diff options
Diffstat (limited to 'drivers/mtd/chips/jedec.c')
-rw-r--r-- | drivers/mtd/chips/jedec.c | 207 |
1 files changed, 104 insertions, 103 deletions
diff --git a/drivers/mtd/chips/jedec.c b/drivers/mtd/chips/jedec.c index 62d235a9a4e2..c40b48dabed3 100644 --- a/drivers/mtd/chips/jedec.c +++ b/drivers/mtd/chips/jedec.c @@ -1,6 +1,6 @@ /* JEDEC Flash Interface. - * This is an older type of interface for self programming flash. It is + * This is an older type of interface for self programming flash. It is * commonly use in older AMD chips and is obsolete compared with CFI. * It is called JEDEC because the JEDEC association distributes the ID codes * for the chips. @@ -17,6 +17,7 @@ #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> +#include <linux/slab.h> #include <linux/mtd/jedec.h> #include <linux/mtd/map.h> #include <linux/mtd/mtd.h> @@ -87,9 +88,9 @@ static const struct JEDECTable JEDEC_table[] = { static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); static void jedec_sync(struct mtd_info *mtd) {}; -static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, +static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); -static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, +static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); static struct mtd_info *jedec_probe(struct map_info *map); @@ -121,7 +122,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private)); priv = (struct jedec_private *)&MTD[1]; - + my_bank_size = map->size; if (map->size/my_bank_size > MAX_JEDEC_CHIPS) @@ -130,13 +131,13 @@ static struct mtd_info *jedec_probe(struct map_info *map) kfree(MTD); return NULL; } - + for (Base = 0; Base < map->size; Base += my_bank_size) { // Perhaps zero could designate all tests? if (map->buswidth == 0) map->buswidth = 1; - + if (map->buswidth == 1){ if (jedec_probe8(map,Base,priv) == 0) { printk("did recognize jedec chip\n"); @@ -149,7 +150,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) if (map->buswidth == 4) jedec_probe32(map,Base,priv); } - + // Get the biggest sector size SectorSize = 0; for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) @@ -159,7 +160,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) if (priv->chips[I].sectorsize > SectorSize) SectorSize = priv->chips[I].sectorsize; } - + // Quickly ensure that the other sector sizes are factors of the largest for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) { @@ -168,9 +169,9 @@ static struct mtd_info *jedec_probe(struct map_info *map) printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); kfree(MTD); return NULL; - } + } } - + /* Generate a part name that includes the number of different chips and other configuration information */ count = 1; @@ -180,13 +181,13 @@ static struct mtd_info *jedec_probe(struct map_info *map) for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) { const struct JEDECTable *JEDEC; - + if (priv->chips[I+1].jedec == priv->chips[I].jedec) { count++; continue; } - + // Locate the chip in the jedec table JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); if (JEDEC == 0) @@ -195,11 +196,11 @@ static struct mtd_info *jedec_probe(struct map_info *map) kfree(MTD); return NULL; } - + if (Uniq != 0) strcat(Part,","); Uniq++; - + if (count != 1) sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); else @@ -207,7 +208,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) if (strlen(Part) > sizeof(Part)*2/3) break; count = 1; - } + } /* Determine if the chips are organized in a linear fashion, or if there are empty banks. Note, the last bank does not count here, only the @@ -232,7 +233,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) { if (priv->bank_fill[I] != my_bank_size) priv->is_banked = 1; - + /* This even could be eliminated, but new de-optimized read/write functions have to be written */ printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); @@ -241,7 +242,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) printk("mtd: Failed. Cannot handle unsymmetric banking\n"); kfree(MTD); return NULL; - } + } } } } @@ -249,7 +250,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) strcat(Part,", banked"); // printk("Part: '%s'\n",Part); - + memset(MTD,0,sizeof(*MTD)); // strlcpy(MTD->name,Part,sizeof(MTD->name)); MTD->name = map->name; @@ -290,7 +291,7 @@ static int checkparity(u_char C) /* Take an array of JEDEC numbers that represent interleved flash chips and process them. Check to make sure they are good JEDEC numbers, look - them up and then add them to the chip list */ + them up and then add them to the chip list */ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, unsigned long base,struct jedec_private *priv) { @@ -305,16 +306,16 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) return 0; } - + // Finally, just make sure all the chip sizes are the same JEDEC = jedec_idtoinf(Mfg[0],Id[0]); - + if (JEDEC == 0) { printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); return 0; } - + Size = JEDEC->size; SectorSize = JEDEC->sectorsize; for (I = 0; I != Count; I++) @@ -330,7 +331,7 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, { printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); return 0; - } + } } // Load the Chips @@ -344,13 +345,13 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, { printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); return 0; - } - + } + // Add them to the table for (J = 0; J != Count; J++) { unsigned long Bank; - + JEDEC = jedec_idtoinf(Mfg[J],Id[J]); priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; priv->chips[I].size = JEDEC->size; @@ -363,17 +364,17 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, // log2 n :| priv->chips[I].addrshift = 0; for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); - + // Determine how filled this bank is. Bank = base & (~(my_bank_size-1)); - if (priv->bank_fill[Bank/my_bank_size] < base + + if (priv->bank_fill[Bank/my_bank_size] < base + (JEDEC->size << priv->chips[I].addrshift) - Bank) priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank; I++; } priv->size += priv->chips[I-1].size*Count; - + return priv->chips[I-1].size; } @@ -391,7 +392,7 @@ static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) // Look for flash using an 8 bit bus interface static int jedec_probe8(struct map_info *map,unsigned long base, struct jedec_private *priv) -{ +{ #define flread(x) map_read8(map,base+x) #define flwrite(v,x) map_write8(map,v,base+x) @@ -409,20 +410,20 @@ static int jedec_probe8(struct map_info *map,unsigned long base, OldVal = flread(base); for (I = 0; OldVal != flread(base) && I < 10000; I++) OldVal = flread(base); - + // Reset the chip - flwrite(Reset,0x555); - + flwrite(Reset,0x555); + // Send the sequence flwrite(AutoSel1,0x555); flwrite(AutoSel2,0x2AA); flwrite(AutoSel3,0x555); - + // Get the JEDEC numbers Mfg[0] = flread(0); Id[0] = flread(1); // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); - + Size = handle_jedecs(map,Mfg,Id,1,base,priv); // printk("handle_jedecs Size is %x\n",(unsigned int)Size); if (Size == 0) @@ -430,13 +431,13 @@ static int jedec_probe8(struct map_info *map,unsigned long base, flwrite(Reset,0x555); return 0; } - + // Reset. flwrite(Reset,0x555); - + return 1; - + #undef flread #undef flwrite } @@ -469,17 +470,17 @@ static int jedec_probe32(struct map_info *map,unsigned long base, OldVal = flread(base); for (I = 0; OldVal != flread(base) && I < 10000; I++) OldVal = flread(base); - + // Reset the chip - flwrite(Reset,0x555); - + flwrite(Reset,0x555); + // Send the sequence flwrite(AutoSel1,0x555); flwrite(AutoSel2,0x2AA); flwrite(AutoSel3,0x555); - + // Test #1, JEDEC numbers are readable from 0x??00/0x??01 - if (flread(0) != flread(0x100) || + if (flread(0) != flread(0x100) || flread(1) != flread(0x101)) { flwrite(Reset,0x555); @@ -493,14 +494,14 @@ static int jedec_probe32(struct map_info *map,unsigned long base, OldVal = flread(1); for (I = 0; I != 4; I++) Id[I] = (OldVal >> (I*8)); - + Size = handle_jedecs(map,Mfg,Id,4,base,priv); if (Size == 0) { flwrite(Reset,0x555); return 0; } - + /* Check if there is address wrap around within a single bank, if this returns JEDEC numbers then we assume that it is wrap around. Notice we call this routine with the JEDEC return still enabled, if two or @@ -518,27 +519,27 @@ static int jedec_probe32(struct map_info *map,unsigned long base, // Reset. flwrite(0xF0F0F0F0,0x555); - + return 1; - + #undef flread #undef flwrite } /* Linear read. */ -static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, +static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct map_info *map = mtd->priv; - + map_copy_from(map, buf, from, len); *retlen = len; - return 0; + return 0; } /* Banked read. Take special care to jump past the holes in the bank mapping. This version assumes symetry in the holes.. */ -static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, +static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct map_info *map = mtd->priv; @@ -554,17 +555,17 @@ static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, if (priv->bank_fill[0] - offset < len) get = priv->bank_fill[0] - offset; - bank /= priv->bank_fill[0]; + bank /= priv->bank_fill[0]; map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); - + len -= get; *retlen += get; from += get; - } - return 0; + } + return 0; } -/* Pass the flags value that the flash return before it re-entered read +/* Pass the flags value that the flash return before it re-entered read mode. */ static void jedec_flash_failed(unsigned char code) { @@ -578,17 +579,17 @@ static void jedec_flash_failed(unsigned char code) printk("mtd: Programming didn't take\n"); } -/* This uses the erasure function described in the AMD Flash Handbook, +/* This uses the erasure function described in the AMD Flash Handbook, it will work for flashes with a fixed sector size only. Flashes with a selection of sector sizes (ie the AMD Am29F800B) will need a different - routine. This routine tries to parallize erasing multiple chips/sectors + routine. This routine tries to parallize erasing multiple chips/sectors where possible */ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) { // Does IO to the currently selected chip #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) - + unsigned long Time = 0; unsigned long NoTime = 0; unsigned long start = instr->addr, len = instr->len; @@ -602,7 +603,7 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) (len % mtd->erasesize) != 0 || (len/mtd->erasesize) == 0) return -EINVAL; - + jedec_flash_chip_scan(priv,start,len); // Start the erase sequence on each chip @@ -610,16 +611,16 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) { unsigned long off; struct jedec_flash_chip *chip = priv->chips + I; - + if (chip->length == 0) continue; - + if (chip->start + chip->length > chip->size) { printk("DIE\n"); return -EIO; - } - + } + flwrite(0xF0,chip->start + 0x555); flwrite(0xAA,chip->start + 0x555); flwrite(0x55,chip->start + 0x2AA); @@ -627,8 +628,8 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) flwrite(0xAA,chip->start + 0x555); flwrite(0x55,chip->start + 0x2AA); - /* Once we start selecting the erase sectors the delay between each - command must not exceed 50us or it will immediately start erasing + /* Once we start selecting the erase sectors the delay between each + command must not exceed 50us or it will immediately start erasing and ignore the other sectors */ for (off = 0; off < len; off += chip->sectorsize) { @@ -640,19 +641,19 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) { printk("mtd: Ack! We timed out the erase timer!\n"); return -EIO; - } + } } - } + } /* We could split this into a timer routine and return early, performing background erasure.. Maybe later if the need warrents */ /* Poll the flash for erasure completion, specs say this can take as long - as 480 seconds to do all the sectors (for a 2 meg flash). + as 480 seconds to do all the sectors (for a 2 meg flash). Erasure time is dependent on chip age, temp and wear.. */ - + /* This being a generic routine assumes a 32 bit bus. It does read32s - and bundles interleved chips into the same grouping. This will work + and bundles interleved chips into the same grouping. This will work for all bus widths */ Time = 0; NoTime = 0; @@ -663,20 +664,20 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) unsigned todo[4] = {0,0,0,0}; unsigned todo_left = 0; unsigned J; - + if (chip->length == 0) continue; - /* Find all chips in this data line, realistically this is all + /* Find all chips in this data line, realistically this is all or nothing up to the interleve count */ for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) { - if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == + if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == (chip->base & (~((1<<chip->addrshift)-1)))) { todo_left++; todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; - } + } } /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], @@ -686,7 +687,7 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) { __u32 Last[4]; unsigned long Count = 0; - + /* During erase bit 7 is held low and bit 6 toggles, we watch this, should it stop toggling or go high then the erase is completed, or this is not really flash ;> */ @@ -717,23 +718,23 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; if (todo[J] == 0) continue; - + if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) { // printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); continue; } - + if (Byte1 == Byte2) { jedec_flash_failed(Byte3); return -EIO; } - + todo[J] = 0; todo_left--; } - + /* if (NoTime == 0) Time += HZ/10 - schedule_timeout(HZ/10);*/ NoTime = 0; @@ -750,7 +751,7 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) break; } Count++; - + /* // Count time, max of 15s per sector (according to AMD) if (Time > 15*len/mtd->erasesize*HZ) { @@ -758,38 +759,38 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) return -EIO; } */ } - + // Skip to the next chip if we used chip erase if (chip->length == chip->size) off = chip->size; else off += chip->sectorsize; - + if (off >= chip->length) break; NoTime = 1; } - + for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) { if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == (chip->base & (~((1<<chip->addrshift)-1)))) priv->chips[J].length = 0; - } + } } - + //printk("done\n"); instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return 0; - + #undef flread #undef flwrite } /* This is the simple flash writing function. It writes to every byte, in sequence. It takes care of how to properly address the flash if - the flash is interleved. It can only be used if all the chips in the + the flash is interleved. It can only be used if all the chips in the array are identical!*/ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u_char *buf) @@ -799,25 +800,25 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, of addrshift (interleave index) and then adds the control register index. */ #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) - + struct map_info *map = mtd->priv; struct jedec_private *priv = map->fldrv_priv; unsigned long base; unsigned long off; size_t save_len = len; - + if (start + len > mtd->size) return -EIO; - + //printk("Here"); - + //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); while (len != 0) { struct jedec_flash_chip *chip = priv->chips; unsigned long bank; unsigned long boffset; - + // Compute the base of the flash. off = ((unsigned long)start) % (chip->size << chip->addrshift); base = start - off; @@ -827,10 +828,10 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, boffset = base & (priv->bank_fill[0]-1); bank = (bank/priv->bank_fill[0])*my_bank_size; base = bank + boffset; - + // printk("Flasing %X %X %X\n",base,chip->size,len); // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); - + // Loop over this page for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) { @@ -844,7 +845,7 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, } if (((~oldbyte) & *buf) != 0) printk("mtd: warn: Trying to set a 0 to a 1\n"); - + // Write flwrite(0xAA,0x555); flwrite(0x55,0x2AA); @@ -853,10 +854,10 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, Last[0] = map_read8(map,base + off); Last[1] = map_read8(map,base + off); Last[2] = map_read8(map,base + off); - + /* Wait for the flash to finish the operation. We store the last 4 status bytes that have been retrieved so we can determine why - it failed. The toggle bits keep toggling when there is a + it failed. The toggle bits keep toggling when there is a failure */ for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && Count < 10000; Count++) @@ -865,7 +866,7 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, { jedec_flash_failed(Last[(Count - 3) % 4]); return -EIO; - } + } } } *retlen = save_len; @@ -884,24 +885,24 @@ static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start // Zero the records for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) priv->chips[I].start = priv->chips[I].length = 0; - + // Intersect the region with each chip for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) { struct jedec_flash_chip *chip = priv->chips + I; unsigned long ByteStart; unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); - + // End is before this chip or the start is after it if (start+len < chip->offset || ChipEndByte - (1 << chip->addrshift) < start) continue; - + if (start < chip->offset) { ByteStart = chip->offset; chip->start = 0; - } + } else { chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; |