diff options
Diffstat (limited to 'block/bfq-iosched.c')
-rw-r--r-- | block/bfq-iosched.c | 417 |
1 files changed, 381 insertions, 36 deletions
diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c index 2eb587fe7c1a..f59efee7a601 100644 --- a/block/bfq-iosched.c +++ b/block/bfq-iosched.c @@ -1721,6 +1721,123 @@ static void bfq_add_request(struct request *rq) bfqq->queued[rq_is_sync(rq)]++; bfqd->queued++; + if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) { + /* + * Periodically reset inject limit, to make sure that + * the latter eventually drops in case workload + * changes, see step (3) in the comments on + * bfq_update_inject_limit(). + */ + if (time_is_before_eq_jiffies(bfqq->decrease_time_jif + + msecs_to_jiffies(1000))) { + /* invalidate baseline total service time */ + bfqq->last_serv_time_ns = 0; + + /* + * Reset pointer in case we are waiting for + * some request completion. + */ + bfqd->waited_rq = NULL; + + /* + * If bfqq has a short think time, then start + * by setting the inject limit to 0 + * prudentially, because the service time of + * an injected I/O request may be higher than + * the think time of bfqq, and therefore, if + * one request was injected when bfqq remains + * empty, this injected request might delay + * the service of the next I/O request for + * bfqq significantly. In case bfqq can + * actually tolerate some injection, then the + * adaptive update will however raise the + * limit soon. This lucky circumstance holds + * exactly because bfqq has a short think + * time, and thus, after remaining empty, is + * likely to get new I/O enqueued---and then + * completed---before being expired. This is + * the very pattern that gives the + * limit-update algorithm the chance to + * measure the effect of injection on request + * service times, and then to update the limit + * accordingly. + * + * On the opposite end, if bfqq has a long + * think time, then start directly by 1, + * because: + * a) on the bright side, keeping at most one + * request in service in the drive is unlikely + * to cause any harm to the latency of bfqq's + * requests, as the service time of a single + * request is likely to be lower than the + * think time of bfqq; + * b) on the downside, after becoming empty, + * bfqq is likely to expire before getting its + * next request. With this request arrival + * pattern, it is very hard to sample total + * service times and update the inject limit + * accordingly (see comments on + * bfq_update_inject_limit()). So the limit is + * likely to be never, or at least seldom, + * updated. As a consequence, by setting the + * limit to 1, we avoid that no injection ever + * occurs with bfqq. On the downside, this + * proactive step further reduces chances to + * actually compute the baseline total service + * time. Thus it reduces chances to execute the + * limit-update algorithm and possibly raise the + * limit to more than 1. + */ + if (bfq_bfqq_has_short_ttime(bfqq)) + bfqq->inject_limit = 0; + else + bfqq->inject_limit = 1; + bfqq->decrease_time_jif = jiffies; + } + + /* + * The following conditions must hold to setup a new + * sampling of total service time, and then a new + * update of the inject limit: + * - bfqq is in service, because the total service + * time is evaluated only for the I/O requests of + * the queues in service; + * - this is the right occasion to compute or to + * lower the baseline total service time, because + * there are actually no requests in the drive, + * or + * the baseline total service time is available, and + * this is the right occasion to compute the other + * quantity needed to update the inject limit, i.e., + * the total service time caused by the amount of + * injection allowed by the current value of the + * limit. It is the right occasion because injection + * has actually been performed during the service + * hole, and there are still in-flight requests, + * which are very likely to be exactly the injected + * requests, or part of them; + * - the minimum interval for sampling the total + * service time and updating the inject limit has + * elapsed. + */ + if (bfqq == bfqd->in_service_queue && + (bfqd->rq_in_driver == 0 || + (bfqq->last_serv_time_ns > 0 && + bfqd->rqs_injected && bfqd->rq_in_driver > 0)) && + time_is_before_eq_jiffies(bfqq->decrease_time_jif + + msecs_to_jiffies(100))) { + bfqd->last_empty_occupied_ns = ktime_get_ns(); + /* + * Start the state machine for measuring the + * total service time of rq: setting + * wait_dispatch will cause bfqd->waited_rq to + * be set when rq will be dispatched. + */ + bfqd->wait_dispatch = true; + bfqd->rqs_injected = false; + } + } + elv_rb_add(&bfqq->sort_list, rq); /* @@ -2566,6 +2683,8 @@ static void bfq_arm_slice_timer(struct bfq_data *bfqd) sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC); bfqd->last_idling_start = ktime_get(); + bfqd->last_idling_start_jiffies = jiffies; + hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), HRTIMER_MODE_REL); bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); @@ -3240,13 +3359,6 @@ static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); } -static bool bfq_bfqq_injectable(struct bfq_queue *bfqq) -{ - return BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 && - blk_queue_nonrot(bfqq->bfqd->queue) && - bfqq->bfqd->hw_tag; -} - /** * bfq_bfqq_expire - expire a queue. * @bfqd: device owning the queue. @@ -3362,6 +3474,14 @@ void bfq_bfqq_expire(struct bfq_data *bfqd, slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq)); /* + * bfqq expired, so no total service time needs to be computed + * any longer: reset state machine for measuring total service + * times. + */ + bfqd->rqs_injected = bfqd->wait_dispatch = false; + bfqd->waited_rq = NULL; + + /* * Increase, decrease or leave budget unchanged according to * reason. */ @@ -3372,8 +3492,6 @@ void bfq_bfqq_expire(struct bfq_data *bfqd, if (ref == 1) /* bfqq is gone, no more actions on it */ return; - bfqq->injected_service = 0; - /* mark bfqq as waiting a request only if a bic still points to it */ if (!bfq_bfqq_busy(bfqq) && reason != BFQQE_BUDGET_TIMEOUT && @@ -3767,26 +3885,98 @@ static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq); } -static struct bfq_queue *bfq_choose_bfqq_for_injection(struct bfq_data *bfqd) +/* + * This function chooses the queue from which to pick the next extra + * I/O request to inject, if it finds a compatible queue. See the + * comments on bfq_update_inject_limit() for details on the injection + * mechanism, and for the definitions of the quantities mentioned + * below. + */ +static struct bfq_queue * +bfq_choose_bfqq_for_injection(struct bfq_data *bfqd) { - struct bfq_queue *bfqq; + struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue; + unsigned int limit = in_serv_bfqq->inject_limit; + /* + * If + * - bfqq is not weight-raised and therefore does not carry + * time-critical I/O, + * or + * - regardless of whether bfqq is weight-raised, bfqq has + * however a long think time, during which it can absorb the + * effect of an appropriate number of extra I/O requests + * from other queues (see bfq_update_inject_limit for + * details on the computation of this number); + * then injection can be performed without restrictions. + */ + bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 || + !bfq_bfqq_has_short_ttime(in_serv_bfqq); /* - * A linear search; but, with a high probability, very few - * steps are needed to find a candidate queue, i.e., a queue - * with enough budget left for its next request. In fact: + * If + * - the baseline total service time could not be sampled yet, + * so the inject limit happens to be still 0, and + * - a lot of time has elapsed since the plugging of I/O + * dispatching started, so drive speed is being wasted + * significantly; + * then temporarily raise inject limit to one request. + */ + if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 && + bfq_bfqq_wait_request(in_serv_bfqq) && + time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies + + bfqd->bfq_slice_idle) + ) + limit = 1; + + if (bfqd->rq_in_driver >= limit) + return NULL; + + /* + * Linear search of the source queue for injection; but, with + * a high probability, very few steps are needed to find a + * candidate queue, i.e., a queue with enough budget left for + * its next request. In fact: * - BFQ dynamically updates the budget of every queue so as * to accommodate the expected backlog of the queue; * - if a queue gets all its requests dispatched as injected * service, then the queue is removed from the active list - * (and re-added only if it gets new requests, but with - * enough budget for its new backlog). + * (and re-added only if it gets new requests, but then it + * is assigned again enough budget for its new backlog). */ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) if (!RB_EMPTY_ROOT(&bfqq->sort_list) && + (in_serv_always_inject || bfqq->wr_coeff > 1) && bfq_serv_to_charge(bfqq->next_rq, bfqq) <= - bfq_bfqq_budget_left(bfqq)) - return bfqq; + bfq_bfqq_budget_left(bfqq)) { + /* + * Allow for only one large in-flight request + * on non-rotational devices, for the + * following reason. On non-rotationl drives, + * large requests take much longer than + * smaller requests to be served. In addition, + * the drive prefers to serve large requests + * w.r.t. to small ones, if it can choose. So, + * having more than one large requests queued + * in the drive may easily make the next first + * request of the in-service queue wait for so + * long to break bfqq's service guarantees. On + * the bright side, large requests let the + * drive reach a very high throughput, even if + * there is only one in-flight large request + * at a time. + */ + if (blk_queue_nonrot(bfqd->queue) && + blk_rq_sectors(bfqq->next_rq) >= + BFQQ_SECT_THR_NONROT) + limit = min_t(unsigned int, 1, limit); + else + limit = in_serv_bfqq->inject_limit; + + if (bfqd->rq_in_driver < limit) { + bfqd->rqs_injected = true; + return bfqq; + } + } return NULL; } @@ -3873,14 +4063,32 @@ check_queue: * for a new request, or has requests waiting for a completion and * may idle after their completion, then keep it anyway. * - * Yet, to boost throughput, inject service from other queues if - * possible. + * Yet, inject service from other queues if it boosts + * throughput and is possible. */ if (bfq_bfqq_wait_request(bfqq) || (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) { - if (bfq_bfqq_injectable(bfqq) && - bfqq->injected_service * bfqq->inject_coeff < - bfqq->entity.service * 10) + struct bfq_queue *async_bfqq = + bfqq->bic && bfqq->bic->bfqq[0] && + bfq_bfqq_busy(bfqq->bic->bfqq[0]) ? + bfqq->bic->bfqq[0] : NULL; + + /* + * If the process associated with bfqq has also async + * I/O pending, then inject it + * unconditionally. Injecting I/O from the same + * process can cause no harm to the process. On the + * contrary, it can only increase bandwidth and reduce + * latency for the process. + */ + if (async_bfqq && + icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic && + bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <= + bfq_bfqq_budget_left(async_bfqq)) + bfqq = bfqq->bic->bfqq[0]; + else if (!idling_boosts_thr_without_issues(bfqd, bfqq) && + (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 || + !bfq_bfqq_has_short_ttime(bfqq))) bfqq = bfq_choose_bfqq_for_injection(bfqd); else bfqq = NULL; @@ -3972,15 +4180,15 @@ static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, bfq_bfqq_served(bfqq, service_to_charge); - bfq_dispatch_remove(bfqd->queue, rq); + if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) { + bfqd->wait_dispatch = false; + bfqd->waited_rq = rq; + } - if (bfqq != bfqd->in_service_queue) { - if (likely(bfqd->in_service_queue)) - bfqd->in_service_queue->injected_service += - bfq_serv_to_charge(rq, bfqq); + bfq_dispatch_remove(bfqd->queue, rq); + if (bfqq != bfqd->in_service_queue) goto return_rq; - } /* * If weight raising has to terminate for bfqq, then next @@ -4411,13 +4619,6 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, bfq_mark_bfqq_has_short_ttime(bfqq); bfq_mark_bfqq_sync(bfqq); bfq_mark_bfqq_just_created(bfqq); - /* - * Aggressively inject a lot of service: up to 90%. - * This coefficient remains constant during bfqq life, - * but this behavior might be changed, after enough - * testing and tuning. - */ - bfqq->inject_coeff = 1; } else bfq_clear_bfqq_sync(bfqq); @@ -4977,6 +5178,147 @@ static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq) } /* + * The processes associated with bfqq may happen to generate their + * cumulative I/O at a lower rate than the rate at which the device + * could serve the same I/O. This is rather probable, e.g., if only + * one process is associated with bfqq and the device is an SSD. It + * results in bfqq becoming often empty while in service. In this + * respect, if BFQ is allowed to switch to another queue when bfqq + * remains empty, then the device goes on being fed with I/O requests, + * and the throughput is not affected. In contrast, if BFQ is not + * allowed to switch to another queue---because bfqq is sync and + * I/O-dispatch needs to be plugged while bfqq is temporarily + * empty---then, during the service of bfqq, there will be frequent + * "service holes", i.e., time intervals during which bfqq gets empty + * and the device can only consume the I/O already queued in its + * hardware queues. During service holes, the device may even get to + * remaining idle. In the end, during the service of bfqq, the device + * is driven at a lower speed than the one it can reach with the kind + * of I/O flowing through bfqq. + * + * To counter this loss of throughput, BFQ implements a "request + * injection mechanism", which tries to fill the above service holes + * with I/O requests taken from other queues. The hard part in this + * mechanism is finding the right amount of I/O to inject, so as to + * both boost throughput and not break bfqq's bandwidth and latency + * guarantees. In this respect, the mechanism maintains a per-queue + * inject limit, computed as below. While bfqq is empty, the injection + * mechanism dispatches extra I/O requests only until the total number + * of I/O requests in flight---i.e., already dispatched but not yet + * completed---remains lower than this limit. + * + * A first definition comes in handy to introduce the algorithm by + * which the inject limit is computed. We define as first request for + * bfqq, an I/O request for bfqq that arrives while bfqq is in + * service, and causes bfqq to switch from empty to non-empty. The + * algorithm updates the limit as a function of the effect of + * injection on the service times of only the first requests of + * bfqq. The reason for this restriction is that these are the + * requests whose service time is affected most, because they are the + * first to arrive after injection possibly occurred. + * + * To evaluate the effect of injection, the algorithm measures the + * "total service time" of first requests. We define as total service + * time of an I/O request, the time that elapses since when the + * request is enqueued into bfqq, to when it is completed. This + * quantity allows the whole effect of injection to be measured. It is + * easy to see why. Suppose that some requests of other queues are + * actually injected while bfqq is empty, and that a new request R + * then arrives for bfqq. If the device does start to serve all or + * part of the injected requests during the service hole, then, + * because of this extra service, it may delay the next invocation of + * the dispatch hook of BFQ. Then, even after R gets eventually + * dispatched, the device may delay the actual service of R if it is + * still busy serving the extra requests, or if it decides to serve, + * before R, some extra request still present in its queues. As a + * conclusion, the cumulative extra delay caused by injection can be + * easily evaluated by just comparing the total service time of first + * requests with and without injection. + * + * The limit-update algorithm works as follows. On the arrival of a + * first request of bfqq, the algorithm measures the total time of the + * request only if one of the three cases below holds, and, for each + * case, it updates the limit as described below: + * + * (1) If there is no in-flight request. This gives a baseline for the + * total service time of the requests of bfqq. If the baseline has + * not been computed yet, then, after computing it, the limit is + * set to 1, to start boosting throughput, and to prepare the + * ground for the next case. If the baseline has already been + * computed, then it is updated, in case it results to be lower + * than the previous value. + * + * (2) If the limit is higher than 0 and there are in-flight + * requests. By comparing the total service time in this case with + * the above baseline, it is possible to know at which extent the + * current value of the limit is inflating the total service + * time. If the inflation is below a certain threshold, then bfqq + * is assumed to be suffering from no perceivable loss of its + * service guarantees, and the limit is even tentatively + * increased. If the inflation is above the threshold, then the + * limit is decreased. Due to the lack of any hysteresis, this + * logic makes the limit oscillate even in steady workload + * conditions. Yet we opted for it, because it is fast in reaching + * the best value for the limit, as a function of the current I/O + * workload. To reduce oscillations, this step is disabled for a + * short time interval after the limit happens to be decreased. + * + * (3) Periodically, after resetting the limit, to make sure that the + * limit eventually drops in case the workload changes. This is + * needed because, after the limit has gone safely up for a + * certain workload, it is impossible to guess whether the + * baseline total service time may have changed, without measuring + * it again without injection. A more effective version of this + * step might be to just sample the baseline, by interrupting + * injection only once, and then to reset/lower the limit only if + * the total service time with the current limit does happen to be + * too large. + * + * More details on each step are provided in the comments on the + * pieces of code that implement these steps: the branch handling the + * transition from empty to non empty in bfq_add_request(), the branch + * handling injection in bfq_select_queue(), and the function + * bfq_choose_bfqq_for_injection(). These comments also explain some + * exceptions, made by the injection mechanism in some special cases. + */ +static void bfq_update_inject_limit(struct bfq_data *bfqd, + struct bfq_queue *bfqq) +{ + u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns; + unsigned int old_limit = bfqq->inject_limit; + + if (bfqq->last_serv_time_ns > 0) { + u64 threshold = (bfqq->last_serv_time_ns * 3)>>1; + + if (tot_time_ns >= threshold && old_limit > 0) { + bfqq->inject_limit--; + bfqq->decrease_time_jif = jiffies; + } else if (tot_time_ns < threshold && + old_limit < bfqd->max_rq_in_driver<<1) + bfqq->inject_limit++; + } + + /* + * Either we still have to compute the base value for the + * total service time, and there seem to be the right + * conditions to do it, or we can lower the last base value + * computed. + */ + if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 0) || + tot_time_ns < bfqq->last_serv_time_ns) { + bfqq->last_serv_time_ns = tot_time_ns; + /* + * Now we certainly have a base value: make sure we + * start trying injection. + */ + bfqq->inject_limit = max_t(unsigned int, 1, old_limit); + } + + /* update complete, not waiting for any request completion any longer */ + bfqd->waited_rq = NULL; +} + +/* * Handle either a requeue or a finish for rq. The things to do are * the same in both cases: all references to rq are to be dropped. In * particular, rq is considered completed from the point of view of @@ -5020,6 +5362,9 @@ static void bfq_finish_requeue_request(struct request *rq) spin_lock_irqsave(&bfqd->lock, flags); + if (rq == bfqd->waited_rq) + bfq_update_inject_limit(bfqd, bfqq); + bfq_completed_request(bfqq, bfqd); bfq_finish_requeue_request_body(bfqq); |