diff options
Diffstat (limited to 'drivers/net/bonding')
-rw-r--r-- | drivers/net/bonding/bond_main.c | 39 |
1 files changed, 28 insertions, 11 deletions
diff --git a/drivers/net/bonding/bond_main.c b/drivers/net/bonding/bond_main.c index 56b560558884..65a4107749df 100644 --- a/drivers/net/bonding/bond_main.c +++ b/drivers/net/bonding/bond_main.c @@ -214,6 +214,8 @@ static void bond_uninit(struct net_device *bond_dev); static struct rtnl_link_stats64 *bond_get_stats(struct net_device *bond_dev, struct rtnl_link_stats64 *stats); static void bond_slave_arr_handler(struct work_struct *work); +static bool bond_time_in_interval(struct bonding *bond, unsigned long last_act, + int mod); /*---------------------------- General routines -----------------------------*/ @@ -2459,7 +2461,7 @@ int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond, struct slave *slave) { struct arphdr *arp = (struct arphdr *)skb->data; - struct slave *curr_active_slave; + struct slave *curr_active_slave, *curr_arp_slave; unsigned char *arp_ptr; __be32 sip, tip; int alen, is_arp = skb->protocol == __cpu_to_be16(ETH_P_ARP); @@ -2506,26 +2508,41 @@ int bond_arp_rcv(const struct sk_buff *skb, struct bonding *bond, &sip, &tip); curr_active_slave = rcu_dereference(bond->curr_active_slave); + curr_arp_slave = rcu_dereference(bond->current_arp_slave); - /* Backup slaves won't see the ARP reply, but do come through - * here for each ARP probe (so we swap the sip/tip to validate - * the probe). In a "redundant switch, common router" type of - * configuration, the ARP probe will (hopefully) travel from - * the active, through one switch, the router, then the other - * switch before reaching the backup. + /* We 'trust' the received ARP enough to validate it if: + * + * (a) the slave receiving the ARP is active (which includes the + * current ARP slave, if any), or + * + * (b) the receiving slave isn't active, but there is a currently + * active slave and it received valid arp reply(s) after it became + * the currently active slave, or + * + * (c) there is an ARP slave that sent an ARP during the prior ARP + * interval, and we receive an ARP reply on any slave. We accept + * these because switch FDB update delays may deliver the ARP + * reply to a slave other than the sender of the ARP request. * - * We 'trust' the arp requests if there is an active slave and - * it received valid arp reply(s) after it became active. This - * is done to avoid endless looping when we can't reach the + * Note: for (b), backup slaves are receiving the broadcast ARP + * request, not a reply. This request passes from the sending + * slave through the L2 switch(es) to the receiving slave. Since + * this is checking the request, sip/tip are swapped for + * validation. + * + * This is done to avoid endless looping when we can't reach the * arp_ip_target and fool ourselves with our own arp requests. */ - if (bond_is_active_slave(slave)) bond_validate_arp(bond, slave, sip, tip); else if (curr_active_slave && time_after(slave_last_rx(bond, curr_active_slave), curr_active_slave->last_link_up)) bond_validate_arp(bond, slave, tip, sip); + else if (curr_arp_slave && (arp->ar_op == htons(ARPOP_REPLY)) && + bond_time_in_interval(bond, + dev_trans_start(curr_arp_slave->dev), 1)) + bond_validate_arp(bond, slave, sip, tip); out_unlock: if (arp != (struct arphdr *)skb->data) |