diff options
Diffstat (limited to 'drivers/infiniband/hw/ipath/ipath_eeprom.c')
-rw-r--r-- | drivers/infiniband/hw/ipath/ipath_eeprom.c | 1183 |
1 files changed, 0 insertions, 1183 deletions
diff --git a/drivers/infiniband/hw/ipath/ipath_eeprom.c b/drivers/infiniband/hw/ipath/ipath_eeprom.c deleted file mode 100644 index fc7181985e8e..000000000000 --- a/drivers/infiniband/hw/ipath/ipath_eeprom.c +++ /dev/null @@ -1,1183 +0,0 @@ -/* - * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved. - * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. - * - * This software is available to you under a choice of one of two - * licenses. You may choose to be licensed under the terms of the GNU - * General Public License (GPL) Version 2, available from the file - * COPYING in the main directory of this source tree, or the - * OpenIB.org BSD license below: - * - * Redistribution and use in source and binary forms, with or - * without modification, are permitted provided that the following - * conditions are met: - * - * - Redistributions of source code must retain the above - * copyright notice, this list of conditions and the following - * disclaimer. - * - * - Redistributions in binary form must reproduce the above - * copyright notice, this list of conditions and the following - * disclaimer in the documentation and/or other materials - * provided with the distribution. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, - * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS - * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN - * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE - * SOFTWARE. - */ - -#include <linux/delay.h> -#include <linux/pci.h> -#include <linux/vmalloc.h> - -#include "ipath_kernel.h" - -/* - * InfiniPath I2C driver for a serial eeprom. This is not a generic - * I2C interface. For a start, the device we're using (Atmel AT24C11) - * doesn't work like a regular I2C device. It looks like one - * electrically, but not logically. Normal I2C devices have a single - * 7-bit or 10-bit I2C address that they respond to. Valid 7-bit - * addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78 - * to 0x7F are special reserved addresses (e.g. 0x00 is the "general - * call" address.) The Atmel device, on the other hand, responds to ALL - * 7-bit addresses. It's designed to be the only device on a given I2C - * bus. A 7-bit address corresponds to the memory address within the - * Atmel device itself. - * - * Also, the timing requirements mean more than simple software - * bitbanging, with readbacks from chip to ensure timing (simple udelay - * is not enough). - * - * This all means that accessing the device is specialized enough - * that using the standard kernel I2C bitbanging interface would be - * impossible. For example, the core I2C eeprom driver expects to find - * a device at one or more of a limited set of addresses only. It doesn't - * allow writing to an eeprom. It also doesn't provide any means of - * accessing eeprom contents from within the kernel, only via sysfs. - */ - -/* Added functionality for IBA7220-based cards */ -#define IPATH_EEPROM_DEV_V1 0xA0 -#define IPATH_EEPROM_DEV_V2 0xA2 -#define IPATH_TEMP_DEV 0x98 -#define IPATH_BAD_DEV (IPATH_EEPROM_DEV_V2+2) -#define IPATH_NO_DEV (0xFF) - -/* - * The number of I2C chains is proliferating. Table below brings - * some order to the madness. The basic principle is that the - * table is scanned from the top, and a "probe" is made to the - * device probe_dev. If that succeeds, the chain is considered - * to be of that type, and dd->i2c_chain_type is set to the index+1 - * of the entry. - * The +1 is so static initialization can mean "unknown, do probe." - */ -static struct i2c_chain_desc { - u8 probe_dev; /* If seen at probe, chain is this type */ - u8 eeprom_dev; /* Dev addr (if any) for EEPROM */ - u8 temp_dev; /* Dev Addr (if any) for Temp-sense */ -} i2c_chains[] = { - { IPATH_BAD_DEV, IPATH_NO_DEV, IPATH_NO_DEV }, /* pre-iba7220 bds */ - { IPATH_EEPROM_DEV_V1, IPATH_EEPROM_DEV_V1, IPATH_TEMP_DEV}, /* V1 */ - { IPATH_EEPROM_DEV_V2, IPATH_EEPROM_DEV_V2, IPATH_TEMP_DEV}, /* V2 */ - { IPATH_NO_DEV } -}; - -enum i2c_type { - i2c_line_scl = 0, - i2c_line_sda -}; - -enum i2c_state { - i2c_line_low = 0, - i2c_line_high -}; - -#define READ_CMD 1 -#define WRITE_CMD 0 - -/** - * i2c_gpio_set - set a GPIO line - * @dd: the infinipath device - * @line: the line to set - * @new_line_state: the state to set - * - * Returns 0 if the line was set to the new state successfully, non-zero - * on error. - */ -static int i2c_gpio_set(struct ipath_devdata *dd, - enum i2c_type line, - enum i2c_state new_line_state) -{ - u64 out_mask, dir_mask, *gpioval; - unsigned long flags = 0; - - gpioval = &dd->ipath_gpio_out; - - if (line == i2c_line_scl) { - dir_mask = dd->ipath_gpio_scl; - out_mask = (1UL << dd->ipath_gpio_scl_num); - } else { - dir_mask = dd->ipath_gpio_sda; - out_mask = (1UL << dd->ipath_gpio_sda_num); - } - - spin_lock_irqsave(&dd->ipath_gpio_lock, flags); - if (new_line_state == i2c_line_high) { - /* tri-state the output rather than force high */ - dd->ipath_extctrl &= ~dir_mask; - } else { - /* config line to be an output */ - dd->ipath_extctrl |= dir_mask; - } - ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl); - - /* set output as well (no real verify) */ - if (new_line_state == i2c_line_high) - *gpioval |= out_mask; - else - *gpioval &= ~out_mask; - - ipath_write_kreg(dd, dd->ipath_kregs->kr_gpio_out, *gpioval); - spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags); - - return 0; -} - -/** - * i2c_gpio_get - get a GPIO line state - * @dd: the infinipath device - * @line: the line to get - * @curr_statep: where to put the line state - * - * Returns 0 if the line was set to the new state successfully, non-zero - * on error. curr_state is not set on error. - */ -static int i2c_gpio_get(struct ipath_devdata *dd, - enum i2c_type line, - enum i2c_state *curr_statep) -{ - u64 read_val, mask; - int ret; - unsigned long flags = 0; - - /* check args */ - if (curr_statep == NULL) { - ret = 1; - goto bail; - } - - /* config line to be an input */ - if (line == i2c_line_scl) - mask = dd->ipath_gpio_scl; - else - mask = dd->ipath_gpio_sda; - - spin_lock_irqsave(&dd->ipath_gpio_lock, flags); - dd->ipath_extctrl &= ~mask; - ipath_write_kreg(dd, dd->ipath_kregs->kr_extctrl, dd->ipath_extctrl); - /* - * Below is very unlikely to reflect true input state if Output - * Enable actually changed. - */ - read_val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extstatus); - spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags); - - if (read_val & mask) - *curr_statep = i2c_line_high; - else - *curr_statep = i2c_line_low; - - ret = 0; - -bail: - return ret; -} - -/** - * i2c_wait_for_writes - wait for a write - * @dd: the infinipath device - * - * We use this instead of udelay directly, so we can make sure - * that previous register writes have been flushed all the way - * to the chip. Since we are delaying anyway, the cost doesn't - * hurt, and makes the bit twiddling more regular - */ -static void i2c_wait_for_writes(struct ipath_devdata *dd) -{ - (void)ipath_read_kreg32(dd, dd->ipath_kregs->kr_scratch); - rmb(); -} - -static void scl_out(struct ipath_devdata *dd, u8 bit) -{ - udelay(1); - i2c_gpio_set(dd, i2c_line_scl, bit ? i2c_line_high : i2c_line_low); - - i2c_wait_for_writes(dd); -} - -static void sda_out(struct ipath_devdata *dd, u8 bit) -{ - i2c_gpio_set(dd, i2c_line_sda, bit ? i2c_line_high : i2c_line_low); - - i2c_wait_for_writes(dd); -} - -static u8 sda_in(struct ipath_devdata *dd, int wait) -{ - enum i2c_state bit; - - if (i2c_gpio_get(dd, i2c_line_sda, &bit)) - ipath_dbg("get bit failed!\n"); - - if (wait) - i2c_wait_for_writes(dd); - - return bit == i2c_line_high ? 1U : 0; -} - -/** - * i2c_ackrcv - see if ack following write is true - * @dd: the infinipath device - */ -static int i2c_ackrcv(struct ipath_devdata *dd) -{ - u8 ack_received; - - /* AT ENTRY SCL = LOW */ - /* change direction, ignore data */ - ack_received = sda_in(dd, 1); - scl_out(dd, i2c_line_high); - ack_received = sda_in(dd, 1) == 0; - scl_out(dd, i2c_line_low); - return ack_received; -} - -/** - * rd_byte - read a byte, leaving ACK, STOP, etc up to caller - * @dd: the infinipath device - * - * Returns byte shifted out of device - */ -static int rd_byte(struct ipath_devdata *dd) -{ - int bit_cntr, data; - - data = 0; - - for (bit_cntr = 7; bit_cntr >= 0; --bit_cntr) { - data <<= 1; - scl_out(dd, i2c_line_high); - data |= sda_in(dd, 0); - scl_out(dd, i2c_line_low); - } - return data; -} - -/** - * wr_byte - write a byte, one bit at a time - * @dd: the infinipath device - * @data: the byte to write - * - * Returns 0 if we got the following ack, otherwise 1 - */ -static int wr_byte(struct ipath_devdata *dd, u8 data) -{ - int bit_cntr; - u8 bit; - - for (bit_cntr = 7; bit_cntr >= 0; bit_cntr--) { - bit = (data >> bit_cntr) & 1; - sda_out(dd, bit); - scl_out(dd, i2c_line_high); - scl_out(dd, i2c_line_low); - } - return (!i2c_ackrcv(dd)) ? 1 : 0; -} - -static void send_ack(struct ipath_devdata *dd) -{ - sda_out(dd, i2c_line_low); - scl_out(dd, i2c_line_high); - scl_out(dd, i2c_line_low); - sda_out(dd, i2c_line_high); -} - -/** - * i2c_startcmd - transmit the start condition, followed by address/cmd - * @dd: the infinipath device - * @offset_dir: direction byte - * - * (both clock/data high, clock high, data low while clock is high) - */ -static int i2c_startcmd(struct ipath_devdata *dd, u8 offset_dir) -{ - int res; - - /* issue start sequence */ - sda_out(dd, i2c_line_high); - scl_out(dd, i2c_line_high); - sda_out(dd, i2c_line_low); - scl_out(dd, i2c_line_low); - - /* issue length and direction byte */ - res = wr_byte(dd, offset_dir); - - if (res) - ipath_cdbg(VERBOSE, "No ack to complete start\n"); - - return res; -} - -/** - * stop_cmd - transmit the stop condition - * @dd: the infinipath device - * - * (both clock/data low, clock high, data high while clock is high) - */ -static void stop_cmd(struct ipath_devdata *dd) -{ - scl_out(dd, i2c_line_low); - sda_out(dd, i2c_line_low); - scl_out(dd, i2c_line_high); - sda_out(dd, i2c_line_high); - udelay(2); -} - -/** - * eeprom_reset - reset I2C communication - * @dd: the infinipath device - */ - -static int eeprom_reset(struct ipath_devdata *dd) -{ - int clock_cycles_left = 9; - u64 *gpioval = &dd->ipath_gpio_out; - int ret; - unsigned long flags; - - spin_lock_irqsave(&dd->ipath_gpio_lock, flags); - /* Make sure shadows are consistent */ - dd->ipath_extctrl = ipath_read_kreg64(dd, dd->ipath_kregs->kr_extctrl); - *gpioval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_gpio_out); - spin_unlock_irqrestore(&dd->ipath_gpio_lock, flags); - - ipath_cdbg(VERBOSE, "Resetting i2c eeprom; initial gpioout reg " - "is %llx\n", (unsigned long long) *gpioval); - - /* - * This is to get the i2c into a known state, by first going low, - * then tristate sda (and then tristate scl as first thing - * in loop) - */ - scl_out(dd, i2c_line_low); - sda_out(dd, i2c_line_high); - - /* Clock up to 9 cycles looking for SDA hi, then issue START and STOP */ - while (clock_cycles_left--) { - scl_out(dd, i2c_line_high); - - /* SDA seen high, issue START by dropping it while SCL high */ - if (sda_in(dd, 0)) { - sda_out(dd, i2c_line_low); - scl_out(dd, i2c_line_low); - /* ATMEL spec says must be followed by STOP. */ - scl_out(dd, i2c_line_high); - sda_out(dd, i2c_line_high); - ret = 0; - goto bail; - } - - scl_out(dd, i2c_line_low); - } - - ret = 1; - -bail: - return ret; -} - -/* - * Probe for I2C device at specified address. Returns 0 for "success" - * to match rest of this file. - * Leave bus in "reasonable" state for further commands. - */ -static int i2c_probe(struct ipath_devdata *dd, int devaddr) -{ - int ret = 0; - - ret = eeprom_reset(dd); - if (ret) { - ipath_dev_err(dd, "Failed reset probing device 0x%02X\n", - devaddr); - return ret; - } - /* - * Reset no longer leaves bus in start condition, so normal - * i2c_startcmd() will do. - */ - ret = i2c_startcmd(dd, devaddr | READ_CMD); - if (ret) - ipath_cdbg(VERBOSE, "Failed startcmd for device 0x%02X\n", - devaddr); - else { - /* - * Device did respond. Complete a single-byte read, because some - * devices apparently cannot handle STOP immediately after they - * ACK the start-cmd. - */ - int data; - data = rd_byte(dd); - stop_cmd(dd); - ipath_cdbg(VERBOSE, "Response from device 0x%02X\n", devaddr); - } - return ret; -} - -/* - * Returns the "i2c type". This is a pointer to a struct that describes - * the I2C chain on this board. To minimize impact on struct ipath_devdata, - * the (small integer) index into the table is actually memoized, rather - * then the pointer. - * Memoization is because the type is determined on the first call per chip. - * An alternative would be to move type determination to early - * init code. - */ -static struct i2c_chain_desc *ipath_i2c_type(struct ipath_devdata *dd) -{ - int idx; - - /* Get memoized index, from previous successful probes */ - idx = dd->ipath_i2c_chain_type - 1; - if (idx >= 0 && idx < (ARRAY_SIZE(i2c_chains) - 1)) - goto done; - - idx = 0; - while (i2c_chains[idx].probe_dev != IPATH_NO_DEV) { - /* if probe succeeds, this is type */ - if (!i2c_probe(dd, i2c_chains[idx].probe_dev)) - break; - ++idx; - } - - /* - * Old EEPROM (first entry) may require a reset after probe, - * rather than being able to "start" after "stop" - */ - if (idx == 0) - eeprom_reset(dd); - - if (i2c_chains[idx].probe_dev == IPATH_NO_DEV) - idx = -1; - else - dd->ipath_i2c_chain_type = idx + 1; -done: - return (idx >= 0) ? i2c_chains + idx : NULL; -} - -static int ipath_eeprom_internal_read(struct ipath_devdata *dd, - u8 eeprom_offset, void *buffer, int len) -{ - int ret; - struct i2c_chain_desc *icd; - u8 *bp = buffer; - - ret = 1; - icd = ipath_i2c_type(dd); - if (!icd) - goto bail; - - if (icd->eeprom_dev == IPATH_NO_DEV) { - /* legacy not-really-I2C */ - ipath_cdbg(VERBOSE, "Start command only address\n"); - eeprom_offset = (eeprom_offset << 1) | READ_CMD; - ret = i2c_startcmd(dd, eeprom_offset); - } else { - /* Actual I2C */ - ipath_cdbg(VERBOSE, "Start command uses devaddr\n"); - if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) { - ipath_dbg("Failed EEPROM startcmd\n"); - stop_cmd(dd); - ret = 1; - goto bail; - } - ret = wr_byte(dd, eeprom_offset); - stop_cmd(dd); - if (ret) { - ipath_dev_err(dd, "Failed to write EEPROM address\n"); - ret = 1; - goto bail; - } - ret = i2c_startcmd(dd, icd->eeprom_dev | READ_CMD); - } - if (ret) { - ipath_dbg("Failed startcmd for dev %02X\n", icd->eeprom_dev); - stop_cmd(dd); - ret = 1; - goto bail; - } - - /* - * eeprom keeps clocking data out as long as we ack, automatically - * incrementing the address. - */ - while (len-- > 0) { - /* get and store data */ - *bp++ = rd_byte(dd); - /* send ack if not the last byte */ - if (len) - send_ack(dd); - } - - stop_cmd(dd); - - ret = 0; - -bail: - return ret; -} - -static int ipath_eeprom_internal_write(struct ipath_devdata *dd, u8 eeprom_offset, - const void *buffer, int len) -{ - int sub_len; - const u8 *bp = buffer; - int max_wait_time, i; - int ret; - struct i2c_chain_desc *icd; - - ret = 1; - icd = ipath_i2c_type(dd); - if (!icd) - goto bail; - - while (len > 0) { - if (icd->eeprom_dev == IPATH_NO_DEV) { - if (i2c_startcmd(dd, - (eeprom_offset << 1) | WRITE_CMD)) { - ipath_dbg("Failed to start cmd offset %u\n", - eeprom_offset); - goto failed_write; - } - } else { - /* Real I2C */ - if (i2c_startcmd(dd, icd->eeprom_dev | WRITE_CMD)) { - ipath_dbg("Failed EEPROM startcmd\n"); - goto failed_write; - } - ret = wr_byte(dd, eeprom_offset); - if (ret) { - ipath_dev_err(dd, "Failed to write EEPROM " - "address\n"); - goto failed_write; - } - } - - sub_len = min(len, 4); - eeprom_offset += sub_len; - len -= sub_len; - - for (i = 0; i < sub_len; i++) { - if (wr_byte(dd, *bp++)) { - ipath_dbg("no ack after byte %u/%u (%u " - "total remain)\n", i, sub_len, - len + sub_len - i); - goto failed_write; - } - } - - stop_cmd(dd); - - /* - * wait for write complete by waiting for a successful - * read (the chip replies with a zero after the write - * cmd completes, and before it writes to the eeprom. - * The startcmd for the read will fail the ack until - * the writes have completed. We do this inline to avoid - * the debug prints that are in the real read routine - * if the startcmd fails. - * We also use the proper device address, so it doesn't matter - * whether we have real eeprom_dev. legacy likes any address. - */ - max_wait_time = 100; - while (i2c_startcmd(dd, icd->eeprom_dev | READ_CMD)) { - stop_cmd(dd); - if (!--max_wait_time) { - ipath_dbg("Did not get successful read to " - "complete write\n"); - goto failed_write; - } - } - /* now read (and ignore) the resulting byte */ - rd_byte(dd); - stop_cmd(dd); - } - - ret = 0; - goto bail; - -failed_write: - stop_cmd(dd); - ret = 1; - -bail: - return ret; -} - -/** - * ipath_eeprom_read - receives bytes from the eeprom via I2C - * @dd: the infinipath device - * @eeprom_offset: address to read from - * @buffer: where to store result - * @len: number of bytes to receive - */ -int ipath_eeprom_read(struct ipath_devdata *dd, u8 eeprom_offset, - void *buff, int len) -{ - int ret; - - ret = mutex_lock_interruptible(&dd->ipath_eep_lock); - if (!ret) { - ret = ipath_eeprom_internal_read(dd, eeprom_offset, buff, len); - mutex_unlock(&dd->ipath_eep_lock); - } - - return ret; -} - -/** - * ipath_eeprom_write - writes data to the eeprom via I2C - * @dd: the infinipath device - * @eeprom_offset: where to place data - * @buffer: data to write - * @len: number of bytes to write - */ -int ipath_eeprom_write(struct ipath_devdata *dd, u8 eeprom_offset, - const void *buff, int len) -{ - int ret; - - ret = mutex_lock_interruptible(&dd->ipath_eep_lock); - if (!ret) { - ret = ipath_eeprom_internal_write(dd, eeprom_offset, buff, len); - mutex_unlock(&dd->ipath_eep_lock); - } - - return ret; -} - -static u8 flash_csum(struct ipath_flash *ifp, int adjust) -{ - u8 *ip = (u8 *) ifp; - u8 csum = 0, len; - - /* - * Limit length checksummed to max length of actual data. - * Checksum of erased eeprom will still be bad, but we avoid - * reading past the end of the buffer we were passed. - */ - len = ifp->if_length; - if (len > sizeof(struct ipath_flash)) - len = sizeof(struct ipath_flash); - while (len--) - csum += *ip++; - csum -= ifp->if_csum; - csum = ~csum; - if (adjust) - ifp->if_csum = csum; - - return csum; -} - -/** - * ipath_get_guid - get the GUID from the i2c device - * @dd: the infinipath device - * - * We have the capability to use the ipath_nguid field, and get - * the guid from the first chip's flash, to use for all of them. - */ -void ipath_get_eeprom_info(struct ipath_devdata *dd) -{ - void *buf; - struct ipath_flash *ifp; - __be64 guid; - int len, eep_stat; - u8 csum, *bguid; - int t = dd->ipath_unit; - struct ipath_devdata *dd0 = ipath_lookup(0); - - if (t && dd0->ipath_nguid > 1 && t <= dd0->ipath_nguid) { - u8 oguid; - dd->ipath_guid = dd0->ipath_guid; - bguid = (u8 *) & dd->ipath_guid; - - oguid = bguid[7]; - bguid[7] += t; - if (oguid > bguid[7]) { - if (bguid[6] == 0xff) { - if (bguid[5] == 0xff) { - ipath_dev_err( - dd, - "Can't set %s GUID from " - "base, wraps to OUI!\n", - ipath_get_unit_name(t)); - dd->ipath_guid = 0; - goto bail; - } - bguid[5]++; - } - bguid[6]++; - } - dd->ipath_nguid = 1; - - ipath_dbg("nguid %u, so adding %u to device 0 guid, " - "for %llx\n", - dd0->ipath_nguid, t, - (unsigned long long) be64_to_cpu(dd->ipath_guid)); - goto bail; - } - - /* - * read full flash, not just currently used part, since it may have - * been written with a newer definition - * */ - len = sizeof(struct ipath_flash); - buf = vmalloc(len); - if (!buf) { - ipath_dev_err(dd, "Couldn't allocate memory to read %u " - "bytes from eeprom for GUID\n", len); - goto bail; - } - - mutex_lock(&dd->ipath_eep_lock); - eep_stat = ipath_eeprom_internal_read(dd, 0, buf, len); - mutex_unlock(&dd->ipath_eep_lock); - - if (eep_stat) { - ipath_dev_err(dd, "Failed reading GUID from eeprom\n"); - goto done; - } - ifp = (struct ipath_flash *)buf; - - csum = flash_csum(ifp, 0); - if (csum != ifp->if_csum) { - dev_info(&dd->pcidev->dev, "Bad I2C flash checksum: " - "0x%x, not 0x%x\n", csum, ifp->if_csum); - goto done; - } - if (*(__be64 *) ifp->if_guid == cpu_to_be64(0) || - *(__be64 *) ifp->if_guid == ~cpu_to_be64(0)) { - ipath_dev_err(dd, "Invalid GUID %llx from flash; " - "ignoring\n", - *(unsigned long long *) ifp->if_guid); - /* don't allow GUID if all 0 or all 1's */ - goto done; - } - - /* complain, but allow it */ - if (*(u64 *) ifp->if_guid == 0x100007511000000ULL) - dev_info(&dd->pcidev->dev, "Warning, GUID %llx is " - "default, probably not correct!\n", - *(unsigned long long *) ifp->if_guid); - - bguid = ifp->if_guid; - if (!bguid[0] && !bguid[1] && !bguid[2]) { - /* original incorrect GUID format in flash; fix in - * core copy, by shifting up 2 octets; don't need to - * change top octet, since both it and shifted are - * 0.. */ - bguid[1] = bguid[3]; - bguid[2] = bguid[4]; - bguid[3] = bguid[4] = 0; - guid = *(__be64 *) ifp->if_guid; - ipath_cdbg(VERBOSE, "Old GUID format in flash, top 3 zero, " - "shifting 2 octets\n"); - } else - guid = *(__be64 *) ifp->if_guid; - dd->ipath_guid = guid; - dd->ipath_nguid = ifp->if_numguid; - /* - * Things are slightly complicated by the desire to transparently - * support both the Pathscale 10-digit serial number and the QLogic - * 13-character version. - */ - if ((ifp->if_fversion > 1) && ifp->if_sprefix[0] - && ((u8 *)ifp->if_sprefix)[0] != 0xFF) { - /* This board has a Serial-prefix, which is stored - * elsewhere for backward-compatibility. - */ - char *snp = dd->ipath_serial; - memcpy(snp, ifp->if_sprefix, sizeof ifp->if_sprefix); - snp[sizeof ifp->if_sprefix] = '\0'; - len = strlen(snp); - snp += len; - len = (sizeof dd->ipath_serial) - len; - if (len > sizeof ifp->if_serial) { - len = sizeof ifp->if_serial; - } - memcpy(snp, ifp->if_serial, len); - } else - memcpy(dd->ipath_serial, ifp->if_serial, - sizeof ifp->if_serial); - if (!strstr(ifp->if_comment, "Tested successfully")) - ipath_dev_err(dd, "Board SN %s did not pass functional " - "test: %s\n", dd->ipath_serial, - ifp->if_comment); - - ipath_cdbg(VERBOSE, "Initted GUID to %llx from eeprom\n", - (unsigned long long) be64_to_cpu(dd->ipath_guid)); - - memcpy(&dd->ipath_eep_st_errs, &ifp->if_errcntp, IPATH_EEP_LOG_CNT); - /* - * Power-on (actually "active") hours are kept as little-endian value - * in EEPROM, but as seconds in a (possibly as small as 24-bit) - * atomic_t while running. - */ - atomic_set(&dd->ipath_active_time, 0); - dd->ipath_eep_hrs = ifp->if_powerhour[0] | (ifp->if_powerhour[1] << 8); - -done: - vfree(buf); - -bail:; -} - -/** - * ipath_update_eeprom_log - copy active-time and error counters to eeprom - * @dd: the infinipath device - * - * Although the time is kept as seconds in the ipath_devdata struct, it is - * rounded to hours for re-write, as we have only 16 bits in EEPROM. - * First-cut code reads whole (expected) struct ipath_flash, modifies, - * re-writes. Future direction: read/write only what we need, assuming - * that the EEPROM had to have been "good enough" for driver init, and - * if not, we aren't making it worse. - * - */ - -int ipath_update_eeprom_log(struct ipath_devdata *dd) -{ - void *buf; - struct ipath_flash *ifp; - int len, hi_water; - uint32_t new_time, new_hrs; - u8 csum; - int ret, idx; - unsigned long flags; - - /* first, check if we actually need to do anything. */ - ret = 0; - for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) { - if (dd->ipath_eep_st_new_errs[idx]) { - ret = 1; - break; - } - } - new_time = atomic_read(&dd->ipath_active_time); - - if (ret == 0 && new_time < 3600) - return 0; - - /* - * The quick-check above determined that there is something worthy - * of logging, so get current contents and do a more detailed idea. - * read full flash, not just currently used part, since it may have - * been written with a newer definition - */ - len = sizeof(struct ipath_flash); - buf = vmalloc(len); - ret = 1; - if (!buf) { - ipath_dev_err(dd, "Couldn't allocate memory to read %u " - "bytes from eeprom for logging\n", len); - goto bail; - } - - /* Grab semaphore and read current EEPROM. If we get an - * error, let go, but if not, keep it until we finish write. - */ - ret = mutex_lock_interruptible(&dd->ipath_eep_lock); - if (ret) { - ipath_dev_err(dd, "Unable to acquire EEPROM for logging\n"); - goto free_bail; - } - ret = ipath_eeprom_internal_read(dd, 0, buf, len); - if (ret) { - mutex_unlock(&dd->ipath_eep_lock); - ipath_dev_err(dd, "Unable read EEPROM for logging\n"); - goto free_bail; - } - ifp = (struct ipath_flash *)buf; - - csum = flash_csum(ifp, 0); - if (csum != ifp->if_csum) { - mutex_unlock(&dd->ipath_eep_lock); - ipath_dev_err(dd, "EEPROM cks err (0x%02X, S/B 0x%02X)\n", - csum, ifp->if_csum); - ret = 1; - goto free_bail; - } - hi_water = 0; - spin_lock_irqsave(&dd->ipath_eep_st_lock, flags); - for (idx = 0; idx < IPATH_EEP_LOG_CNT; ++idx) { - int new_val = dd->ipath_eep_st_new_errs[idx]; - if (new_val) { - /* - * If we have seen any errors, add to EEPROM values - * We need to saturate at 0xFF (255) and we also - * would need to adjust the checksum if we were - * trying to minimize EEPROM traffic - * Note that we add to actual current count in EEPROM, - * in case it was altered while we were running. - */ - new_val += ifp->if_errcntp[idx]; - if (new_val > 0xFF) - new_val = 0xFF; - if (ifp->if_errcntp[idx] != new_val) { - ifp->if_errcntp[idx] = new_val; - hi_water = offsetof(struct ipath_flash, - if_errcntp) + idx; - } - /* - * update our shadow (used to minimize EEPROM - * traffic), to match what we are about to write. - */ - dd->ipath_eep_st_errs[idx] = new_val; - dd->ipath_eep_st_new_errs[idx] = 0; - } - } - /* - * now update active-time. We would like to round to the nearest hour - * but unless atomic_t are sure to be proper signed ints we cannot, - * because we need to account for what we "transfer" to EEPROM and - * if we log an hour at 31 minutes, then we would need to set - * active_time to -29 to accurately count the _next_ hour. - */ - if (new_time >= 3600) { - new_hrs = new_time / 3600; - atomic_sub((new_hrs * 3600), &dd->ipath_active_time); - new_hrs += dd->ipath_eep_hrs; - if (new_hrs > 0xFFFF) - new_hrs = 0xFFFF; - dd->ipath_eep_hrs = new_hrs; - if ((new_hrs & 0xFF) != ifp->if_powerhour[0]) { - ifp->if_powerhour[0] = new_hrs & 0xFF; - hi_water = offsetof(struct ipath_flash, if_powerhour); - } - if ((new_hrs >> 8) != ifp->if_powerhour[1]) { - ifp->if_powerhour[1] = new_hrs >> 8; - hi_water = offsetof(struct ipath_flash, if_powerhour) - + 1; - } - } - /* - * There is a tiny possibility that we could somehow fail to write - * the EEPROM after updating our shadows, but problems from holding - * the spinlock too long are a much bigger issue. - */ - spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags); - if (hi_water) { - /* we made some change to the data, uopdate cksum and write */ - csum = flash_csum(ifp, 1); - ret = ipath_eeprom_internal_write(dd, 0, buf, hi_water + 1); - } - mutex_unlock(&dd->ipath_eep_lock); - if (ret) - ipath_dev_err(dd, "Failed updating EEPROM\n"); - -free_bail: - vfree(buf); -bail: - return ret; - -} - -/** - * ipath_inc_eeprom_err - increment one of the four error counters - * that are logged to EEPROM. - * @dd: the infinipath device - * @eidx: 0..3, the counter to increment - * @incr: how much to add - * - * Each counter is 8-bits, and saturates at 255 (0xFF). They - * are copied to the EEPROM (aka flash) whenever ipath_update_eeprom_log() - * is called, but it can only be called in a context that allows sleep. - * This function can be called even at interrupt level. - */ - -void ipath_inc_eeprom_err(struct ipath_devdata *dd, u32 eidx, u32 incr) -{ - uint new_val; - unsigned long flags; - - spin_lock_irqsave(&dd->ipath_eep_st_lock, flags); - new_val = dd->ipath_eep_st_new_errs[eidx] + incr; - if (new_val > 255) - new_val = 255; - dd->ipath_eep_st_new_errs[eidx] = new_val; - spin_unlock_irqrestore(&dd->ipath_eep_st_lock, flags); - return; -} - -static int ipath_tempsense_internal_read(struct ipath_devdata *dd, u8 regnum) -{ - int ret; - struct i2c_chain_desc *icd; - - ret = -ENOENT; - - icd = ipath_i2c_type(dd); - if (!icd) - goto bail; - - if (icd->temp_dev == IPATH_NO_DEV) { - /* tempsense only exists on new, real-I2C boards */ - ret = -ENXIO; - goto bail; - } - - if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) { - ipath_dbg("Failed tempsense startcmd\n"); - stop_cmd(dd); - ret = -ENXIO; - goto bail; - } - ret = wr_byte(dd, regnum); - stop_cmd(dd); - if (ret) { - ipath_dev_err(dd, "Failed tempsense WR command %02X\n", - regnum); - ret = -ENXIO; - goto bail; - } - if (i2c_startcmd(dd, icd->temp_dev | READ_CMD)) { - ipath_dbg("Failed tempsense RD startcmd\n"); - stop_cmd(dd); - ret = -ENXIO; - goto bail; - } - /* - * We can only clock out one byte per command, sensibly - */ - ret = rd_byte(dd); - stop_cmd(dd); - -bail: - return ret; -} - -#define VALID_TS_RD_REG_MASK 0xBF - -/** - * ipath_tempsense_read - read register of temp sensor via I2C - * @dd: the infinipath device - * @regnum: register to read from - * - * returns reg contents (0..255) or < 0 for error - */ -int ipath_tempsense_read(struct ipath_devdata *dd, u8 regnum) -{ - int ret; - - if (regnum > 7) - return -EINVAL; - - /* return a bogus value for (the one) register we do not have */ - if (!((1 << regnum) & VALID_TS_RD_REG_MASK)) - return 0; - - ret = mutex_lock_interruptible(&dd->ipath_eep_lock); - if (!ret) { - ret = ipath_tempsense_internal_read(dd, regnum); - mutex_unlock(&dd->ipath_eep_lock); - } - - /* - * There are three possibilities here: - * ret is actual value (0..255) - * ret is -ENXIO or -EINVAL from code in this file - * ret is -EINTR from mutex_lock_interruptible. - */ - return ret; -} - -static int ipath_tempsense_internal_write(struct ipath_devdata *dd, - u8 regnum, u8 data) -{ - int ret = -ENOENT; - struct i2c_chain_desc *icd; - - icd = ipath_i2c_type(dd); - if (!icd) - goto bail; - - if (icd->temp_dev == IPATH_NO_DEV) { - /* tempsense only exists on new, real-I2C boards */ - ret = -ENXIO; - goto bail; - } - if (i2c_startcmd(dd, icd->temp_dev | WRITE_CMD)) { - ipath_dbg("Failed tempsense startcmd\n"); - stop_cmd(dd); - ret = -ENXIO; - goto bail; - } - ret = wr_byte(dd, regnum); - if (ret) { - stop_cmd(dd); - ipath_dev_err(dd, "Failed to write tempsense command %02X\n", - regnum); - ret = -ENXIO; - goto bail; - } - ret = wr_byte(dd, data); - stop_cmd(dd); - ret = i2c_startcmd(dd, icd->temp_dev | READ_CMD); - if (ret) { - ipath_dev_err(dd, "Failed tempsense data wrt to %02X\n", - regnum); - ret = -ENXIO; - } - -bail: - return ret; -} - -#define VALID_TS_WR_REG_MASK ((1 << 9) | (1 << 0xB) | (1 << 0xD)) - -/** - * ipath_tempsense_write - write register of temp sensor via I2C - * @dd: the infinipath device - * @regnum: register to write - * @data: data to write - * - * returns 0 for success or < 0 for error - */ -int ipath_tempsense_write(struct ipath_devdata *dd, u8 regnum, u8 data) -{ - int ret; - - if (regnum > 15 || !((1 << regnum) & VALID_TS_WR_REG_MASK)) - return -EINVAL; - - ret = mutex_lock_interruptible(&dd->ipath_eep_lock); - if (!ret) { - ret = ipath_tempsense_internal_write(dd, regnum, data); - mutex_unlock(&dd->ipath_eep_lock); - } - - /* - * There are three possibilities here: - * ret is 0 for success - * ret is -ENXIO or -EINVAL from code in this file - * ret is -EINTR from mutex_lock_interruptible. - */ - return ret; -} |