len;
+#else
+ u16 max_len;
+ u16 flags;
+#endif
+ u32 pad;
+};
+
+
+struct ace_mac_stats {
+ u32 excess_colls;
+ u32 coll_1;
+ u32 coll_2;
+ u32 coll_3;
+ u32 coll_4;
+ u32 coll_5;
+ u32 coll_6;
+ u32 coll_7;
+ u32 coll_8;
+ u32 coll_9;
+ u32 coll_10;
+ u32 coll_11;
+ u32 coll_12;
+ u32 coll_13;
+ u32 coll_14;
+ u32 coll_15;
+ u32 late_coll;
+ u32 defers;
+ u32 crc_err;
+ u32 underrun;
+ u32 crs_err;
+ u32 pad[3];
+ u32 drop_ula;
+ u32 drop_mc;
+ u32 drop_fc;
+ u32 drop_space;
+ u32 coll;
+ u32 kept_bc;
+ u32 kept_mc;
+ u32 kept_uc;
+};
+
+
+struct ace_info {
+ union {
+ u32 stats[256];
+ } s;
+ struct ring_ctrl evt_ctrl;
+ struct ring_ctrl cmd_ctrl;
+ struct ring_ctrl tx_ctrl;
+ struct ring_ctrl rx_std_ctrl;
+ struct ring_ctrl rx_jumbo_ctrl;
+ struct ring_ctrl rx_mini_ctrl;
+ struct ring_ctrl rx_return_ctrl;
+ aceaddr evt_prd_ptr;
+ aceaddr rx_ret_prd_ptr;
+ aceaddr tx_csm_ptr;
+ aceaddr stats2_ptr;
+};
+
+
+struct ring_info {
+ struct sk_buff *skb;
+ DEFINE_DMA_UNMAP_ADDR(mapping);
+};
+
+
+/*
+ * Funny... As soon as we add maplen on alpha, it starts to work
+ * much slower. Hmm... is it because struct does not fit to one cacheline?
+ * So, split tx_ring_info.
+ */
+struct tx_ring_info {
+ struct sk_buff *skb;
+ DEFINE_DMA_UNMAP_ADDR(mapping);
+ DEFINE_DMA_UNMAP_LEN(maplen);
+};
+
+
+/*
+ * struct ace_skb holding the rings of skb's. This is an awful lot of
+ * pointers, but I don't see any other smart mode to do this in an
+ * efficient manner ;-(
+ */
+struct ace_skb
+{
+ struct tx_ring_info tx_skbuff[MAX_TX_RING_ENTRIES];
+ struct ring_info rx_std_skbuff[RX_STD_RING_ENTRIES];
+ struct ring_info rx_mini_skbuff[RX_MINI_RING_ENTRIES];
+ struct ring_info rx_jumbo_skbuff[RX_JUMBO_RING_ENTRIES];
+};
+
+
+/*
+ * Struct private for the AceNIC.
+ *
+ * Elements are grouped so variables used by the tx handling goes
+ * together, and will go into the same cache lines etc. in order to
+ * avoid cache line contention between the rx and tx handling on SMP.
+ *
+ * Frequently accessed variables are put at the beginning of the
+ * struct to help the compiler generate better/shorter code.
+ */
+struct ace_private
+{
+ struct ace_info *info;
+ struct ace_regs __iomem *regs; /* register base */
+ struct ace_skb *skb;
+ dma_addr_t info_dma; /* 32/64 bit */
+
+ int version, link;
+ int promisc, mcast_all;
+
+ /*
+ * TX elements
+ */
+ struct tx_desc *tx_ring;
+ u32 tx_prd;
+ volatile u32 tx_ret_csm;
+ int tx_ring_entries;
+
+ /*
+ * RX elements
+ */
+ unsigned long std_refill_busy
+ __attribute__ ((aligned (SMP_CACHE_BYTES)));
+ unsigned long mini_refill_busy, jumbo_refill_busy;
+ atomic_t cur_rx_bufs;
+ atomic_t cur_mini_bufs;
+ atomic_t cur_jumbo_bufs;
+ u32 rx_std_skbprd, rx_mini_skbprd, rx_jumbo_skbprd;
+ u32 cur_rx;
+
+ struct rx_desc *rx_std_ring;
+ struct rx_desc *rx_jumbo_ring;
+ struct rx_desc *rx_mini_ring;
+ struct rx_desc *rx_return_ring;
+
+ int tasklet_pending, jumbo;
+ struct tasklet_struct ace_tasklet;
+
+ struct event *evt_ring;
+
+ volatile u32 *evt_prd, *rx_ret_prd, *tx_csm;
+
+ dma_addr_t tx_ring_dma; /* 32/64 bit */
+ dma_addr_t rx_ring_base_dma;
+ dma_addr_t evt_ring_dma;
+ dma_addr_t evt_prd_dma, rx_ret_prd_dma, tx_csm_dma;
+
+ unsigned char *trace_buf;
+ struct pci_dev *pdev;
+ struct net_device *next;
+ volatile int fw_running;
+ int board_idx;
+ u16 pci_command;
+ u8 pci_latency;
+ const char *name;
+#ifdef INDEX_DEBUG
+ spinlock_t debug_lock
+ __attribute__ ((aligned (SMP_CACHE_BYTES)));
+ u32 last_tx, last_std_rx, last_mini_rx;
+#endif
+ int pci_using_dac;
+ u8 firmware_major;
+ u8 firmware_minor;
+ u8 firmware_fix;
+ u32 firmware_start;
+};
+
+
+#define TX_RESERVED MAX_SKB_FRAGS
+
+static inline int tx_space (struct ace_private *ap, u32 csm, u32 prd)
+{
+ return (csm - prd - 1) & (ACE_TX_RING_ENTRIES(ap) - 1);
+}
+
+#define tx_free(ap) tx_space((ap)->tx_ret_csm, (ap)->tx_prd, ap)
+#define tx_ring_full(ap, csm, prd) (tx_space(ap, csm, prd) <= TX_RESERVED)
+
+static inline void set_aceaddr(aceaddr *aa, dma_addr_t addr)
+{
+ u64 baddr = (u64) addr;
+ aa->addrlo = baddr & 0xffffffff;
+ aa->addrhi = baddr >> 32;
+ wmb();
+}
+
+
+static inline void ace_set_txprd(struct ace_regs __iomem *regs,
+ struct ace_private *ap, u32 value)
+{
+#ifdef INDEX_DEBUG
+ unsigned long flags;
+ spin_lock_irqsave(&ap->debug_lock, flags);
+ writel(value, &regs->TxPrd);
+ if (value == ap->last_tx)
+ printk(KERN_ERR "AceNIC RACE ALERT! writing identical value "
+ "to tx producer (%i)\n", value);
+ ap->last_tx = value;
+ spin_unlock_irqrestore(&ap->debug_lock, flags);
+#else
+ writel(value, &regs->TxPrd);
+#endif
+ wmb();
+}
+
+
+static inline void ace_mask_irq(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+
+ if (ACE_IS_TIGON_I(ap))
+ writel(1, &regs->MaskInt);
+ else
+ writel(readl(&regs->HostCtrl) | MASK_INTS, &regs->HostCtrl);
+
+ ace_sync_irq(dev->irq);
+}
+
+
+static inline void ace_unmask_irq(struct net_device *dev)
+{
+ struct ace_private *ap = netdev_priv(dev);
+ struct ace_regs __iomem *regs = ap->regs;
+
+ if (ACE_IS_TIGON_I(ap))
+ writel(0, &regs->MaskInt);
+ else
+ writel(readl(&regs->HostCtrl) & ~MASK_INTS, &regs->HostCtrl);
+}
+
+
+/*
+ * Prototypes
+ */
+static int ace_init(struct net_device *dev);
+static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs);
+static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs);
+static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs);
+static irqreturn_t ace_interrupt(int irq, void *dev_id);
+static int ace_load_firmware(struct net_device *dev);
+static int ace_open(struct net_device *dev);
+static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
+ struct net_device *dev);
+static int ace_close(struct net_device *dev);
+static void ace_tasklet(unsigned long dev);
+static void ace_dump_trace(struct ace_private *ap);
+static void ace_set_multicast_list(struct net_device *dev);
+static int ace_change_mtu(struct net_device *dev, int new_mtu);
+static int ace_set_mac_addr(struct net_device *dev, void *p);
+static void ace_set_rxtx_parms(struct net_device *dev, int jumbo);
+static int ace_allocate_descriptors(struct net_device *dev);
+static void ace_free_descriptors(struct net_device *dev);
+static void ace_init_cleanup(struct net_device *dev);
+static struct net_device_stats *ace_get_stats(struct net_device *dev);
+static int read_eeprom_byte(struct net_device *dev, unsigned long offset);
+
+#endif /* _ACENIC_H_ */