diff options
Diffstat (limited to 'drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h')
-rw-r--r-- | drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h | 165 |
1 files changed, 54 insertions, 111 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h index 009bd5963ed8..8f50a038396c 100644 --- a/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h +++ b/drivers/gpu/drm/amd/powerplay/hwmgr/ppevvmath.h @@ -50,55 +50,45 @@ typedef union _fInt { * Function Declarations * ------------------------------------------------------------------------------- */ -fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ -fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ -fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ -int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ - -fInt fNegate(fInt); /* Returns -1 * input fInt value */ -fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ -fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ -fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ -fInt fDivide (fInt A, fInt B); /* Returns A/B */ -fInt fGetSquare(fInt); /* Returns the square of a fInt number */ -fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ - -int uAbs(int); /* Returns the Absolute value of the Int */ -fInt fAbs(fInt); /* Returns the Absolute value of the fInt */ -int uPow(int base, int exponent); /* Returns base^exponent an INT */ - -void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ -bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ -bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ - -fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ -fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ +static fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ +static fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ +static fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ +static int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ + +static fInt fNegate(fInt); /* Returns -1 * input fInt value */ +static fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ +static fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ +static fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ +static fInt fDivide (fInt A, fInt B); /* Returns A/B */ +static fInt fGetSquare(fInt); /* Returns the square of a fInt number */ +static fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ + +static int uAbs(int); /* Returns the Absolute value of the Int */ +static int uPow(int base, int exponent); /* Returns base^exponent an INT */ + +static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ +static bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ +static bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ + +static fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ +static fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ /* Fuse decoding functions * ------------------------------------------------------------------------------------- */ -fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); -fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); -fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); +static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); +static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); +static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); /* Internal Support Functions - Use these ONLY for testing or adding to internal functions * ------------------------------------------------------------------------------------- * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. */ -fInt Add (int, int); /* Add two INTs and return Sum as FINT */ -fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */ -fInt Divide (int, int); /* You get the idea... */ -fInt fNegate(fInt); +static fInt Divide (int, int); /* Divide two INTs and return result as FINT */ +static fInt fNegate(fInt); -int uGetScaledDecimal (fInt); /* Internal function */ -int GetReal (fInt A); /* Internal function */ - -/* Future Additions and Incomplete Functions - * ------------------------------------------------------------------------------------- - */ -int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */ - /* Let us say we have 2.126 but can only handle 2 decimal points. We could */ - /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */ +static int uGetScaledDecimal (fInt); /* Internal function */ +static int GetReal (fInt A); /* Internal function */ /* ------------------------------------------------------------------------------------- * TROUBLESHOOTING INFORMATION @@ -115,7 +105,7 @@ int GetRoundedValue(fInt); /* Incomplete function - Usef * START OF CODE * ------------------------------------------------------------------------------------- */ -fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ +static fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ { uint32_t i; bool bNegated = false; @@ -154,7 +144,7 @@ fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ return solution; } -fInt fNaturalLog(fInt value) +static fInt fNaturalLog(fInt value) { uint32_t i; fInt upper_bound = Divide(8, 1000); @@ -179,7 +169,7 @@ fInt fNaturalLog(fInt value) return (fAdd(solution, error_term)); } -fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) +static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) { fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); @@ -194,7 +184,7 @@ fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t b } -fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) +static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) { fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); @@ -212,7 +202,7 @@ fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint return f_decoded_value; } -fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) +static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) { fInt fLeakage; fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); @@ -225,7 +215,7 @@ fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, return fLeakage; } -fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ +static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ { fInt temp; @@ -237,13 +227,13 @@ fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to m return temp; } -fInt fNegate(fInt X) +static fInt fNegate(fInt X) { fInt CONSTANT_NEGONE = ConvertToFraction(-1); return (fMultiply(X, CONSTANT_NEGONE)); } -fInt Convert_ULONG_ToFraction(uint32_t X) +static fInt Convert_ULONG_ToFraction(uint32_t X) { fInt temp; @@ -255,7 +245,7 @@ fInt Convert_ULONG_ToFraction(uint32_t X) return temp; } -fInt GetScaledFraction(int X, int factor) +static fInt GetScaledFraction(int X, int factor) { int times_shifted, factor_shifted; bool bNEGATED; @@ -304,7 +294,7 @@ fInt GetScaledFraction(int X, int factor) } /* Addition using two fInts */ -fInt fAdd (fInt X, fInt Y) +static fInt fAdd (fInt X, fInt Y) { fInt Sum; @@ -314,7 +304,7 @@ fInt fAdd (fInt X, fInt Y) } /* Addition using two fInts */ -fInt fSubtract (fInt X, fInt Y) +static fInt fSubtract (fInt X, fInt Y) { fInt Difference; @@ -323,7 +313,7 @@ fInt fSubtract (fInt X, fInt Y) return Difference; } -bool Equal(fInt A, fInt B) +static bool Equal(fInt A, fInt B) { if (A.full == B.full) return true; @@ -331,7 +321,7 @@ bool Equal(fInt A, fInt B) return false; } -bool GreaterThan(fInt A, fInt B) +static bool GreaterThan(fInt A, fInt B) { if (A.full > B.full) return true; @@ -339,7 +329,7 @@ bool GreaterThan(fInt A, fInt B) return false; } -fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ +static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ { fInt Product; int64_t tempProduct; @@ -363,7 +353,7 @@ fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ return Product; } -fInt fDivide (fInt X, fInt Y) +static fInt fDivide (fInt X, fInt Y) { fInt fZERO, fQuotient; int64_t longlongX, longlongY; @@ -384,7 +374,7 @@ fInt fDivide (fInt X, fInt Y) return fQuotient; } -int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ +static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ { fInt fullNumber, scaledDecimal, scaledReal; @@ -397,13 +387,13 @@ int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to ch return fullNumber.full; } -fInt fGetSquare(fInt A) +static fInt fGetSquare(fInt A) { return fMultiply(A,A); } /* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ -fInt fSqrt(fInt num) +static fInt fSqrt(fInt num) { fInt F_divide_Fprime, Fprime; fInt test; @@ -460,7 +450,7 @@ fInt fSqrt(fInt num) return (x_new); } -void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) +static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) { fInt *pRoots = &Roots[0]; fInt temp, root_first, root_second; @@ -498,52 +488,13 @@ void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) * ----------------------------------------------------------------------------- */ -/* Addition using two normal ints - Temporary - Use only for testing purposes?. */ -fInt Add (int X, int Y) -{ - fInt A, B, Sum; - - A.full = (X << SHIFT_AMOUNT); - B.full = (Y << SHIFT_AMOUNT); - - Sum.full = A.full + B.full; - - return Sum; -} - /* Conversion Functions */ -int GetReal (fInt A) +static int GetReal (fInt A) { return (A.full >> SHIFT_AMOUNT); } -/* Temporarily Disabled */ -int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */ -{ - /* ROUNDING TEMPORARLY DISABLED - int temp = A.full; - int decimal_cutoff, decimal_mask = 0x000001FF; - decimal_cutoff = temp & decimal_mask; - if (decimal_cutoff > 0x147) { - temp += 673; - }*/ - - return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */ -} - -fInt Multiply (int X, int Y) -{ - fInt A, B, Product; - - A.full = X << SHIFT_AMOUNT; - B.full = Y << SHIFT_AMOUNT; - - Product = fMultiply(A, B); - - return Product; -} - -fInt Divide (int X, int Y) +static fInt Divide (int X, int Y) { fInt A, B, Quotient; @@ -555,7 +506,7 @@ fInt Divide (int X, int Y) return Quotient; } -int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ +static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ { int dec[PRECISION]; int i, scaledDecimal = 0, tmp = A.partial.decimal; @@ -570,7 +521,7 @@ int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole intege return scaledDecimal; } -int uPow(int base, int power) +static int uPow(int base, int power) { if (power == 0) return 1; @@ -578,15 +529,7 @@ int uPow(int base, int power) return (base)*uPow(base, power - 1); } -fInt fAbs(fInt A) -{ - if (A.partial.real < 0) - return (fMultiply(A, ConvertToFraction(-1))); - else - return A; -} - -int uAbs(int X) +static int uAbs(int X) { if (X < 0) return (X * -1); @@ -594,7 +537,7 @@ int uAbs(int X) return X; } -fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) +static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) { fInt solution; |