diff options
Diffstat (limited to 'drivers/misc/habanalabs/common/firmware_if.c')
-rw-r--r-- | drivers/misc/habanalabs/common/firmware_if.c | 1792 |
1 files changed, 1615 insertions, 177 deletions
diff --git a/drivers/misc/habanalabs/common/firmware_if.c b/drivers/misc/habanalabs/common/firmware_if.c index 0713b2c12d54..2e4d04ec6b53 100644 --- a/drivers/misc/habanalabs/common/firmware_if.c +++ b/drivers/misc/habanalabs/common/firmware_if.c @@ -9,42 +9,63 @@ #include "../include/common/hl_boot_if.h" #include <linux/firmware.h> +#include <linux/crc32.h> #include <linux/slab.h> +#include <linux/ctype.h> -#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */ -/** - * hl_fw_load_fw_to_device() - Load F/W code to device's memory. - * - * @hdev: pointer to hl_device structure. - * @fw_name: the firmware image name - * @dst: IO memory mapped address space to copy firmware to - * @src_offset: offset in src FW to copy from - * @size: amount of bytes to copy (0 to copy the whole binary) - * - * Copy fw code from firmware file to device memory. - * - * Return: 0 on success, non-zero for failure. - */ -int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, - void __iomem *dst, u32 src_offset, u32 size) +#define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */ + +#define FW_CPU_STATUS_POLL_INTERVAL_USEC 10000 + +static char *extract_fw_ver_from_str(const char *fw_str) +{ + char *str, *fw_ver, *whitespace; + + fw_ver = kmalloc(16, GFP_KERNEL); + if (!fw_ver) + return NULL; + + str = strnstr(fw_str, "fw-", VERSION_MAX_LEN); + if (!str) + goto free_fw_ver; + + /* Skip the fw- part */ + str += 3; + + /* Copy until the next whitespace */ + whitespace = strnstr(str, " ", 15); + if (!whitespace) + goto free_fw_ver; + + strscpy(fw_ver, str, whitespace - str + 1); + + return fw_ver; + +free_fw_ver: + kfree(fw_ver); + return NULL; +} + +static int hl_request_fw(struct hl_device *hdev, + const struct firmware **firmware_p, + const char *fw_name) { - const struct firmware *fw; - const void *fw_data; size_t fw_size; int rc; - rc = request_firmware(&fw, fw_name, hdev->dev); + rc = request_firmware(firmware_p, fw_name, hdev->dev); if (rc) { - dev_err(hdev->dev, "Firmware file %s is not found!\n", fw_name); + dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n", + fw_name, rc); goto out; } - fw_size = fw->size; + fw_size = (*firmware_p)->size; if ((fw_size % 4) != 0) { dev_err(hdev->dev, "Illegal %s firmware size %zu\n", - fw_name, fw_size); + fw_name, fw_size); rc = -EINVAL; - goto out; + goto release_fw; } dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size); @@ -54,26 +75,125 @@ int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, "FW file size %zu exceeds maximum of %u bytes\n", fw_size, FW_FILE_MAX_SIZE); rc = -EINVAL; - goto out; + goto release_fw; } - if (size - src_offset > fw_size) { + return 0; + +release_fw: + release_firmware(*firmware_p); +out: + return rc; +} + +/** + * hl_release_firmware() - release FW + * + * @fw: fw descriptor + * + * note: this inline function added to serve as a comprehensive mirror for the + * hl_request_fw function. + */ +static inline void hl_release_firmware(const struct firmware *fw) +{ + release_firmware(fw); +} + +/** + * hl_fw_copy_fw_to_device() - copy FW to device + * + * @hdev: pointer to hl_device structure. + * @fw: fw descriptor + * @dst: IO memory mapped address space to copy firmware to + * @src_offset: offset in src FW to copy from + * @size: amount of bytes to copy (0 to copy the whole binary) + * + * actual copy of FW binary data to device, shared by static and dynamic loaders + */ +static int hl_fw_copy_fw_to_device(struct hl_device *hdev, + const struct firmware *fw, void __iomem *dst, + u32 src_offset, u32 size) +{ + const void *fw_data; + + /* size 0 indicates to copy the whole file */ + if (!size) + size = fw->size; + + if (src_offset + size > fw->size) { dev_err(hdev->dev, "size to copy(%u) and offset(%u) are invalid\n", size, src_offset); - rc = -EINVAL; - goto out; + return -EINVAL; } - if (size) - fw_size = size; - fw_data = (const void *) fw->data; - memcpy_toio(dst, fw_data + src_offset, fw_size); + memcpy_toio(dst, fw_data + src_offset, size); + return 0; +} -out: - release_firmware(fw); +/** + * hl_fw_copy_msg_to_device() - copy message to device + * + * @hdev: pointer to hl_device structure. + * @msg: message + * @dst: IO memory mapped address space to copy firmware to + * @src_offset: offset in src message to copy from + * @size: amount of bytes to copy (0 to copy the whole binary) + * + * actual copy of message data to device. + */ +static int hl_fw_copy_msg_to_device(struct hl_device *hdev, + struct lkd_msg_comms *msg, void __iomem *dst, + u32 src_offset, u32 size) +{ + void *msg_data; + + /* size 0 indicates to copy the whole file */ + if (!size) + size = sizeof(struct lkd_msg_comms); + + if (src_offset + size > sizeof(struct lkd_msg_comms)) { + dev_err(hdev->dev, + "size to copy(%u) and offset(%u) are invalid\n", + size, src_offset); + return -EINVAL; + } + + msg_data = (void *) msg; + + memcpy_toio(dst, msg_data + src_offset, size); + + return 0; +} + +/** + * hl_fw_load_fw_to_device() - Load F/W code to device's memory. + * + * @hdev: pointer to hl_device structure. + * @fw_name: the firmware image name + * @dst: IO memory mapped address space to copy firmware to + * @src_offset: offset in src FW to copy from + * @size: amount of bytes to copy (0 to copy the whole binary) + * + * Copy fw code from firmware file to device memory. + * + * Return: 0 on success, non-zero for failure. + */ +int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, + void __iomem *dst, u32 src_offset, u32 size) +{ + const struct firmware *fw; + int rc; + + rc = hl_request_fw(hdev, &fw, fw_name); + if (rc) + return rc; + + rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size); + + hl_release_firmware(fw); return rc; } @@ -91,6 +211,7 @@ int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, u16 len, u32 timeout, u64 *result) { struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id]; + struct asic_fixed_properties *prop = &hdev->asic_prop; struct cpucp_packet *pkt; dma_addr_t pkt_dma_addr; u32 tmp, expected_ack_val; @@ -117,7 +238,7 @@ int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, } /* set fence to a non valid value */ - pkt->fence = UINT_MAX; + pkt->fence = cpu_to_le32(UINT_MAX); rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, len, pkt_dma_addr); if (rc) { @@ -125,8 +246,7 @@ int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, goto out; } - if (hdev->asic_prop.fw_app_security_map & - CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN) + if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN) expected_ack_val = queue->pi; else expected_ack_val = CPUCP_PACKET_FENCE_VAL; @@ -272,10 +392,11 @@ void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, int hl_fw_send_heartbeat(struct hl_device *hdev) { - struct cpucp_packet hb_pkt = {}; + struct cpucp_packet hb_pkt; u64 result; int rc; + memset(&hb_pkt, 0, sizeof(hb_pkt)); hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << CPUCP_PKT_CTL_OPCODE_SHIFT); hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); @@ -284,29 +405,24 @@ int hl_fw_send_heartbeat(struct hl_device *hdev) sizeof(hb_pkt), 0, &result); if ((rc) || (result != CPUCP_PACKET_FENCE_VAL)) + return -EIO; + + if (le32_to_cpu(hb_pkt.status_mask) & + CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) { + dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n"); rc = -EIO; + } return rc; } -static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, - u32 cpu_security_boot_status_reg) +static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val, + u32 sts_val) { - u32 err_val, security_val; bool err_exists = false; - /* Some of the firmware status codes are deprecated in newer f/w - * versions. In those versions, the errors are reported - * in different registers. Therefore, we need to check those - * registers and print the exact errors. Moreover, there - * may be multiple errors, so we need to report on each error - * separately. Some of the error codes might indicate a state - * that is not an error per-se, but it is an error in production - * environment - */ - err_val = RREG32(boot_err0_reg); if (!(err_val & CPU_BOOT_ERR0_ENABLED)) - return 0; + return false; if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) { dev_err(hdev->dev, @@ -377,44 +493,120 @@ static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, err_exists = true; } + if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL) { + dev_warn(hdev->dev, + "Device boot warning - Failed to load preboot primary image\n"); + /* This is a warning so we don't want it to disable the + * device as we have a secondary preboot image + */ + err_val &= ~CPU_BOOT_ERR0_PRI_IMG_VER_FAIL; + } + + if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL) { + dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n"); + err_exists = true; + } + if (err_val & CPU_BOOT_ERR0_PLL_FAIL) { dev_err(hdev->dev, "Device boot error - PLL failure\n"); err_exists = true; } if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) { - dev_err(hdev->dev, - "Device boot error - device unusable\n"); - err_exists = true; + /* Ignore this bit, don't prevent driver loading */ + dev_dbg(hdev->dev, "device unusable status is set\n"); + err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL; } - security_val = RREG32(cpu_security_boot_status_reg); - if (security_val & CPU_BOOT_DEV_STS0_ENABLED) - dev_dbg(hdev->dev, "Device security status %#x\n", - security_val); + if (sts_val & CPU_BOOT_DEV_STS0_ENABLED) + dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val); if (!err_exists && (err_val & ~CPU_BOOT_ERR0_ENABLED)) { dev_err(hdev->dev, - "Device boot error - unknown error 0x%08x\n", - err_val); + "Device boot error - unknown ERR0 error 0x%08x\n", err_val); err_exists = true; } + /* return error only if it's in the predefined mask */ if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) & lower_32_bits(hdev->boot_error_status_mask))) + return true; + + return false; +} + +/* placeholder for ERR1 as no errors defined there yet */ +static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val, + u32 sts_val) +{ + /* + * keep this variable to preserve the logic of the function. + * this way it would require less modifications when error will be + * added to DEV_ERR1 + */ + bool err_exists = false; + + if (!(err_val & CPU_BOOT_ERR1_ENABLED)) + return false; + + if (sts_val & CPU_BOOT_DEV_STS1_ENABLED) + dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val); + + if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) { + dev_err(hdev->dev, + "Device boot error - unknown ERR1 error 0x%08x\n", + err_val); + err_exists = true; + } + + /* return error only if it's in the predefined mask */ + if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) & + upper_32_bits(hdev->boot_error_status_mask))) + return true; + + return false; +} + +static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, + u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg, + u32 cpu_boot_dev_status1_reg) +{ + u32 err_val, status_val; + bool err_exists = false; + + /* Some of the firmware status codes are deprecated in newer f/w + * versions. In those versions, the errors are reported + * in different registers. Therefore, we need to check those + * registers and print the exact errors. Moreover, there + * may be multiple errors, so we need to report on each error + * separately. Some of the error codes might indicate a state + * that is not an error per-se, but it is an error in production + * environment + */ + err_val = RREG32(boot_err0_reg); + status_val = RREG32(cpu_boot_dev_status0_reg); + err_exists = fw_report_boot_dev0(hdev, err_val, status_val); + + err_val = RREG32(boot_err1_reg); + status_val = RREG32(cpu_boot_dev_status1_reg); + err_exists |= fw_report_boot_dev1(hdev, err_val, status_val); + + if (err_exists) return -EIO; return 0; } int hl_fw_cpucp_info_get(struct hl_device *hdev, - u32 cpu_security_boot_status_reg, - u32 boot_err0_reg) + u32 sts_boot_dev_sts0_reg, + u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, + u32 boot_err1_reg) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct cpucp_packet pkt = {}; - void *cpucp_info_cpu_addr; dma_addr_t cpucp_info_dma_addr; + void *cpucp_info_cpu_addr; + char *kernel_ver; u64 result; int rc; @@ -443,7 +635,8 @@ int hl_fw_cpucp_info_get(struct hl_device *hdev, goto out; } - rc = fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg); + rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg, + sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg); if (rc) { dev_err(hdev->dev, "Errors in device boot\n"); goto out; @@ -460,10 +653,27 @@ int hl_fw_cpucp_info_get(struct hl_device *hdev, goto out; } + kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version); + if (kernel_ver) { + dev_info(hdev->dev, "Linux version %s", kernel_ver); + kfree(kernel_ver); + } + + /* assume EQ code doesn't need to check eqe index */ + hdev->event_queue.check_eqe_index = false; + /* Read FW application security bits again */ - if (hdev->asic_prop.fw_security_status_valid) - hdev->asic_prop.fw_app_security_map = - RREG32(cpu_security_boot_status_reg); + if (hdev->asic_prop.fw_cpu_boot_dev_sts0_valid) { + hdev->asic_prop.fw_app_cpu_boot_dev_sts0 = + RREG32(sts_boot_dev_sts0_reg); + if (hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_EQ_INDEX_EN) + hdev->event_queue.check_eqe_index = true; + } + + if (hdev->asic_prop.fw_cpu_boot_dev_sts1_valid) + hdev->asic_prop.fw_app_cpu_boot_dev_sts1 = + RREG32(sts_boot_dev_sts1_reg); out: hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, @@ -501,7 +711,8 @@ static int hl_fw_send_msi_info_msg(struct hl_device *hdev) pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES); - hdev->asic_funcs->get_msi_info((u32 *)&pkt->data); + memset((void *) &pkt->data, 0xFF, data_size); + hdev->asic_funcs->get_msi_info(pkt->data); pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); @@ -526,13 +737,15 @@ static int hl_fw_send_msi_info_msg(struct hl_device *hdev) } int hl_fw_cpucp_handshake(struct hl_device *hdev, - u32 cpu_security_boot_status_reg, - u32 boot_err0_reg) + u32 sts_boot_dev_sts0_reg, + u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, + u32 boot_err1_reg) { int rc; - rc = hl_fw_cpucp_info_get(hdev, cpu_security_boot_status_reg, - boot_err0_reg); + rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg, + sts_boot_dev_sts1_reg, boot_err0_reg, + boot_err1_reg); if (rc) return rc; @@ -667,8 +880,8 @@ int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index, bool dynamic_pll; int fw_pll_idx; - dynamic_pll = prop->fw_security_status_valid && - (prop->fw_app_security_map & CPU_BOOT_DEV_STS0_DYN_PLL_EN); + dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_DYN_PLL_EN); if (!dynamic_pll) { /* @@ -759,6 +972,47 @@ int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power) return rc; } +void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev) +{ + struct static_fw_load_mgr *static_loader = + &hdev->fw_loader.static_loader; + int rc; + + if (hdev->asic_prop.dynamic_fw_load) { + rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, + COMMS_RST_DEV, 0, false, + hdev->fw_loader.cpu_timeout); + if (rc) + dev_warn(hdev->dev, "Failed sending COMMS_RST_DEV\n"); + } else { + WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV); + } +} + +void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev) +{ + struct static_fw_load_mgr *static_loader = + &hdev->fw_loader.static_loader; + int rc; + + if (hdev->device_cpu_is_halted) + return; + + /* Stop device CPU to make sure nothing bad happens */ + if (hdev->asic_prop.dynamic_fw_load) { + rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader, + COMMS_GOTO_WFE, 0, true, + hdev->fw_loader.cpu_timeout); + if (rc) + dev_warn(hdev->dev, "Failed sending COMMS_GOTO_WFE\n"); + } else { + WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE); + msleep(static_loader->cpu_reset_wait_msec); + } + + hdev->device_cpu_is_halted = true; +} + static void detect_cpu_boot_status(struct hl_device *hdev, u32 status) { /* Some of the status codes below are deprecated in newer f/w @@ -767,63 +1021,59 @@ static void detect_cpu_boot_status(struct hl_device *hdev, u32 status) switch (status) { case CPU_BOOT_STATUS_NA: dev_err(hdev->dev, - "Device boot error - BTL did NOT run\n"); + "Device boot progress - BTL did NOT run\n"); break; case CPU_BOOT_STATUS_IN_WFE: dev_err(hdev->dev, - "Device boot error - Stuck inside WFE loop\n"); + "Device boot progress - Stuck inside WFE loop\n"); break; case CPU_BOOT_STATUS_IN_BTL: dev_err(hdev->dev, - "Device boot error - Stuck in BTL\n"); + "Device boot progress - Stuck in BTL\n"); break; case CPU_BOOT_STATUS_IN_PREBOOT: dev_err(hdev->dev, - "Device boot error - Stuck in Preboot\n"); + "Device boot progress - Stuck in Preboot\n"); break; case CPU_BOOT_STATUS_IN_SPL: dev_err(hdev->dev, - "Device boot error - Stuck in SPL\n"); + "Device boot progress - Stuck in SPL\n"); break; case CPU_BOOT_STATUS_IN_UBOOT: dev_err(hdev->dev, - "Device boot error - Stuck in u-boot\n"); + "Device boot progress - Stuck in u-boot\n"); break; case CPU_BOOT_STATUS_DRAM_INIT_FAIL: dev_err(hdev->dev, - "Device boot error - DRAM initialization failed\n"); + "Device boot progress - DRAM initialization failed\n"); break; case CPU_BOOT_STATUS_UBOOT_NOT_READY: dev_err(hdev->dev, - "Device boot error - u-boot stopped by user\n"); + "Device boot progress - Cannot boot\n"); break; case CPU_BOOT_STATUS_TS_INIT_FAIL: dev_err(hdev->dev, - "Device boot error - Thermal Sensor initialization failed\n"); + "Device boot progress - Thermal Sensor initialization failed\n"); break; default: dev_err(hdev->dev, - "Device boot error - Invalid status code %d\n", + "Device boot progress - Invalid status code %d\n", status); break; } } -int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, - u32 cpu_security_boot_status_reg, u32 boot_err0_reg, - u32 timeout) +static int hl_fw_read_preboot_caps(struct hl_device *hdev, + u32 cpu_boot_status_reg, + u32 sts_boot_dev_sts0_reg, + u32 sts_boot_dev_sts1_reg, + u32 boot_err0_reg, u32 boot_err1_reg, + u32 timeout) { struct asic_fixed_properties *prop = &hdev->asic_prop; - u32 status, security_status; + u32 status, reg_val; int rc; - /* pldm was added for cases in which we use preboot on pldm and want - * to load boot fit, but we can't wait for preboot because it runs - * very slowly - */ - if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU) || hdev->pldm) - return 0; - /* Need to check two possible scenarios: * * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where @@ -842,29 +1092,145 @@ int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, (status == CPU_BOOT_STATUS_READY_TO_BOOT) || (status == CPU_BOOT_STATUS_SRAM_AVAIL) || (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT), - 10000, + FW_CPU_STATUS_POLL_INTERVAL_USEC, timeout); if (rc) { - dev_err(hdev->dev, "Failed to read preboot version\n"); + dev_err(hdev->dev, "CPU boot ready status timeout\n"); detect_cpu_boot_status(hdev, status); /* If we read all FF, then something is totally wrong, no point * of reading specific errors */ if (status != -1) - fw_read_errors(hdev, boot_err0_reg, - cpu_security_boot_status_reg); + fw_read_errors(hdev, boot_err0_reg, boot_err1_reg, + sts_boot_dev_sts0_reg, + sts_boot_dev_sts1_reg); return -EIO; } - rc = hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_PREBOOT); - if (rc) - return rc; + /* + * the registers DEV_STS* contain FW capabilities/features. + * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED + * is set. + * In the first read of this register we store the value of this + * register ONLY if the register is enabled (which will be propagated + * to next stages) and also mark the register as valid. + * In case it is not enabled the stored value will be left 0- all + * caps/features are off + */ + reg_val = RREG32(sts_boot_dev_sts0_reg); + if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) { + prop->fw_cpu_boot_dev_sts0_valid = true; + prop->fw_preboot_cpu_boot_dev_sts0 = reg_val; + } + + reg_val = RREG32(sts_boot_dev_sts1_reg); + if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) { + prop->fw_cpu_boot_dev_sts1_valid = true; + prop->fw_preboot_cpu_boot_dev_sts1 = reg_val; + } - security_status = RREG32(cpu_security_boot_status_reg); + prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_FW_LD_COM_EN); + + /* initialize FW loader once we know what load protocol is used */ + hdev->asic_funcs->init_firmware_loader(hdev); + + dev_dbg(hdev->dev, "Attempting %s FW load\n", + prop->dynamic_fw_load ? "dynamic" : "legacy"); + return 0; +} - /* We read security status multiple times during boot: +static int hl_fw_static_read_device_fw_version(struct hl_device *hdev, + enum hl_fw_component fwc) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct fw_load_mgr *fw_loader = &hdev->fw_loader; + struct static_fw_load_mgr *static_loader; + char *dest, *boot_ver, *preboot_ver; + u32 ver_off, limit; + const char *name; + char btl_ver[32]; + + static_loader = &hdev->fw_loader.static_loader; + + switch (fwc) { + case FW_COMP_BOOT_FIT: + ver_off = RREG32(static_loader->boot_fit_version_offset_reg); + dest = prop->uboot_ver; + name = "Boot-fit"; + limit = static_loader->boot_fit_version_max_off; + break; + case FW_COMP_PREBOOT: + ver_off = RREG32(static_loader->preboot_version_offset_reg); + dest = prop->preboot_ver; + name = "Preboot"; + limit = static_loader->preboot_version_max_off; + break; + default: + dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); + return -EIO; + } + + ver_off &= static_loader->sram_offset_mask; + + if (ver_off < limit) { + memcpy_fromio(dest, + hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off, + VERSION_MAX_LEN); + } else { + dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n", + name, ver_off); + strscpy(dest, "unavailable", VERSION_MAX_LEN); + return -EIO; + } + + if (fwc == FW_COMP_BOOT_FIT) { + boot_ver = extract_fw_ver_from_str(prop->uboot_ver); + if (boot_ver) { + dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); + kfree(boot_ver); + } + } else if (fwc == FW_COMP_PREBOOT) { + preboot_ver = strnstr(prop->preboot_ver, "Preboot", + VERSION_MAX_LEN); + if (preboot_ver && preboot_ver != prop->preboot_ver) { + strscpy(btl_ver, prop->preboot_ver, + min((int) (preboot_ver - prop->preboot_ver), + 31)); + dev_info(hdev->dev, "%s\n", btl_ver); + } + + preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); + if (preboot_ver) { + dev_info(hdev->dev, "preboot version %s\n", + preboot_ver); + kfree(preboot_ver); + } + } + + return 0; +} + +/** + * hl_fw_preboot_update_state - update internal data structures during + * handshake with preboot + * + * + * @hdev: pointer to the habanalabs device structure + * + * @return 0 on success, otherwise non-zero error code + */ +static void hl_fw_preboot_update_state(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1; + + cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0; + cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1; + + /* We read boot_dev_sts registers multiple times during boot: * 1. preboot - a. Check whether the security status bits are valid * b. Check whether fw security is enabled * c. Check whether hard reset is done by preboot @@ -874,48 +1240,1121 @@ int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, * b. Check whether hard reset is done by fw app * * Preboot: - * Check security status bit (CPU_BOOT_DEV_STS0_ENABLED), if it is set + * Check security status bit (CPU_BOOT_DEV_STS0_ENABLED). If set, then- * check security enabled bit (CPU_BOOT_DEV_STS0_SECURITY_EN) + * If set, then mark GIC controller to be disabled. */ - if (security_status & CPU_BOOT_DEV_STS0_ENABLED) { - prop->fw_security_status_valid = 1; + prop->hard_reset_done_by_fw = + !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN); - /* FW security should be derived from PCI ID, we keep this - * check for backward compatibility - */ - if (security_status & CPU_BOOT_DEV_STS0_SECURITY_EN) - prop->fw_security_disabled = false; + dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n", + cpu_boot_dev_sts0); + + dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n", + cpu_boot_dev_sts1); + + dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n", + prop->hard_reset_done_by_fw ? "enabled" : "disabled"); + + dev_dbg(hdev->dev, "firmware-level security is %s\n", + prop->fw_security_enabled ? "enabled" : "disabled"); + + dev_dbg(hdev->dev, "GIC controller is %s\n", + prop->gic_interrupts_enable ? "enabled" : "disabled"); +} + +static int hl_fw_static_read_preboot_status(struct hl_device *hdev) +{ + int rc; + + rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT); + if (rc) + return rc; + + return 0; +} + +int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, + u32 sts_boot_dev_sts0_reg, + u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg, + u32 boot_err1_reg, u32 timeout) +{ + int rc; + + /* pldm was added for cases in which we use preboot on pldm and want + * to load boot fit, but we can't wait for preboot because it runs + * very slowly + */ + if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU) || hdev->pldm) + return 0; + + /* + * In order to determine boot method (static VS dymanic) we need to + * read the boot caps register + */ + rc = hl_fw_read_preboot_caps(hdev, cpu_boot_status_reg, + sts_boot_dev_sts0_reg, + sts_boot_dev_sts1_reg, boot_err0_reg, + boot_err1_reg, timeout); + if (rc) + return rc; + + hl_fw_preboot_update_state(hdev); - if (security_status & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) + /* no need to read preboot status in dynamic load */ + if (hdev->asic_prop.dynamic_fw_load) + return 0; + + return hl_fw_static_read_preboot_status(hdev); +} + +/* associate string with COMM status */ +static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = { + [COMMS_STS_NOOP] = "NOOP", + [COMMS_STS_ACK] = "ACK", + [COMMS_STS_OK] = "OK", + [COMMS_STS_ERR] = "ERR", + [COMMS_STS_VALID_ERR] = "VALID_ERR", + [COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR", +}; + +/** + * hl_fw_dynamic_report_error_status - report error status + * + * @hdev: pointer to the habanalabs device structure + * @status: value of FW status register + * @expected_status: the expected status + */ +static void hl_fw_dynamic_report_error_status(struct hl_device *hdev, + u32 status, + enum comms_sts expected_status) +{ + enum comms_sts comm_status = + FIELD_GET(COMMS_STATUS_STATUS_MASK, status); + + if (comm_status < COMMS_STS_INVLD_LAST) + dev_err(hdev->dev, "Device status %s, expected status: %s\n", + hl_dynamic_fw_status_str[comm_status], + hl_dynamic_fw_status_str[expected_status]); + else + dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n", + comm_status, + hl_dynamic_fw_status_str[expected_status]); +} + +/** + * hl_fw_dynamic_send_cmd - send LKD to FW cmd + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @cmd: LKD to FW cmd code + * @size: size of next FW component to be loaded (0 if not necessary) + * + * LDK to FW exact command layout is defined at struct comms_command. + * note: the size argument is used only when the next FW component should be + * loaded, otherwise it shall be 0. the size is used by the FW in later + * protocol stages and when sending only indicating the amount of memory + * to be allocated by the FW to receive the next boot component. + */ +static void hl_fw_dynamic_send_cmd(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum comms_cmd cmd, unsigned int size) +{ + struct cpu_dyn_regs *dyn_regs; + u32 val; + + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + + val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd); + val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size); + + WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val); +} + +/** + * hl_fw_dynamic_extract_fw_response - update the FW response + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @response: FW response + * @status: the status read from CPU status register + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + struct fw_response *response, + u32 status) +{ + response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status); + response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) << + COMMS_STATUS_OFFSET_ALIGN_SHIFT; + response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status); + + if ((response->ram_type != COMMS_SRAM) && + (response->ram_type != COMMS_DRAM)) { + dev_err(hdev->dev, "FW status: invalid RAM type %u\n", + response->ram_type); + return -EIO; + } + + return 0; +} + +/** + * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @expected_status: expected status to wait for + * @timeout: timeout for status wait + * + * @return 0 on success, otherwise non-zero error code + * + * waiting for status from FW include polling the FW status register until + * expected status is received or timeout occurs (whatever occurs first). + */ +static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum comms_sts expected_status, + u32 timeout) +{ + struct cpu_dyn_regs *dyn_regs; + u32 status; + int rc; + + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + + /* Wait for expected status */ + rc = hl_poll_timeout( + hdev, + le32_to_cpu(dyn_regs->cpu_cmd_status_to_host), + status, + FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status, + FW_CPU_STATUS_POLL_INTERVAL_USEC, + timeout); + + if (rc) { + hl_fw_dynamic_report_error_status(hdev, status, + expected_status); + return -EIO; + } + + /* + * skip storing FW response for NOOP to preserve the actual desired + * FW status + */ + if (expected_status == COMMS_STS_NOOP) + return 0; + + rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader, + &fw_loader->dynamic_loader.response, + status); + return rc; +} + +/** + * hl_fw_dynamic_send_clear_cmd - send clear command to FW + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + * + * after command cycle between LKD to FW CPU (i.e. LKD got an expected status + * from FW) we need to clear the CPU status register in order to avoid garbage + * between command cycles. + * This is done by sending clear command and polling the CPU to LKD status + * register to hold the status NOOP + */ +static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0); + + return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP, + fw_loader->cpu_timeout); +} + +/** + * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @cmd: LKD to FW cmd code + * @size: size of next FW component to be loaded (0 if not necessary) + * @wait_ok: if true also wait for OK response from FW + * @timeout: timeout for status wait + * + * @return 0 on success, otherwise non-zero error code + * + * brief: + * when sending protocol command we have the following steps: + * - send clear (clear command and verify clear status register) + * - send the actual protocol command + * - wait for ACK on the protocol command + * - send clear + * - send NOOP + * if, in addition, the specific protocol command should wait for OK then: + * - wait for OK + * - send clear + * - send NOOP + * + * NOTES: + * send clear: this is necessary in order to clear the status register to avoid + * leftovers between command + * NOOP command: necessary to avoid loop on the clear command by the FW + */ +int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum comms_cmd cmd, unsigned int size, + bool wait_ok, u32 timeout) +{ + int rc; + + /* first send clear command to clean former commands */ + rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); + + /* send the actual command */ + hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size); + + /* wait for ACK for the command */ + rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK, + timeout); + if (rc) + return rc; + + /* clear command to prepare for NOOP command */ + rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); + if (rc) + return rc; + + /* send the actual NOOP command */ + hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); + + if (!wait_ok) + return 0; + + rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK, + timeout); + if (rc) + return rc; + + /* clear command to prepare for NOOP command */ + rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader); + if (rc) + return rc; + + /* send the actual NOOP command */ + hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0); + + return 0; +} + +/** + * hl_fw_compat_crc32 - CRC compatible with FW + * + * @data: pointer to the data + * @size: size of the data + * + * @return the CRC32 result + * + * NOTE: kernel's CRC32 differ's from standard CRC32 calculation. + * in order to be aligned we need to flip the bits of both the input + * initial CRC and kernel's CRC32 result. + * in addition both sides use initial CRC of 0, + */ +static u32 hl_fw_compat_crc32(u8 *data, size_t size) +{ + return ~crc32_le(~((u32)0), data, size); +} + +/** + * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory + * transfer (image or descriptor) between + * host and FW + * + * @hdev: pointer to the habanalabs device structure + * @addr: device address of memory transfer + * @size: memory transter size + * @region: PCI memory region + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev, + u64 addr, size_t size, + struct pci_mem_region *region) +{ + u64 end_addr; + + /* now make sure that the memory transfer is within region's bounds */ + end_addr = addr + size; + if (end_addr >= region->region_base + region->region_size) { + dev_err(hdev->dev, + "dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n", + end_addr); + return -EIO; + } + + /* + * now make sure memory transfer is within predefined BAR bounds. + * this is to make sure we do not need to set the bar (e.g. for DRAM + * memory transfers) + */ + if (end_addr >= region->region_base - region->offset_in_bar + + region->bar_size) { + dev_err(hdev->dev, + "FW image beyond PCI BAR bounds\n"); + return -EIO; + } + + return 0; +} + +/** + * hl_fw_dynamic_validate_descriptor - validate FW descriptor + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @fw_desc: the descriptor form FW + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + struct lkd_fw_comms_desc *fw_desc) +{ + struct pci_mem_region *region; + enum pci_region region_id; + size_t data_size; + u32 data_crc32; + u8 *data_ptr; + u64 addr; + int rc; + + if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC) { + dev_err(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n", + fw_desc->header.magic); + return -EIO; + } + + if (fw_desc->header.version != HL_COMMS_DESC_VER) { + dev_err(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n", + fw_desc->header.version); + return -EIO; + } + + /* + * calc CRC32 of data without header. + * note that no alignment/stride address issues here as all structures + * are 64 bit padded + */ + data_size = sizeof(struct lkd_fw_comms_desc) - + sizeof(struct comms_desc_header); + data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header); + + if (le16_to_cpu(fw_desc->header.size) != data_size) { + dev_err(hdev->dev, + "Invalid descriptor size 0x%x, expected size 0x%zx\n", + le16_to_cpu(fw_desc->header.size), data_size); + return -EIO; + } + + data_crc32 = hl_fw_compat_crc32(data_ptr, data_size); + + if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) { + dev_err(hdev->dev, + "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n", + data_crc32, fw_desc->header.crc32); + return -EIO; + } + + /* find memory region to which to copy the image */ + addr = le64_to_cpu(fw_desc->img_addr); + region_id = hl_get_pci_memory_region(hdev, addr); + if ((region_id != PCI_REGION_SRAM) && + ((region_id != PCI_REGION_DRAM))) { + dev_err(hdev->dev, + "Invalid region to copy FW image address=%llx\n", addr); + return -EIO; + } + + region = &hdev->pci_mem_region[region_id]; + + /* store the region for the copy stage */ + fw_loader->dynamic_loader.image_region = region; + + /* + * here we know that the start address is valid, now make sure that the + * image is within region's bounds + */ + rc = hl_fw_dynamic_validate_memory_bound(hdev, addr, + fw_loader->dynamic_loader.fw_image_size, + region); + if (rc) { + dev_err(hdev->dev, + "invalid mem transfer request for FW image\n"); + return rc; + } + + return 0; +} + +static int hl_fw_dynamic_validate_response(struct hl_device *hdev, + struct fw_response *response, + struct pci_mem_region *region) +{ + u64 device_addr; + int rc; + + device_addr = region->region_base + response->ram_offset; + + /* + * validate that the descriptor is within region's bounds + * Note that as the start address was supplied according to the RAM + * type- testing only the end address is enough + */ + rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr, + sizeof(struct lkd_fw_comms_desc), + region); + return rc; +} + +/** + * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + struct lkd_fw_comms_desc *fw_desc; + struct pci_mem_region *region; + struct fw_response *response; + enum pci_region region_id; + void __iomem *src; + int rc; + + fw_desc = &fw_loader->dynamic_loader.comm_desc; + response = &fw_loader->dynamic_loader.response; + + region_id = (response->ram_type == COMMS_SRAM) ? + PCI_REGION_SRAM : PCI_REGION_DRAM; + + region = &hdev->pci_mem_region[region_id]; + + rc = hl_fw_dynamic_validate_response(hdev, response, region); + if (rc) { + dev_err(hdev->dev, + "invalid mem transfer request for FW descriptor\n"); + return rc; + } + + /* extract address copy the descriptor from */ + src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + + response->ram_offset; + memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc)); + + return hl_fw_dynamic_validate_descriptor(hdev, fw_loader, fw_desc); +} + +/** + * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @next_image_size: size to allocate for next FW component + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + size_t next_image_size) +{ + int rc; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC, + next_image_size, true, + fw_loader->cpu_timeout); + if (rc) + return rc; + + return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader); +} + +/** + * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties + * + * @hdev: pointer to the habanalabs device structure + * @fwc: the firmware component + * @fw_version: fw component's version string + */ +static void hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev, + enum hl_fw_component fwc, + const char *fw_version) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + char *preboot_ver, *boot_ver; + char btl_ver[32]; + + switch (fwc) { + case FW_COMP_BOOT_FIT: + strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN); + boot_ver = extract_fw_ver_from_str(prop->uboot_ver); + if (boot_ver) { + dev_info(hdev->dev, "boot-fit version %s\n", boot_ver); + kfree(boot_ver); + } + + break; + case FW_COMP_PREBOOT: + strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN); + preboot_ver = strnstr(prop->preboot_ver, "Preboot", + VERSION_MAX_LEN); + if (preboot_ver && preboot_ver != prop->preboot_ver) { + strscpy(btl_ver, prop->preboot_ver, + min((int) (preboot_ver - prop->preboot_ver), + 31)); + dev_info(hdev->dev, "%s\n", btl_ver); + } + + preboot_ver = extract_fw_ver_from_str(prop->preboot_ver); + if (preboot_ver) { + dev_info(hdev->dev, "preboot version %s\n", + preboot_ver); + kfree(preboot_ver); + } + + break; + default: + dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc); + return; + } +} + +/** + * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW + * + * @hdev: pointer to the habanalabs device structure + * @fw: fw descriptor + * @fw_loader: managing structure for loading device's FW + */ +static int hl_fw_dynamic_copy_image(struct hl_device *hdev, + const struct firmware *fw, + struct fw_load_mgr *fw_loader) +{ + struct lkd_fw_comms_desc *fw_desc; + struct pci_mem_region *region; + void __iomem *dest; + u64 addr; + int rc; + + fw_desc = &fw_loader->dynamic_loader.comm_desc; + addr = le64_to_cpu(fw_desc->img_addr); + + /* find memory region to which to copy the image */ + region = fw_loader->dynamic_loader.image_region; + + dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + + (addr - region->region_base); + + rc = hl_fw_copy_fw_to_device(hdev, fw, dest, + fw_loader->boot_fit_img.src_off, + fw_loader->boot_fit_img.copy_size); + + return rc; +} + +/** + * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW + * + * @hdev: pointer to the habanalabs device structure + * @msg: message + * @fw_loader: managing structure for loading device's FW + */ +static int hl_fw_dynamic_copy_msg(struct hl_device *hdev, + struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader) +{ + struct lkd_fw_comms_desc *fw_desc; + struct pci_mem_region *region; + void __iomem *dest; + u64 addr; + int rc; + + fw_desc = &fw_loader->dynamic_loader.comm_desc; + addr = le64_to_cpu(fw_desc->img_addr); + + /* find memory region to which to copy the image */ + region = fw_loader->dynamic_loader.image_region; + + dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + + (addr - region->region_base); + + rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0); + + return rc; +} + +/** + * hl_fw_boot_fit_update_state - update internal data structures after boot-fit + * is loaded + * + * @hdev: pointer to the habanalabs device structure + * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 + * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 + * + * @return 0 on success, otherwise non-zero error code + */ +static void hl_fw_boot_fit_update_state(struct hl_device *hdev, + u32 cpu_boot_dev_sts0_reg, + u32 cpu_boot_dev_sts1_reg) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + /* Clear reset status since we need to read it again from boot CPU */ + prop->hard_reset_done_by_fw = false; + + /* Read boot_cpu status bits */ + if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) { + prop->fw_bootfit_cpu_boot_dev_sts0 = + RREG32(cpu_boot_dev_sts0_reg); + + if (prop->fw_bootfit_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) prop->hard_reset_done_by_fw = true; - } else { - prop->fw_security_status_valid = 0; + + dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n", + prop->fw_bootfit_cpu_boot_dev_sts0); } - dev_dbg(hdev->dev, "Firmware preboot security status %#x\n", - security_status); + if (prop->fw_cpu_boot_dev_sts1_valid) { + prop->fw_bootfit_cpu_boot_dev_sts1 = + RREG32(cpu_boot_dev_sts1_reg); - dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n", + dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n", + prop->fw_bootfit_cpu_boot_dev_sts1); + } + + dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n", prop->hard_reset_done_by_fw ? "enabled" : "disabled"); +} + +static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev) +{ + struct cpu_dyn_regs *dyn_regs = + &hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs; + + /* Check whether all 3 interrupt interfaces are set, if not use a + * single interface + */ + if (!hdev->asic_prop.gic_interrupts_enable && + !(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) { + dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_irq_ctrl; + dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_irq_ctrl; + + dev_warn(hdev->dev, + "Using a single interrupt interface towards cpucp"); + } +} +/** + * hl_fw_dynamic_load_image - load FW image using dynamic protocol + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @load_fwc: the FW component to be loaded + * @img_ld_timeout: image load timeout + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_load_image(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum hl_fw_component load_fwc, + u32 img_ld_timeout) +{ + enum hl_fw_component cur_fwc; + const struct firmware *fw; + char *fw_name; + int rc = 0; + + /* + * when loading image we have one of 2 scenarios: + * 1. current FW component is preboot and we want to load boot-fit + * 2. current FW component is boot-fit and we want to load linux + */ + if (load_fwc == FW_COMP_BOOT_FIT) { + cur_fwc = FW_COMP_PREBOOT; + fw_name = fw_loader->boot_fit_img.image_name; + } else { + cur_fwc = FW_COMP_BOOT_FIT; + fw_name = fw_loader->linux_img.image_name; + } + + /* request FW in order to communicate to FW the size to be allocated */ + rc = hl_request_fw(hdev, &fw, fw_name); + if (rc) + return rc; + + /* store the image size for future validation */ + fw_loader->dynamic_loader.fw_image_size = fw->size; + + rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size); + if (rc) + goto release_fw; + + /* read preboot version */ + hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc, + fw_loader->dynamic_loader.comm_desc.cur_fw_ver); + + + /* update state according to boot stage */ + if (cur_fwc == FW_COMP_BOOT_FIT) { + struct cpu_dyn_regs *dyn_regs; + + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + hl_fw_boot_fit_update_state(hdev, + le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); + } + + /* copy boot fit to space allocated by FW */ + rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader); + if (rc) + goto release_fw; - dev_info(hdev->dev, "firmware-level security is %s\n", - prop->fw_security_disabled ? "disabled" : "enabled"); + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, + 0, true, + fw_loader->cpu_timeout); + if (rc) + goto release_fw; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, + 0, false, + img_ld_timeout); +release_fw: + hl_release_firmware(fw); + return rc; +} + +static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + struct dynamic_fw_load_mgr *dyn_loader; + u32 status; + int rc; + + dyn_loader = &fw_loader->dynamic_loader; + + /* Make sure CPU boot-loader is running */ + rc = hl_poll_timeout( + hdev, + le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), + status, + (status == CPU_BOOT_STATUS_NIC_FW_RDY) || + (status == CPU_BOOT_STATUS_READY_TO_BOOT), + FW_CPU_STATUS_POLL_INTERVAL_USEC, + dyn_loader->wait_for_bl_timeout); + if (rc) { + dev_err(hdev->dev, "failed to wait for boot\n"); + return rc; + } + + dev_dbg(hdev->dev, "uboot status = %d\n", status); return 0; } -int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, - u32 msg_to_cpu_reg, u32 cpu_msg_status_reg, - u32 cpu_security_boot_status_reg, u32 boot_err0_reg, - bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout) +static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) { - struct asic_fixed_properties *prop = &hdev->asic_prop; + struct dynamic_fw_load_mgr *dyn_loader; u32 status; int rc; + dyn_loader = &fw_loader->dynamic_loader; + + /* Make sure CPU boot-loader is running */ + + rc = hl_poll_timeout( + hdev, + le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status), + status, + (status == CPU_BOOT_STATUS_SRAM_AVAIL), + FW_CPU_STATUS_POLL_INTERVAL_USEC, + fw_loader->cpu_timeout); + if (rc) { + dev_err(hdev->dev, "failed to wait for Linux\n"); + return rc; + } + + dev_dbg(hdev->dev, "Boot status = %d\n", status); + return 0; +} + +/** + * hl_fw_linux_update_state - update internal data structures after Linux + * is loaded. + * Note: Linux initialization is comprised mainly + * of two stages - loading kernel (SRAM_AVAIL) + * & loading ARMCP. + * Therefore reading boot device status in any of + * these stages might result in different values. + * + * @hdev: pointer to the habanalabs device structure + * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0 + * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1 + * + * @return 0 on success, otherwise non-zero error code + */ +static void hl_fw_linux_update_state(struct hl_device *hdev, + u32 cpu_boot_dev_sts0_reg, + u32 cpu_boot_dev_sts1_reg) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + hdev->fw_loader.linux_loaded = true; + + /* Clear reset status since we need to read again from app */ + prop->hard_reset_done_by_fw = false; + + /* Read FW application security bits */ + if (prop->fw_cpu_boot_dev_sts0_valid) { + prop->fw_app_cpu_boot_dev_sts0 = + RREG32(cpu_boot_dev_sts0_reg); + + if (prop->fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) + prop->hard_reset_done_by_fw = true; + + if (prop->fw_app_cpu_boot_dev_sts0 & + CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN) + prop->gic_interrupts_enable = false; + + dev_dbg(hdev->dev, + "Firmware application CPU status0 %#x\n", + prop->fw_app_cpu_boot_dev_sts0); + + dev_dbg(hdev->dev, "GIC controller is %s\n", + prop->gic_interrupts_enable ? + "enabled" : "disabled"); + } + + if (prop->fw_cpu_boot_dev_sts1_valid) { + prop->fw_app_cpu_boot_dev_sts1 = + RREG32(cpu_boot_dev_sts1_reg); + + dev_dbg(hdev->dev, + "Firmware application CPU status1 %#x\n", + prop->fw_app_cpu_boot_dev_sts1); + } + + dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n", + prop->hard_reset_done_by_fw ? "enabled" : "disabled"); + + dev_info(hdev->dev, "Successfully loaded firmware to device\n"); +} + +/** + * hl_fw_dynamic_report_reset_cause - send a COMMS message with the cause + * of the newly triggered hard reset + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * @reset_cause: enumerated cause for the recent hard reset + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_dynamic_report_reset_cause(struct hl_device *hdev, + struct fw_load_mgr *fw_loader, + enum comms_reset_cause reset_cause) +{ + struct lkd_msg_comms msg; + int rc; + + memset(&msg, 0, sizeof(msg)); + + /* create message to be sent */ + msg.header.type = HL_COMMS_RESET_CAUSE_TYPE; + msg.header.size = cpu_to_le16(sizeof(struct comms_msg_header)); + msg.header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC); + + msg.reset_cause = reset_cause; + + rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, + sizeof(struct lkd_msg_comms)); + if (rc) + return rc; + + /* copy message to space allocated by FW */ + rc = hl_fw_dynamic_copy_msg(hdev, &msg, fw_loader); + if (rc) + return rc; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY, + 0, true, + fw_loader->cpu_timeout); + if (rc) + return rc; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC, + 0, true, + fw_loader->cpu_timeout); + if (rc) + return rc; + + return 0; +} + +/** + * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + * + * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol. + * the communication is done using registers: + * - LKD command register + * - FW status register + * the protocol is race free. this goal is achieved by splitting the requests + * and response to known synchronization points between the LKD and the FW. + * each response to LKD request is known and bound to a predefined timeout. + * in case of timeout expiration without the desired status from FW- the + * protocol (and hence the boot) will fail. + */ +static int hl_fw_dynamic_init_cpu(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + struct cpu_dyn_regs *dyn_regs; + int rc; + + dev_info(hdev->dev, + "Loading firmware to device, may take some time...\n"); + + dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs; + + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE, + 0, true, + fw_loader->cpu_timeout); + if (rc) + goto protocol_err; + + if (hdev->curr_reset_cause) { + rc = hl_fw_dynamic_report_reset_cause(hdev, fw_loader, + hdev->curr_reset_cause); + if (rc) + goto protocol_err; + + /* Clear current reset cause */ + hdev->curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; + } + + if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) { + rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, 0); + if (rc) + goto protocol_err; + + /* read preboot version */ + hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT, + fw_loader->dynamic_loader.comm_desc.cur_fw_ver); + return 0; + } + + /* load boot fit to FW */ + rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT, + fw_loader->boot_fit_timeout); + if (rc) { + dev_err(hdev->dev, "failed to load boot fit\n"); + goto protocol_err; + } + + rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader); + if (rc) + goto protocol_err; + + /* Enable DRAM scrambling before Linux boot and after successful + * UBoot + */ + hdev->asic_funcs->init_cpu_scrambler_dram(hdev); + + if (!(hdev->fw_components & FW_TYPE_LINUX)) { + dev_info(hdev->dev, "Skip loading Linux F/W\n"); + return 0; + } + + if (fw_loader->skip_bmc) { + rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, + COMMS_SKIP_BMC, 0, + true, + fw_loader->cpu_timeout); + if (rc) { + dev_err(hdev->dev, "failed to load boot fit\n"); + goto protocol_err; + } + } + + /* load Linux image to FW */ + rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX, + fw_loader->cpu_timeout); + if (rc) { + dev_err(hdev->dev, "failed to load Linux\n"); + goto protocol_err; + } + + rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader); + if (rc) + goto protocol_err; + + hl_fw_linux_update_state(hdev, le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); + + hl_fw_dynamic_update_linux_interrupt_if(hdev); + + return 0; + +protocol_err: + fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0), + le32_to_cpu(dyn_regs->cpu_boot_err1), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts0), + le32_to_cpu(dyn_regs->cpu_boot_dev_sts1)); + return rc; +} + +/** + * hl_fw_static_init_cpu - initialize the device CPU using static protocol + * + * @hdev: pointer to the habanalabs device structure + * @fw_loader: managing structure for loading device's FW + * + * @return 0 on success, otherwise non-zero error code + */ +static int hl_fw_static_init_cpu(struct hl_device *hdev, + struct fw_load_mgr *fw_loader) +{ + u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status; + u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg; + struct static_fw_load_mgr *static_loader; + u32 cpu_boot_status_reg; + int rc; + if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) return 0; + /* init common loader parameters */ + cpu_timeout = fw_loader->cpu_timeout; + + /* init static loader parameters */ + static_loader = &fw_loader->static_loader; + cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg; + msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg; + cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg; + cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg; + cpu_boot_status_reg = static_loader->cpu_boot_status_reg; + dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n", cpu_timeout / USEC_PER_SEC); @@ -925,8 +2364,8 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, cpu_boot_status_reg, status, status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT, - 10000, - boot_fit_timeout); + FW_CPU_STATUS_POLL_INTERVAL_USEC, + fw_loader->boot_fit_timeout); if (rc) { dev_dbg(hdev->dev, @@ -948,8 +2387,8 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, cpu_msg_status_reg, status, status == CPU_MSG_OK, - 10000, - boot_fit_timeout); + FW_CPU_STATUS_POLL_INTERVAL_USEC, + fw_loader->boot_fit_timeout); if (rc) { dev_err(hdev->dev, @@ -970,33 +2409,17 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, (status == CPU_BOOT_STATUS_NIC_FW_RDY) || (status == CPU_BOOT_STATUS_READY_TO_BOOT) || (status == CPU_BOOT_STATUS_SRAM_AVAIL), - 10000, + FW_CPU_STATUS_POLL_INTERVAL_USEC, cpu_timeout); dev_dbg(hdev->dev, "uboot status = %d\n", status); /* Read U-Boot version now in case we will later fail */ - hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_UBOOT); - - /* Clear reset status since we need to read it again from boot CPU */ - prop->hard_reset_done_by_fw = false; - - /* Read boot_cpu security bits */ - if (prop->fw_security_status_valid) { - prop->fw_boot_cpu_security_map = - RREG32(cpu_security_boot_status_reg); - - if (prop->fw_boot_cpu_security_map & - CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) - prop->hard_reset_done_by_fw = true; - - dev_dbg(hdev->dev, - "Firmware boot CPU security status %#x\n", - prop->fw_boot_cpu_security_map); - } + hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT); - dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n", - prop->hard_reset_done_by_fw ? "enabled" : "disabled"); + /* update state according to boot stage */ + hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); if (rc) { detect_cpu_boot_status(hdev, status); @@ -1004,13 +2427,21 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, goto out; } + /* Enable DRAM scrambling before Linux boot and after successful + * UBoot + */ + hdev->asic_funcs->init_cpu_scrambler_dram(hdev); + if (!(hdev->fw_components & FW_TYPE_LINUX)) { dev_info(hdev->dev, "Skip loading Linux F/W\n"); + rc = 0; goto out; } - if (status == CPU_BOOT_STATUS_SRAM_AVAIL) + if (status == CPU_BOOT_STATUS_SRAM_AVAIL) { + rc = 0; goto out; + } dev_info(hdev->dev, "Loading firmware to device, may take some time...\n"); @@ -1019,7 +2450,7 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, if (rc) goto out; - if (skip_bmc) { + if (fw_loader->skip_bmc) { WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC); rc = hl_poll_timeout( @@ -1027,7 +2458,7 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, cpu_boot_status_reg, status, (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED), - 10000, + FW_CPU_STATUS_POLL_INTERVAL_USEC, cpu_timeout); if (rc) { @@ -1047,7 +2478,7 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, cpu_boot_status_reg, status, (status == CPU_BOOT_STATUS_SRAM_AVAIL), - 10000, + FW_CPU_STATUS_POLL_INTERVAL_USEC, cpu_timeout); /* Clear message */ @@ -1066,36 +2497,43 @@ int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, goto out; } - rc = fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg); + rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, + fw_loader->static_loader.boot_err1_reg, + cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); if (rc) return rc; - /* Clear reset status since we need to read again from app */ - prop->hard_reset_done_by_fw = false; - - /* Read FW application security bits */ - if (prop->fw_security_status_valid) { - prop->fw_app_security_map = - RREG32(cpu_security_boot_status_reg); - - if (prop->fw_app_security_map & - CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) - prop->hard_reset_done_by_fw = true; - - dev_dbg(hdev->dev, - "Firmware application CPU security status %#x\n", - prop->fw_app_security_map); - } - - dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n", - prop->hard_reset_done_by_fw ? "enabled" : "disabled"); - - dev_info(hdev->dev, "Successfully loaded firmware to device\n"); + hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); return 0; out: - fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg); + fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg, + fw_loader->static_loader.boot_err1_reg, + cpu_boot_dev_status0_reg, + cpu_boot_dev_status1_reg); return rc; } + +/** + * hl_fw_init_cpu - initialize the device CPU + * + * @hdev: pointer to the habanalabs device structure + * + * @return 0 on success, otherwise non-zero error code + * + * perform necessary initializations for device's CPU. takes into account if + * init protocol is static or dynamic. + */ +int hl_fw_init_cpu(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct fw_load_mgr *fw_loader = &hdev->fw_loader; + + return prop->dynamic_fw_load ? + hl_fw_dynamic_init_cpu(hdev, fw_loader) : + hl_fw_static_init_cpu(hdev, fw_loader); +} |