summaryrefslogtreecommitdiff
path: root/drivers/crypto/mediatek
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/crypto/mediatek')
-rw-r--r--drivers/crypto/mediatek/Makefile2
-rw-r--r--drivers/crypto/mediatek/mtk-aes.c1299
-rw-r--r--drivers/crypto/mediatek/mtk-platform.c604
-rw-r--r--drivers/crypto/mediatek/mtk-platform.h231
-rw-r--r--drivers/crypto/mediatek/mtk-regs.h194
-rw-r--r--drivers/crypto/mediatek/mtk-sha.c1435
6 files changed, 3765 insertions, 0 deletions
diff --git a/drivers/crypto/mediatek/Makefile b/drivers/crypto/mediatek/Makefile
new file mode 100644
index 000000000000..187be79c7f3e
--- /dev/null
+++ b/drivers/crypto/mediatek/Makefile
@@ -0,0 +1,2 @@
+obj-$(CONFIG_CRYPTO_DEV_MEDIATEK) += mtk-crypto.o
+mtk-crypto-objs:= mtk-platform.o mtk-aes.o mtk-sha.o
diff --git a/drivers/crypto/mediatek/mtk-aes.c b/drivers/crypto/mediatek/mtk-aes.c
new file mode 100644
index 000000000000..3a47cdb8f0c8
--- /dev/null
+++ b/drivers/crypto/mediatek/mtk-aes.c
@@ -0,0 +1,1299 @@
+/*
+ * Cryptographic API.
+ *
+ * Driver for EIP97 AES acceleration.
+ *
+ * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Some ideas are from atmel-aes.c drivers.
+ */
+
+#include <crypto/aes.h>
+#include "mtk-platform.h"
+
+#define AES_QUEUE_SIZE 512
+#define AES_BUF_ORDER 2
+#define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \
+ & ~(AES_BLOCK_SIZE - 1))
+
+/* AES command token size */
+#define AES_CT_SIZE_ECB 2
+#define AES_CT_SIZE_CBC 3
+#define AES_CT_SIZE_CTR 3
+#define AES_CT_SIZE_GCM_OUT 5
+#define AES_CT_SIZE_GCM_IN 6
+#define AES_CT_CTRL_HDR cpu_to_le32(0x00220000)
+
+/* AES-CBC/ECB/CTR command token */
+#define AES_CMD0 cpu_to_le32(0x05000000)
+#define AES_CMD1 cpu_to_le32(0x2d060000)
+#define AES_CMD2 cpu_to_le32(0xe4a63806)
+/* AES-GCM command token */
+#define AES_GCM_CMD0 cpu_to_le32(0x0b000000)
+#define AES_GCM_CMD1 cpu_to_le32(0xa0800000)
+#define AES_GCM_CMD2 cpu_to_le32(0x25000010)
+#define AES_GCM_CMD3 cpu_to_le32(0x0f020000)
+#define AES_GCM_CMD4 cpu_to_le32(0x21e60000)
+#define AES_GCM_CMD5 cpu_to_le32(0x40e60000)
+#define AES_GCM_CMD6 cpu_to_le32(0xd0070000)
+
+/* AES transform information word 0 fields */
+#define AES_TFM_BASIC_OUT cpu_to_le32(0x4 << 0)
+#define AES_TFM_BASIC_IN cpu_to_le32(0x5 << 0)
+#define AES_TFM_GCM_OUT cpu_to_le32(0x6 << 0)
+#define AES_TFM_GCM_IN cpu_to_le32(0xf << 0)
+#define AES_TFM_SIZE(x) cpu_to_le32((x) << 8)
+#define AES_TFM_128BITS cpu_to_le32(0xb << 16)
+#define AES_TFM_192BITS cpu_to_le32(0xd << 16)
+#define AES_TFM_256BITS cpu_to_le32(0xf << 16)
+/* AES transform information word 1 fields */
+#define AES_TFM_ECB cpu_to_le32(0x0 << 0)
+#define AES_TFM_CBC cpu_to_le32(0x1 << 0)
+#define AES_TFM_CTR_INIT cpu_to_le32(0x2 << 0) /* init counter to 1 */
+#define AES_TFM_CTR_LOAD cpu_to_le32(0x6 << 0) /* load/reuse counter */
+#define AES_TFM_3IV cpu_to_le32(0x7 << 5) /* using IV 0-2 */
+#define AES_TFM_FULL_IV cpu_to_le32(0xf << 5) /* using IV 0-3 */
+#define AES_TFM_IV_CTR_MODE cpu_to_le32(0x1 << 10)
+#define AES_TFM_ENC_HASH cpu_to_le32(0x1 << 17)
+#define AES_TFM_GHASH_DIG cpu_to_le32(0x2 << 21)
+#define AES_TFM_GHASH cpu_to_le32(0x4 << 23)
+
+/* AES flags */
+#define AES_FLAGS_ECB BIT(0)
+#define AES_FLAGS_CBC BIT(1)
+#define AES_FLAGS_CTR BIT(2)
+#define AES_FLAGS_GCM BIT(3)
+#define AES_FLAGS_ENCRYPT BIT(4)
+#define AES_FLAGS_BUSY BIT(5)
+
+/**
+ * Command token(CT) is a set of hardware instructions that
+ * are used to control engine's processing flow of AES.
+ *
+ * Transform information(TFM) is used to define AES state and
+ * contains all keys and initial vectors.
+ *
+ * The engine requires CT and TFM to do:
+ * - Commands decoding and control of the engine's data path.
+ * - Coordinating hardware data fetch and store operations.
+ * - Result token construction and output.
+ *
+ * Memory map of GCM's TFM:
+ * /-----------\
+ * | AES KEY | 128/196/256 bits
+ * |-----------|
+ * | HASH KEY | a string 128 zero bits encrypted using the block cipher
+ * |-----------|
+ * | IVs | 4 * 4 bytes
+ * \-----------/
+ */
+struct mtk_aes_ct {
+ __le32 cmd[AES_CT_SIZE_GCM_IN];
+};
+
+struct mtk_aes_tfm {
+ __le32 ctrl[2];
+ __le32 state[SIZE_IN_WORDS(AES_KEYSIZE_256 + AES_BLOCK_SIZE * 2)];
+};
+
+struct mtk_aes_reqctx {
+ u64 mode;
+};
+
+struct mtk_aes_base_ctx {
+ struct mtk_cryp *cryp;
+ u32 keylen;
+ mtk_aes_fn start;
+
+ struct mtk_aes_ct ct;
+ dma_addr_t ct_dma;
+ struct mtk_aes_tfm tfm;
+ dma_addr_t tfm_dma;
+
+ __le32 ct_hdr;
+ u32 ct_size;
+};
+
+struct mtk_aes_ctx {
+ struct mtk_aes_base_ctx base;
+};
+
+struct mtk_aes_ctr_ctx {
+ struct mtk_aes_base_ctx base;
+
+ u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
+ size_t offset;
+ struct scatterlist src[2];
+ struct scatterlist dst[2];
+};
+
+struct mtk_aes_gcm_ctx {
+ struct mtk_aes_base_ctx base;
+
+ u32 authsize;
+ size_t textlen;
+
+ struct crypto_skcipher *ctr;
+};
+
+struct mtk_aes_gcm_setkey_result {
+ int err;
+ struct completion completion;
+};
+
+struct mtk_aes_drv {
+ struct list_head dev_list;
+ /* Device list lock */
+ spinlock_t lock;
+};
+
+static struct mtk_aes_drv mtk_aes = {
+ .dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
+ .lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
+};
+
+static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
+{
+ return readl_relaxed(cryp->base + offset);
+}
+
+static inline void mtk_aes_write(struct mtk_cryp *cryp,
+ u32 offset, u32 value)
+{
+ writel_relaxed(value, cryp->base + offset);
+}
+
+static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
+{
+ struct mtk_cryp *cryp = NULL;
+ struct mtk_cryp *tmp;
+
+ spin_lock_bh(&mtk_aes.lock);
+ if (!ctx->cryp) {
+ list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
+ cryp = tmp;
+ break;
+ }
+ ctx->cryp = cryp;
+ } else {
+ cryp = ctx->cryp;
+ }
+ spin_unlock_bh(&mtk_aes.lock);
+
+ return cryp;
+}
+
+static inline size_t mtk_aes_padlen(size_t len)
+{
+ len &= AES_BLOCK_SIZE - 1;
+ return len ? AES_BLOCK_SIZE - len : 0;
+}
+
+static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
+ struct mtk_aes_dma *dma)
+{
+ int nents;
+
+ if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
+ return false;
+
+ for (nents = 0; sg; sg = sg_next(sg), ++nents) {
+ if (!IS_ALIGNED(sg->offset, sizeof(u32)))
+ return false;
+
+ if (len <= sg->length) {
+ if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
+ return false;
+
+ dma->nents = nents + 1;
+ dma->remainder = sg->length - len;
+ sg->length = len;
+ return true;
+ }
+
+ if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
+ return false;
+
+ len -= sg->length;
+ }
+
+ return false;
+}
+
+static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes,
+ const struct mtk_aes_reqctx *rctx)
+{
+ /* Clear all but persistent flags and set request flags. */
+ aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode;
+}
+
+static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
+{
+ struct scatterlist *sg = dma->sg;
+ int nents = dma->nents;
+
+ if (!dma->remainder)
+ return;
+
+ while (--nents > 0 && sg)
+ sg = sg_next(sg);
+
+ if (!sg)
+ return;
+
+ sg->length += dma->remainder;
+}
+
+/*
+ * Write descriptors for processing. This will configure the engine, load
+ * the transform information and then start the packet processing.
+ */
+static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ struct mtk_ring *ring = cryp->ring[aes->id];
+ struct mtk_desc *cmd = NULL, *res = NULL;
+ struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
+ u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
+ int nents;
+
+ /* Write command descriptors */
+ for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
+ cmd = ring->cmd_base + ring->cmd_pos;
+ cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
+ cmd->buf = cpu_to_le32(sg_dma_address(ssg));
+
+ if (nents == 0) {
+ cmd->hdr |= MTK_DESC_FIRST |
+ MTK_DESC_CT_LEN(aes->ctx->ct_size);
+ cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
+ cmd->ct_hdr = aes->ctx->ct_hdr;
+ cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
+ }
+
+ if (++ring->cmd_pos == MTK_DESC_NUM)
+ ring->cmd_pos = 0;
+ }
+ cmd->hdr |= MTK_DESC_LAST;
+
+ /* Prepare result descriptors */
+ for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
+ res = ring->res_base + ring->res_pos;
+ res->hdr = MTK_DESC_BUF_LEN(dsg->length);
+ res->buf = cpu_to_le32(sg_dma_address(dsg));
+
+ if (nents == 0)
+ res->hdr |= MTK_DESC_FIRST;
+
+ if (++ring->res_pos == MTK_DESC_NUM)
+ ring->res_pos = 0;
+ }
+ res->hdr |= MTK_DESC_LAST;
+
+ /* Prepare enough space for authenticated tag */
+ if (aes->flags & AES_FLAGS_GCM)
+ res->hdr += AES_BLOCK_SIZE;
+
+ /*
+ * Make sure that all changes to the DMA ring are done before we
+ * start engine.
+ */
+ wmb();
+ /* Start DMA transfer */
+ mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
+ mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));
+
+ return -EINPROGRESS;
+}
+
+static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ struct mtk_aes_base_ctx *ctx = aes->ctx;
+
+ dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
+ DMA_TO_DEVICE);
+ dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
+ DMA_TO_DEVICE);
+
+ if (aes->src.sg == aes->dst.sg) {
+ dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
+ DMA_BIDIRECTIONAL);
+
+ if (aes->src.sg != &aes->aligned_sg)
+ mtk_aes_restore_sg(&aes->src);
+ } else {
+ dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents,
+ DMA_FROM_DEVICE);
+
+ if (aes->dst.sg != &aes->aligned_sg)
+ mtk_aes_restore_sg(&aes->dst);
+
+ dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
+ DMA_TO_DEVICE);
+
+ if (aes->src.sg != &aes->aligned_sg)
+ mtk_aes_restore_sg(&aes->src);
+ }
+
+ if (aes->dst.sg == &aes->aligned_sg)
+ sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst),
+ aes->buf, aes->total);
+}
+
+static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ struct mtk_aes_base_ctx *ctx = aes->ctx;
+
+ ctx->ct_dma = dma_map_single(cryp->dev, &ctx->ct, sizeof(ctx->ct),
+ DMA_TO_DEVICE);
+ if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
+ return -EINVAL;
+
+ ctx->tfm_dma = dma_map_single(cryp->dev, &ctx->tfm, sizeof(ctx->tfm),
+ DMA_TO_DEVICE);
+ if (unlikely(dma_mapping_error(cryp->dev, ctx->tfm_dma)))
+ goto tfm_map_err;
+
+ if (aes->src.sg == aes->dst.sg) {
+ aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
+ aes->src.nents,
+ DMA_BIDIRECTIONAL);
+ aes->dst.sg_len = aes->src.sg_len;
+ if (unlikely(!aes->src.sg_len))
+ goto sg_map_err;
+ } else {
+ aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
+ aes->src.nents, DMA_TO_DEVICE);
+ if (unlikely(!aes->src.sg_len))
+ goto sg_map_err;
+
+ aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
+ aes->dst.nents, DMA_FROM_DEVICE);
+ if (unlikely(!aes->dst.sg_len)) {
+ dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
+ DMA_TO_DEVICE);
+ goto sg_map_err;
+ }
+ }
+
+ return mtk_aes_xmit(cryp, aes);
+
+sg_map_err:
+ dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
+ DMA_TO_DEVICE);
+tfm_map_err:
+ dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
+ DMA_TO_DEVICE);
+
+ return -EINVAL;
+}
+
+/* Initialize transform information of CBC/ECB/CTR mode */
+static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
+ size_t len)
+{
+ struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
+ struct mtk_aes_base_ctx *ctx = aes->ctx;
+
+ ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
+ ctx->ct.cmd[0] = AES_CMD0 | cpu_to_le32(len);
+ ctx->ct.cmd[1] = AES_CMD1;
+
+ if (aes->flags & AES_FLAGS_ENCRYPT)
+ ctx->tfm.ctrl[0] = AES_TFM_BASIC_OUT;
+ else
+ ctx->tfm.ctrl[0] = AES_TFM_BASIC_IN;
+
+ if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
+ ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
+ else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
+ ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
+ else
+ ctx->tfm.ctrl[0] |= AES_TFM_192BITS;
+
+ if (aes->flags & AES_FLAGS_CBC) {
+ const u32 *iv = (const u32 *)req->info;
+ u32 *iv_state = ctx->tfm.state + ctx->keylen;
+ int i;
+
+ ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
+ SIZE_IN_WORDS(AES_BLOCK_SIZE));
+ ctx->tfm.ctrl[1] = AES_TFM_CBC | AES_TFM_FULL_IV;
+
+ for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
+ iv_state[i] = cpu_to_le32(iv[i]);
+
+ ctx->ct.cmd[2] = AES_CMD2;
+ ctx->ct_size = AES_CT_SIZE_CBC;
+ } else if (aes->flags & AES_FLAGS_ECB) {
+ ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen);
+ ctx->tfm.ctrl[1] = AES_TFM_ECB;
+
+ ctx->ct_size = AES_CT_SIZE_ECB;
+ } else if (aes->flags & AES_FLAGS_CTR) {
+ ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
+ SIZE_IN_WORDS(AES_BLOCK_SIZE));
+ ctx->tfm.ctrl[1] = AES_TFM_CTR_LOAD | AES_TFM_FULL_IV;
+
+ ctx->ct.cmd[2] = AES_CMD2;
+ ctx->ct_size = AES_CT_SIZE_CTR;
+ }
+}
+
+static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
+ struct scatterlist *src, struct scatterlist *dst,
+ size_t len)
+{
+ size_t padlen = 0;
+ bool src_aligned, dst_aligned;
+
+ aes->total = len;
+ aes->src.sg = src;
+ aes->dst.sg = dst;
+ aes->real_dst = dst;
+
+ src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
+ if (src == dst)
+ dst_aligned = src_aligned;
+ else
+ dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
+
+ if (!src_aligned || !dst_aligned) {
+ padlen = mtk_aes_padlen(len);
+
+ if (len + padlen > AES_BUF_SIZE)
+ return -ENOMEM;
+
+ if (!src_aligned) {
+ sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
+ aes->src.sg = &aes->aligned_sg;
+ aes->src.nents = 1;
+ aes->src.remainder = 0;
+ }
+
+ if (!dst_aligned) {
+ aes->dst.sg = &aes->aligned_sg;
+ aes->dst.nents = 1;
+ aes->dst.remainder = 0;
+ }
+
+ sg_init_table(&aes->aligned_sg, 1);
+ sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
+ }
+
+ mtk_aes_info_init(cryp, aes, len + padlen);
+
+ return mtk_aes_map(cryp, aes);
+}
+
+static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
+ struct crypto_async_request *new_areq)
+{
+ struct mtk_aes_rec *aes = cryp->aes[id];
+ struct crypto_async_request *areq, *backlog;
+ struct mtk_aes_base_ctx *ctx;
+ unsigned long flags;
+ int ret = 0;
+
+ spin_lock_irqsave(&aes->lock, flags);
+ if (new_areq)
+ ret = crypto_enqueue_request(&aes->queue, new_areq);
+ if (aes->flags & AES_FLAGS_BUSY) {
+ spin_unlock_irqrestore(&aes->lock, flags);
+ return ret;
+ }
+ backlog = crypto_get_backlog(&aes->queue);
+ areq = crypto_dequeue_request(&aes->queue);
+ if (areq)
+ aes->flags |= AES_FLAGS_BUSY;
+ spin_unlock_irqrestore(&aes->lock, flags);
+
+ if (!areq)
+ return ret;
+
+ if (backlog)
+ backlog->complete(backlog, -EINPROGRESS);
+
+ ctx = crypto_tfm_ctx(areq->tfm);
+
+ aes->areq = areq;
+ aes->ctx = ctx;
+
+ return ctx->start(cryp, aes);
+}
+
+static int mtk_aes_complete(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ aes->flags &= ~AES_FLAGS_BUSY;
+ aes->areq->complete(aes->areq, 0);
+
+ /* Handle new request */
+ return mtk_aes_handle_queue(cryp, aes->id, NULL);
+}
+
+static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
+ struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req);
+
+ mtk_aes_set_mode(aes, rctx);
+ aes->resume = mtk_aes_complete;
+
+ return mtk_aes_dma(cryp, aes, req->src, req->dst, req->nbytes);
+}
+
+static inline struct mtk_aes_ctr_ctx *
+mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx)
+{
+ return container_of(ctx, struct mtk_aes_ctr_ctx, base);
+}
+
+static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ struct mtk_aes_base_ctx *ctx = aes->ctx;
+ struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
+ struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
+ struct scatterlist *src, *dst;
+ int i;
+ u32 start, end, ctr, blocks, *iv_state;
+ size_t datalen;
+ bool fragmented = false;
+
+ /* Check for transfer completion. */
+ cctx->offset += aes->total;
+ if (cctx->offset >= req->nbytes)
+ return mtk_aes_complete(cryp, aes);
+
+ /* Compute data length. */
+ datalen = req->nbytes - cctx->offset;
+ blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
+ ctr = be32_to_cpu(cctx->iv[3]);
+
+ /* Check 32bit counter overflow. */
+ start = ctr;
+ end = start + blocks - 1;
+ if (end < start) {
+ ctr |= 0xffffffff;
+ datalen = AES_BLOCK_SIZE * -start;
+ fragmented = true;
+ }
+
+ /* Jump to offset. */
+ src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset);
+ dst = ((req->src == req->dst) ? src :
+ scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
+
+ /* Write IVs into transform state buffer. */
+ iv_state = ctx->tfm.state + ctx->keylen;
+ for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
+ iv_state[i] = cpu_to_le32(cctx->iv[i]);
+
+ if (unlikely(fragmented)) {
+ /*
+ * Increment the counter manually to cope with the hardware
+ * counter overflow.
+ */
+ cctx->iv[3] = cpu_to_be32(ctr);
+ crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE);
+ }
+ aes->resume = mtk_aes_ctr_transfer;
+
+ return mtk_aes_dma(cryp, aes, src, dst, datalen);
+}
+
+static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx);
+ struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
+ struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req);
+
+ mtk_aes_set_mode(aes, rctx);
+
+ memcpy(cctx->iv, req->info, AES_BLOCK_SIZE);
+ cctx->offset = 0;
+ aes->total = 0;
+
+ return mtk_aes_ctr_transfer(cryp, aes);
+}
+
+/* Check and set the AES key to transform state buffer */
+static int mtk_aes_setkey(struct crypto_ablkcipher *tfm,
+ const u8 *key, u32 keylen)
+{
+ struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
+ const u32 *aes_key = (const u32 *)key;
+ u32 *key_state = ctx->tfm.state;
+ int i;
+
+ if (keylen != AES_KEYSIZE_128 &&
+ keylen != AES_KEYSIZE_192 &&
+ keylen != AES_KEYSIZE_256) {
+ crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
+ return -EINVAL;
+ }
+
+ ctx->keylen = SIZE_IN_WORDS(keylen);
+
+ for (i = 0; i < ctx->keylen; i++)
+ key_state[i] = cpu_to_le32(aes_key[i]);
+
+ return 0;
+}
+
+static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode)
+{
+ struct mtk_aes_base_ctx *ctx;
+ struct mtk_aes_reqctx *rctx;
+
+ ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
+ rctx = ablkcipher_request_ctx(req);
+ rctx->mode = mode;
+
+ return mtk_aes_handle_queue(ctx->cryp, !(mode & AES_FLAGS_ENCRYPT),
+ &req->base);
+}
+
+static int mtk_aes_ecb_encrypt(struct ablkcipher_request *req)
+{
+ return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
+}
+
+static int mtk_aes_ecb_decrypt(struct ablkcipher_request *req)
+{
+ return mtk_aes_crypt(req, AES_FLAGS_ECB);
+}
+
+static int mtk_aes_cbc_encrypt(struct ablkcipher_request *req)
+{
+ return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
+}
+
+static int mtk_aes_cbc_decrypt(struct ablkcipher_request *req)
+{
+ return mtk_aes_crypt(req, AES_FLAGS_CBC);
+}
+
+static int mtk_aes_ctr_encrypt(struct ablkcipher_request *req)
+{
+ return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
+}
+
+static int mtk_aes_ctr_decrypt(struct ablkcipher_request *req)
+{
+ return mtk_aes_crypt(req, AES_FLAGS_CTR);
+}
+
+static int mtk_aes_cra_init(struct crypto_tfm *tfm)
+{
+ struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm);
+ struct mtk_cryp *cryp = NULL;
+
+ cryp = mtk_aes_find_dev(&ctx->base);
+ if (!cryp) {
+ pr_err("can't find crypto device\n");
+ return -ENODEV;
+ }
+
+ tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx);
+ ctx->base.start = mtk_aes_start;
+ return 0;
+}
+
+static int mtk_aes_ctr_cra_init(struct crypto_tfm *tfm)
+{
+ struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm);
+ struct mtk_cryp *cryp = NULL;
+
+ cryp = mtk_aes_find_dev(&ctx->base);
+ if (!cryp) {
+ pr_err("can't find crypto device\n");
+ return -ENODEV;
+ }
+
+ tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx);
+ ctx->base.start = mtk_aes_ctr_start;
+ return 0;
+}
+
+static struct crypto_alg aes_algs[] = {
+{
+ .cra_name = "cbc(aes)",
+ .cra_driver_name = "cbc-aes-mtk",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
+ CRYPTO_ALG_ASYNC,
+ .cra_init = mtk_aes_cra_init,
+ .cra_blocksize = AES_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_aes_ctx),
+ .cra_alignmask = 0xf,
+ .cra_type = &crypto_ablkcipher_type,
+ .cra_module = THIS_MODULE,
+ .cra_u.ablkcipher = {
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .setkey = mtk_aes_setkey,
+ .encrypt = mtk_aes_cbc_encrypt,
+ .decrypt = mtk_aes_cbc_decrypt,
+ .ivsize = AES_BLOCK_SIZE,
+ }
+},
+{
+ .cra_name = "ecb(aes)",
+ .cra_driver_name = "ecb-aes-mtk",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
+ CRYPTO_ALG_ASYNC,
+ .cra_init = mtk_aes_cra_init,
+ .cra_blocksize = AES_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_aes_ctx),
+ .cra_alignmask = 0xf,
+ .cra_type = &crypto_ablkcipher_type,
+ .cra_module = THIS_MODULE,
+ .cra_u.ablkcipher = {
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .setkey = mtk_aes_setkey,
+ .encrypt = mtk_aes_ecb_encrypt,
+ .decrypt = mtk_aes_ecb_decrypt,
+ }
+},
+{
+ .cra_name = "ctr(aes)",
+ .cra_driver_name = "ctr-aes-mtk",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
+ CRYPTO_ALG_ASYNC,
+ .cra_init = mtk_aes_ctr_cra_init,
+ .cra_blocksize = 1,
+ .cra_ctxsize = sizeof(struct mtk_aes_ctr_ctx),
+ .cra_alignmask = 0xf,
+ .cra_type = &crypto_ablkcipher_type,
+ .cra_module = THIS_MODULE,
+ .cra_u.ablkcipher = {
+ .min_keysize = AES_MIN_KEY_SIZE,
+ .max_keysize = AES_MAX_KEY_SIZE,
+ .ivsize = AES_BLOCK_SIZE,
+ .setkey = mtk_aes_setkey,
+ .encrypt = mtk_aes_ctr_encrypt,
+ .decrypt = mtk_aes_ctr_decrypt,
+ }
+},
+};
+
+static inline struct mtk_aes_gcm_ctx *
+mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx)
+{
+ return container_of(ctx, struct mtk_aes_gcm_ctx, base);
+}
+
+/* Initialize transform information of GCM mode */
+static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
+ struct mtk_aes_rec *aes,
+ size_t len)
+{
+ struct aead_request *req = aead_request_cast(aes->areq);
+ struct mtk_aes_base_ctx *ctx = aes->ctx;
+ struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
+ const u32 *iv = (const u32 *)req->iv;
+ u32 *iv_state = ctx->tfm.state + ctx->keylen +
+ SIZE_IN_WORDS(AES_BLOCK_SIZE);
+ u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
+ int i;
+
+ ctx->ct_hdr = AES_CT_CTRL_HDR | len;
+
+ ctx->ct.cmd[0] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
+ ctx->ct.cmd[1] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
+ ctx->ct.cmd[2] = AES_GCM_CMD2;
+ ctx->ct.cmd[3] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
+
+ if (aes->flags & AES_FLAGS_ENCRYPT) {
+ ctx->ct.cmd[4] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
+ ctx->ct_size = AES_CT_SIZE_GCM_OUT;
+ ctx->tfm.ctrl[0] = AES_TFM_GCM_OUT;
+ } else {
+ ctx->ct.cmd[4] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
+ ctx->ct.cmd[5] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
+ ctx->ct_size = AES_CT_SIZE_GCM_IN;
+ ctx->tfm.ctrl[0] = AES_TFM_GCM_IN;
+ }
+
+ if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
+ ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
+ else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
+ ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
+ else
+ ctx->tfm.ctrl[0] |= AES_TFM_192BITS;
+
+ ctx->tfm.ctrl[0] |= AES_TFM_GHASH_DIG | AES_TFM_GHASH |
+ AES_TFM_SIZE(ctx->keylen + SIZE_IN_WORDS(
+ AES_BLOCK_SIZE + ivsize));
+ ctx->tfm.ctrl[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE |
+ AES_TFM_3IV | AES_TFM_ENC_HASH;
+
+ for (i = 0; i < SIZE_IN_WORDS(ivsize); i++)
+ iv_state[i] = cpu_to_le32(iv[i]);
+}
+
+static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
+ struct scatterlist *src, struct scatterlist *dst,
+ size_t len)
+{
+ bool src_aligned, dst_aligned;
+
+ aes->src.sg = src;
+ aes->dst.sg = dst;
+ aes->real_dst = dst;
+
+ src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
+ if (src == dst)
+ dst_aligned = src_aligned;
+ else
+ dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
+
+ if (!src_aligned || !dst_aligned) {
+ if (aes->total > AES_BUF_SIZE)
+ return -ENOMEM;
+
+ if (!src_aligned) {
+ sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
+ aes->src.sg = &aes->aligned_sg;
+ aes->src.nents = 1;
+ aes->src.remainder = 0;
+ }
+
+ if (!dst_aligned) {
+ aes->dst.sg = &aes->aligned_sg;
+ aes->dst.nents = 1;
+ aes->dst.remainder = 0;
+ }
+
+ sg_init_table(&aes->aligned_sg, 1);
+ sg_set_buf(&aes->aligned_sg, aes->buf, aes->total);
+ }
+
+ mtk_aes_gcm_info_init(cryp, aes, len);
+
+ return mtk_aes_map(cryp, aes);
+}
+
+/* Todo: GMAC */
+static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
+{
+ struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx);
+ struct aead_request *req = aead_request_cast(aes->areq);
+ struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
+ u32 len = req->assoclen + req->cryptlen;
+
+ mtk_aes_set_mode(aes, rctx);
+
+ if (aes->flags & AES_FLAGS_ENCRYPT) {
+ u32 tag[4];
+ /* Compute total process length. */
+ aes->total = len + gctx->authsize;
+ /* Compute text length. */
+ gctx->textlen = req->cryptlen;
+ /* Hardware will append authenticated tag to output buffer */
+ scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1);
+ } else {
+ aes->total = len;
+ gctx->textlen = req->cryptlen - gctx->authsize;
+ }
+ aes->resume = mtk_aes_complete;
+
+ return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len);
+}
+
+static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode)
+{
+ struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
+ struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
+
+ rctx->mode = AES_FLAGS_GCM | mode;
+
+ return mtk_aes_handle_queue(ctx->cryp, !!(mode & AES_FLAGS_ENCRYPT),
+ &req->base);
+}
+
+static void mtk_gcm_setkey_done(struct crypto_async_request *req, int err)
+{
+ struct mtk_aes_gcm_setkey_result *result = req->data;
+
+ if (err == -EINPROGRESS)
+ return;
+
+ result->err = err;
+ complete(&result->completion);
+}
+
+/*
+ * Because of the hardware limitation, we need to pre-calculate key(H)
+ * for the GHASH operation. The result of the encryption operation
+ * need to be stored in the transform state buffer.
+ */
+static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
+ u32 keylen)
+{
+ struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
+ struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
+ struct crypto_skcipher *ctr = gctx->ctr;
+ struct {
+ u32 hash[4];
+ u8 iv[8];
+
+ struct mtk_aes_gcm_setkey_result result;
+
+ struct scatterlist sg[1];
+ struct skcipher_request req;
+ } *data;
+ const u32 *aes_key;
+ u32 *key_state, *hash_state;
+ int err, i;
+
+ if (keylen != AES_KEYSIZE_256 &&
+ keylen != AES_KEYSIZE_192 &&
+ keylen != AES_KEYSIZE_128) {
+ crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
+ return -EINVAL;
+ }
+
+ key_state = ctx->tfm.state;
+ aes_key = (u32 *)key;
+ ctx->keylen = SIZE_IN_WORDS(keylen);
+
+ for (i = 0; i < ctx->keylen; i++)
+ ctx->tfm.state[i] = cpu_to_le32(aes_key[i]);
+
+ /* Same as crypto_gcm_setkey() from crypto/gcm.c */
+ crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
+ crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
+ CRYPTO_TFM_REQ_MASK);
+ err = crypto_skcipher_setkey(ctr, key, keylen);
+ crypto_aead_set_flags(aead, crypto_skcipher_get_flags(ctr) &
+ CRYPTO_TFM_RES_MASK);
+ if (err)
+ return err;
+
+ data = kzalloc(sizeof(*data) + crypto_skcipher_reqsize(ctr),
+ GFP_KERNEL);
+ if (!data)
+ return -ENOMEM;
+
+ init_completion(&data->result.completion);
+ sg_init_one(data->sg, &data->hash, AES_BLOCK_SIZE);
+ skcipher_request_set_tfm(&data->req, ctr);
+ skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
+ CRYPTO_TFM_REQ_MAY_BACKLOG,
+ mtk_gcm_setkey_done, &data->result);
+ skcipher_request_set_crypt(&data->req, data->sg, data->sg,
+ AES_BLOCK_SIZE, data->iv);
+
+ err = crypto_skcipher_encrypt(&data->req);
+ if (err == -EINPROGRESS || err == -EBUSY) {
+ err = wait_for_completion_interruptible(
+ &data->result.completion);
+ if (!err)
+ err = data->result.err;
+ }
+ if (err)
+ goto out;
+
+ hash_state = key_state + ctx->keylen;
+
+ for (i = 0; i < 4; i++)
+ hash_state[i] = cpu_to_be32(data->hash[i]);
+out:
+ kzfree(data);
+ return err;
+}
+
+static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead,
+ u32 authsize)
+{
+ struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
+ struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
+
+ /* Same as crypto_gcm_authsize() from crypto/gcm.c */
+ switch (authsize) {
+ case 8:
+ case 12:
+ case 16:
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ gctx->authsize = authsize;
+ return 0;
+}
+
+static int mtk_aes_gcm_encrypt(struct aead_request *req)
+{
+ return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
+}
+
+static int mtk_aes_gcm_decrypt(struct aead_request *req)
+{
+ return mtk_aes_gcm_crypt(req, 0);
+}
+
+static int mtk_aes_gcm_init(struct crypto_aead *aead)
+{
+ struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
+ struct mtk_cryp *cryp = NULL;
+
+ cryp = mtk_aes_find_dev(&ctx->base);
+ if (!cryp) {
+ pr_err("can't find crypto device\n");
+ return -ENODEV;
+ }
+
+ ctx->ctr = crypto_alloc_skcipher("ctr(aes)", 0,
+ CRYPTO_ALG_ASYNC);
+ if (IS_ERR(ctx->ctr)) {
+ pr_err("Error allocating ctr(aes)\n");
+ return PTR_ERR(ctx->ctr);
+ }
+
+ crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx));
+ ctx->base.start = mtk_aes_gcm_start;
+ return 0;
+}
+
+static void mtk_aes_gcm_exit(struct crypto_aead *aead)
+{
+ struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
+
+ crypto_free_skcipher(ctx->ctr);
+}
+
+static struct aead_alg aes_gcm_alg = {
+ .setkey = mtk_aes_gcm_setkey,
+ .setauthsize = mtk_aes_gcm_setauthsize,
+ .encrypt = mtk_aes_gcm_encrypt,
+ .decrypt = mtk_aes_gcm_decrypt,
+ .init = mtk_aes_gcm_init,
+ .exit = mtk_aes_gcm_exit,
+ .ivsize = 12,
+ .maxauthsize = AES_BLOCK_SIZE,
+
+ .base = {
+ .cra_name = "gcm(aes)",
+ .cra_driver_name = "gcm-aes-mtk",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = 1,
+ .cra_ctxsize = sizeof(struct mtk_aes_gcm_ctx),
+ .cra_alignmask = 0xf,
+ .cra_module = THIS_MODULE,
+ },
+};
+
+static void mtk_aes_enc_task(unsigned long data)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)data;
+ struct mtk_aes_rec *aes = cryp->aes[0];
+
+ mtk_aes_unmap(cryp, aes);
+ aes->resume(cryp, aes);
+}
+
+static void mtk_aes_dec_task(unsigned long data)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)data;
+ struct mtk_aes_rec *aes = cryp->aes[1];
+
+ mtk_aes_unmap(cryp, aes);
+ aes->resume(cryp, aes);
+}
+
+static irqreturn_t mtk_aes_enc_irq(int irq, void *dev_id)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
+ struct mtk_aes_rec *aes = cryp->aes[0];
+ u32 val = mtk_aes_read(cryp, RDR_STAT(RING0));
+
+ mtk_aes_write(cryp, RDR_STAT(RING0), val);
+
+ if (likely(AES_FLAGS_BUSY & aes->flags)) {
+ mtk_aes_write(cryp, RDR_PROC_COUNT(RING0), MTK_CNT_RST);
+ mtk_aes_write(cryp, RDR_THRESH(RING0),
+ MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
+
+ tasklet_schedule(&aes->task);
+ } else {
+ dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
+ }
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t mtk_aes_dec_irq(int irq, void *dev_id)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
+ struct mtk_aes_rec *aes = cryp->aes[1];
+ u32 val = mtk_aes_read(cryp, RDR_STAT(RING1));
+
+ mtk_aes_write(cryp, RDR_STAT(RING1), val);
+
+ if (likely(AES_FLAGS_BUSY & aes->flags)) {
+ mtk_aes_write(cryp, RDR_PROC_COUNT(RING1), MTK_CNT_RST);
+ mtk_aes_write(cryp, RDR_THRESH(RING1),
+ MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
+
+ tasklet_schedule(&aes->task);
+ } else {
+ dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
+ }
+ return IRQ_HANDLED;
+}
+
+/*
+ * The purpose of creating encryption and decryption records is
+ * to process outbound/inbound data in parallel, it can improve
+ * performance in most use cases, such as IPSec VPN, especially
+ * under heavy network traffic.
+ */
+static int mtk_aes_record_init(struct mtk_cryp *cryp)
+{
+ struct mtk_aes_rec **aes = cryp->aes;
+ int i, err = -ENOMEM;
+
+ for (i = 0; i < MTK_REC_NUM; i++) {
+ aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
+ if (!aes[i])
+ goto err_cleanup;
+
+ aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
+ AES_BUF_ORDER);
+ if (!aes[i]->buf)
+ goto err_cleanup;
+
+ aes[i]->id = i;
+
+ spin_lock_init(&aes[i]->lock);
+ crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
+ }
+
+ tasklet_init(&aes[0]->task, mtk_aes_enc_task, (unsigned long)cryp);
+ tasklet_init(&aes[1]->task, mtk_aes_dec_task, (unsigned long)cryp);
+
+ return 0;
+
+err_cleanup:
+ for (; i--; ) {
+ free_page((unsigned long)aes[i]->buf);
+ kfree(aes[i]);
+ }
+
+ return err;
+}
+
+static void mtk_aes_record_free(struct mtk_cryp *cryp)
+{
+ int i;
+
+ for (i = 0; i < MTK_REC_NUM; i++) {
+ tasklet_kill(&cryp->aes[i]->task);
+ free_page((unsigned long)cryp->aes[i]->buf);
+ kfree(cryp->aes[i]);
+ }
+}
+
+static void mtk_aes_unregister_algs(void)
+{
+ int i;
+
+ crypto_unregister_aead(&aes_gcm_alg);
+
+ for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
+ crypto_unregister_alg(&aes_algs[i]);
+}
+
+static int mtk_aes_register_algs(void)
+{
+ int err, i;
+
+ for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
+ err = crypto_register_alg(&aes_algs[i]);
+ if (err)
+ goto err_aes_algs;
+ }
+
+ err = crypto_register_aead(&aes_gcm_alg);
+ if (err)
+ goto err_aes_algs;
+
+ return 0;
+
+err_aes_algs:
+ for (; i--; )
+ crypto_unregister_alg(&aes_algs[i]);
+
+ return err;
+}
+
+int mtk_cipher_alg_register(struct mtk_cryp *cryp)
+{
+ int ret;
+
+ INIT_LIST_HEAD(&cryp->aes_list);
+
+ /* Initialize two cipher records */
+ ret = mtk_aes_record_init(cryp);
+ if (ret)
+ goto err_record;
+
+ /* Ring0 is use by encryption record */
+ ret = devm_request_irq(cryp->dev, cryp->irq[RING0], mtk_aes_enc_irq,
+ IRQF_TRIGGER_LOW, "mtk-aes", cryp);
+ if (ret) {
+ dev_err(cryp->dev, "unable to request AES encryption irq.\n");
+ goto err_res;
+ }
+
+ /* Ring1 is use by decryption record */
+ ret = devm_request_irq(cryp->dev, cryp->irq[RING1], mtk_aes_dec_irq,
+ IRQF_TRIGGER_LOW, "mtk-aes", cryp);
+ if (ret) {
+ dev_err(cryp->dev, "unable to request AES decryption irq.\n");
+ goto err_res;
+ }
+
+ /* Enable ring0 and ring1 interrupt */
+ mtk_aes_write(cryp, AIC_ENABLE_SET(RING0), MTK_IRQ_RDR0);
+ mtk_aes_write(cryp, AIC_ENABLE_SET(RING1), MTK_IRQ_RDR1);
+
+ spin_lock(&mtk_aes.lock);
+ list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
+ spin_unlock(&mtk_aes.lock);
+
+ ret = mtk_aes_register_algs();
+ if (ret)
+ goto err_algs;
+
+ return 0;
+
+err_algs:
+ spin_lock(&mtk_aes.lock);
+ list_del(&cryp->aes_list);
+ spin_unlock(&mtk_aes.lock);
+err_res:
+ mtk_aes_record_free(cryp);
+err_record:
+
+ dev_err(cryp->dev, "mtk-aes initialization failed.\n");
+ return ret;
+}
+
+void mtk_cipher_alg_release(struct mtk_cryp *cryp)
+{
+ spin_lock(&mtk_aes.lock);
+ list_del(&cryp->aes_list);
+ spin_unlock(&mtk_aes.lock);
+
+ mtk_aes_unregister_algs();
+ mtk_aes_record_free(cryp);
+}
diff --git a/drivers/crypto/mediatek/mtk-platform.c b/drivers/crypto/mediatek/mtk-platform.c
new file mode 100644
index 000000000000..a9c713d4c733
--- /dev/null
+++ b/drivers/crypto/mediatek/mtk-platform.c
@@ -0,0 +1,604 @@
+/*
+ * Driver for EIP97 cryptographic accelerator.
+ *
+ * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/clk.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include "mtk-platform.h"
+
+#define MTK_BURST_SIZE_MSK GENMASK(7, 4)
+#define MTK_BURST_SIZE(x) ((x) << 4)
+#define MTK_DESC_SIZE(x) ((x) << 0)
+#define MTK_DESC_OFFSET(x) ((x) << 16)
+#define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
+#define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
+#define MTK_DESC_OVL_IRQ_EN BIT(25)
+#define MTK_DESC_ATP_PRESENT BIT(30)
+
+#define MTK_DFSE_IDLE GENMASK(3, 0)
+#define MTK_DFSE_THR_CTRL_EN BIT(30)
+#define MTK_DFSE_THR_CTRL_RESET BIT(31)
+#define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
+#define MTK_DFSE_MIN_DATA(x) ((x) << 0)
+#define MTK_DFSE_MAX_DATA(x) ((x) << 8)
+#define MTK_DFE_MIN_CTRL(x) ((x) << 16)
+#define MTK_DFE_MAX_CTRL(x) ((x) << 24)
+
+#define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
+#define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
+#define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
+#define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
+#define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
+#define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
+#define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
+#define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
+#define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
+
+#define MTK_PE_TK_LOC_AVL BIT(2)
+#define MTK_PE_PROC_HELD BIT(14)
+#define MTK_PE_TK_TIMEOUT_EN BIT(22)
+#define MTK_PE_INPUT_DMA_ERR BIT(0)
+#define MTK_PE_OUTPUT_DMA_ERR BIT(1)
+#define MTK_PE_PKT_PORC_ERR BIT(2)
+#define MTK_PE_PKT_TIMEOUT BIT(3)
+#define MTK_PE_FATAL_ERR BIT(14)
+#define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
+#define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
+#define MTK_PE_PKT_PORC_ERR_EN BIT(18)
+#define MTK_PE_PKT_TIMEOUT_EN BIT(19)
+#define MTK_PE_FATAL_ERR_EN BIT(30)
+#define MTK_PE_INT_OUT_EN BIT(31)
+
+#define MTK_HIA_SIGNATURE ((u16)0x35ca)
+#define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
+#define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
+#define MTK_CDR_STAT_CLR GENMASK(4, 0)
+#define MTK_RDR_STAT_CLR GENMASK(7, 0)
+
+#define MTK_AIC_INT_MSK GENMASK(5, 0)
+#define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
+#define MTK_AIC_VER11 0x011036c9
+#define MTK_AIC_VER12 0x012036c9
+#define MTK_AIC_G_CLR GENMASK(30, 20)
+
+/**
+ * EIP97 is an integrated security subsystem to accelerate cryptographic
+ * functions and protocols to offload the host processor.
+ * Some important hardware modules are briefly introduced below:
+ *
+ * Host Interface Adapter(HIA) - the main interface between the host
+ * system and the hardware subsystem. It is responsible for attaching
+ * processing engine to the specific host bus interface and provides a
+ * standardized software view for off loading tasks to the engine.
+ *
+ * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
+ * CD the host has prepared in the CDR. It monitors the fill level of its
+ * CD-FIFO and if there's sufficient space for the next block of descriptors,
+ * then it fires off a DMA request to fetch a block of CDs.
+ *
+ * Data fetch engine(DFE) - It is responsible for parsing the CD and
+ * setting up the required control and packet data DMA transfers from
+ * system memory to the processing engine.
+ *
+ * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
+ * but target is result descriptors, Moreover, it also handles the RD
+ * updates under control of the DSE. For each packet data segment
+ * processed, the DSE triggers the RDR Manager to write the updated RD.
+ * If triggered to update, the RDR Manager sets up a DMA operation to
+ * copy the RD from the DSE to the correct location in the RDR.
+ *
+ * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
+ * and setting up the required control and packet data DMA transfers from
+ * the processing engine to system memory.
+ *
+ * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
+ * from various sources and combine them into one interrupt output.
+ * The AICs are used by:
+ * - One for the HIA global and processing engine interrupts.
+ * - The others for the descriptor ring interrupts.
+ */
+
+/* Cryptographic engine capabilities */
+struct mtk_sys_cap {
+ /* host interface adapter */
+ u32 hia_ver;
+ u32 hia_opt;
+ /* packet engine */
+ u32 pkt_eng_opt;
+ /* global hardware */
+ u32 hw_opt;
+};
+
+static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
+{
+ /* Assign rings to DFE/DSE thread and enable it */
+ writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
+ writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
+}
+
+static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
+ struct mtk_sys_cap *cap)
+{
+ u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
+ u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
+ u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
+ u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
+ u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
+
+ writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
+ MTK_DFSE_MAX_DATA(ipbuf) |
+ MTK_DFE_MIN_CTRL(itbuf - 1) |
+ MTK_DFE_MAX_CTRL(itbuf),
+ cryp->base + DFE_CFG);
+
+ writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
+ MTK_DFSE_MAX_DATA(opbuf),
+ cryp->base + DSE_CFG);
+
+ writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
+ MTK_IN_BUF_MAX_THRESH(ipbuf),
+ cryp->base + PE_IN_DBUF_THRESH);
+
+ writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
+ MTK_IN_BUF_MAX_THRESH(itbuf),
+ cryp->base + PE_IN_TBUF_THRESH);
+
+ writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
+ MTK_OUT_BUF_MAX_THRESH(opbuf),
+ cryp->base + PE_OUT_DBUF_THRESH);
+
+ writel(0, cryp->base + PE_OUT_TBUF_THRESH);
+ writel(0, cryp->base + PE_OUT_BUF_CTRL);
+}
+
+static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
+{
+ int ret = -EINVAL;
+ u32 val;
+
+ /* Check for completion of all DMA transfers */
+ val = readl(cryp->base + DFE_THR_STAT);
+ if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
+ val = readl(cryp->base + DSE_THR_STAT);
+ if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
+ ret = 0;
+ }
+
+ if (!ret) {
+ /* Take DFE/DSE thread out of reset */
+ writel(0, cryp->base + DFE_THR_CTRL);
+ writel(0, cryp->base + DSE_THR_CTRL);
+ } else {
+ return -EBUSY;
+ }
+
+ return 0;
+}
+
+static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
+{
+ int err;
+
+ /* Reset DSE/DFE and correct system priorities for all rings. */
+ writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
+ writel(0, cryp->base + DFE_PRIO_0);
+ writel(0, cryp->base + DFE_PRIO_1);
+ writel(0, cryp->base + DFE_PRIO_2);
+ writel(0, cryp->base + DFE_PRIO_3);
+
+ writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
+ writel(0, cryp->base + DSE_PRIO_0);
+ writel(0, cryp->base + DSE_PRIO_1);
+ writel(0, cryp->base + DSE_PRIO_2);
+ writel(0, cryp->base + DSE_PRIO_3);
+
+ err = mtk_dfe_dse_state_check(cryp);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
+ int i, struct mtk_sys_cap *cap)
+{
+ /* Full descriptor that fits FIFO minus one */
+ u32 count =
+ ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
+
+ /* Temporarily disable external triggering */
+ writel(0, cryp->base + CDR_CFG(i));
+
+ /* Clear CDR count */
+ writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
+ writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
+
+ writel(0, cryp->base + CDR_PREP_PNTR(i));
+ writel(0, cryp->base + CDR_PROC_PNTR(i));
+ writel(0, cryp->base + CDR_DMA_CFG(i));
+
+ /* Configure CDR host address space */
+ writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
+ writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
+
+ writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
+
+ /* Clear and disable all CDR interrupts */
+ writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
+
+ /*
+ * Set command descriptor offset and enable additional
+ * token present in descriptor.
+ */
+ writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
+ MTK_DESC_OFFSET(MTK_DESC_OFF) |
+ MTK_DESC_ATP_PRESENT,
+ cryp->base + CDR_DESC_SIZE(i));
+
+ writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
+ MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
+ cryp->base + CDR_CFG(i));
+}
+
+static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
+ int i, struct mtk_sys_cap *cap)
+{
+ u32 rndup = 2;
+ u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
+
+ /* Temporarily disable external triggering */
+ writel(0, cryp->base + RDR_CFG(i));
+
+ /* Clear RDR count */
+ writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
+ writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
+
+ writel(0, cryp->base + RDR_PREP_PNTR(i));
+ writel(0, cryp->base + RDR_PROC_PNTR(i));
+ writel(0, cryp->base + RDR_DMA_CFG(i));
+
+ /* Configure RDR host address space */
+ writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
+ writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
+
+ writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
+ writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
+
+ /*
+ * RDR manager generates update interrupts on a per-completed-packet,
+ * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
+ * for the RDR exceeds the number of packets.
+ */
+ writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
+ cryp->base + RDR_THRESH(i));
+
+ /*
+ * Configure a threshold and time-out value for the processed
+ * result descriptors (or complete packets) that are written to
+ * the RDR.
+ */
+ writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
+ cryp->base + RDR_DESC_SIZE(i));
+
+ /*
+ * Configure HIA fetch size and fetch threshold that are used to
+ * fetch blocks of multiple descriptors.
+ */
+ writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
+ MTK_DESC_FETCH_THRESH(count * rndup) |
+ MTK_DESC_OVL_IRQ_EN,
+ cryp->base + RDR_CFG(i));
+}
+
+static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
+{
+ struct mtk_sys_cap cap;
+ int i, err;
+ u32 val;
+
+ cap.hia_ver = readl(cryp->base + HIA_VERSION);
+ cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
+ cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
+
+ if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
+ return -EINVAL;
+
+ /* Configure endianness conversion method for master (DMA) interface */
+ writel(0, cryp->base + EIP97_MST_CTRL);
+
+ /* Set HIA burst size */
+ val = readl(cryp->base + HIA_MST_CTRL);
+ val &= ~MTK_BURST_SIZE_MSK;
+ val |= MTK_BURST_SIZE(5);
+ writel(val, cryp->base + HIA_MST_CTRL);
+
+ err = mtk_dfe_dse_reset(cryp);
+ if (err) {
+ dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
+ return err;
+ }
+
+ mtk_dfe_dse_buf_setup(cryp, &cap);
+
+ /* Enable the 4 rings for the packet engines. */
+ mtk_desc_ring_link(cryp, 0xf);
+
+ for (i = 0; i < RING_MAX; i++) {
+ mtk_cmd_desc_ring_setup(cryp, i, &cap);
+ mtk_res_desc_ring_setup(cryp, i, &cap);
+ }
+
+ writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
+ cryp->base + PE_TOKEN_CTRL_STAT);
+
+ /* Clear all pending interrupts */
+ writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
+ writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
+ MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
+ MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
+ MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
+ MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
+ MTK_PE_INT_OUT_EN,
+ cryp->base + PE_INTERRUPT_CTRL_STAT);
+
+ return 0;
+}
+
+static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
+{
+ u32 val;
+
+ if (hw == RING_MAX)
+ val = readl(cryp->base + AIC_G_VERSION);
+ else
+ val = readl(cryp->base + AIC_VERSION(hw));
+
+ val &= MTK_AIC_VER_MSK;
+ if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
+ return -ENXIO;
+
+ if (hw == RING_MAX)
+ val = readl(cryp->base + AIC_G_OPTIONS);
+ else
+ val = readl(cryp->base + AIC_OPTIONS(hw));
+
+ val &= MTK_AIC_INT_MSK;
+ if (!val || val > 32)
+ return -ENXIO;
+
+ return 0;
+}
+
+static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
+{
+ int err;
+
+ err = mtk_aic_cap_check(cryp, hw);
+ if (err)
+ return err;
+
+ /* Disable all interrupts and set initial configuration */
+ if (hw == RING_MAX) {
+ writel(0, cryp->base + AIC_G_ENABLE_CTRL);
+ writel(0, cryp->base + AIC_G_POL_CTRL);
+ writel(0, cryp->base + AIC_G_TYPE_CTRL);
+ writel(0, cryp->base + AIC_G_ENABLE_SET);
+ } else {
+ writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
+ writel(0, cryp->base + AIC_POL_CTRL(hw));
+ writel(0, cryp->base + AIC_TYPE_CTRL(hw));
+ writel(0, cryp->base + AIC_ENABLE_SET(hw));
+ }
+
+ return 0;
+}
+
+static int mtk_accelerator_init(struct mtk_cryp *cryp)
+{
+ int i, err;
+
+ /* Initialize advanced interrupt controller(AIC) */
+ for (i = 0; i < MTK_IRQ_NUM; i++) {
+ err = mtk_aic_init(cryp, i);
+ if (err) {
+ dev_err(cryp->dev, "Failed to initialize AIC.\n");
+ return err;
+ }
+ }
+
+ /* Initialize packet engine */
+ err = mtk_packet_engine_setup(cryp);
+ if (err) {
+ dev_err(cryp->dev, "Failed to configure packet engine.\n");
+ return err;
+ }
+
+ return 0;
+}
+
+static void mtk_desc_dma_free(struct mtk_cryp *cryp)
+{
+ int i;
+
+ for (i = 0; i < RING_MAX; i++) {
+ dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
+ cryp->ring[i]->res_base,
+ cryp->ring[i]->res_dma);
+ dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
+ cryp->ring[i]->cmd_base,
+ cryp->ring[i]->cmd_dma);
+ kfree(cryp->ring[i]);
+ }
+}
+
+static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
+{
+ struct mtk_ring **ring = cryp->ring;
+ int i, err = ENOMEM;
+
+ for (i = 0; i < RING_MAX; i++) {
+ ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
+ if (!ring[i])
+ goto err_cleanup;
+
+ ring[i]->cmd_base = dma_zalloc_coherent(cryp->dev,
+ MTK_DESC_RING_SZ,
+ &ring[i]->cmd_dma,
+ GFP_KERNEL);
+ if (!ring[i]->cmd_base)
+ goto err_cleanup;
+
+ ring[i]->res_base = dma_zalloc_coherent(cryp->dev,
+ MTK_DESC_RING_SZ,
+ &ring[i]->res_dma,
+ GFP_KERNEL);
+ if (!ring[i]->res_base)
+ goto err_cleanup;
+ }
+ return 0;
+
+err_cleanup:
+ for (; i--; ) {
+ dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
+ ring[i]->res_base, ring[i]->res_dma);
+ dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
+ ring[i]->cmd_base, ring[i]->cmd_dma);
+ kfree(ring[i]);
+ }
+ return err;
+}
+
+static int mtk_crypto_probe(struct platform_device *pdev)
+{
+ struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ struct mtk_cryp *cryp;
+ int i, err;
+
+ cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
+ if (!cryp)
+ return -ENOMEM;
+
+ cryp->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(cryp->base))
+ return PTR_ERR(cryp->base);
+
+ for (i = 0; i < MTK_IRQ_NUM; i++) {
+ cryp->irq[i] = platform_get_irq(pdev, i);
+ if (cryp->irq[i] < 0) {
+ dev_err(cryp->dev, "no IRQ:%d resource info\n", i);
+ return -ENXIO;
+ }
+ }
+
+ cryp->clk_ethif = devm_clk_get(&pdev->dev, "ethif");
+ cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
+ if (IS_ERR(cryp->clk_ethif) || IS_ERR(cryp->clk_cryp))
+ return -EPROBE_DEFER;
+
+ cryp->dev = &pdev->dev;
+ pm_runtime_enable(cryp->dev);
+ pm_runtime_get_sync(cryp->dev);
+
+ err = clk_prepare_enable(cryp->clk_ethif);
+ if (err)
+ goto err_clk_ethif;
+
+ err = clk_prepare_enable(cryp->clk_cryp);
+ if (err)
+ goto err_clk_cryp;
+
+ /* Allocate four command/result descriptor rings */
+ err = mtk_desc_ring_alloc(cryp);
+ if (err) {
+ dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
+ goto err_resource;
+ }
+
+ /* Initialize hardware modules */
+ err = mtk_accelerator_init(cryp);
+ if (err) {
+ dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
+ goto err_engine;
+ }
+
+ err = mtk_cipher_alg_register(cryp);
+ if (err) {
+ dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
+ goto err_cipher;
+ }
+
+ err = mtk_hash_alg_register(cryp);
+ if (err) {
+ dev_err(cryp->dev, "Unable to register hash algorithm.\n");
+ goto err_hash;
+ }
+
+ platform_set_drvdata(pdev, cryp);
+ return 0;
+
+err_hash:
+ mtk_cipher_alg_release(cryp);
+err_cipher:
+ mtk_dfe_dse_reset(cryp);
+err_engine:
+ mtk_desc_dma_free(cryp);
+err_resource:
+ clk_disable_unprepare(cryp->clk_cryp);
+err_clk_cryp:
+ clk_disable_unprepare(cryp->clk_ethif);
+err_clk_ethif:
+ pm_runtime_put_sync(cryp->dev);
+ pm_runtime_disable(cryp->dev);
+
+ return err;
+}
+
+static int mtk_crypto_remove(struct platform_device *pdev)
+{
+ struct mtk_cryp *cryp = platform_get_drvdata(pdev);
+
+ mtk_hash_alg_release(cryp);
+ mtk_cipher_alg_release(cryp);
+ mtk_desc_dma_free(cryp);
+
+ clk_disable_unprepare(cryp->clk_cryp);
+ clk_disable_unprepare(cryp->clk_ethif);
+
+ pm_runtime_put_sync(cryp->dev);
+ pm_runtime_disable(cryp->dev);
+ platform_set_drvdata(pdev, NULL);
+
+ return 0;
+}
+
+static const struct of_device_id of_crypto_id[] = {
+ { .compatible = "mediatek,eip97-crypto" },
+ {},
+};
+MODULE_DEVICE_TABLE(of, of_crypto_id);
+
+static struct platform_driver mtk_crypto_driver = {
+ .probe = mtk_crypto_probe,
+ .remove = mtk_crypto_remove,
+ .driver = {
+ .name = "mtk-crypto",
+ .owner = THIS_MODULE,
+ .of_match_table = of_crypto_id,
+ },
+};
+module_platform_driver(mtk_crypto_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
+MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");
diff --git a/drivers/crypto/mediatek/mtk-platform.h b/drivers/crypto/mediatek/mtk-platform.h
new file mode 100644
index 000000000000..ed6d8717f7f4
--- /dev/null
+++ b/drivers/crypto/mediatek/mtk-platform.h
@@ -0,0 +1,231 @@
+/*
+ * Driver for EIP97 cryptographic accelerator.
+ *
+ * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#ifndef __MTK_PLATFORM_H_
+#define __MTK_PLATFORM_H_
+
+#include <crypto/algapi.h>
+#include <crypto/internal/aead.h>
+#include <crypto/internal/hash.h>
+#include <crypto/scatterwalk.h>
+#include <crypto/skcipher.h>
+#include <linux/crypto.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/scatterlist.h>
+#include "mtk-regs.h"
+
+#define MTK_RDR_PROC_THRESH BIT(0)
+#define MTK_RDR_PROC_MODE BIT(23)
+#define MTK_CNT_RST BIT(31)
+#define MTK_IRQ_RDR0 BIT(1)
+#define MTK_IRQ_RDR1 BIT(3)
+#define MTK_IRQ_RDR2 BIT(5)
+#define MTK_IRQ_RDR3 BIT(7)
+
+#define SIZE_IN_WORDS(x) ((x) >> 2)
+
+/**
+ * Ring 0/1 are used by AES encrypt and decrypt.
+ * Ring 2/3 are used by SHA.
+ */
+enum {
+ RING0 = 0,
+ RING1,
+ RING2,
+ RING3,
+ RING_MAX,
+};
+
+#define MTK_REC_NUM (RING_MAX / 2)
+#define MTK_IRQ_NUM 5
+
+/**
+ * struct mtk_desc - DMA descriptor
+ * @hdr: the descriptor control header
+ * @buf: DMA address of input buffer segment
+ * @ct: DMA address of command token that control operation flow
+ * @ct_hdr: the command token control header
+ * @tag: the user-defined field
+ * @tfm: DMA address of transform state
+ * @bound: align descriptors offset boundary
+ *
+ * Structure passed to the crypto engine to describe where source
+ * data needs to be fetched and how it needs to be processed.
+ */
+struct mtk_desc {
+ __le32 hdr;
+ __le32 buf;
+ __le32 ct;
+ __le32 ct_hdr;
+ __le32 tag;
+ __le32 tfm;
+ __le32 bound[2];
+};
+
+#define MTK_DESC_NUM 512
+#define MTK_DESC_OFF SIZE_IN_WORDS(sizeof(struct mtk_desc))
+#define MTK_DESC_SZ (MTK_DESC_OFF - 2)
+#define MTK_DESC_RING_SZ ((sizeof(struct mtk_desc) * MTK_DESC_NUM))
+#define MTK_DESC_CNT(x) ((MTK_DESC_OFF * (x)) << 2)
+#define MTK_DESC_LAST cpu_to_le32(BIT(22))
+#define MTK_DESC_FIRST cpu_to_le32(BIT(23))
+#define MTK_DESC_BUF_LEN(x) cpu_to_le32(x)
+#define MTK_DESC_CT_LEN(x) cpu_to_le32((x) << 24)
+
+/**
+ * struct mtk_ring - Descriptor ring
+ * @cmd_base: pointer to command descriptor ring base
+ * @cmd_dma: DMA address of command descriptor ring
+ * @cmd_pos: current position in the command descriptor ring
+ * @res_base: pointer to result descriptor ring base
+ * @res_dma: DMA address of result descriptor ring
+ * @res_pos: current position in the result descriptor ring
+ *
+ * A descriptor ring is a circular buffer that is used to manage
+ * one or more descriptors. There are two type of descriptor rings;
+ * the command descriptor ring and result descriptor ring.
+ */
+struct mtk_ring {
+ struct mtk_desc *cmd_base;
+ dma_addr_t cmd_dma;
+ u32 cmd_pos;
+ struct mtk_desc *res_base;
+ dma_addr_t res_dma;
+ u32 res_pos;
+};
+
+/**
+ * struct mtk_aes_dma - Structure that holds sg list info
+ * @sg: pointer to scatter-gather list
+ * @nents: number of entries in the sg list
+ * @remainder: remainder of sg list
+ * @sg_len: number of entries in the sg mapped list
+ */
+struct mtk_aes_dma {
+ struct scatterlist *sg;
+ int nents;
+ u32 remainder;
+ u32 sg_len;
+};
+
+struct mtk_aes_base_ctx;
+struct mtk_aes_rec;
+struct mtk_cryp;
+
+typedef int (*mtk_aes_fn)(struct mtk_cryp *cryp, struct mtk_aes_rec *aes);
+
+/**
+ * struct mtk_aes_rec - AES operation record
+ * @queue: crypto request queue
+ * @areq: pointer to async request
+ * @task: the tasklet is use in AES interrupt
+ * @ctx: pointer to current context
+ * @src: the structure that holds source sg list info
+ * @dst: the structure that holds destination sg list info
+ * @aligned_sg: the scatter list is use to alignment
+ * @real_dst: pointer to the destination sg list
+ * @resume: pointer to resume function
+ * @total: request buffer length
+ * @buf: pointer to page buffer
+ * @id: record identification
+ * @flags: it's describing AES operation state
+ * @lock: the async queue lock
+ *
+ * Structure used to record AES execution state.
+ */
+struct mtk_aes_rec {
+ struct crypto_queue queue;
+ struct crypto_async_request *areq;
+ struct tasklet_struct task;
+ struct mtk_aes_base_ctx *ctx;
+ struct mtk_aes_dma src;
+ struct mtk_aes_dma dst;
+
+ struct scatterlist aligned_sg;
+ struct scatterlist *real_dst;
+
+ mtk_aes_fn resume;
+
+ size_t total;
+ void *buf;
+
+ u8 id;
+ unsigned long flags;
+ /* queue lock */
+ spinlock_t lock;
+};
+
+/**
+ * struct mtk_sha_rec - SHA operation record
+ * @queue: crypto request queue
+ * @req: pointer to ahash request
+ * @task: the tasklet is use in SHA interrupt
+ * @id: record identification
+ * @flags: it's describing SHA operation state
+ * @lock: the ablkcipher queue lock
+ *
+ * Structure used to record SHA execution state.
+ */
+struct mtk_sha_rec {
+ struct crypto_queue queue;
+ struct ahash_request *req;
+ struct tasklet_struct task;
+
+ u8 id;
+ unsigned long flags;
+ /* queue lock */
+ spinlock_t lock;
+};
+
+/**
+ * struct mtk_cryp - Cryptographic device
+ * @base: pointer to mapped register I/O base
+ * @dev: pointer to device
+ * @clk_ethif: pointer to ethif clock
+ * @clk_cryp: pointer to crypto clock
+ * @irq: global system and rings IRQ
+ * @ring: pointer to execution state of AES
+ * @aes: pointer to execution state of SHA
+ * @sha: each execution record map to a ring
+ * @aes_list: device list of AES
+ * @sha_list: device list of SHA
+ * @tmp: pointer to temporary buffer for internal use
+ * @tmp_dma: DMA address of temporary buffer
+ * @rec: it's used to select SHA record for tfm
+ *
+ * Structure storing cryptographic device information.
+ */
+struct mtk_cryp {
+ void __iomem *base;
+ struct device *dev;
+ struct clk *clk_ethif;
+ struct clk *clk_cryp;
+ int irq[MTK_IRQ_NUM];
+
+ struct mtk_ring *ring[RING_MAX];
+ struct mtk_aes_rec *aes[MTK_REC_NUM];
+ struct mtk_sha_rec *sha[MTK_REC_NUM];
+
+ struct list_head aes_list;
+ struct list_head sha_list;
+
+ void *tmp;
+ dma_addr_t tmp_dma;
+ bool rec;
+};
+
+int mtk_cipher_alg_register(struct mtk_cryp *cryp);
+void mtk_cipher_alg_release(struct mtk_cryp *cryp);
+int mtk_hash_alg_register(struct mtk_cryp *cryp);
+void mtk_hash_alg_release(struct mtk_cryp *cryp);
+
+#endif /* __MTK_PLATFORM_H_ */
diff --git a/drivers/crypto/mediatek/mtk-regs.h b/drivers/crypto/mediatek/mtk-regs.h
new file mode 100644
index 000000000000..94f4eb85be3f
--- /dev/null
+++ b/drivers/crypto/mediatek/mtk-regs.h
@@ -0,0 +1,194 @@
+/*
+ * Support for MediaTek cryptographic accelerator.
+ *
+ * Copyright (c) 2016 MediaTek Inc.
+ * Author: Ryder Lee <ryder.lee@mediatek.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License.
+ *
+ */
+
+#ifndef __MTK_REGS_H__
+#define __MTK_REGS_H__
+
+/* HIA, Command Descriptor Ring Manager */
+#define CDR_BASE_ADDR_LO(x) (0x0 + ((x) << 12))
+#define CDR_BASE_ADDR_HI(x) (0x4 + ((x) << 12))
+#define CDR_DATA_BASE_ADDR_LO(x) (0x8 + ((x) << 12))
+#define CDR_DATA_BASE_ADDR_HI(x) (0xC + ((x) << 12))
+#define CDR_ACD_BASE_ADDR_LO(x) (0x10 + ((x) << 12))
+#define CDR_ACD_BASE_ADDR_HI(x) (0x14 + ((x) << 12))
+#define CDR_RING_SIZE(x) (0x18 + ((x) << 12))
+#define CDR_DESC_SIZE(x) (0x1C + ((x) << 12))
+#define CDR_CFG(x) (0x20 + ((x) << 12))
+#define CDR_DMA_CFG(x) (0x24 + ((x) << 12))
+#define CDR_THRESH(x) (0x28 + ((x) << 12))
+#define CDR_PREP_COUNT(x) (0x2C + ((x) << 12))
+#define CDR_PROC_COUNT(x) (0x30 + ((x) << 12))
+#define CDR_PREP_PNTR(x) (0x34 + ((x) << 12))
+#define CDR_PROC_PNTR(x) (0x38 + ((x) << 12))
+#define CDR_STAT(x) (0x3C + ((x) << 12))
+
+/* HIA, Result Descriptor Ring Manager */
+#define RDR_BASE_ADDR_LO(x) (0x800 + ((x) << 12))
+#define RDR_BASE_ADDR_HI(x) (0x804 + ((x) << 12))
+#define RDR_DATA_BASE_ADDR_LO(x) (0x808 + ((x) << 12))
+#define RDR_DATA_BASE_ADDR_HI(x) (0x80C + ((x) << 12))
+#define RDR_ACD_BASE_ADDR_LO(x) (0x810 + ((x) << 12))
+#define RDR_ACD_BASE_ADDR_HI(x) (0x814 + ((x) << 12))
+#define RDR_RING_SIZE(x) (0x818 + ((x) << 12))
+#define RDR_DESC_SIZE(x) (0x81C + ((x) << 12))
+#define RDR_CFG(x) (0x820 + ((x) << 12))
+#define RDR_DMA_CFG(x) (0x824 + ((x) << 12))
+#define RDR_THRESH(x) (0x828 + ((x) << 12))
+#define RDR_PREP_COUNT(x) (0x82C + ((x) << 12))
+#define RDR_PROC_COUNT(x) (0x830 + ((x) << 12))
+#define RDR_PREP_PNTR(x) (0x834 + ((x) << 12))
+#define RDR_PROC_PNTR(x) (0x838 + ((x) << 12))
+#define RDR_STAT(x) (0x83C + ((x) << 12))
+
+/* HIA, Ring AIC */
+#define AIC_POL_CTRL(x) (0xE000 - ((x) << 12))
+#define AIC_TYPE_CTRL(x) (0xE004 - ((x) << 12))
+#define AIC_ENABLE_CTRL(x) (0xE008 - ((x) << 12))
+#define AIC_RAW_STAL(x) (0xE00C - ((x) << 12))
+#define AIC_ENABLE_SET(x) (0xE00C - ((x) << 12))
+#define AIC_ENABLED_STAT(x) (0xE010 - ((x) << 12))
+#define AIC_ACK(x) (0xE010 - ((x) << 12))
+#define AIC_ENABLE_CLR(x) (0xE014 - ((x) << 12))
+#define AIC_OPTIONS(x) (0xE018 - ((x) << 12))
+#define AIC_VERSION(x) (0xE01C - ((x) << 12))
+
+/* HIA, Global AIC */
+#define AIC_G_POL_CTRL 0xF800
+#define AIC_G_TYPE_CTRL 0xF804
+#define AIC_G_ENABLE_CTRL 0xF808
+#define AIC_G_RAW_STAT 0xF80C
+#define AIC_G_ENABLE_SET 0xF80C
+#define AIC_G_ENABLED_STAT 0xF810
+#define AIC_G_ACK 0xF810
+#define AIC_G_ENABLE_CLR 0xF814
+#define AIC_G_OPTIONS 0xF818
+#define AIC_G_VERSION 0xF81C
+
+/* HIA, Data Fetch Engine */
+#define DFE_CFG 0xF000
+#define DFE_PRIO_0 0xF010
+#define DFE_PRIO_1 0xF014
+#define DFE_PRIO_2 0xF018
+#define DFE_PRIO_3 0xF01C
+
+/* HIA, Data Fetch Engine access monitoring for CDR */
+#define DFE_RING_REGION_LO(x) (0xF080 + ((x) << 3))
+#define DFE_RING_REGION_HI(x) (0xF084 + ((x) << 3))
+
+/* HIA, Data Fetch Engine thread control and status for thread */
+#define DFE_THR_CTRL 0xF200
+#define DFE_THR_STAT 0xF204
+#define DFE_THR_DESC_CTRL 0xF208
+#define DFE_THR_DESC_DPTR_LO 0xF210
+#define DFE_THR_DESC_DPTR_HI 0xF214
+#define DFE_THR_DESC_ACDPTR_LO 0xF218
+#define DFE_THR_DESC_ACDPTR_HI 0xF21C
+
+/* HIA, Data Store Engine */
+#define DSE_CFG 0xF400
+#define DSE_PRIO_0 0xF410
+#define DSE_PRIO_1 0xF414
+#define DSE_PRIO_2 0xF418
+#define DSE_PRIO_3 0xF41C
+
+/* HIA, Data Store Engine access monitoring for RDR */
+#define DSE_RING_REGION_LO(x) (0xF480 + ((x) << 3))
+#define DSE_RING_REGION_HI(x) (0xF484 + ((x) << 3))
+
+/* HIA, Data Store Engine thread control and status for thread */
+#define DSE_THR_CTRL 0xF600
+#define DSE_THR_STAT 0xF604
+#define DSE_THR_DESC_CTRL 0xF608
+#define DSE_THR_DESC_DPTR_LO 0xF610
+#define DSE_THR_DESC_DPTR_HI 0xF614
+#define DSE_THR_DESC_S_DPTR_LO 0xF618
+#define DSE_THR_DESC_S_DPTR_HI 0xF61C
+#define DSE_THR_ERROR_STAT 0xF620
+
+/* HIA Global */
+#define HIA_MST_CTRL 0xFFF4
+#define HIA_OPTIONS 0xFFF8
+#define HIA_VERSION 0xFFFC
+
+/* Processing Engine Input Side, Processing Engine */
+#define PE_IN_DBUF_THRESH 0x10000
+#define PE_IN_TBUF_THRESH 0x10100
+
+/* Packet Engine Configuration / Status Registers */
+#define PE_TOKEN_CTRL_STAT 0x11000
+#define PE_FUNCTION_EN 0x11004
+#define PE_CONTEXT_CTRL 0x11008
+#define PE_INTERRUPT_CTRL_STAT 0x11010
+#define PE_CONTEXT_STAT 0x1100C
+#define PE_OUT_TRANS_CTRL_STAT 0x11018
+#define PE_OUT_BUF_CTRL 0x1101C
+
+/* Packet Engine PRNG Registers */
+#define PE_PRNG_STAT 0x11040
+#define PE_PRNG_CTRL 0x11044
+#define PE_PRNG_SEED_L 0x11048
+#define PE_PRNG_SEED_H 0x1104C
+#define PE_PRNG_KEY_0_L 0x11050
+#define PE_PRNG_KEY_0_H 0x11054
+#define PE_PRNG_KEY_1_L 0x11058
+#define PE_PRNG_KEY_1_H 0x1105C
+#define PE_PRNG_RES_0 0x11060
+#define PE_PRNG_RES_1 0x11064
+#define PE_PRNG_RES_2 0x11068
+#define PE_PRNG_RES_3 0x1106C
+#define PE_PRNG_LFSR_L 0x11070
+#define PE_PRNG_LFSR_H 0x11074
+
+/* Packet Engine AIC */
+#define PE_EIP96_AIC_POL_CTRL 0x113C0
+#define PE_EIP96_AIC_TYPE_CTRL 0x113C4
+#define PE_EIP96_AIC_ENABLE_CTRL 0x113C8
+#define PE_EIP96_AIC_RAW_STAT 0x113CC
+#define PE_EIP96_AIC_ENABLE_SET 0x113CC
+#define PE_EIP96_AIC_ENABLED_STAT 0x113D0
+#define PE_EIP96_AIC_ACK 0x113D0
+#define PE_EIP96_AIC_ENABLE_CLR 0x113D4
+#define PE_EIP96_AIC_OPTIONS 0x113D8
+#define PE_EIP96_AIC_VERSION 0x113DC
+
+/* Packet Engine Options & Version Registers */
+#define PE_EIP96_OPTIONS 0x113F8
+#define PE_EIP96_VERSION 0x113FC
+
+/* Processing Engine Output Side */
+#define PE_OUT_DBUF_THRESH 0x11C00
+#define PE_OUT_TBUF_THRESH 0x11D00
+
+/* Processing Engine Local AIC */
+#define PE_AIC_POL_CTRL 0x11F00
+#define PE_AIC_TYPE_CTRL 0x11F04
+#define PE_AIC_ENABLE_CTRL 0x11F08
+#define PE_AIC_RAW_STAT 0x11F0C
+#define PE_AIC_ENABLE_SET 0x11F0C
+#define PE_AIC_ENABLED_STAT 0x11F10
+#define PE_AIC_ENABLE_CLR 0x11F14
+#define PE_AIC_OPTIONS 0x11F18
+#define PE_AIC_VERSION 0x11F1C
+
+/* Processing Engine General Configuration and Version */
+#define PE_IN_FLIGHT 0x11FF0
+#define PE_OPTIONS 0x11FF8
+#define PE_VERSION 0x11FFC
+
+/* EIP-97 - Global */
+#define EIP97_CLOCK_STATE 0x1FFE4
+#define EIP97_FORCE_CLOCK_ON 0x1FFE8
+#define EIP97_FORCE_CLOCK_OFF 0x1FFEC
+#define EIP97_MST_CTRL 0x1FFF4
+#define EIP97_OPTIONS 0x1FFF8
+#define EIP97_VERSION 0x1FFFC
+#endif /* __MTK_REGS_H__ */
diff --git a/drivers/crypto/mediatek/mtk-sha.c b/drivers/crypto/mediatek/mtk-sha.c
new file mode 100644
index 000000000000..55e3805fba07
--- /dev/null
+++ b/drivers/crypto/mediatek/mtk-sha.c
@@ -0,0 +1,1435 @@
+/*
+ * Cryptographic API.
+ *
+ * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
+ *
+ * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Some ideas are from atmel-sha.c and omap-sham.c drivers.
+ */
+
+#include <crypto/sha.h>
+#include "mtk-platform.h"
+
+#define SHA_ALIGN_MSK (sizeof(u32) - 1)
+#define SHA_QUEUE_SIZE 512
+#define SHA_TMP_BUF_SIZE 512
+#define SHA_BUF_SIZE ((u32)PAGE_SIZE)
+
+#define SHA_OP_UPDATE 1
+#define SHA_OP_FINAL 2
+
+#define SHA_DATA_LEN_MSK cpu_to_le32(GENMASK(16, 0))
+
+/* SHA command token */
+#define SHA_CT_SIZE 5
+#define SHA_CT_CTRL_HDR cpu_to_le32(0x02220000)
+#define SHA_CMD0 cpu_to_le32(0x03020000)
+#define SHA_CMD1 cpu_to_le32(0x21060000)
+#define SHA_CMD2 cpu_to_le32(0xe0e63802)
+
+/* SHA transform information */
+#define SHA_TFM_HASH cpu_to_le32(0x2 << 0)
+#define SHA_TFM_INNER_DIG cpu_to_le32(0x1 << 21)
+#define SHA_TFM_SIZE(x) cpu_to_le32((x) << 8)
+#define SHA_TFM_START cpu_to_le32(0x1 << 4)
+#define SHA_TFM_CONTINUE cpu_to_le32(0x1 << 5)
+#define SHA_TFM_HASH_STORE cpu_to_le32(0x1 << 19)
+#define SHA_TFM_SHA1 cpu_to_le32(0x2 << 23)
+#define SHA_TFM_SHA256 cpu_to_le32(0x3 << 23)
+#define SHA_TFM_SHA224 cpu_to_le32(0x4 << 23)
+#define SHA_TFM_SHA512 cpu_to_le32(0x5 << 23)
+#define SHA_TFM_SHA384 cpu_to_le32(0x6 << 23)
+#define SHA_TFM_DIGEST(x) cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
+
+/* SHA flags */
+#define SHA_FLAGS_BUSY BIT(0)
+#define SHA_FLAGS_FINAL BIT(1)
+#define SHA_FLAGS_FINUP BIT(2)
+#define SHA_FLAGS_SG BIT(3)
+#define SHA_FLAGS_ALGO_MSK GENMASK(8, 4)
+#define SHA_FLAGS_SHA1 BIT(4)
+#define SHA_FLAGS_SHA224 BIT(5)
+#define SHA_FLAGS_SHA256 BIT(6)
+#define SHA_FLAGS_SHA384 BIT(7)
+#define SHA_FLAGS_SHA512 BIT(8)
+#define SHA_FLAGS_HMAC BIT(9)
+#define SHA_FLAGS_PAD BIT(10)
+
+/**
+ * mtk_sha_ct is a set of hardware instructions(command token)
+ * that are used to control engine's processing flow of SHA,
+ * and it contains the first two words of transform state.
+ */
+struct mtk_sha_ct {
+ __le32 ctrl[2];
+ __le32 cmd[3];
+};
+
+/**
+ * mtk_sha_tfm is used to define SHA transform state
+ * and store result digest that produced by engine.
+ */
+struct mtk_sha_tfm {
+ __le32 ctrl[2];
+ __le32 digest[SIZE_IN_WORDS(SHA512_DIGEST_SIZE)];
+};
+
+/**
+ * mtk_sha_info consists of command token and transform state
+ * of SHA, its role is similar to mtk_aes_info.
+ */
+struct mtk_sha_info {
+ struct mtk_sha_ct ct;
+ struct mtk_sha_tfm tfm;
+};
+
+struct mtk_sha_reqctx {
+ struct mtk_sha_info info;
+ unsigned long flags;
+ unsigned long op;
+
+ u64 digcnt;
+ bool start;
+ size_t bufcnt;
+ dma_addr_t dma_addr;
+
+ __le32 ct_hdr;
+ u32 ct_size;
+ dma_addr_t ct_dma;
+ dma_addr_t tfm_dma;
+
+ /* Walk state */
+ struct scatterlist *sg;
+ u32 offset; /* Offset in current sg */
+ u32 total; /* Total request */
+ size_t ds;
+ size_t bs;
+
+ u8 *buffer;
+};
+
+struct mtk_sha_hmac_ctx {
+ struct crypto_shash *shash;
+ u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
+ u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
+};
+
+struct mtk_sha_ctx {
+ struct mtk_cryp *cryp;
+ unsigned long flags;
+ u8 id;
+ u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
+
+ struct mtk_sha_hmac_ctx base[0];
+};
+
+struct mtk_sha_drv {
+ struct list_head dev_list;
+ /* Device list lock */
+ spinlock_t lock;
+};
+
+static struct mtk_sha_drv mtk_sha = {
+ .dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
+ .lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
+};
+
+static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
+ struct ahash_request *req);
+
+static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
+{
+ return readl_relaxed(cryp->base + offset);
+}
+
+static inline void mtk_sha_write(struct mtk_cryp *cryp,
+ u32 offset, u32 value)
+{
+ writel_relaxed(value, cryp->base + offset);
+}
+
+static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
+{
+ struct mtk_cryp *cryp = NULL;
+ struct mtk_cryp *tmp;
+
+ spin_lock_bh(&mtk_sha.lock);
+ if (!tctx->cryp) {
+ list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
+ cryp = tmp;
+ break;
+ }
+ tctx->cryp = cryp;
+ } else {
+ cryp = tctx->cryp;
+ }
+
+ /*
+ * Assign record id to tfm in round-robin fashion, and this
+ * will help tfm to bind to corresponding descriptor rings.
+ */
+ tctx->id = cryp->rec;
+ cryp->rec = !cryp->rec;
+
+ spin_unlock_bh(&mtk_sha.lock);
+
+ return cryp;
+}
+
+static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
+{
+ size_t count;
+
+ while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
+ count = min(ctx->sg->length - ctx->offset, ctx->total);
+ count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
+
+ if (count <= 0) {
+ /*
+ * Check if count <= 0 because the buffer is full or
+ * because the sg length is 0. In the latest case,
+ * check if there is another sg in the list, a 0 length
+ * sg doesn't necessarily mean the end of the sg list.
+ */
+ if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
+ ctx->sg = sg_next(ctx->sg);
+ continue;
+ } else {
+ break;
+ }
+ }
+
+ scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
+ ctx->offset, count, 0);
+
+ ctx->bufcnt += count;
+ ctx->offset += count;
+ ctx->total -= count;
+
+ if (ctx->offset == ctx->sg->length) {
+ ctx->sg = sg_next(ctx->sg);
+ if (ctx->sg)
+ ctx->offset = 0;
+ else
+ ctx->total = 0;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * The purpose of this padding is to ensure that the padded message is a
+ * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
+ * The bit "1" is appended at the end of the message followed by
+ * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
+ * 128 bits block (SHA384/SHA512) equals to the message length in bits
+ * is appended.
+ *
+ * For SHA1/SHA224/SHA256, padlen is calculated as followed:
+ * - if message length < 56 bytes then padlen = 56 - message length
+ * - else padlen = 64 + 56 - message length
+ *
+ * For SHA384/SHA512, padlen is calculated as followed:
+ * - if message length < 112 bytes then padlen = 112 - message length
+ * - else padlen = 128 + 112 - message length
+ */
+static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
+{
+ u32 index, padlen;
+ u64 bits[2];
+ u64 size = ctx->digcnt;
+
+ size += ctx->bufcnt;
+ size += len;
+
+ bits[1] = cpu_to_be64(size << 3);
+ bits[0] = cpu_to_be64(size >> 61);
+
+ if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
+ index = ctx->bufcnt & 0x7f;
+ padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
+ *(ctx->buffer + ctx->bufcnt) = 0x80;
+ memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
+ memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
+ ctx->bufcnt += padlen + 16;
+ ctx->flags |= SHA_FLAGS_PAD;
+ } else {
+ index = ctx->bufcnt & 0x3f;
+ padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
+ *(ctx->buffer + ctx->bufcnt) = 0x80;
+ memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
+ memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
+ ctx->bufcnt += padlen + 8;
+ ctx->flags |= SHA_FLAGS_PAD;
+ }
+}
+
+/* Initialize basic transform information of SHA */
+static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
+{
+ struct mtk_sha_ct *ct = &ctx->info.ct;
+ struct mtk_sha_tfm *tfm = &ctx->info.tfm;
+
+ ctx->ct_hdr = SHA_CT_CTRL_HDR;
+ ctx->ct_size = SHA_CT_SIZE;
+
+ tfm->ctrl[0] = SHA_TFM_HASH | SHA_TFM_INNER_DIG |
+ SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
+
+ switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
+ case SHA_FLAGS_SHA1:
+ tfm->ctrl[0] |= SHA_TFM_SHA1;
+ break;
+ case SHA_FLAGS_SHA224:
+ tfm->ctrl[0] |= SHA_TFM_SHA224;
+ break;
+ case SHA_FLAGS_SHA256:
+ tfm->ctrl[0] |= SHA_TFM_SHA256;
+ break;
+ case SHA_FLAGS_SHA384:
+ tfm->ctrl[0] |= SHA_TFM_SHA384;
+ break;
+ case SHA_FLAGS_SHA512:
+ tfm->ctrl[0] |= SHA_TFM_SHA512;
+ break;
+
+ default:
+ /* Should not happen... */
+ return;
+ }
+
+ tfm->ctrl[1] = SHA_TFM_HASH_STORE;
+ ct->ctrl[0] = tfm->ctrl[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
+ ct->ctrl[1] = tfm->ctrl[1];
+
+ ct->cmd[0] = SHA_CMD0;
+ ct->cmd[1] = SHA_CMD1;
+ ct->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
+}
+
+/*
+ * Update input data length field of transform information and
+ * map it to DMA region.
+ */
+static int mtk_sha_info_update(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha,
+ size_t len)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
+ struct mtk_sha_info *info = &ctx->info;
+ struct mtk_sha_ct *ct = &info->ct;
+
+ if (ctx->start)
+ ctx->start = false;
+ else
+ ct->ctrl[0] &= ~SHA_TFM_START;
+
+ ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
+ ctx->ct_hdr |= cpu_to_le32(len);
+ ct->cmd[0] &= ~SHA_DATA_LEN_MSK;
+ ct->cmd[0] |= cpu_to_le32(len);
+
+ ctx->digcnt += len;
+
+ ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
+ DMA_BIDIRECTIONAL);
+ if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
+ dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
+ return -EINVAL;
+ }
+ ctx->tfm_dma = ctx->ct_dma + sizeof(*ct);
+
+ return 0;
+}
+
+/*
+ * Because of hardware limitation, we must pre-calculate the inner
+ * and outer digest that need to be processed firstly by engine, then
+ * apply the result digest to the input message. These complex hashing
+ * procedures limits HMAC performance, so we use fallback SW encoding.
+ */
+static int mtk_sha_finish_hmac(struct ahash_request *req)
+{
+ struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
+ struct mtk_sha_hmac_ctx *bctx = tctx->base;
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+
+ SHASH_DESC_ON_STACK(shash, bctx->shash);
+
+ shash->tfm = bctx->shash;
+ shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
+
+ return crypto_shash_init(shash) ?:
+ crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
+ crypto_shash_finup(shash, req->result, ctx->ds, req->result);
+}
+
+/* Initialize request context */
+static int mtk_sha_init(struct ahash_request *req)
+{
+ struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
+ struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+
+ ctx->flags = 0;
+ ctx->ds = crypto_ahash_digestsize(tfm);
+
+ switch (ctx->ds) {
+ case SHA1_DIGEST_SIZE:
+ ctx->flags |= SHA_FLAGS_SHA1;
+ ctx->bs = SHA1_BLOCK_SIZE;
+ break;
+ case SHA224_DIGEST_SIZE:
+ ctx->flags |= SHA_FLAGS_SHA224;
+ ctx->bs = SHA224_BLOCK_SIZE;
+ break;
+ case SHA256_DIGEST_SIZE:
+ ctx->flags |= SHA_FLAGS_SHA256;
+ ctx->bs = SHA256_BLOCK_SIZE;
+ break;
+ case SHA384_DIGEST_SIZE:
+ ctx->flags |= SHA_FLAGS_SHA384;
+ ctx->bs = SHA384_BLOCK_SIZE;
+ break;
+ case SHA512_DIGEST_SIZE:
+ ctx->flags |= SHA_FLAGS_SHA512;
+ ctx->bs = SHA512_BLOCK_SIZE;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ ctx->bufcnt = 0;
+ ctx->digcnt = 0;
+ ctx->buffer = tctx->buf;
+ ctx->start = true;
+
+ if (tctx->flags & SHA_FLAGS_HMAC) {
+ struct mtk_sha_hmac_ctx *bctx = tctx->base;
+
+ memcpy(ctx->buffer, bctx->ipad, ctx->bs);
+ ctx->bufcnt = ctx->bs;
+ ctx->flags |= SHA_FLAGS_HMAC;
+ }
+
+ return 0;
+}
+
+static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
+ dma_addr_t addr, size_t len)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
+ struct mtk_ring *ring = cryp->ring[sha->id];
+ struct mtk_desc *cmd = ring->cmd_base + ring->cmd_pos;
+ struct mtk_desc *res = ring->res_base + ring->res_pos;
+ int err;
+
+ err = mtk_sha_info_update(cryp, sha, len);
+ if (err)
+ return err;
+
+ /* Fill in the command/result descriptors */
+ res->hdr = MTK_DESC_FIRST | MTK_DESC_LAST | MTK_DESC_BUF_LEN(len);
+ res->buf = cpu_to_le32(cryp->tmp_dma);
+
+ cmd->hdr = MTK_DESC_FIRST | MTK_DESC_LAST | MTK_DESC_BUF_LEN(len) |
+ MTK_DESC_CT_LEN(ctx->ct_size);
+
+ cmd->buf = cpu_to_le32(addr);
+ cmd->ct = cpu_to_le32(ctx->ct_dma);
+ cmd->ct_hdr = ctx->ct_hdr;
+ cmd->tfm = cpu_to_le32(ctx->tfm_dma);
+
+ if (++ring->cmd_pos == MTK_DESC_NUM)
+ ring->cmd_pos = 0;
+
+ ring->res_pos = ring->cmd_pos;
+ /*
+ * Make sure that all changes to the DMA ring are done before we
+ * start engine.
+ */
+ wmb();
+ /* Start DMA transfer */
+ mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(1));
+ mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(1));
+
+ return -EINPROGRESS;
+}
+
+static int mtk_sha_xmit2(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha,
+ struct mtk_sha_reqctx *ctx,
+ size_t len1, size_t len2)
+{
+ struct mtk_ring *ring = cryp->ring[sha->id];
+ struct mtk_desc *cmd = ring->cmd_base + ring->cmd_pos;
+ struct mtk_desc *res = ring->res_base + ring->res_pos;
+ int err;
+
+ err = mtk_sha_info_update(cryp, sha, len1 + len2);
+ if (err)
+ return err;
+
+ /* Fill in the command/result descriptors */
+ res->hdr = MTK_DESC_BUF_LEN(len1) | MTK_DESC_FIRST;
+ res->buf = cpu_to_le32(cryp->tmp_dma);
+
+ cmd->hdr = MTK_DESC_BUF_LEN(len1) | MTK_DESC_FIRST |
+ MTK_DESC_CT_LEN(ctx->ct_size);
+ cmd->buf = cpu_to_le32(sg_dma_address(ctx->sg));
+ cmd->ct = cpu_to_le32(ctx->ct_dma);
+ cmd->ct_hdr = ctx->ct_hdr;
+ cmd->tfm = cpu_to_le32(ctx->tfm_dma);
+
+ if (++ring->cmd_pos == MTK_DESC_NUM)
+ ring->cmd_pos = 0;
+
+ ring->res_pos = ring->cmd_pos;
+
+ cmd = ring->cmd_base + ring->cmd_pos;
+ res = ring->res_base + ring->res_pos;
+
+ res->hdr = MTK_DESC_BUF_LEN(len2) | MTK_DESC_LAST;
+ res->buf = cpu_to_le32(cryp->tmp_dma);
+
+ cmd->hdr = MTK_DESC_BUF_LEN(len2) | MTK_DESC_LAST;
+ cmd->buf = cpu_to_le32(ctx->dma_addr);
+
+ if (++ring->cmd_pos == MTK_DESC_NUM)
+ ring->cmd_pos = 0;
+
+ ring->res_pos = ring->cmd_pos;
+
+ /*
+ * Make sure that all changes to the DMA ring are done before we
+ * start engine.
+ */
+ wmb();
+ /* Start DMA transfer */
+ mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(2));
+ mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(2));
+
+ return -EINPROGRESS;
+}
+
+static int mtk_sha_dma_map(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha,
+ struct mtk_sha_reqctx *ctx,
+ size_t count)
+{
+ ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
+ SHA_BUF_SIZE, DMA_TO_DEVICE);
+ if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
+ dev_err(cryp->dev, "dma map error\n");
+ return -EINVAL;
+ }
+
+ ctx->flags &= ~SHA_FLAGS_SG;
+
+ return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count);
+}
+
+static int mtk_sha_update_slow(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
+ size_t count;
+ u32 final;
+
+ mtk_sha_append_sg(ctx);
+
+ final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
+
+ dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
+
+ if (final) {
+ sha->flags |= SHA_FLAGS_FINAL;
+ mtk_sha_fill_padding(ctx, 0);
+ }
+
+ if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
+ count = ctx->bufcnt;
+ ctx->bufcnt = 0;
+
+ return mtk_sha_dma_map(cryp, sha, ctx, count);
+ }
+ return 0;
+}
+
+static int mtk_sha_update_start(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
+ u32 len, final, tail;
+ struct scatterlist *sg;
+
+ if (!ctx->total)
+ return 0;
+
+ if (ctx->bufcnt || ctx->offset)
+ return mtk_sha_update_slow(cryp, sha);
+
+ sg = ctx->sg;
+
+ if (!IS_ALIGNED(sg->offset, sizeof(u32)))
+ return mtk_sha_update_slow(cryp, sha);
+
+ if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
+ /* size is not ctx->bs aligned */
+ return mtk_sha_update_slow(cryp, sha);
+
+ len = min(ctx->total, sg->length);
+
+ if (sg_is_last(sg)) {
+ if (!(ctx->flags & SHA_FLAGS_FINUP)) {
+ /* not last sg must be ctx->bs aligned */
+ tail = len & (ctx->bs - 1);
+ len -= tail;
+ }
+ }
+
+ ctx->total -= len;
+ ctx->offset = len; /* offset where to start slow */
+
+ final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
+
+ /* Add padding */
+ if (final) {
+ size_t count;
+
+ tail = len & (ctx->bs - 1);
+ len -= tail;
+ ctx->total += tail;
+ ctx->offset = len; /* offset where to start slow */
+
+ sg = ctx->sg;
+ mtk_sha_append_sg(ctx);
+ mtk_sha_fill_padding(ctx, len);
+
+ ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
+ SHA_BUF_SIZE, DMA_TO_DEVICE);
+ if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
+ dev_err(cryp->dev, "dma map bytes error\n");
+ return -EINVAL;
+ }
+
+ sha->flags |= SHA_FLAGS_FINAL;
+ count = ctx->bufcnt;
+ ctx->bufcnt = 0;
+
+ if (len == 0) {
+ ctx->flags &= ~SHA_FLAGS_SG;
+ return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count);
+
+ } else {
+ ctx->sg = sg;
+ if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
+ dev_err(cryp->dev, "dma_map_sg error\n");
+ return -EINVAL;
+ }
+
+ ctx->flags |= SHA_FLAGS_SG;
+ return mtk_sha_xmit2(cryp, sha, ctx, len, count);
+ }
+ }
+
+ if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
+ dev_err(cryp->dev, "dma_map_sg error\n");
+ return -EINVAL;
+ }
+
+ ctx->flags |= SHA_FLAGS_SG;
+
+ return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg), len);
+}
+
+static int mtk_sha_final_req(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
+ size_t count;
+
+ mtk_sha_fill_padding(ctx, 0);
+
+ sha->flags |= SHA_FLAGS_FINAL;
+ count = ctx->bufcnt;
+ ctx->bufcnt = 0;
+
+ return mtk_sha_dma_map(cryp, sha, ctx, count);
+}
+
+/* Copy ready hash (+ finalize hmac) */
+static int mtk_sha_finish(struct ahash_request *req)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+ u32 *digest = ctx->info.tfm.digest;
+ u32 *result = (u32 *)req->result;
+ int i;
+
+ /* Get the hash from the digest buffer */
+ for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
+ result[i] = le32_to_cpu(digest[i]);
+
+ if (ctx->flags & SHA_FLAGS_HMAC)
+ return mtk_sha_finish_hmac(req);
+
+ return 0;
+}
+
+static void mtk_sha_finish_req(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha,
+ int err)
+{
+ if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
+ err = mtk_sha_finish(sha->req);
+
+ sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
+
+ sha->req->base.complete(&sha->req->base, err);
+
+ /* Handle new request */
+ mtk_sha_handle_queue(cryp, sha->id - RING2, NULL);
+}
+
+static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
+ struct ahash_request *req)
+{
+ struct mtk_sha_rec *sha = cryp->sha[id];
+ struct crypto_async_request *async_req, *backlog;
+ struct mtk_sha_reqctx *ctx;
+ unsigned long flags;
+ int err = 0, ret = 0;
+
+ spin_lock_irqsave(&sha->lock, flags);
+ if (req)
+ ret = ahash_enqueue_request(&sha->queue, req);
+
+ if (SHA_FLAGS_BUSY & sha->flags) {
+ spin_unlock_irqrestore(&sha->lock, flags);
+ return ret;
+ }
+
+ backlog = crypto_get_backlog(&sha->queue);
+ async_req = crypto_dequeue_request(&sha->queue);
+ if (async_req)
+ sha->flags |= SHA_FLAGS_BUSY;
+ spin_unlock_irqrestore(&sha->lock, flags);
+
+ if (!async_req)
+ return ret;
+
+ if (backlog)
+ backlog->complete(backlog, -EINPROGRESS);
+
+ req = ahash_request_cast(async_req);
+ ctx = ahash_request_ctx(req);
+
+ sha->req = req;
+
+ mtk_sha_info_init(ctx);
+
+ if (ctx->op == SHA_OP_UPDATE) {
+ err = mtk_sha_update_start(cryp, sha);
+ if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
+ /* No final() after finup() */
+ err = mtk_sha_final_req(cryp, sha);
+ } else if (ctx->op == SHA_OP_FINAL) {
+ err = mtk_sha_final_req(cryp, sha);
+ }
+
+ if (unlikely(err != -EINPROGRESS))
+ /* Task will not finish it, so do it here */
+ mtk_sha_finish_req(cryp, sha, err);
+
+ return ret;
+}
+
+static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+ struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
+
+ ctx->op = op;
+
+ return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
+}
+
+static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
+
+ dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
+ DMA_BIDIRECTIONAL);
+
+ if (ctx->flags & SHA_FLAGS_SG) {
+ dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
+ if (ctx->sg->length == ctx->offset) {
+ ctx->sg = sg_next(ctx->sg);
+ if (ctx->sg)
+ ctx->offset = 0;
+ }
+ if (ctx->flags & SHA_FLAGS_PAD) {
+ dma_unmap_single(cryp->dev, ctx->dma_addr,
+ SHA_BUF_SIZE, DMA_TO_DEVICE);
+ }
+ } else
+ dma_unmap_single(cryp->dev, ctx->dma_addr,
+ SHA_BUF_SIZE, DMA_TO_DEVICE);
+}
+
+static void mtk_sha_complete(struct mtk_cryp *cryp,
+ struct mtk_sha_rec *sha)
+{
+ int err = 0;
+
+ err = mtk_sha_update_start(cryp, sha);
+ if (err != -EINPROGRESS)
+ mtk_sha_finish_req(cryp, sha, err);
+}
+
+static int mtk_sha_update(struct ahash_request *req)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+
+ ctx->total = req->nbytes;
+ ctx->sg = req->src;
+ ctx->offset = 0;
+
+ if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
+ !(ctx->flags & SHA_FLAGS_FINUP))
+ return mtk_sha_append_sg(ctx);
+
+ return mtk_sha_enqueue(req, SHA_OP_UPDATE);
+}
+
+static int mtk_sha_final(struct ahash_request *req)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+
+ ctx->flags |= SHA_FLAGS_FINUP;
+
+ if (ctx->flags & SHA_FLAGS_PAD)
+ return mtk_sha_finish(req);
+
+ return mtk_sha_enqueue(req, SHA_OP_FINAL);
+}
+
+static int mtk_sha_finup(struct ahash_request *req)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+ int err1, err2;
+
+ ctx->flags |= SHA_FLAGS_FINUP;
+
+ err1 = mtk_sha_update(req);
+ if (err1 == -EINPROGRESS || err1 == -EBUSY)
+ return err1;
+ /*
+ * final() has to be always called to cleanup resources
+ * even if update() failed
+ */
+ err2 = mtk_sha_final(req);
+
+ return err1 ?: err2;
+}
+
+static int mtk_sha_digest(struct ahash_request *req)
+{
+ return mtk_sha_init(req) ?: mtk_sha_finup(req);
+}
+
+static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
+ u32 keylen)
+{
+ struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
+ struct mtk_sha_hmac_ctx *bctx = tctx->base;
+ size_t bs = crypto_shash_blocksize(bctx->shash);
+ size_t ds = crypto_shash_digestsize(bctx->shash);
+ int err, i;
+
+ SHASH_DESC_ON_STACK(shash, bctx->shash);
+
+ shash->tfm = bctx->shash;
+ shash->flags = crypto_shash_get_flags(bctx->shash) &
+ CRYPTO_TFM_REQ_MAY_SLEEP;
+
+ if (keylen > bs) {
+ err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
+ if (err)
+ return err;
+ keylen = ds;
+ } else {
+ memcpy(bctx->ipad, key, keylen);
+ }
+
+ memset(bctx->ipad + keylen, 0, bs - keylen);
+ memcpy(bctx->opad, bctx->ipad, bs);
+
+ for (i = 0; i < bs; i++) {
+ bctx->ipad[i] ^= 0x36;
+ bctx->opad[i] ^= 0x5c;
+ }
+
+ return 0;
+}
+
+static int mtk_sha_export(struct ahash_request *req, void *out)
+{
+ const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+
+ memcpy(out, ctx, sizeof(*ctx));
+ return 0;
+}
+
+static int mtk_sha_import(struct ahash_request *req, const void *in)
+{
+ struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
+
+ memcpy(ctx, in, sizeof(*ctx));
+ return 0;
+}
+
+static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
+ const char *alg_base)
+{
+ struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
+ struct mtk_cryp *cryp = NULL;
+
+ cryp = mtk_sha_find_dev(tctx);
+ if (!cryp)
+ return -ENODEV;
+
+ crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
+ sizeof(struct mtk_sha_reqctx));
+
+ if (alg_base) {
+ struct mtk_sha_hmac_ctx *bctx = tctx->base;
+
+ tctx->flags |= SHA_FLAGS_HMAC;
+ bctx->shash = crypto_alloc_shash(alg_base, 0,
+ CRYPTO_ALG_NEED_FALLBACK);
+ if (IS_ERR(bctx->shash)) {
+ pr_err("base driver %s could not be loaded.\n",
+ alg_base);
+
+ return PTR_ERR(bctx->shash);
+ }
+ }
+ return 0;
+}
+
+static int mtk_sha_cra_init(struct crypto_tfm *tfm)
+{
+ return mtk_sha_cra_init_alg(tfm, NULL);
+}
+
+static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
+{
+ return mtk_sha_cra_init_alg(tfm, "sha1");
+}
+
+static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
+{
+ return mtk_sha_cra_init_alg(tfm, "sha224");
+}
+
+static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
+{
+ return mtk_sha_cra_init_alg(tfm, "sha256");
+}
+
+static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
+{
+ return mtk_sha_cra_init_alg(tfm, "sha384");
+}
+
+static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
+{
+ return mtk_sha_cra_init_alg(tfm, "sha512");
+}
+
+static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
+{
+ struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
+
+ if (tctx->flags & SHA_FLAGS_HMAC) {
+ struct mtk_sha_hmac_ctx *bctx = tctx->base;
+
+ crypto_free_shash(bctx->shash);
+ }
+}
+
+static struct ahash_alg algs_sha1_sha224_sha256[] = {
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .halg.digestsize = SHA1_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "sha1",
+ .cra_driver_name = "mtk-sha1",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA1_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .halg.digestsize = SHA224_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "sha224",
+ .cra_driver_name = "mtk-sha224",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA224_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .halg.digestsize = SHA256_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "sha256",
+ .cra_driver_name = "mtk-sha256",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA256_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .setkey = mtk_sha_setkey,
+ .halg.digestsize = SHA1_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "hmac(sha1)",
+ .cra_driver_name = "mtk-hmac-sha1",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .cra_blocksize = SHA1_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
+ sizeof(struct mtk_sha_hmac_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_sha1_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .setkey = mtk_sha_setkey,
+ .halg.digestsize = SHA224_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "hmac(sha224)",
+ .cra_driver_name = "mtk-hmac-sha224",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .cra_blocksize = SHA224_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
+ sizeof(struct mtk_sha_hmac_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_sha224_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .setkey = mtk_sha_setkey,
+ .halg.digestsize = SHA256_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "hmac(sha256)",
+ .cra_driver_name = "mtk-hmac-sha256",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .cra_blocksize = SHA256_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
+ sizeof(struct mtk_sha_hmac_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_sha256_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+};
+
+static struct ahash_alg algs_sha384_sha512[] = {
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .halg.digestsize = SHA384_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "sha384",
+ .cra_driver_name = "mtk-sha384",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA384_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .halg.digestsize = SHA512_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "sha512",
+ .cra_driver_name = "mtk-sha512",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC,
+ .cra_blocksize = SHA512_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .setkey = mtk_sha_setkey,
+ .halg.digestsize = SHA384_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "hmac(sha384)",
+ .cra_driver_name = "mtk-hmac-sha384",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .cra_blocksize = SHA384_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
+ sizeof(struct mtk_sha_hmac_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_sha384_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+{
+ .init = mtk_sha_init,
+ .update = mtk_sha_update,
+ .final = mtk_sha_final,
+ .finup = mtk_sha_finup,
+ .digest = mtk_sha_digest,
+ .export = mtk_sha_export,
+ .import = mtk_sha_import,
+ .setkey = mtk_sha_setkey,
+ .halg.digestsize = SHA512_DIGEST_SIZE,
+ .halg.statesize = sizeof(struct mtk_sha_reqctx),
+ .halg.base = {
+ .cra_name = "hmac(sha512)",
+ .cra_driver_name = "mtk-hmac-sha512",
+ .cra_priority = 400,
+ .cra_flags = CRYPTO_ALG_ASYNC |
+ CRYPTO_ALG_NEED_FALLBACK,
+ .cra_blocksize = SHA512_BLOCK_SIZE,
+ .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
+ sizeof(struct mtk_sha_hmac_ctx),
+ .cra_alignmask = SHA_ALIGN_MSK,
+ .cra_module = THIS_MODULE,
+ .cra_init = mtk_sha_cra_sha512_init,
+ .cra_exit = mtk_sha_cra_exit,
+ }
+},
+};
+
+static void mtk_sha_task0(unsigned long data)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)data;
+ struct mtk_sha_rec *sha = cryp->sha[0];
+
+ mtk_sha_unmap(cryp, sha);
+ mtk_sha_complete(cryp, sha);
+}
+
+static void mtk_sha_task1(unsigned long data)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)data;
+ struct mtk_sha_rec *sha = cryp->sha[1];
+
+ mtk_sha_unmap(cryp, sha);
+ mtk_sha_complete(cryp, sha);
+}
+
+static irqreturn_t mtk_sha_ring2_irq(int irq, void *dev_id)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
+ struct mtk_sha_rec *sha = cryp->sha[0];
+ u32 val = mtk_sha_read(cryp, RDR_STAT(RING2));
+
+ mtk_sha_write(cryp, RDR_STAT(RING2), val);
+
+ if (likely((SHA_FLAGS_BUSY & sha->flags))) {
+ mtk_sha_write(cryp, RDR_PROC_COUNT(RING2), MTK_CNT_RST);
+ mtk_sha_write(cryp, RDR_THRESH(RING2),
+ MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
+
+ tasklet_schedule(&sha->task);
+ } else {
+ dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
+ }
+ return IRQ_HANDLED;
+}
+
+static irqreturn_t mtk_sha_ring3_irq(int irq, void *dev_id)
+{
+ struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
+ struct mtk_sha_rec *sha = cryp->sha[1];
+ u32 val = mtk_sha_read(cryp, RDR_STAT(RING3));
+
+ mtk_sha_write(cryp, RDR_STAT(RING3), val);
+
+ if (likely((SHA_FLAGS_BUSY & sha->flags))) {
+ mtk_sha_write(cryp, RDR_PROC_COUNT(RING3), MTK_CNT_RST);
+ mtk_sha_write(cryp, RDR_THRESH(RING3),
+ MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
+
+ tasklet_schedule(&sha->task);
+ } else {
+ dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
+ }
+ return IRQ_HANDLED;
+}
+
+/*
+ * The purpose of two SHA records is used to get extra performance.
+ * It is similar to mtk_aes_record_init().
+ */
+static int mtk_sha_record_init(struct mtk_cryp *cryp)
+{
+ struct mtk_sha_rec **sha = cryp->sha;
+ int i, err = -ENOMEM;
+
+ for (i = 0; i < MTK_REC_NUM; i++) {
+ sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
+ if (!sha[i])
+ goto err_cleanup;
+
+ sha[i]->id = i + RING2;
+
+ spin_lock_init(&sha[i]->lock);
+ crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
+ }
+
+ tasklet_init(&sha[0]->task, mtk_sha_task0, (unsigned long)cryp);
+ tasklet_init(&sha[1]->task, mtk_sha_task1, (unsigned long)cryp);
+
+ cryp->rec = 1;
+
+ return 0;
+
+err_cleanup:
+ for (; i--; )
+ kfree(sha[i]);
+ return err;
+}
+
+static void mtk_sha_record_free(struct mtk_cryp *cryp)
+{
+ int i;
+
+ for (i = 0; i < MTK_REC_NUM; i++) {
+ tasklet_kill(&cryp->sha[i]->task);
+ kfree(cryp->sha[i]);
+ }
+}
+
+static void mtk_sha_unregister_algs(void)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
+ crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
+
+ for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
+ crypto_unregister_ahash(&algs_sha384_sha512[i]);
+}
+
+static int mtk_sha_register_algs(void)
+{
+ int err, i;
+
+ for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
+ err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
+ if (err)
+ goto err_sha_224_256_algs;
+ }
+
+ for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
+ err = crypto_register_ahash(&algs_sha384_sha512[i]);
+ if (err)
+ goto err_sha_384_512_algs;
+ }
+
+ return 0;
+
+err_sha_384_512_algs:
+ for (; i--; )
+ crypto_unregister_ahash(&algs_sha384_sha512[i]);
+ i = ARRAY_SIZE(algs_sha1_sha224_sha256);
+err_sha_224_256_algs:
+ for (; i--; )
+ crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
+
+ return err;
+}
+
+int mtk_hash_alg_register(struct mtk_cryp *cryp)
+{
+ int err;
+
+ INIT_LIST_HEAD(&cryp->sha_list);
+
+ /* Initialize two hash records */
+ err = mtk_sha_record_init(cryp);
+ if (err)
+ goto err_record;
+
+ /* Ring2 is use by SHA record0 */
+ err = devm_request_irq(cryp->dev, cryp->irq[RING2],
+ mtk_sha_ring2_irq, IRQF_TRIGGER_LOW,
+ "mtk-sha", cryp);
+ if (err) {
+ dev_err(cryp->dev, "unable to request sha irq0.\n");
+ goto err_res;
+ }
+
+ /* Ring3 is use by SHA record1 */
+ err = devm_request_irq(cryp->dev, cryp->irq[RING3],
+ mtk_sha_ring3_irq, IRQF_TRIGGER_LOW,
+ "mtk-sha", cryp);
+ if (err) {
+ dev_err(cryp->dev, "unable to request sha irq1.\n");
+ goto err_res;
+ }
+
+ /* Enable ring2 and ring3 interrupt for hash */
+ mtk_sha_write(cryp, AIC_ENABLE_SET(RING2), MTK_IRQ_RDR2);
+ mtk_sha_write(cryp, AIC_ENABLE_SET(RING3), MTK_IRQ_RDR3);
+
+ cryp->tmp = dma_alloc_coherent(cryp->dev, SHA_TMP_BUF_SIZE,
+ &cryp->tmp_dma, GFP_KERNEL);
+ if (!cryp->tmp) {
+ dev_err(cryp->dev, "unable to allocate tmp buffer.\n");
+ err = -EINVAL;
+ goto err_res;
+ }
+
+ spin_lock(&mtk_sha.lock);
+ list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
+ spin_unlock(&mtk_sha.lock);
+
+ err = mtk_sha_register_algs();
+ if (err)
+ goto err_algs;
+
+ return 0;
+
+err_algs:
+ spin_lock(&mtk_sha.lock);
+ list_del(&cryp->sha_list);
+ spin_unlock(&mtk_sha.lock);
+ dma_free_coherent(cryp->dev, SHA_TMP_BUF_SIZE,
+ cryp->tmp, cryp->tmp_dma);
+err_res:
+ mtk_sha_record_free(cryp);
+err_record:
+
+ dev_err(cryp->dev, "mtk-sha initialization failed.\n");
+ return err;
+}
+
+void mtk_hash_alg_release(struct mtk_cryp *cryp)
+{
+ spin_lock(&mtk_sha.lock);
+ list_del(&cryp->sha_list);
+ spin_unlock(&mtk_sha.lock);
+
+ mtk_sha_unregister_algs();
+ dma_free_coherent(cryp->dev, SHA_TMP_BUF_SIZE,
+ cryp->tmp, cryp->tmp_dma);
+ mtk_sha_record_free(cryp);
+}