summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/vc4/vc4_crtc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/vc4/vc4_crtc.c')
-rw-r--r--drivers/gpu/drm/vc4/vc4_crtc.c673
1 files changed, 673 insertions, 0 deletions
diff --git a/drivers/gpu/drm/vc4/vc4_crtc.c b/drivers/gpu/drm/vc4/vc4_crtc.c
new file mode 100644
index 000000000000..265064c62d49
--- /dev/null
+++ b/drivers/gpu/drm/vc4/vc4_crtc.c
@@ -0,0 +1,673 @@
+/*
+ * Copyright (C) 2015 Broadcom
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+/**
+ * DOC: VC4 CRTC module
+ *
+ * In VC4, the Pixel Valve is what most closely corresponds to the
+ * DRM's concept of a CRTC. The PV generates video timings from the
+ * output's clock plus its configuration. It pulls scaled pixels from
+ * the HVS at that timing, and feeds it to the encoder.
+ *
+ * However, the DRM CRTC also collects the configuration of all the
+ * DRM planes attached to it. As a result, this file also manages
+ * setup of the VC4 HVS's display elements on the CRTC.
+ *
+ * The 2835 has 3 different pixel valves. pv0 in the audio power
+ * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
+ * image domain can feed either HDMI or the SDTV controller. The
+ * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
+ * SDTV, etc.) according to which output type is chosen in the mux.
+ *
+ * For power management, the pixel valve's registers are all clocked
+ * by the AXI clock, while the timings and FIFOs make use of the
+ * output-specific clock. Since the encoders also directly consume
+ * the CPRMAN clocks, and know what timings they need, they are the
+ * ones that set the clock.
+ */
+
+#include "drm_atomic.h"
+#include "drm_atomic_helper.h"
+#include "drm_crtc_helper.h"
+#include "linux/clk.h"
+#include "linux/component.h"
+#include "linux/of_device.h"
+#include "vc4_drv.h"
+#include "vc4_regs.h"
+
+struct vc4_crtc {
+ struct drm_crtc base;
+ const struct vc4_crtc_data *data;
+ void __iomem *regs;
+
+ /* Which HVS channel we're using for our CRTC. */
+ int channel;
+
+ /* Pointer to the actual hardware display list memory for the
+ * crtc.
+ */
+ u32 __iomem *dlist;
+
+ u32 dlist_size; /* in dwords */
+
+ struct drm_pending_vblank_event *event;
+};
+
+static inline struct vc4_crtc *
+to_vc4_crtc(struct drm_crtc *crtc)
+{
+ return (struct vc4_crtc *)crtc;
+}
+
+struct vc4_crtc_data {
+ /* Which channel of the HVS this pixelvalve sources from. */
+ int hvs_channel;
+
+ enum vc4_encoder_type encoder0_type;
+ enum vc4_encoder_type encoder1_type;
+};
+
+#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
+#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
+
+#define CRTC_REG(reg) { reg, #reg }
+static const struct {
+ u32 reg;
+ const char *name;
+} crtc_regs[] = {
+ CRTC_REG(PV_CONTROL),
+ CRTC_REG(PV_V_CONTROL),
+ CRTC_REG(PV_VSYNCD),
+ CRTC_REG(PV_HORZA),
+ CRTC_REG(PV_HORZB),
+ CRTC_REG(PV_VERTA),
+ CRTC_REG(PV_VERTB),
+ CRTC_REG(PV_VERTA_EVEN),
+ CRTC_REG(PV_VERTB_EVEN),
+ CRTC_REG(PV_INTEN),
+ CRTC_REG(PV_INTSTAT),
+ CRTC_REG(PV_STAT),
+ CRTC_REG(PV_HACT_ACT),
+};
+
+static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
+ DRM_INFO("0x%04x (%s): 0x%08x\n",
+ crtc_regs[i].reg, crtc_regs[i].name,
+ CRTC_READ(crtc_regs[i].reg));
+ }
+}
+
+#ifdef CONFIG_DEBUG_FS
+int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
+{
+ struct drm_info_node *node = (struct drm_info_node *)m->private;
+ struct drm_device *dev = node->minor->dev;
+ int crtc_index = (uintptr_t)node->info_ent->data;
+ struct drm_crtc *crtc;
+ struct vc4_crtc *vc4_crtc;
+ int i;
+
+ i = 0;
+ list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
+ if (i == crtc_index)
+ break;
+ i++;
+ }
+ if (!crtc)
+ return 0;
+ vc4_crtc = to_vc4_crtc(crtc);
+
+ for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
+ seq_printf(m, "%s (0x%04x): 0x%08x\n",
+ crtc_regs[i].name, crtc_regs[i].reg,
+ CRTC_READ(crtc_regs[i].reg));
+ }
+
+ return 0;
+}
+#endif
+
+static void vc4_crtc_destroy(struct drm_crtc *crtc)
+{
+ drm_crtc_cleanup(crtc);
+}
+
+static u32 vc4_get_fifo_full_level(u32 format)
+{
+ static const u32 fifo_len_bytes = 64;
+ static const u32 hvs_latency_pix = 6;
+
+ switch (format) {
+ case PV_CONTROL_FORMAT_DSIV_16:
+ case PV_CONTROL_FORMAT_DSIC_16:
+ return fifo_len_bytes - 2 * hvs_latency_pix;
+ case PV_CONTROL_FORMAT_DSIV_18:
+ return fifo_len_bytes - 14;
+ case PV_CONTROL_FORMAT_24:
+ case PV_CONTROL_FORMAT_DSIV_24:
+ default:
+ return fifo_len_bytes - 3 * hvs_latency_pix;
+ }
+}
+
+/*
+ * Returns the clock select bit for the connector attached to the
+ * CRTC.
+ */
+static int vc4_get_clock_select(struct drm_crtc *crtc)
+{
+ struct drm_connector *connector;
+
+ drm_for_each_connector(connector, crtc->dev) {
+ if (connector->state->crtc == crtc) {
+ struct drm_encoder *encoder = connector->encoder;
+ struct vc4_encoder *vc4_encoder =
+ to_vc4_encoder(encoder);
+
+ return vc4_encoder->clock_select;
+ }
+ }
+
+ return -1;
+}
+
+static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
+{
+ struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+ struct drm_crtc_state *state = crtc->state;
+ struct drm_display_mode *mode = &state->adjusted_mode;
+ bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
+ u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
+ u32 format = PV_CONTROL_FORMAT_24;
+ bool debug_dump_regs = false;
+ int clock_select = vc4_get_clock_select(crtc);
+
+ if (debug_dump_regs) {
+ DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
+ vc4_crtc_dump_regs(vc4_crtc);
+ }
+
+ /* Reset the PV fifo. */
+ CRTC_WRITE(PV_CONTROL, 0);
+ CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
+ CRTC_WRITE(PV_CONTROL, 0);
+
+ CRTC_WRITE(PV_HORZA,
+ VC4_SET_FIELD(mode->htotal - mode->hsync_end,
+ PV_HORZA_HBP) |
+ VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
+ PV_HORZA_HSYNC));
+ CRTC_WRITE(PV_HORZB,
+ VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
+ PV_HORZB_HFP) |
+ VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
+
+ if (interlace) {
+ CRTC_WRITE(PV_VERTA_EVEN,
+ VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
+ PV_VERTA_VBP) |
+ VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
+ PV_VERTA_VSYNC));
+ CRTC_WRITE(PV_VERTB_EVEN,
+ VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
+ PV_VERTB_VFP) |
+ VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
+ }
+
+ CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
+
+ CRTC_WRITE(PV_V_CONTROL,
+ PV_VCONTROL_CONTINUOUS |
+ (interlace ? PV_VCONTROL_INTERLACE : 0));
+
+ CRTC_WRITE(PV_CONTROL,
+ VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
+ VC4_SET_FIELD(vc4_get_fifo_full_level(format),
+ PV_CONTROL_FIFO_LEVEL) |
+ PV_CONTROL_CLR_AT_START |
+ PV_CONTROL_TRIGGER_UNDERFLOW |
+ PV_CONTROL_WAIT_HSTART |
+ VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
+ PV_CONTROL_FIFO_CLR |
+ PV_CONTROL_EN);
+
+ if (debug_dump_regs) {
+ DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
+ vc4_crtc_dump_regs(vc4_crtc);
+ }
+}
+
+static void require_hvs_enabled(struct drm_device *dev)
+{
+ struct vc4_dev *vc4 = to_vc4_dev(dev);
+
+ WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
+ SCALER_DISPCTRL_ENABLE);
+}
+
+static void vc4_crtc_disable(struct drm_crtc *crtc)
+{
+ struct drm_device *dev = crtc->dev;
+ struct vc4_dev *vc4 = to_vc4_dev(dev);
+ struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+ u32 chan = vc4_crtc->channel;
+ int ret;
+ require_hvs_enabled(dev);
+
+ CRTC_WRITE(PV_V_CONTROL,
+ CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
+ ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
+ WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
+
+ if (HVS_READ(SCALER_DISPCTRLX(chan)) &
+ SCALER_DISPCTRLX_ENABLE) {
+ HVS_WRITE(SCALER_DISPCTRLX(chan),
+ SCALER_DISPCTRLX_RESET);
+
+ /* While the docs say that reset is self-clearing, it
+ * seems it doesn't actually.
+ */
+ HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
+ }
+
+ /* Once we leave, the scaler should be disabled and its fifo empty. */
+
+ WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
+
+ WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
+ SCALER_DISPSTATX_MODE) !=
+ SCALER_DISPSTATX_MODE_DISABLED);
+
+ WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
+ (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
+ SCALER_DISPSTATX_EMPTY);
+}
+
+static void vc4_crtc_enable(struct drm_crtc *crtc)
+{
+ struct drm_device *dev = crtc->dev;
+ struct vc4_dev *vc4 = to_vc4_dev(dev);
+ struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+ struct drm_crtc_state *state = crtc->state;
+ struct drm_display_mode *mode = &state->adjusted_mode;
+
+ require_hvs_enabled(dev);
+
+ /* Turn on the scaler, which will wait for vstart to start
+ * compositing.
+ */
+ HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
+ VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
+ VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
+ SCALER_DISPCTRLX_ENABLE);
+
+ /* Turn on the pixel valve, which will emit the vstart signal. */
+ CRTC_WRITE(PV_V_CONTROL,
+ CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
+}
+
+static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
+ struct drm_crtc_state *state)
+{
+ struct drm_device *dev = crtc->dev;
+ struct vc4_dev *vc4 = to_vc4_dev(dev);
+ struct drm_plane *plane;
+ struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+ u32 dlist_count = 0;
+
+ /* The pixelvalve can only feed one encoder (and encoders are
+ * 1:1 with connectors.)
+ */
+ if (drm_atomic_connectors_for_crtc(state->state, crtc) > 1)
+ return -EINVAL;
+
+ drm_atomic_crtc_state_for_each_plane(plane, state) {
+ struct drm_plane_state *plane_state =
+ state->state->plane_states[drm_plane_index(plane)];
+
+ /* plane might not have changed, in which case take
+ * current state:
+ */
+ if (!plane_state)
+ plane_state = plane->state;
+
+ dlist_count += vc4_plane_dlist_size(plane_state);
+ }
+
+ dlist_count++; /* Account for SCALER_CTL0_END. */
+
+ if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) {
+ vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist +
+ HVS_BOOTLOADER_DLIST_END);
+ vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) -
+ HVS_BOOTLOADER_DLIST_END);
+
+ if (dlist_count > vc4_crtc->dlist_size) {
+ DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n",
+ dlist_count, vc4_crtc->dlist_size);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
+ struct drm_crtc_state *old_state)
+{
+ struct drm_device *dev = crtc->dev;
+ struct vc4_dev *vc4 = to_vc4_dev(dev);
+ struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+ struct drm_plane *plane;
+ bool debug_dump_regs = false;
+ u32 __iomem *dlist_next = vc4_crtc->dlist;
+
+ if (debug_dump_regs) {
+ DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
+ vc4_hvs_dump_state(dev);
+ }
+
+ /* Copy all the active planes' dlist contents to the hardware dlist.
+ *
+ * XXX: If the new display list was large enough that it
+ * overlapped a currently-read display list, we need to do
+ * something like disable scanout before putting in the new
+ * list. For now, we're safe because we only have the two
+ * planes.
+ */
+ drm_atomic_crtc_for_each_plane(plane, crtc) {
+ dlist_next += vc4_plane_write_dlist(plane, dlist_next);
+ }
+
+ if (dlist_next == vc4_crtc->dlist) {
+ /* If no planes were enabled, use the SCALER_CTL0_END
+ * at the start of the display list memory (in the
+ * bootloader section). We'll rewrite that
+ * SCALER_CTL0_END, just in case, though.
+ */
+ writel(SCALER_CTL0_END, vc4->hvs->dlist);
+ HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0);
+ } else {
+ writel(SCALER_CTL0_END, dlist_next);
+ dlist_next++;
+
+ HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
+ (u32 __iomem *)vc4_crtc->dlist -
+ (u32 __iomem *)vc4->hvs->dlist);
+
+ /* Make the next display list start after ours. */
+ vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist);
+ vc4_crtc->dlist = dlist_next;
+ }
+
+ if (debug_dump_regs) {
+ DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
+ vc4_hvs_dump_state(dev);
+ }
+
+ if (crtc->state->event) {
+ unsigned long flags;
+
+ crtc->state->event->pipe = drm_crtc_index(crtc);
+
+ WARN_ON(drm_crtc_vblank_get(crtc) != 0);
+
+ spin_lock_irqsave(&dev->event_lock, flags);
+ vc4_crtc->event = crtc->state->event;
+ spin_unlock_irqrestore(&dev->event_lock, flags);
+ crtc->state->event = NULL;
+ }
+}
+
+int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
+{
+ struct vc4_dev *vc4 = to_vc4_dev(dev);
+ struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
+
+ CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
+
+ return 0;
+}
+
+void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
+{
+ struct vc4_dev *vc4 = to_vc4_dev(dev);
+ struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
+
+ CRTC_WRITE(PV_INTEN, 0);
+}
+
+static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
+{
+ struct drm_crtc *crtc = &vc4_crtc->base;
+ struct drm_device *dev = crtc->dev;
+ unsigned long flags;
+
+ spin_lock_irqsave(&dev->event_lock, flags);
+ if (vc4_crtc->event) {
+ drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
+ vc4_crtc->event = NULL;
+ }
+ spin_unlock_irqrestore(&dev->event_lock, flags);
+}
+
+static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
+{
+ struct vc4_crtc *vc4_crtc = data;
+ u32 stat = CRTC_READ(PV_INTSTAT);
+ irqreturn_t ret = IRQ_NONE;
+
+ if (stat & PV_INT_VFP_START) {
+ CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
+ drm_crtc_handle_vblank(&vc4_crtc->base);
+ vc4_crtc_handle_page_flip(vc4_crtc);
+ ret = IRQ_HANDLED;
+ }
+
+ return ret;
+}
+
+static const struct drm_crtc_funcs vc4_crtc_funcs = {
+ .set_config = drm_atomic_helper_set_config,
+ .destroy = vc4_crtc_destroy,
+ .page_flip = drm_atomic_helper_page_flip,
+ .set_property = NULL,
+ .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
+ .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
+ .reset = drm_atomic_helper_crtc_reset,
+ .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
+ .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
+};
+
+static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
+ .mode_set_nofb = vc4_crtc_mode_set_nofb,
+ .disable = vc4_crtc_disable,
+ .enable = vc4_crtc_enable,
+ .atomic_check = vc4_crtc_atomic_check,
+ .atomic_flush = vc4_crtc_atomic_flush,
+};
+
+/* Frees the page flip event when the DRM device is closed with the
+ * event still outstanding.
+ */
+void vc4_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
+{
+ struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+ struct drm_device *dev = crtc->dev;
+ unsigned long flags;
+
+ spin_lock_irqsave(&dev->event_lock, flags);
+
+ if (vc4_crtc->event && vc4_crtc->event->base.file_priv == file) {
+ vc4_crtc->event->base.destroy(&vc4_crtc->event->base);
+ drm_crtc_vblank_put(crtc);
+ vc4_crtc->event = NULL;
+ }
+
+ spin_unlock_irqrestore(&dev->event_lock, flags);
+}
+
+static const struct vc4_crtc_data pv0_data = {
+ .hvs_channel = 0,
+ .encoder0_type = VC4_ENCODER_TYPE_DSI0,
+ .encoder1_type = VC4_ENCODER_TYPE_DPI,
+};
+
+static const struct vc4_crtc_data pv1_data = {
+ .hvs_channel = 2,
+ .encoder0_type = VC4_ENCODER_TYPE_DSI1,
+ .encoder1_type = VC4_ENCODER_TYPE_SMI,
+};
+
+static const struct vc4_crtc_data pv2_data = {
+ .hvs_channel = 1,
+ .encoder0_type = VC4_ENCODER_TYPE_VEC,
+ .encoder1_type = VC4_ENCODER_TYPE_HDMI,
+};
+
+static const struct of_device_id vc4_crtc_dt_match[] = {
+ { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
+ { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
+ { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
+ {}
+};
+
+static void vc4_set_crtc_possible_masks(struct drm_device *drm,
+ struct drm_crtc *crtc)
+{
+ struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
+ struct drm_encoder *encoder;
+
+ drm_for_each_encoder(encoder, drm) {
+ struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
+
+ if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
+ vc4_encoder->clock_select = 0;
+ encoder->possible_crtcs |= drm_crtc_mask(crtc);
+ } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
+ vc4_encoder->clock_select = 1;
+ encoder->possible_crtcs |= drm_crtc_mask(crtc);
+ }
+ }
+}
+
+static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct drm_device *drm = dev_get_drvdata(master);
+ struct vc4_dev *vc4 = to_vc4_dev(drm);
+ struct vc4_crtc *vc4_crtc;
+ struct drm_crtc *crtc;
+ struct drm_plane *primary_plane, *cursor_plane;
+ const struct of_device_id *match;
+ int ret;
+
+ vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
+ if (!vc4_crtc)
+ return -ENOMEM;
+ crtc = &vc4_crtc->base;
+
+ match = of_match_device(vc4_crtc_dt_match, dev);
+ if (!match)
+ return -ENODEV;
+ vc4_crtc->data = match->data;
+
+ vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
+ if (IS_ERR(vc4_crtc->regs))
+ return PTR_ERR(vc4_crtc->regs);
+
+ /* For now, we create just the primary and the legacy cursor
+ * planes. We should be able to stack more planes on easily,
+ * but to do that we would need to compute the bandwidth
+ * requirement of the plane configuration, and reject ones
+ * that will take too much.
+ */
+ primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
+ if (IS_ERR(primary_plane)) {
+ dev_err(dev, "failed to construct primary plane\n");
+ ret = PTR_ERR(primary_plane);
+ goto err;
+ }
+
+ cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
+ if (IS_ERR(cursor_plane)) {
+ dev_err(dev, "failed to construct cursor plane\n");
+ ret = PTR_ERR(cursor_plane);
+ goto err_primary;
+ }
+
+ drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane,
+ &vc4_crtc_funcs);
+ drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
+ primary_plane->crtc = crtc;
+ cursor_plane->crtc = crtc;
+ vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
+ vc4_crtc->channel = vc4_crtc->data->hvs_channel;
+
+ CRTC_WRITE(PV_INTEN, 0);
+ CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
+ ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
+ vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
+ if (ret)
+ goto err_cursor;
+
+ vc4_set_crtc_possible_masks(drm, crtc);
+
+ platform_set_drvdata(pdev, vc4_crtc);
+
+ return 0;
+
+err_cursor:
+ cursor_plane->funcs->destroy(cursor_plane);
+err_primary:
+ primary_plane->funcs->destroy(primary_plane);
+err:
+ return ret;
+}
+
+static void vc4_crtc_unbind(struct device *dev, struct device *master,
+ void *data)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
+
+ vc4_crtc_destroy(&vc4_crtc->base);
+
+ CRTC_WRITE(PV_INTEN, 0);
+
+ platform_set_drvdata(pdev, NULL);
+}
+
+static const struct component_ops vc4_crtc_ops = {
+ .bind = vc4_crtc_bind,
+ .unbind = vc4_crtc_unbind,
+};
+
+static int vc4_crtc_dev_probe(struct platform_device *pdev)
+{
+ return component_add(&pdev->dev, &vc4_crtc_ops);
+}
+
+static int vc4_crtc_dev_remove(struct platform_device *pdev)
+{
+ component_del(&pdev->dev, &vc4_crtc_ops);
+ return 0;
+}
+
+struct platform_driver vc4_crtc_driver = {
+ .probe = vc4_crtc_dev_probe,
+ .remove = vc4_crtc_dev_remove,
+ .driver = {
+ .name = "vc4_crtc",
+ .of_match_table = vc4_crtc_dt_match,
+ },
+};