summaryrefslogtreecommitdiff
path: root/drivers/media/video/cx25840/cx25840-ir.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/media/video/cx25840/cx25840-ir.c')
-rw-r--r--drivers/media/video/cx25840/cx25840-ir.c1281
1 files changed, 0 insertions, 1281 deletions
diff --git a/drivers/media/video/cx25840/cx25840-ir.c b/drivers/media/video/cx25840/cx25840-ir.c
deleted file mode 100644
index 38ce76ed1924..000000000000
--- a/drivers/media/video/cx25840/cx25840-ir.c
+++ /dev/null
@@ -1,1281 +0,0 @@
-/*
- * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
- *
- * Integrated Consumer Infrared Controller
- *
- * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
- * 02110-1301, USA.
- */
-
-#include <linux/slab.h>
-#include <linux/kfifo.h>
-#include <linux/module.h>
-#include <media/cx25840.h>
-#include <media/rc-core.h>
-
-#include "cx25840-core.h"
-
-static unsigned int ir_debug;
-module_param(ir_debug, int, 0644);
-MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
-
-#define CX25840_IR_REG_BASE 0x200
-
-#define CX25840_IR_CNTRL_REG 0x200
-#define CNTRL_WIN_3_3 0x00000000
-#define CNTRL_WIN_4_3 0x00000001
-#define CNTRL_WIN_3_4 0x00000002
-#define CNTRL_WIN_4_4 0x00000003
-#define CNTRL_WIN 0x00000003
-#define CNTRL_EDG_NONE 0x00000000
-#define CNTRL_EDG_FALL 0x00000004
-#define CNTRL_EDG_RISE 0x00000008
-#define CNTRL_EDG_BOTH 0x0000000C
-#define CNTRL_EDG 0x0000000C
-#define CNTRL_DMD 0x00000010
-#define CNTRL_MOD 0x00000020
-#define CNTRL_RFE 0x00000040
-#define CNTRL_TFE 0x00000080
-#define CNTRL_RXE 0x00000100
-#define CNTRL_TXE 0x00000200
-#define CNTRL_RIC 0x00000400
-#define CNTRL_TIC 0x00000800
-#define CNTRL_CPL 0x00001000
-#define CNTRL_LBM 0x00002000
-#define CNTRL_R 0x00004000
-
-#define CX25840_IR_TXCLK_REG 0x204
-#define TXCLK_TCD 0x0000FFFF
-
-#define CX25840_IR_RXCLK_REG 0x208
-#define RXCLK_RCD 0x0000FFFF
-
-#define CX25840_IR_CDUTY_REG 0x20C
-#define CDUTY_CDC 0x0000000F
-
-#define CX25840_IR_STATS_REG 0x210
-#define STATS_RTO 0x00000001
-#define STATS_ROR 0x00000002
-#define STATS_RBY 0x00000004
-#define STATS_TBY 0x00000008
-#define STATS_RSR 0x00000010
-#define STATS_TSR 0x00000020
-
-#define CX25840_IR_IRQEN_REG 0x214
-#define IRQEN_RTE 0x00000001
-#define IRQEN_ROE 0x00000002
-#define IRQEN_RSE 0x00000010
-#define IRQEN_TSE 0x00000020
-#define IRQEN_MSK 0x00000033
-
-#define CX25840_IR_FILTR_REG 0x218
-#define FILTR_LPF 0x0000FFFF
-
-#define CX25840_IR_FIFO_REG 0x23C
-#define FIFO_RXTX 0x0000FFFF
-#define FIFO_RXTX_LVL 0x00010000
-#define FIFO_RXTX_RTO 0x0001FFFF
-#define FIFO_RX_NDV 0x00020000
-#define FIFO_RX_DEPTH 8
-#define FIFO_TX_DEPTH 8
-
-#define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
-#define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
-
-/*
- * We use this union internally for convenience, but callers to tx_write
- * and rx_read will be expecting records of type struct ir_raw_event.
- * Always ensure the size of this union is dictated by struct ir_raw_event.
- */
-union cx25840_ir_fifo_rec {
- u32 hw_fifo_data;
- struct ir_raw_event ir_core_data;
-};
-
-#define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
-#define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
-
-struct cx25840_ir_state {
- struct i2c_client *c;
-
- struct v4l2_subdev_ir_parameters rx_params;
- struct mutex rx_params_lock; /* protects Rx parameter settings cache */
- atomic_t rxclk_divider;
- atomic_t rx_invert;
-
- struct kfifo rx_kfifo;
- spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
-
- struct v4l2_subdev_ir_parameters tx_params;
- struct mutex tx_params_lock; /* protects Tx parameter settings cache */
- atomic_t txclk_divider;
-};
-
-static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
-{
- struct cx25840_state *state = to_state(sd);
- return state ? state->ir_state : NULL;
-}
-
-
-/*
- * Rx and Tx Clock Divider register computations
- *
- * Note the largest clock divider value of 0xffff corresponds to:
- * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
- * which fits in 21 bits, so we'll use unsigned int for time arguments.
- */
-static inline u16 count_to_clock_divider(unsigned int d)
-{
- if (d > RXCLK_RCD + 1)
- d = RXCLK_RCD;
- else if (d < 2)
- d = 1;
- else
- d--;
- return (u16) d;
-}
-
-static inline u16 ns_to_clock_divider(unsigned int ns)
-{
- return count_to_clock_divider(
- DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
-}
-
-static inline unsigned int clock_divider_to_ns(unsigned int divider)
-{
- /* Period of the Rx or Tx clock in ns */
- return DIV_ROUND_CLOSEST((divider + 1) * 1000,
- CX25840_IR_REFCLK_FREQ / 1000000);
-}
-
-static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
-{
- return count_to_clock_divider(
- DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
-}
-
-static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
-{
- return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
-}
-
-static inline u16 freq_to_clock_divider(unsigned int freq,
- unsigned int rollovers)
-{
- return count_to_clock_divider(
- DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
-}
-
-static inline unsigned int clock_divider_to_freq(unsigned int divider,
- unsigned int rollovers)
-{
- return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
- (divider + 1) * rollovers);
-}
-
-/*
- * Low Pass Filter register calculations
- *
- * Note the largest count value of 0xffff corresponds to:
- * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
- * which fits in 21 bits, so we'll use unsigned int for time arguments.
- */
-static inline u16 count_to_lpf_count(unsigned int d)
-{
- if (d > FILTR_LPF)
- d = FILTR_LPF;
- else if (d < 4)
- d = 0;
- return (u16) d;
-}
-
-static inline u16 ns_to_lpf_count(unsigned int ns)
-{
- return count_to_lpf_count(
- DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
-}
-
-static inline unsigned int lpf_count_to_ns(unsigned int count)
-{
- /* Duration of the Low Pass Filter rejection window in ns */
- return DIV_ROUND_CLOSEST(count * 1000,
- CX25840_IR_REFCLK_FREQ / 1000000);
-}
-
-static inline unsigned int lpf_count_to_us(unsigned int count)
-{
- /* Duration of the Low Pass Filter rejection window in us */
- return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
-}
-
-/*
- * FIFO register pulse width count compuations
- */
-static u32 clock_divider_to_resolution(u16 divider)
-{
- /*
- * Resolution is the duration of 1 tick of the readable portion of
- * of the pulse width counter as read from the FIFO. The two lsb's are
- * not readable, hence the << 2. This function returns ns.
- */
- return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
- CX25840_IR_REFCLK_FREQ / 1000000);
-}
-
-static u64 pulse_width_count_to_ns(u16 count, u16 divider)
-{
- u64 n;
- u32 rem;
-
- /*
- * The 2 lsb's of the pulse width timer count are not readable, hence
- * the (count << 2) | 0x3
- */
- n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
- rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
- if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
- n++;
- return n;
-}
-
-#if 0
-/* Keep as we will need this for Transmit functionality */
-static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
-{
- u64 n;
- u32 d;
- u32 rem;
-
- /*
- * The 2 lsb's of the pulse width timer count are not accessible, hence
- * the (1 << 2)
- */
- n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
- d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
- rem = do_div(n, d);
- if (rem >= d / 2)
- n++;
-
- if (n > FIFO_RXTX)
- n = FIFO_RXTX;
- else if (n == 0)
- n = 1;
- return (u16) n;
-}
-
-#endif
-static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
-{
- u64 n;
- u32 rem;
-
- /*
- * The 2 lsb's of the pulse width timer count are not readable, hence
- * the (count << 2) | 0x3
- */
- n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
- rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
- if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
- n++;
- return (unsigned int) n;
-}
-
-/*
- * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
- *
- * The total pulse clock count is an 18 bit pulse width timer count as the most
- * significant part and (up to) 16 bit clock divider count as a modulus.
- * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
- * width timer count's least significant bit.
- */
-static u64 ns_to_pulse_clocks(u32 ns)
-{
- u64 clocks;
- u32 rem;
- clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
- rem = do_div(clocks, 1000); /* /1000 = cycles */
- if (rem >= 1000 / 2)
- clocks++;
- return clocks;
-}
-
-static u16 pulse_clocks_to_clock_divider(u64 count)
-{
- do_div(count, (FIFO_RXTX << 2) | 0x3);
-
- /* net result needs to be rounded down and decremented by 1 */
- if (count > RXCLK_RCD + 1)
- count = RXCLK_RCD;
- else if (count < 2)
- count = 1;
- else
- count--;
- return (u16) count;
-}
-
-/*
- * IR Control Register helpers
- */
-enum tx_fifo_watermark {
- TX_FIFO_HALF_EMPTY = 0,
- TX_FIFO_EMPTY = CNTRL_TIC,
-};
-
-enum rx_fifo_watermark {
- RX_FIFO_HALF_FULL = 0,
- RX_FIFO_NOT_EMPTY = CNTRL_RIC,
-};
-
-static inline void control_tx_irq_watermark(struct i2c_client *c,
- enum tx_fifo_watermark level)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
-}
-
-static inline void control_rx_irq_watermark(struct i2c_client *c,
- enum rx_fifo_watermark level)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
-}
-
-static inline void control_tx_enable(struct i2c_client *c, bool enable)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
- enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
-}
-
-static inline void control_rx_enable(struct i2c_client *c, bool enable)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
- enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
-}
-
-static inline void control_tx_modulation_enable(struct i2c_client *c,
- bool enable)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
- enable ? CNTRL_MOD : 0);
-}
-
-static inline void control_rx_demodulation_enable(struct i2c_client *c,
- bool enable)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
- enable ? CNTRL_DMD : 0);
-}
-
-static inline void control_rx_s_edge_detection(struct i2c_client *c,
- u32 edge_types)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
- edge_types & CNTRL_EDG_BOTH);
-}
-
-static void control_rx_s_carrier_window(struct i2c_client *c,
- unsigned int carrier,
- unsigned int *carrier_range_low,
- unsigned int *carrier_range_high)
-{
- u32 v;
- unsigned int c16 = carrier * 16;
-
- if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
- v = CNTRL_WIN_3_4;
- *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
- } else {
- v = CNTRL_WIN_3_3;
- *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
- }
-
- if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
- v |= CNTRL_WIN_4_3;
- *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
- } else {
- v |= CNTRL_WIN_3_3;
- *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
- }
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
-}
-
-static inline void control_tx_polarity_invert(struct i2c_client *c,
- bool invert)
-{
- cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
- invert ? CNTRL_CPL : 0);
-}
-
-/*
- * IR Rx & Tx Clock Register helpers
- */
-static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
- unsigned int freq,
- u16 *divider)
-{
- *divider = carrier_freq_to_clock_divider(freq);
- cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
- return clock_divider_to_carrier_freq(*divider);
-}
-
-static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
- unsigned int freq,
- u16 *divider)
-{
- *divider = carrier_freq_to_clock_divider(freq);
- cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
- return clock_divider_to_carrier_freq(*divider);
-}
-
-static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
- u16 *divider)
-{
- u64 pulse_clocks;
-
- if (ns > IR_MAX_DURATION)
- ns = IR_MAX_DURATION;
- pulse_clocks = ns_to_pulse_clocks(ns);
- *divider = pulse_clocks_to_clock_divider(pulse_clocks);
- cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
- return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
-}
-
-static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
- u16 *divider)
-{
- u64 pulse_clocks;
-
- if (ns > IR_MAX_DURATION)
- ns = IR_MAX_DURATION;
- pulse_clocks = ns_to_pulse_clocks(ns);
- *divider = pulse_clocks_to_clock_divider(pulse_clocks);
- cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
- return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
-}
-
-/*
- * IR Tx Carrier Duty Cycle register helpers
- */
-static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
- unsigned int duty_cycle)
-{
- u32 n;
- n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
- if (n != 0)
- n--;
- if (n > 15)
- n = 15;
- cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
- return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
-}
-
-/*
- * IR Filter Register helpers
- */
-static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
-{
- u32 count = ns_to_lpf_count(min_width_ns);
- cx25840_write4(c, CX25840_IR_FILTR_REG, count);
- return lpf_count_to_ns(count);
-}
-
-/*
- * IR IRQ Enable Register helpers
- */
-static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
-{
- struct cx25840_state *state = to_state(sd);
-
- if (is_cx23885(state) || is_cx23887(state))
- mask ^= IRQEN_MSK;
- mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
- cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
- ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
-}
-
-static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
-{
- struct cx25840_state *state = to_state(sd);
-
- if (is_cx23885(state) || is_cx23887(state))
- mask ^= IRQEN_MSK;
- mask &= IRQEN_TSE;
- cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
-}
-
-/*
- * V4L2 Subdevice IR Ops
- */
-int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
-{
- struct cx25840_state *state = to_state(sd);
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
- struct i2c_client *c = NULL;
- unsigned long flags;
-
- union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
- unsigned int i, j, k;
- u32 events, v;
- int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
- u32 cntrl, irqen, stats;
-
- *handled = false;
- if (ir_state == NULL)
- return -ENODEV;
-
- c = ir_state->c;
-
- /* Only support the IR controller for the CX2388[57] AV Core for now */
- if (!(is_cx23885(state) || is_cx23887(state)))
- return -ENODEV;
-
- cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
- irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
- if (is_cx23885(state) || is_cx23887(state))
- irqen ^= IRQEN_MSK;
- stats = cx25840_read4(c, CX25840_IR_STATS_REG);
-
- tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
- rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
- rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
- ror = stats & STATS_ROR; /* Rx FIFO Over Run */
-
- tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
- rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
- rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
- roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
-
- v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n",
- tsr ? "tsr" : " ", rsr ? "rsr" : " ",
- rto ? "rto" : " ", ror ? "ror" : " ",
- stats & STATS_TBY ? "tby" : " ",
- stats & STATS_RBY ? "rby" : " ");
-
- v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
- tse ? "tse" : " ", rse ? "rse" : " ",
- rte ? "rte" : " ", roe ? "roe" : " ");
-
- /*
- * Transmitter interrupt service
- */
- if (tse && tsr) {
- /*
- * TODO:
- * Check the watermark threshold setting
- * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
- * Push the data to the hardware FIFO.
- * If there was nothing more to send in the tx_kfifo, disable
- * the TSR IRQ and notify the v4l2_device.
- * If there was something in the tx_kfifo, check the tx_kfifo
- * level and notify the v4l2_device, if it is low.
- */
- /* For now, inhibit TSR interrupt until Tx is implemented */
- irqenable_tx(sd, 0);
- events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
- v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
- *handled = true;
- }
-
- /*
- * Receiver interrupt service
- */
- kror = 0;
- if ((rse && rsr) || (rte && rto)) {
- /*
- * Receive data on RSR to clear the STATS_RSR.
- * Receive data on RTO, since we may not have yet hit the RSR
- * watermark when we receive the RTO.
- */
- for (i = 0, v = FIFO_RX_NDV;
- (v & FIFO_RX_NDV) && !kror; i = 0) {
- for (j = 0;
- (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
- v = cx25840_read4(c, CX25840_IR_FIFO_REG);
- rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
- i++;
- }
- if (i == 0)
- break;
- j = i * sizeof(union cx25840_ir_fifo_rec);
- k = kfifo_in_locked(&ir_state->rx_kfifo,
- (unsigned char *) rx_data, j,
- &ir_state->rx_kfifo_lock);
- if (k != j)
- kror++; /* rx_kfifo over run */
- }
- *handled = true;
- }
-
- events = 0;
- v = 0;
- if (kror) {
- events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
- v4l2_err(sd, "IR receiver software FIFO overrun\n");
- }
- if (roe && ror) {
- /*
- * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
- * the Rx FIFO Over Run status (STATS_ROR)
- */
- v |= CNTRL_RFE;
- events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
- v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
- }
- if (rte && rto) {
- /*
- * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
- * the Rx Pulse Width Timer Time Out (STATS_RTO)
- */
- v |= CNTRL_RXE;
- events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
- }
- if (v) {
- /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
- cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
- cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
- *handled = true;
- }
- spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
- if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
- events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
- spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
-
- if (events)
- v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
- return 0;
-}
-
-/* Receiver */
-static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
- ssize_t *num)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
- bool invert;
- u16 divider;
- unsigned int i, n;
- union cx25840_ir_fifo_rec *p;
- unsigned u, v, w;
-
- if (ir_state == NULL)
- return -ENODEV;
-
- invert = (bool) atomic_read(&ir_state->rx_invert);
- divider = (u16) atomic_read(&ir_state->rxclk_divider);
-
- n = count / sizeof(union cx25840_ir_fifo_rec)
- * sizeof(union cx25840_ir_fifo_rec);
- if (n == 0) {
- *num = 0;
- return 0;
- }
-
- n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
- &ir_state->rx_kfifo_lock);
-
- n /= sizeof(union cx25840_ir_fifo_rec);
- *num = n * sizeof(union cx25840_ir_fifo_rec);
-
- for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
-
- if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
- /* Assume RTO was because of no IR light input */
- u = 0;
- w = 1;
- } else {
- u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
- if (invert)
- u = u ? 0 : 1;
- w = 0;
- }
-
- v = (unsigned) pulse_width_count_to_ns(
- (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
- if (v > IR_MAX_DURATION)
- v = IR_MAX_DURATION;
-
- init_ir_raw_event(&p->ir_core_data);
- p->ir_core_data.pulse = u;
- p->ir_core_data.duration = v;
- p->ir_core_data.timeout = w;
-
- v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n",
- v, u ? "mark" : "space", w ? "(timed out)" : "");
- if (w)
- v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
- }
- return 0;
-}
-
-static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
- struct v4l2_subdev_ir_parameters *p)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
-
- if (ir_state == NULL)
- return -ENODEV;
-
- mutex_lock(&ir_state->rx_params_lock);
- memcpy(p, &ir_state->rx_params,
- sizeof(struct v4l2_subdev_ir_parameters));
- mutex_unlock(&ir_state->rx_params_lock);
- return 0;
-}
-
-static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
- struct i2c_client *c;
-
- if (ir_state == NULL)
- return -ENODEV;
-
- c = ir_state->c;
- mutex_lock(&ir_state->rx_params_lock);
-
- /* Disable or slow down all IR Rx circuits and counters */
- irqenable_rx(sd, 0);
- control_rx_enable(c, false);
- control_rx_demodulation_enable(c, false);
- control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
- filter_rx_s_min_width(c, 0);
- cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
-
- ir_state->rx_params.shutdown = true;
-
- mutex_unlock(&ir_state->rx_params_lock);
- return 0;
-}
-
-static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
- struct v4l2_subdev_ir_parameters *p)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
- struct i2c_client *c;
- struct v4l2_subdev_ir_parameters *o;
- u16 rxclk_divider;
-
- if (ir_state == NULL)
- return -ENODEV;
-
- if (p->shutdown)
- return cx25840_ir_rx_shutdown(sd);
-
- if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
- return -ENOSYS;
-
- c = ir_state->c;
- o = &ir_state->rx_params;
-
- mutex_lock(&ir_state->rx_params_lock);
-
- o->shutdown = p->shutdown;
-
- p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
- o->mode = p->mode;
-
- p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
- o->bytes_per_data_element = p->bytes_per_data_element;
-
- /* Before we tweak the hardware, we have to disable the receiver */
- irqenable_rx(sd, 0);
- control_rx_enable(c, false);
-
- control_rx_demodulation_enable(c, p->modulation);
- o->modulation = p->modulation;
-
- if (p->modulation) {
- p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
- &rxclk_divider);
-
- o->carrier_freq = p->carrier_freq;
-
- p->duty_cycle = 50;
- o->duty_cycle = p->duty_cycle;
-
- control_rx_s_carrier_window(c, p->carrier_freq,
- &p->carrier_range_lower,
- &p->carrier_range_upper);
- o->carrier_range_lower = p->carrier_range_lower;
- o->carrier_range_upper = p->carrier_range_upper;
-
- p->max_pulse_width =
- (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
- } else {
- p->max_pulse_width =
- rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
- &rxclk_divider);
- }
- o->max_pulse_width = p->max_pulse_width;
- atomic_set(&ir_state->rxclk_divider, rxclk_divider);
-
- p->noise_filter_min_width =
- filter_rx_s_min_width(c, p->noise_filter_min_width);
- o->noise_filter_min_width = p->noise_filter_min_width;
-
- p->resolution = clock_divider_to_resolution(rxclk_divider);
- o->resolution = p->resolution;
-
- /* FIXME - make this dependent on resolution for better performance */
- control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
-
- control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
-
- o->invert_level = p->invert_level;
- atomic_set(&ir_state->rx_invert, p->invert_level);
-
- o->interrupt_enable = p->interrupt_enable;
- o->enable = p->enable;
- if (p->enable) {
- unsigned long flags;
-
- spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
- kfifo_reset(&ir_state->rx_kfifo);
- spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
- if (p->interrupt_enable)
- irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
- control_rx_enable(c, p->enable);
- }
-
- mutex_unlock(&ir_state->rx_params_lock);
- return 0;
-}
-
-/* Transmitter */
-static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
- ssize_t *num)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
-
- if (ir_state == NULL)
- return -ENODEV;
-
-#if 0
- /*
- * FIXME - the code below is an incomplete and untested sketch of what
- * may need to be done. The critical part is to get 4 (or 8) pulses
- * from the tx_kfifo, or converted from ns to the proper units from the
- * input, and push them off to the hardware Tx FIFO right away, if the
- * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
- * a less critical timeframe. Also watch out for overruning the
- * tx_kfifo - don't let it happen and let the caller know not all his
- * pulses were written.
- */
- u32 *ns_pulse = (u32 *) buf;
- unsigned int n;
- u32 fifo_pulse[FIFO_TX_DEPTH];
- u32 mark;
-
- /* Compute how much we can fit in the tx kfifo */
- n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
- n = min(n, (unsigned int) count);
- n /= sizeof(u32);
-
- /* FIXME - turn on Tx Fifo service interrupt
- * check hardware fifo level, and other stuff
- */
- for (i = 0; i < n; ) {
- for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
- mark = ns_pulse[i] & LEVEL_MASK;
- fifo_pulse[j] = ns_to_pulse_width_count(
- ns_pulse[i] &
- ~LEVEL_MASK,
- ir_state->txclk_divider);
- if (mark)
- fifo_pulse[j] &= FIFO_RXTX_LVL;
- i++;
- }
- kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
- j * sizeof(u32));
- }
- *num = n * sizeof(u32);
-#else
- /* For now enable the Tx FIFO Service interrupt & pretend we did work */
- irqenable_tx(sd, IRQEN_TSE);
- *num = count;
-#endif
- return 0;
-}
-
-static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
- struct v4l2_subdev_ir_parameters *p)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
-
- if (ir_state == NULL)
- return -ENODEV;
-
- mutex_lock(&ir_state->tx_params_lock);
- memcpy(p, &ir_state->tx_params,
- sizeof(struct v4l2_subdev_ir_parameters));
- mutex_unlock(&ir_state->tx_params_lock);
- return 0;
-}
-
-static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
- struct i2c_client *c;
-
- if (ir_state == NULL)
- return -ENODEV;
-
- c = ir_state->c;
- mutex_lock(&ir_state->tx_params_lock);
-
- /* Disable or slow down all IR Tx circuits and counters */
- irqenable_tx(sd, 0);
- control_tx_enable(c, false);
- control_tx_modulation_enable(c, false);
- cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
-
- ir_state->tx_params.shutdown = true;
-
- mutex_unlock(&ir_state->tx_params_lock);
- return 0;
-}
-
-static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
- struct v4l2_subdev_ir_parameters *p)
-{
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
- struct i2c_client *c;
- struct v4l2_subdev_ir_parameters *o;
- u16 txclk_divider;
-
- if (ir_state == NULL)
- return -ENODEV;
-
- if (p->shutdown)
- return cx25840_ir_tx_shutdown(sd);
-
- if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
- return -ENOSYS;
-
- c = ir_state->c;
- o = &ir_state->tx_params;
- mutex_lock(&ir_state->tx_params_lock);
-
- o->shutdown = p->shutdown;
-
- p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
- o->mode = p->mode;
-
- p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
- o->bytes_per_data_element = p->bytes_per_data_element;
-
- /* Before we tweak the hardware, we have to disable the transmitter */
- irqenable_tx(sd, 0);
- control_tx_enable(c, false);
-
- control_tx_modulation_enable(c, p->modulation);
- o->modulation = p->modulation;
-
- if (p->modulation) {
- p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
- &txclk_divider);
- o->carrier_freq = p->carrier_freq;
-
- p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
- o->duty_cycle = p->duty_cycle;
-
- p->max_pulse_width =
- (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
- } else {
- p->max_pulse_width =
- txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
- &txclk_divider);
- }
- o->max_pulse_width = p->max_pulse_width;
- atomic_set(&ir_state->txclk_divider, txclk_divider);
-
- p->resolution = clock_divider_to_resolution(txclk_divider);
- o->resolution = p->resolution;
-
- /* FIXME - make this dependent on resolution for better performance */
- control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
-
- control_tx_polarity_invert(c, p->invert_carrier_sense);
- o->invert_carrier_sense = p->invert_carrier_sense;
-
- /*
- * FIXME: we don't have hardware help for IO pin level inversion
- * here like we have on the CX23888.
- * Act on this with some mix of logical inversion of data levels,
- * carrier polarity, and carrier duty cycle.
- */
- o->invert_level = p->invert_level;
-
- o->interrupt_enable = p->interrupt_enable;
- o->enable = p->enable;
- if (p->enable) {
- /* reset tx_fifo here */
- if (p->interrupt_enable)
- irqenable_tx(sd, IRQEN_TSE);
- control_tx_enable(c, p->enable);
- }
-
- mutex_unlock(&ir_state->tx_params_lock);
- return 0;
-}
-
-
-/*
- * V4L2 Subdevice Core Ops support
- */
-int cx25840_ir_log_status(struct v4l2_subdev *sd)
-{
- struct cx25840_state *state = to_state(sd);
- struct i2c_client *c = state->c;
- char *s;
- int i, j;
- u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
-
- /* The CX23888 chip doesn't have an IR controller on the A/V core */
- if (is_cx23888(state))
- return 0;
-
- cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
- txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
- rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
- cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
- stats = cx25840_read4(c, CX25840_IR_STATS_REG);
- irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
- if (is_cx23885(state) || is_cx23887(state))
- irqen ^= IRQEN_MSK;
- filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
-
- v4l2_info(sd, "IR Receiver:\n");
- v4l2_info(sd, "\tEnabled: %s\n",
- cntrl & CNTRL_RXE ? "yes" : "no");
- v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
- cntrl & CNTRL_DMD ? "enabled" : "disabled");
- v4l2_info(sd, "\tFIFO: %s\n",
- cntrl & CNTRL_RFE ? "enabled" : "disabled");
- switch (cntrl & CNTRL_EDG) {
- case CNTRL_EDG_NONE:
- s = "disabled";
- break;
- case CNTRL_EDG_FALL:
- s = "falling edge";
- break;
- case CNTRL_EDG_RISE:
- s = "rising edge";
- break;
- case CNTRL_EDG_BOTH:
- s = "rising & falling edges";
- break;
- default:
- s = "??? edge";
- break;
- }
- v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
- v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
- cntrl & CNTRL_R ? "not loaded" : "overflow marker");
- v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
- cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
- v4l2_info(sd, "\tLoopback mode: %s\n",
- cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
- if (cntrl & CNTRL_DMD) {
- v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
- clock_divider_to_carrier_freq(rxclk));
- switch (cntrl & CNTRL_WIN) {
- case CNTRL_WIN_3_3:
- i = 3;
- j = 3;
- break;
- case CNTRL_WIN_4_3:
- i = 4;
- j = 3;
- break;
- case CNTRL_WIN_3_4:
- i = 3;
- j = 4;
- break;
- case CNTRL_WIN_4_4:
- i = 4;
- j = 4;
- break;
- default:
- i = 0;
- j = 0;
- break;
- }
- v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
- "-%1d/+%1d, %u to %u Hz\n", i, j,
- clock_divider_to_freq(rxclk, 16 + j),
- clock_divider_to_freq(rxclk, 16 - i));
- }
- v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
- pulse_width_count_to_us(FIFO_RXTX, rxclk),
- pulse_width_count_to_ns(FIFO_RXTX, rxclk));
- v4l2_info(sd, "\tLow pass filter: %s\n",
- filtr ? "enabled" : "disabled");
- if (filtr)
- v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
- "%u ns\n",
- lpf_count_to_us(filtr),
- lpf_count_to_ns(filtr));
- v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
- stats & STATS_RTO ? "yes" : "no");
- v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
- irqen & IRQEN_RTE ? "enabled" : "disabled");
- v4l2_info(sd, "\tFIFO overrun: %s\n",
- stats & STATS_ROR ? "yes" : "no");
- v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
- irqen & IRQEN_ROE ? "enabled" : "disabled");
- v4l2_info(sd, "\tBusy: %s\n",
- stats & STATS_RBY ? "yes" : "no");
- v4l2_info(sd, "\tFIFO service requested: %s\n",
- stats & STATS_RSR ? "yes" : "no");
- v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
- irqen & IRQEN_RSE ? "enabled" : "disabled");
-
- v4l2_info(sd, "IR Transmitter:\n");
- v4l2_info(sd, "\tEnabled: %s\n",
- cntrl & CNTRL_TXE ? "yes" : "no");
- v4l2_info(sd, "\tModulation onto a carrier: %s\n",
- cntrl & CNTRL_MOD ? "enabled" : "disabled");
- v4l2_info(sd, "\tFIFO: %s\n",
- cntrl & CNTRL_TFE ? "enabled" : "disabled");
- v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
- cntrl & CNTRL_TIC ? "not empty" : "half full or less");
- v4l2_info(sd, "\tCarrier polarity: %s\n",
- cntrl & CNTRL_CPL ? "space:burst mark:noburst"
- : "space:noburst mark:burst");
- if (cntrl & CNTRL_MOD) {
- v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
- clock_divider_to_carrier_freq(txclk));
- v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
- cduty + 1);
- }
- v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
- pulse_width_count_to_us(FIFO_RXTX, txclk),
- pulse_width_count_to_ns(FIFO_RXTX, txclk));
- v4l2_info(sd, "\tBusy: %s\n",
- stats & STATS_TBY ? "yes" : "no");
- v4l2_info(sd, "\tFIFO service requested: %s\n",
- stats & STATS_TSR ? "yes" : "no");
- v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
- irqen & IRQEN_TSE ? "enabled" : "disabled");
-
- return 0;
-}
-
-
-const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
- .rx_read = cx25840_ir_rx_read,
- .rx_g_parameters = cx25840_ir_rx_g_parameters,
- .rx_s_parameters = cx25840_ir_rx_s_parameters,
-
- .tx_write = cx25840_ir_tx_write,
- .tx_g_parameters = cx25840_ir_tx_g_parameters,
- .tx_s_parameters = cx25840_ir_tx_s_parameters,
-};
-
-
-static const struct v4l2_subdev_ir_parameters default_rx_params = {
- .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
- .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
-
- .enable = false,
- .interrupt_enable = false,
- .shutdown = true,
-
- .modulation = true,
- .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
-
- /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
- /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
- .noise_filter_min_width = 333333, /* ns */
- .carrier_range_lower = 35000,
- .carrier_range_upper = 37000,
- .invert_level = false,
-};
-
-static const struct v4l2_subdev_ir_parameters default_tx_params = {
- .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
- .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
-
- .enable = false,
- .interrupt_enable = false,
- .shutdown = true,
-
- .modulation = true,
- .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
- .duty_cycle = 25, /* 25 % - RC-5 carrier */
- .invert_level = false,
- .invert_carrier_sense = false,
-};
-
-int cx25840_ir_probe(struct v4l2_subdev *sd)
-{
- struct cx25840_state *state = to_state(sd);
- struct cx25840_ir_state *ir_state;
- struct v4l2_subdev_ir_parameters default_params;
-
- /* Only init the IR controller for the CX2388[57] AV Core for now */
- if (!(is_cx23885(state) || is_cx23887(state)))
- return 0;
-
- ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
- if (ir_state == NULL)
- return -ENOMEM;
-
- spin_lock_init(&ir_state->rx_kfifo_lock);
- if (kfifo_alloc(&ir_state->rx_kfifo,
- CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
- kfree(ir_state);
- return -ENOMEM;
- }
-
- ir_state->c = state->c;
- state->ir_state = ir_state;
-
- /* Ensure no interrupts arrive yet */
- if (is_cx23885(state) || is_cx23887(state))
- cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
- else
- cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
-
- mutex_init(&ir_state->rx_params_lock);
- memcpy(&default_params, &default_rx_params,
- sizeof(struct v4l2_subdev_ir_parameters));
- v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
-
- mutex_init(&ir_state->tx_params_lock);
- memcpy(&default_params, &default_tx_params,
- sizeof(struct v4l2_subdev_ir_parameters));
- v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
-
- return 0;
-}
-
-int cx25840_ir_remove(struct v4l2_subdev *sd)
-{
- struct cx25840_state *state = to_state(sd);
- struct cx25840_ir_state *ir_state = to_ir_state(sd);
-
- if (ir_state == NULL)
- return -ENODEV;
-
- cx25840_ir_rx_shutdown(sd);
- cx25840_ir_tx_shutdown(sd);
-
- kfifo_free(&ir_state->rx_kfifo);
- kfree(ir_state);
- state->ir_state = NULL;
- return 0;
-}