diff options
Diffstat (limited to 'drivers/edac/amd64_edac.c')
-rw-r--r-- | drivers/edac/amd64_edac.c | 311 |
1 files changed, 310 insertions, 1 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c index 4fce75013674..fba609ada0e6 100644 --- a/drivers/edac/amd64_edac.c +++ b/drivers/edac/amd64_edac.c @@ -988,6 +988,281 @@ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) return csrow; } +/* Protect the PCI config register pairs used for DF indirect access. */ +static DEFINE_MUTEX(df_indirect_mutex); + +/* + * Data Fabric Indirect Access uses FICAA/FICAD. + * + * Fabric Indirect Configuration Access Address (FICAA): Constructed based + * on the device's Instance Id and the PCI function and register offset of + * the desired register. + * + * Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO + * and FICAD HI registers but so far we only need the LO register. + * + * Use Instance Id 0xFF to indicate a broadcast read. + */ +#define DF_BROADCAST 0xFF +static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo) +{ + struct pci_dev *F4; + u32 ficaa; + int err = -ENODEV; + + if (node >= amd_nb_num()) + goto out; + + F4 = node_to_amd_nb(node)->link; + if (!F4) + goto out; + + ficaa = (instance_id == DF_BROADCAST) ? 0 : 1; + ficaa |= reg & 0x3FC; + ficaa |= (func & 0x7) << 11; + ficaa |= instance_id << 16; + + mutex_lock(&df_indirect_mutex); + + err = pci_write_config_dword(F4, 0x5C, ficaa); + if (err) { + pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa); + goto out_unlock; + } + + err = pci_read_config_dword(F4, 0x98, lo); + if (err) + pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa); + +out_unlock: + mutex_unlock(&df_indirect_mutex); + +out: + return err; +} + +static int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo) +{ + return __df_indirect_read(node, func, reg, instance_id, lo); +} + +static int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo) +{ + return __df_indirect_read(node, func, reg, DF_BROADCAST, lo); +} + +struct addr_ctx { + u64 ret_addr; + u32 tmp; + u16 nid; + u8 inst_id; +}; + +static int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr) +{ + u64 dram_base_addr, dram_limit_addr, dram_hole_base; + + u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask; + u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets; + u8 intlv_addr_sel, intlv_addr_bit; + u8 num_intlv_bits, hashed_bit; + u8 lgcy_mmio_hole_en, base = 0; + u8 cs_mask, cs_id = 0; + bool hash_enabled = false; + + struct addr_ctx ctx; + + memset(&ctx, 0, sizeof(ctx)); + + /* Start from the normalized address */ + ctx.ret_addr = norm_addr; + + ctx.nid = nid; + ctx.inst_id = umc; + + /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */ + if (df_indirect_read_instance(nid, 0, 0x1B4, umc, &ctx.tmp)) + goto out_err; + + /* Remove HiAddrOffset from normalized address, if enabled: */ + if (ctx.tmp & BIT(0)) { + u64 hi_addr_offset = (ctx.tmp & GENMASK_ULL(31, 20)) << 8; + + if (norm_addr >= hi_addr_offset) { + ctx.ret_addr -= hi_addr_offset; + base = 1; + } + } + + /* Read D18F0x110 (DramBaseAddress). */ + if (df_indirect_read_instance(nid, 0, 0x110 + (8 * base), umc, &ctx.tmp)) + goto out_err; + + /* Check if address range is valid. */ + if (!(ctx.tmp & BIT(0))) { + pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n", + __func__, ctx.tmp); + goto out_err; + } + + lgcy_mmio_hole_en = ctx.tmp & BIT(1); + intlv_num_chan = (ctx.tmp >> 4) & 0xF; + intlv_addr_sel = (ctx.tmp >> 8) & 0x7; + dram_base_addr = (ctx.tmp & GENMASK_ULL(31, 12)) << 16; + + /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */ + if (intlv_addr_sel > 3) { + pr_err("%s: Invalid interleave address select %d.\n", + __func__, intlv_addr_sel); + goto out_err; + } + + /* Read D18F0x114 (DramLimitAddress). */ + if (df_indirect_read_instance(nid, 0, 0x114 + (8 * base), umc, &ctx.tmp)) + goto out_err; + + intlv_num_sockets = (ctx.tmp >> 8) & 0x1; + intlv_num_dies = (ctx.tmp >> 10) & 0x3; + dram_limit_addr = ((ctx.tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0); + + intlv_addr_bit = intlv_addr_sel + 8; + + /* Re-use intlv_num_chan by setting it equal to log2(#channels) */ + switch (intlv_num_chan) { + case 0: intlv_num_chan = 0; break; + case 1: intlv_num_chan = 1; break; + case 3: intlv_num_chan = 2; break; + case 5: intlv_num_chan = 3; break; + case 7: intlv_num_chan = 4; break; + + case 8: intlv_num_chan = 1; + hash_enabled = true; + break; + default: + pr_err("%s: Invalid number of interleaved channels %d.\n", + __func__, intlv_num_chan); + goto out_err; + } + + num_intlv_bits = intlv_num_chan; + + if (intlv_num_dies > 2) { + pr_err("%s: Invalid number of interleaved nodes/dies %d.\n", + __func__, intlv_num_dies); + goto out_err; + } + + num_intlv_bits += intlv_num_dies; + + /* Add a bit if sockets are interleaved. */ + num_intlv_bits += intlv_num_sockets; + + /* Assert num_intlv_bits <= 4 */ + if (num_intlv_bits > 4) { + pr_err("%s: Invalid interleave bits %d.\n", + __func__, num_intlv_bits); + goto out_err; + } + + if (num_intlv_bits > 0) { + u64 temp_addr_x, temp_addr_i, temp_addr_y; + u8 die_id_bit, sock_id_bit, cs_fabric_id; + + /* + * Read FabricBlockInstanceInformation3_CS[BlockFabricID]. + * This is the fabric id for this coherent slave. Use + * umc/channel# as instance id of the coherent slave + * for FICAA. + */ + if (df_indirect_read_instance(nid, 0, 0x50, umc, &ctx.tmp)) + goto out_err; + + cs_fabric_id = (ctx.tmp >> 8) & 0xFF; + die_id_bit = 0; + + /* If interleaved over more than 1 channel: */ + if (intlv_num_chan) { + die_id_bit = intlv_num_chan; + cs_mask = (1 << die_id_bit) - 1; + cs_id = cs_fabric_id & cs_mask; + } + + sock_id_bit = die_id_bit; + + /* Read D18F1x208 (SystemFabricIdMask). */ + if (intlv_num_dies || intlv_num_sockets) + if (df_indirect_read_broadcast(nid, 1, 0x208, &ctx.tmp)) + goto out_err; + + /* If interleaved over more than 1 die. */ + if (intlv_num_dies) { + sock_id_bit = die_id_bit + intlv_num_dies; + die_id_shift = (ctx.tmp >> 24) & 0xF; + die_id_mask = (ctx.tmp >> 8) & 0xFF; + + cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit; + } + + /* If interleaved over more than 1 socket. */ + if (intlv_num_sockets) { + socket_id_shift = (ctx.tmp >> 28) & 0xF; + socket_id_mask = (ctx.tmp >> 16) & 0xFF; + + cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit; + } + + /* + * The pre-interleaved address consists of XXXXXXIIIYYYYY + * where III is the ID for this CS, and XXXXXXYYYYY are the + * address bits from the post-interleaved address. + * "num_intlv_bits" has been calculated to tell us how many "I" + * bits there are. "intlv_addr_bit" tells us how many "Y" bits + * there are (where "I" starts). + */ + temp_addr_y = ctx.ret_addr & GENMASK_ULL(intlv_addr_bit - 1, 0); + temp_addr_i = (cs_id << intlv_addr_bit); + temp_addr_x = (ctx.ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits; + ctx.ret_addr = temp_addr_x | temp_addr_i | temp_addr_y; + } + + /* Add dram base address */ + ctx.ret_addr += dram_base_addr; + + /* If legacy MMIO hole enabled */ + if (lgcy_mmio_hole_en) { + if (df_indirect_read_broadcast(nid, 0, 0x104, &ctx.tmp)) + goto out_err; + + dram_hole_base = ctx.tmp & GENMASK(31, 24); + if (ctx.ret_addr >= dram_hole_base) + ctx.ret_addr += (BIT_ULL(32) - dram_hole_base); + } + + if (hash_enabled) { + /* Save some parentheses and grab ls-bit at the end. */ + hashed_bit = (ctx.ret_addr >> 12) ^ + (ctx.ret_addr >> 18) ^ + (ctx.ret_addr >> 21) ^ + (ctx.ret_addr >> 30) ^ + cs_id; + + hashed_bit &= BIT(0); + + if (hashed_bit != ((ctx.ret_addr >> intlv_addr_bit) & BIT(0))) + ctx.ret_addr ^= BIT(intlv_addr_bit); + } + + /* Is calculated system address is above DRAM limit address? */ + if (ctx.ret_addr > dram_limit_addr) + goto out_err; + + *sys_addr = ctx.ret_addr; + return 0; + +out_err: + return -EINVAL; +} + static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); /* @@ -2650,6 +2925,26 @@ static struct amd64_family_type family_types[] = { .dbam_to_cs = f17_addr_mask_to_cs_size, } }, + [F19_M10H_CPUS] = { + .ctl_name = "F19h_M10h", + .f0_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F6, + .max_mcs = 12, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, + [F19_M50H_CPUS] = { + .ctl_name = "F19h_M50h", + .f0_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F0, + .f6_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F6, + .max_mcs = 2, + .ops = { + .early_channel_count = f17_early_channel_count, + .dbam_to_cs = f17_addr_mask_to_cs_size, + } + }, }; /* @@ -3687,11 +3982,25 @@ static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt) break; case 0x19: - if (pvt->model >= 0x20 && pvt->model <= 0x2f) { + if (pvt->model >= 0x10 && pvt->model <= 0x1f) { + fam_type = &family_types[F19_M10H_CPUS]; + pvt->ops = &family_types[F19_M10H_CPUS].ops; + break; + } else if (pvt->model >= 0x20 && pvt->model <= 0x2f) { fam_type = &family_types[F17_M70H_CPUS]; pvt->ops = &family_types[F17_M70H_CPUS].ops; fam_type->ctl_name = "F19h_M20h"; break; + } else if (pvt->model >= 0x50 && pvt->model <= 0x5f) { + fam_type = &family_types[F19_M50H_CPUS]; + pvt->ops = &family_types[F19_M50H_CPUS].ops; + fam_type->ctl_name = "F19h_M50h"; + break; + } else if (pvt->model >= 0xa0 && pvt->model <= 0xaf) { + fam_type = &family_types[F19_M10H_CPUS]; + pvt->ops = &family_types[F19_M10H_CPUS].ops; + fam_type->ctl_name = "F19h_MA0h"; + break; } fam_type = &family_types[F19_CPUS]; pvt->ops = &family_types[F19_CPUS].ops; |