diff options
Diffstat (limited to 'drivers/gpu/drm/vc4/vc4_crtc.c')
-rw-r--r-- | drivers/gpu/drm/vc4/vc4_crtc.c | 673 |
1 files changed, 673 insertions, 0 deletions
diff --git a/drivers/gpu/drm/vc4/vc4_crtc.c b/drivers/gpu/drm/vc4/vc4_crtc.c new file mode 100644 index 000000000000..265064c62d49 --- /dev/null +++ b/drivers/gpu/drm/vc4/vc4_crtc.c @@ -0,0 +1,673 @@ +/* + * Copyright (C) 2015 Broadcom + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +/** + * DOC: VC4 CRTC module + * + * In VC4, the Pixel Valve is what most closely corresponds to the + * DRM's concept of a CRTC. The PV generates video timings from the + * output's clock plus its configuration. It pulls scaled pixels from + * the HVS at that timing, and feeds it to the encoder. + * + * However, the DRM CRTC also collects the configuration of all the + * DRM planes attached to it. As a result, this file also manages + * setup of the VC4 HVS's display elements on the CRTC. + * + * The 2835 has 3 different pixel valves. pv0 in the audio power + * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the + * image domain can feed either HDMI or the SDTV controller. The + * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for + * SDTV, etc.) according to which output type is chosen in the mux. + * + * For power management, the pixel valve's registers are all clocked + * by the AXI clock, while the timings and FIFOs make use of the + * output-specific clock. Since the encoders also directly consume + * the CPRMAN clocks, and know what timings they need, they are the + * ones that set the clock. + */ + +#include "drm_atomic.h" +#include "drm_atomic_helper.h" +#include "drm_crtc_helper.h" +#include "linux/clk.h" +#include "linux/component.h" +#include "linux/of_device.h" +#include "vc4_drv.h" +#include "vc4_regs.h" + +struct vc4_crtc { + struct drm_crtc base; + const struct vc4_crtc_data *data; + void __iomem *regs; + + /* Which HVS channel we're using for our CRTC. */ + int channel; + + /* Pointer to the actual hardware display list memory for the + * crtc. + */ + u32 __iomem *dlist; + + u32 dlist_size; /* in dwords */ + + struct drm_pending_vblank_event *event; +}; + +static inline struct vc4_crtc * +to_vc4_crtc(struct drm_crtc *crtc) +{ + return (struct vc4_crtc *)crtc; +} + +struct vc4_crtc_data { + /* Which channel of the HVS this pixelvalve sources from. */ + int hvs_channel; + + enum vc4_encoder_type encoder0_type; + enum vc4_encoder_type encoder1_type; +}; + +#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) +#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) + +#define CRTC_REG(reg) { reg, #reg } +static const struct { + u32 reg; + const char *name; +} crtc_regs[] = { + CRTC_REG(PV_CONTROL), + CRTC_REG(PV_V_CONTROL), + CRTC_REG(PV_VSYNCD), + CRTC_REG(PV_HORZA), + CRTC_REG(PV_HORZB), + CRTC_REG(PV_VERTA), + CRTC_REG(PV_VERTB), + CRTC_REG(PV_VERTA_EVEN), + CRTC_REG(PV_VERTB_EVEN), + CRTC_REG(PV_INTEN), + CRTC_REG(PV_INTSTAT), + CRTC_REG(PV_STAT), + CRTC_REG(PV_HACT_ACT), +}; + +static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { + DRM_INFO("0x%04x (%s): 0x%08x\n", + crtc_regs[i].reg, crtc_regs[i].name, + CRTC_READ(crtc_regs[i].reg)); + } +} + +#ifdef CONFIG_DEBUG_FS +int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) +{ + struct drm_info_node *node = (struct drm_info_node *)m->private; + struct drm_device *dev = node->minor->dev; + int crtc_index = (uintptr_t)node->info_ent->data; + struct drm_crtc *crtc; + struct vc4_crtc *vc4_crtc; + int i; + + i = 0; + list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { + if (i == crtc_index) + break; + i++; + } + if (!crtc) + return 0; + vc4_crtc = to_vc4_crtc(crtc); + + for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { + seq_printf(m, "%s (0x%04x): 0x%08x\n", + crtc_regs[i].name, crtc_regs[i].reg, + CRTC_READ(crtc_regs[i].reg)); + } + + return 0; +} +#endif + +static void vc4_crtc_destroy(struct drm_crtc *crtc) +{ + drm_crtc_cleanup(crtc); +} + +static u32 vc4_get_fifo_full_level(u32 format) +{ + static const u32 fifo_len_bytes = 64; + static const u32 hvs_latency_pix = 6; + + switch (format) { + case PV_CONTROL_FORMAT_DSIV_16: + case PV_CONTROL_FORMAT_DSIC_16: + return fifo_len_bytes - 2 * hvs_latency_pix; + case PV_CONTROL_FORMAT_DSIV_18: + return fifo_len_bytes - 14; + case PV_CONTROL_FORMAT_24: + case PV_CONTROL_FORMAT_DSIV_24: + default: + return fifo_len_bytes - 3 * hvs_latency_pix; + } +} + +/* + * Returns the clock select bit for the connector attached to the + * CRTC. + */ +static int vc4_get_clock_select(struct drm_crtc *crtc) +{ + struct drm_connector *connector; + + drm_for_each_connector(connector, crtc->dev) { + if (connector->state->crtc == crtc) { + struct drm_encoder *encoder = connector->encoder; + struct vc4_encoder *vc4_encoder = + to_vc4_encoder(encoder); + + return vc4_encoder->clock_select; + } + } + + return -1; +} + +static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) +{ + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct drm_crtc_state *state = crtc->state; + struct drm_display_mode *mode = &state->adjusted_mode; + bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; + u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0)); + u32 format = PV_CONTROL_FORMAT_24; + bool debug_dump_regs = false; + int clock_select = vc4_get_clock_select(crtc); + + if (debug_dump_regs) { + DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); + vc4_crtc_dump_regs(vc4_crtc); + } + + /* Reset the PV fifo. */ + CRTC_WRITE(PV_CONTROL, 0); + CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); + CRTC_WRITE(PV_CONTROL, 0); + + CRTC_WRITE(PV_HORZA, + VC4_SET_FIELD(mode->htotal - mode->hsync_end, + PV_HORZA_HBP) | + VC4_SET_FIELD(mode->hsync_end - mode->hsync_start, + PV_HORZA_HSYNC)); + CRTC_WRITE(PV_HORZB, + VC4_SET_FIELD(mode->hsync_start - mode->hdisplay, + PV_HORZB_HFP) | + VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE)); + + if (interlace) { + CRTC_WRITE(PV_VERTA_EVEN, + VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1, + PV_VERTA_VBP) | + VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, + PV_VERTA_VSYNC)); + CRTC_WRITE(PV_VERTB_EVEN, + VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, + PV_VERTB_VFP) | + VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); + } + + CRTC_WRITE(PV_HACT_ACT, mode->hdisplay); + + CRTC_WRITE(PV_V_CONTROL, + PV_VCONTROL_CONTINUOUS | + (interlace ? PV_VCONTROL_INTERLACE : 0)); + + CRTC_WRITE(PV_CONTROL, + VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | + VC4_SET_FIELD(vc4_get_fifo_full_level(format), + PV_CONTROL_FIFO_LEVEL) | + PV_CONTROL_CLR_AT_START | + PV_CONTROL_TRIGGER_UNDERFLOW | + PV_CONTROL_WAIT_HSTART | + VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | + PV_CONTROL_FIFO_CLR | + PV_CONTROL_EN); + + if (debug_dump_regs) { + DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); + vc4_crtc_dump_regs(vc4_crtc); + } +} + +static void require_hvs_enabled(struct drm_device *dev) +{ + struct vc4_dev *vc4 = to_vc4_dev(dev); + + WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != + SCALER_DISPCTRL_ENABLE); +} + +static void vc4_crtc_disable(struct drm_crtc *crtc) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + u32 chan = vc4_crtc->channel; + int ret; + require_hvs_enabled(dev); + + CRTC_WRITE(PV_V_CONTROL, + CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); + ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); + WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); + + if (HVS_READ(SCALER_DISPCTRLX(chan)) & + SCALER_DISPCTRLX_ENABLE) { + HVS_WRITE(SCALER_DISPCTRLX(chan), + SCALER_DISPCTRLX_RESET); + + /* While the docs say that reset is self-clearing, it + * seems it doesn't actually. + */ + HVS_WRITE(SCALER_DISPCTRLX(chan), 0); + } + + /* Once we leave, the scaler should be disabled and its fifo empty. */ + + WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); + + WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), + SCALER_DISPSTATX_MODE) != + SCALER_DISPSTATX_MODE_DISABLED); + + WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & + (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != + SCALER_DISPSTATX_EMPTY); +} + +static void vc4_crtc_enable(struct drm_crtc *crtc) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct drm_crtc_state *state = crtc->state; + struct drm_display_mode *mode = &state->adjusted_mode; + + require_hvs_enabled(dev); + + /* Turn on the scaler, which will wait for vstart to start + * compositing. + */ + HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), + VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | + VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | + SCALER_DISPCTRLX_ENABLE); + + /* Turn on the pixel valve, which will emit the vstart signal. */ + CRTC_WRITE(PV_V_CONTROL, + CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); +} + +static int vc4_crtc_atomic_check(struct drm_crtc *crtc, + struct drm_crtc_state *state) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct drm_plane *plane; + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + u32 dlist_count = 0; + + /* The pixelvalve can only feed one encoder (and encoders are + * 1:1 with connectors.) + */ + if (drm_atomic_connectors_for_crtc(state->state, crtc) > 1) + return -EINVAL; + + drm_atomic_crtc_state_for_each_plane(plane, state) { + struct drm_plane_state *plane_state = + state->state->plane_states[drm_plane_index(plane)]; + + /* plane might not have changed, in which case take + * current state: + */ + if (!plane_state) + plane_state = plane->state; + + dlist_count += vc4_plane_dlist_size(plane_state); + } + + dlist_count++; /* Account for SCALER_CTL0_END. */ + + if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) { + vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist + + HVS_BOOTLOADER_DLIST_END); + vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) - + HVS_BOOTLOADER_DLIST_END); + + if (dlist_count > vc4_crtc->dlist_size) { + DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n", + dlist_count, vc4_crtc->dlist_size); + return -EINVAL; + } + } + + return 0; +} + +static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, + struct drm_crtc_state *old_state) +{ + struct drm_device *dev = crtc->dev; + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct drm_plane *plane; + bool debug_dump_regs = false; + u32 __iomem *dlist_next = vc4_crtc->dlist; + + if (debug_dump_regs) { + DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); + vc4_hvs_dump_state(dev); + } + + /* Copy all the active planes' dlist contents to the hardware dlist. + * + * XXX: If the new display list was large enough that it + * overlapped a currently-read display list, we need to do + * something like disable scanout before putting in the new + * list. For now, we're safe because we only have the two + * planes. + */ + drm_atomic_crtc_for_each_plane(plane, crtc) { + dlist_next += vc4_plane_write_dlist(plane, dlist_next); + } + + if (dlist_next == vc4_crtc->dlist) { + /* If no planes were enabled, use the SCALER_CTL0_END + * at the start of the display list memory (in the + * bootloader section). We'll rewrite that + * SCALER_CTL0_END, just in case, though. + */ + writel(SCALER_CTL0_END, vc4->hvs->dlist); + HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0); + } else { + writel(SCALER_CTL0_END, dlist_next); + dlist_next++; + + HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), + (u32 __iomem *)vc4_crtc->dlist - + (u32 __iomem *)vc4->hvs->dlist); + + /* Make the next display list start after ours. */ + vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist); + vc4_crtc->dlist = dlist_next; + } + + if (debug_dump_regs) { + DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); + vc4_hvs_dump_state(dev); + } + + if (crtc->state->event) { + unsigned long flags; + + crtc->state->event->pipe = drm_crtc_index(crtc); + + WARN_ON(drm_crtc_vblank_get(crtc) != 0); + + spin_lock_irqsave(&dev->event_lock, flags); + vc4_crtc->event = crtc->state->event; + spin_unlock_irqrestore(&dev->event_lock, flags); + crtc->state->event = NULL; + } +} + +int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) +{ + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; + + CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); + + return 0; +} + +void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) +{ + struct vc4_dev *vc4 = to_vc4_dev(dev); + struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; + + CRTC_WRITE(PV_INTEN, 0); +} + +static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) +{ + struct drm_crtc *crtc = &vc4_crtc->base; + struct drm_device *dev = crtc->dev; + unsigned long flags; + + spin_lock_irqsave(&dev->event_lock, flags); + if (vc4_crtc->event) { + drm_crtc_send_vblank_event(crtc, vc4_crtc->event); + vc4_crtc->event = NULL; + } + spin_unlock_irqrestore(&dev->event_lock, flags); +} + +static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) +{ + struct vc4_crtc *vc4_crtc = data; + u32 stat = CRTC_READ(PV_INTSTAT); + irqreturn_t ret = IRQ_NONE; + + if (stat & PV_INT_VFP_START) { + CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); + drm_crtc_handle_vblank(&vc4_crtc->base); + vc4_crtc_handle_page_flip(vc4_crtc); + ret = IRQ_HANDLED; + } + + return ret; +} + +static const struct drm_crtc_funcs vc4_crtc_funcs = { + .set_config = drm_atomic_helper_set_config, + .destroy = vc4_crtc_destroy, + .page_flip = drm_atomic_helper_page_flip, + .set_property = NULL, + .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ + .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ + .reset = drm_atomic_helper_crtc_reset, + .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, + .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, +}; + +static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { + .mode_set_nofb = vc4_crtc_mode_set_nofb, + .disable = vc4_crtc_disable, + .enable = vc4_crtc_enable, + .atomic_check = vc4_crtc_atomic_check, + .atomic_flush = vc4_crtc_atomic_flush, +}; + +/* Frees the page flip event when the DRM device is closed with the + * event still outstanding. + */ +void vc4_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file) +{ + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct drm_device *dev = crtc->dev; + unsigned long flags; + + spin_lock_irqsave(&dev->event_lock, flags); + + if (vc4_crtc->event && vc4_crtc->event->base.file_priv == file) { + vc4_crtc->event->base.destroy(&vc4_crtc->event->base); + drm_crtc_vblank_put(crtc); + vc4_crtc->event = NULL; + } + + spin_unlock_irqrestore(&dev->event_lock, flags); +} + +static const struct vc4_crtc_data pv0_data = { + .hvs_channel = 0, + .encoder0_type = VC4_ENCODER_TYPE_DSI0, + .encoder1_type = VC4_ENCODER_TYPE_DPI, +}; + +static const struct vc4_crtc_data pv1_data = { + .hvs_channel = 2, + .encoder0_type = VC4_ENCODER_TYPE_DSI1, + .encoder1_type = VC4_ENCODER_TYPE_SMI, +}; + +static const struct vc4_crtc_data pv2_data = { + .hvs_channel = 1, + .encoder0_type = VC4_ENCODER_TYPE_VEC, + .encoder1_type = VC4_ENCODER_TYPE_HDMI, +}; + +static const struct of_device_id vc4_crtc_dt_match[] = { + { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, + { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, + { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, + {} +}; + +static void vc4_set_crtc_possible_masks(struct drm_device *drm, + struct drm_crtc *crtc) +{ + struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); + struct drm_encoder *encoder; + + drm_for_each_encoder(encoder, drm) { + struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); + + if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { + vc4_encoder->clock_select = 0; + encoder->possible_crtcs |= drm_crtc_mask(crtc); + } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { + vc4_encoder->clock_select = 1; + encoder->possible_crtcs |= drm_crtc_mask(crtc); + } + } +} + +static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) +{ + struct platform_device *pdev = to_platform_device(dev); + struct drm_device *drm = dev_get_drvdata(master); + struct vc4_dev *vc4 = to_vc4_dev(drm); + struct vc4_crtc *vc4_crtc; + struct drm_crtc *crtc; + struct drm_plane *primary_plane, *cursor_plane; + const struct of_device_id *match; + int ret; + + vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); + if (!vc4_crtc) + return -ENOMEM; + crtc = &vc4_crtc->base; + + match = of_match_device(vc4_crtc_dt_match, dev); + if (!match) + return -ENODEV; + vc4_crtc->data = match->data; + + vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); + if (IS_ERR(vc4_crtc->regs)) + return PTR_ERR(vc4_crtc->regs); + + /* For now, we create just the primary and the legacy cursor + * planes. We should be able to stack more planes on easily, + * but to do that we would need to compute the bandwidth + * requirement of the plane configuration, and reject ones + * that will take too much. + */ + primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); + if (IS_ERR(primary_plane)) { + dev_err(dev, "failed to construct primary plane\n"); + ret = PTR_ERR(primary_plane); + goto err; + } + + cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); + if (IS_ERR(cursor_plane)) { + dev_err(dev, "failed to construct cursor plane\n"); + ret = PTR_ERR(cursor_plane); + goto err_primary; + } + + drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane, + &vc4_crtc_funcs); + drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); + primary_plane->crtc = crtc; + cursor_plane->crtc = crtc; + vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; + vc4_crtc->channel = vc4_crtc->data->hvs_channel; + + CRTC_WRITE(PV_INTEN, 0); + CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); + ret = devm_request_irq(dev, platform_get_irq(pdev, 0), + vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); + if (ret) + goto err_cursor; + + vc4_set_crtc_possible_masks(drm, crtc); + + platform_set_drvdata(pdev, vc4_crtc); + + return 0; + +err_cursor: + cursor_plane->funcs->destroy(cursor_plane); +err_primary: + primary_plane->funcs->destroy(primary_plane); +err: + return ret; +} + +static void vc4_crtc_unbind(struct device *dev, struct device *master, + void *data) +{ + struct platform_device *pdev = to_platform_device(dev); + struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); + + vc4_crtc_destroy(&vc4_crtc->base); + + CRTC_WRITE(PV_INTEN, 0); + + platform_set_drvdata(pdev, NULL); +} + +static const struct component_ops vc4_crtc_ops = { + .bind = vc4_crtc_bind, + .unbind = vc4_crtc_unbind, +}; + +static int vc4_crtc_dev_probe(struct platform_device *pdev) +{ + return component_add(&pdev->dev, &vc4_crtc_ops); +} + +static int vc4_crtc_dev_remove(struct platform_device *pdev) +{ + component_del(&pdev->dev, &vc4_crtc_ops); + return 0; +} + +struct platform_driver vc4_crtc_driver = { + .probe = vc4_crtc_dev_probe, + .remove = vc4_crtc_dev_remove, + .driver = { + .name = "vc4_crtc", + .of_match_table = vc4_crtc_dt_match, + }, +}; |