diff options
Diffstat (limited to 'arch/x86')
41 files changed, 704 insertions, 419 deletions
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig index 55bced17dc95..b3a1a5d77d92 100644 --- a/arch/x86/Kconfig +++ b/arch/x86/Kconfig @@ -41,6 +41,7 @@ config X86 select ARCH_USE_CMPXCHG_LOCKREF if X86_64 select ARCH_USE_QUEUED_RWLOCKS select ARCH_USE_QUEUED_SPINLOCKS + select ARCH_WANTS_DYNAMIC_TASK_STRUCT select ARCH_WANT_FRAME_POINTERS select ARCH_WANT_IPC_PARSE_VERSION if X86_32 select ARCH_WANT_OPTIONAL_GPIOLIB @@ -254,6 +255,11 @@ config ARCH_SUPPORTS_OPTIMIZED_INLINING config ARCH_SUPPORTS_DEBUG_PAGEALLOC def_bool y +config KASAN_SHADOW_OFFSET + hex + depends on KASAN + default 0xdffffc0000000000 + config HAVE_INTEL_TXT def_bool y depends on INTEL_IOMMU && ACPI @@ -2015,7 +2021,7 @@ config CMDLINE_BOOL To compile command line arguments into the kernel, set this option to 'Y', then fill in the - the boot arguments in CONFIG_CMDLINE. + boot arguments in CONFIG_CMDLINE. Systems with fully functional boot loaders (i.e. non-embedded) should leave this option set to 'N'. diff --git a/arch/x86/Kconfig.debug b/arch/x86/Kconfig.debug index a15893d17c55..d8c0d3266173 100644 --- a/arch/x86/Kconfig.debug +++ b/arch/x86/Kconfig.debug @@ -297,6 +297,18 @@ config OPTIMIZE_INLINING If unsure, say N. +config DEBUG_ENTRY + bool "Debug low-level entry code" + depends on DEBUG_KERNEL + ---help--- + This option enables sanity checks in x86's low-level entry code. + Some of these sanity checks may slow down kernel entries and + exits or otherwise impact performance. + + This is currently used to help test NMI code. + + If unsure, say N. + config DEBUG_NMI_SELFTEST bool "NMI Selftest" depends on DEBUG_KERNEL && X86_LOCAL_APIC diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S index 3bb2c4302df1..8cb3e438f21e 100644 --- a/arch/x86/entry/entry_64.S +++ b/arch/x86/entry/entry_64.S @@ -1237,11 +1237,12 @@ ENTRY(nmi) * If the variable is not set and the stack is not the NMI * stack then: * o Set the special variable on the stack - * o Copy the interrupt frame into a "saved" location on the stack - * o Copy the interrupt frame into a "copy" location on the stack + * o Copy the interrupt frame into an "outermost" location on the + * stack + * o Copy the interrupt frame into an "iret" location on the stack * o Continue processing the NMI * If the variable is set or the previous stack is the NMI stack: - * o Modify the "copy" location to jump to the repeate_nmi + * o Modify the "iret" location to jump to the repeat_nmi * o return back to the first NMI * * Now on exit of the first NMI, we first clear the stack variable @@ -1250,31 +1251,151 @@ ENTRY(nmi) * a nested NMI that updated the copy interrupt stack frame, a * jump will be made to the repeat_nmi code that will handle the second * NMI. + * + * However, espfix prevents us from directly returning to userspace + * with a single IRET instruction. Similarly, IRET to user mode + * can fault. We therefore handle NMIs from user space like + * other IST entries. */ /* Use %rdx as our temp variable throughout */ pushq %rdx + testb $3, CS-RIP+8(%rsp) + jz .Lnmi_from_kernel + + /* + * NMI from user mode. We need to run on the thread stack, but we + * can't go through the normal entry paths: NMIs are masked, and + * we don't want to enable interrupts, because then we'll end + * up in an awkward situation in which IRQs are on but NMIs + * are off. + */ + + SWAPGS + cld + movq %rsp, %rdx + movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp + pushq 5*8(%rdx) /* pt_regs->ss */ + pushq 4*8(%rdx) /* pt_regs->rsp */ + pushq 3*8(%rdx) /* pt_regs->flags */ + pushq 2*8(%rdx) /* pt_regs->cs */ + pushq 1*8(%rdx) /* pt_regs->rip */ + pushq $-1 /* pt_regs->orig_ax */ + pushq %rdi /* pt_regs->di */ + pushq %rsi /* pt_regs->si */ + pushq (%rdx) /* pt_regs->dx */ + pushq %rcx /* pt_regs->cx */ + pushq %rax /* pt_regs->ax */ + pushq %r8 /* pt_regs->r8 */ + pushq %r9 /* pt_regs->r9 */ + pushq %r10 /* pt_regs->r10 */ + pushq %r11 /* pt_regs->r11 */ + pushq %rbx /* pt_regs->rbx */ + pushq %rbp /* pt_regs->rbp */ + pushq %r12 /* pt_regs->r12 */ + pushq %r13 /* pt_regs->r13 */ + pushq %r14 /* pt_regs->r14 */ + pushq %r15 /* pt_regs->r15 */ + + /* + * At this point we no longer need to worry about stack damage + * due to nesting -- we're on the normal thread stack and we're + * done with the NMI stack. + */ + + movq %rsp, %rdi + movq $-1, %rsi + call do_nmi + + /* + * Return back to user mode. We must *not* do the normal exit + * work, because we don't want to enable interrupts. Fortunately, + * do_nmi doesn't modify pt_regs. + */ + SWAPGS + jmp restore_c_regs_and_iret + +.Lnmi_from_kernel: + /* + * Here's what our stack frame will look like: + * +---------------------------------------------------------+ + * | original SS | + * | original Return RSP | + * | original RFLAGS | + * | original CS | + * | original RIP | + * +---------------------------------------------------------+ + * | temp storage for rdx | + * +---------------------------------------------------------+ + * | "NMI executing" variable | + * +---------------------------------------------------------+ + * | iret SS } Copied from "outermost" frame | + * | iret Return RSP } on each loop iteration; overwritten | + * | iret RFLAGS } by a nested NMI to force another | + * | iret CS } iteration if needed. | + * | iret RIP } | + * +---------------------------------------------------------+ + * | outermost SS } initialized in first_nmi; | + * | outermost Return RSP } will not be changed before | + * | outermost RFLAGS } NMI processing is done. | + * | outermost CS } Copied to "iret" frame on each | + * | outermost RIP } iteration. | + * +---------------------------------------------------------+ + * | pt_regs | + * +---------------------------------------------------------+ + * + * The "original" frame is used by hardware. Before re-enabling + * NMIs, we need to be done with it, and we need to leave enough + * space for the asm code here. + * + * We return by executing IRET while RSP points to the "iret" frame. + * That will either return for real or it will loop back into NMI + * processing. + * + * The "outermost" frame is copied to the "iret" frame on each + * iteration of the loop, so each iteration starts with the "iret" + * frame pointing to the final return target. + */ + /* - * If %cs was not the kernel segment, then the NMI triggered in user - * space, which means it is definitely not nested. + * Determine whether we're a nested NMI. + * + * If we interrupted kernel code between repeat_nmi and + * end_repeat_nmi, then we are a nested NMI. We must not + * modify the "iret" frame because it's being written by + * the outer NMI. That's okay; the outer NMI handler is + * about to about to call do_nmi anyway, so we can just + * resume the outer NMI. */ - cmpl $__KERNEL_CS, 16(%rsp) - jne first_nmi + + movq $repeat_nmi, %rdx + cmpq 8(%rsp), %rdx + ja 1f + movq $end_repeat_nmi, %rdx + cmpq 8(%rsp), %rdx + ja nested_nmi_out +1: /* - * Check the special variable on the stack to see if NMIs are - * executing. + * Now check "NMI executing". If it's set, then we're nested. + * This will not detect if we interrupted an outer NMI just + * before IRET. */ cmpl $1, -8(%rsp) je nested_nmi /* - * Now test if the previous stack was an NMI stack. - * We need the double check. We check the NMI stack to satisfy the - * race when the first NMI clears the variable before returning. - * We check the variable because the first NMI could be in a - * breakpoint routine using a breakpoint stack. + * Now test if the previous stack was an NMI stack. This covers + * the case where we interrupt an outer NMI after it clears + * "NMI executing" but before IRET. We need to be careful, though: + * there is one case in which RSP could point to the NMI stack + * despite there being no NMI active: naughty userspace controls + * RSP at the very beginning of the SYSCALL targets. We can + * pull a fast one on naughty userspace, though: we program + * SYSCALL to mask DF, so userspace cannot cause DF to be set + * if it controls the kernel's RSP. We set DF before we clear + * "NMI executing". */ lea 6*8(%rsp), %rdx /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ @@ -1286,25 +1407,20 @@ ENTRY(nmi) cmpq %rdx, 4*8(%rsp) /* If it is below the NMI stack, it is a normal NMI */ jb first_nmi - /* Ah, it is within the NMI stack, treat it as nested */ + + /* Ah, it is within the NMI stack. */ + + testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) + jz first_nmi /* RSP was user controlled. */ + + /* This is a nested NMI. */ nested_nmi: /* - * Do nothing if we interrupted the fixup in repeat_nmi. - * It's about to repeat the NMI handler, so we are fine - * with ignoring this one. + * Modify the "iret" frame to point to repeat_nmi, forcing another + * iteration of NMI handling. */ - movq $repeat_nmi, %rdx - cmpq 8(%rsp), %rdx - ja 1f - movq $end_repeat_nmi, %rdx - cmpq 8(%rsp), %rdx - ja nested_nmi_out - -1: - /* Set up the interrupted NMIs stack to jump to repeat_nmi */ - leaq -1*8(%rsp), %rdx - movq %rdx, %rsp + subq $8, %rsp leaq -10*8(%rsp), %rdx pushq $__KERNEL_DS pushq %rdx @@ -1318,61 +1434,42 @@ nested_nmi: nested_nmi_out: popq %rdx - /* No need to check faults here */ + /* We are returning to kernel mode, so this cannot result in a fault. */ INTERRUPT_RETURN first_nmi: - /* - * Because nested NMIs will use the pushed location that we - * stored in rdx, we must keep that space available. - * Here's what our stack frame will look like: - * +-------------------------+ - * | original SS | - * | original Return RSP | - * | original RFLAGS | - * | original CS | - * | original RIP | - * +-------------------------+ - * | temp storage for rdx | - * +-------------------------+ - * | NMI executing variable | - * +-------------------------+ - * | copied SS | - * | copied Return RSP | - * | copied RFLAGS | - * | copied CS | - * | copied RIP | - * +-------------------------+ - * | Saved SS | - * | Saved Return RSP | - * | Saved RFLAGS | - * | Saved CS | - * | Saved RIP | - * +-------------------------+ - * | pt_regs | - * +-------------------------+ - * - * The saved stack frame is used to fix up the copied stack frame - * that a nested NMI may change to make the interrupted NMI iret jump - * to the repeat_nmi. The original stack frame and the temp storage - * is also used by nested NMIs and can not be trusted on exit. - */ - /* Do not pop rdx, nested NMIs will corrupt that part of the stack */ + /* Restore rdx. */ movq (%rsp), %rdx - /* Set the NMI executing variable on the stack. */ - pushq $1 + /* Make room for "NMI executing". */ + pushq $0 - /* Leave room for the "copied" frame */ + /* Leave room for the "iret" frame */ subq $(5*8), %rsp - /* Copy the stack frame to the Saved frame */ + /* Copy the "original" frame to the "outermost" frame */ .rept 5 pushq 11*8(%rsp) .endr /* Everything up to here is safe from nested NMIs */ +#ifdef CONFIG_DEBUG_ENTRY + /* + * For ease of testing, unmask NMIs right away. Disabled by + * default because IRET is very expensive. + */ + pushq $0 /* SS */ + pushq %rsp /* RSP (minus 8 because of the previous push) */ + addq $8, (%rsp) /* Fix up RSP */ + pushfq /* RFLAGS */ + pushq $__KERNEL_CS /* CS */ + pushq $1f /* RIP */ + INTERRUPT_RETURN /* continues at repeat_nmi below */ +1: +#endif + +repeat_nmi: /* * If there was a nested NMI, the first NMI's iret will return * here. But NMIs are still enabled and we can take another @@ -1381,16 +1478,20 @@ first_nmi: * it will just return, as we are about to repeat an NMI anyway. * This makes it safe to copy to the stack frame that a nested * NMI will update. + * + * RSP is pointing to "outermost RIP". gsbase is unknown, but, if + * we're repeating an NMI, gsbase has the same value that it had on + * the first iteration. paranoid_entry will load the kernel + * gsbase if needed before we call do_nmi. "NMI executing" + * is zero. */ -repeat_nmi: + movq $1, 10*8(%rsp) /* Set "NMI executing". */ + /* - * Update the stack variable to say we are still in NMI (the update - * is benign for the non-repeat case, where 1 was pushed just above - * to this very stack slot). + * Copy the "outermost" frame to the "iret" frame. NMIs that nest + * here must not modify the "iret" frame while we're writing to + * it or it will end up containing garbage. */ - movq $1, 10*8(%rsp) - - /* Make another copy, this one may be modified by nested NMIs */ addq $(10*8), %rsp .rept 5 pushq -6*8(%rsp) @@ -1399,9 +1500,9 @@ repeat_nmi: end_repeat_nmi: /* - * Everything below this point can be preempted by a nested - * NMI if the first NMI took an exception and reset our iret stack - * so that we repeat another NMI. + * Everything below this point can be preempted by a nested NMI. + * If this happens, then the inner NMI will change the "iret" + * frame to point back to repeat_nmi. */ pushq $-1 /* ORIG_RAX: no syscall to restart */ ALLOC_PT_GPREGS_ON_STACK @@ -1415,28 +1516,11 @@ end_repeat_nmi: */ call paranoid_entry - /* - * Save off the CR2 register. If we take a page fault in the NMI then - * it could corrupt the CR2 value. If the NMI preempts a page fault - * handler before it was able to read the CR2 register, and then the - * NMI itself takes a page fault, the page fault that was preempted - * will read the information from the NMI page fault and not the - * origin fault. Save it off and restore it if it changes. - * Use the r12 callee-saved register. - */ - movq %cr2, %r12 - /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */ movq %rsp, %rdi movq $-1, %rsi call do_nmi - /* Did the NMI take a page fault? Restore cr2 if it did */ - movq %cr2, %rcx - cmpq %rcx, %r12 - je 1f - movq %r12, %cr2 -1: testl %ebx, %ebx /* swapgs needed? */ jnz nmi_restore nmi_swapgs: @@ -1444,11 +1528,26 @@ nmi_swapgs: nmi_restore: RESTORE_EXTRA_REGS RESTORE_C_REGS - /* Pop the extra iret frame at once */ + + /* Point RSP at the "iret" frame. */ REMOVE_PT_GPREGS_FROM_STACK 6*8 - /* Clear the NMI executing stack variable */ - movq $0, 5*8(%rsp) + /* + * Clear "NMI executing". Set DF first so that we can easily + * distinguish the remaining code between here and IRET from + * the SYSCALL entry and exit paths. On a native kernel, we + * could just inspect RIP, but, on paravirt kernels, + * INTERRUPT_RETURN can translate into a jump into a + * hypercall page. + */ + std + movq $0, 5*8(%rsp) /* clear "NMI executing" */ + + /* + * INTERRUPT_RETURN reads the "iret" frame and exits the NMI + * stack in a single instruction. We are returning to kernel + * mode, so this cannot result in a fault. + */ INTERRUPT_RETURN END(nmi) diff --git a/arch/x86/entry/entry_64_compat.S b/arch/x86/entry/entry_64_compat.S index bb187a6a877c..5a1844765a7a 100644 --- a/arch/x86/entry/entry_64_compat.S +++ b/arch/x86/entry/entry_64_compat.S @@ -205,7 +205,6 @@ sysexit_from_sys_call: movl RDX(%rsp), %edx /* arg3 */ movl RSI(%rsp), %ecx /* arg4 */ movl RDI(%rsp), %r8d /* arg5 */ - movl %ebp, %r9d /* arg6 */ .endm .macro auditsys_exit exit @@ -236,6 +235,7 @@ sysexit_from_sys_call: sysenter_auditsys: auditsys_entry_common + movl %ebp, %r9d /* reload 6th syscall arg */ jmp sysenter_dispatch sysexit_audit: @@ -336,7 +336,7 @@ ENTRY(entry_SYSCALL_compat) * 32-bit zero extended: */ ASM_STAC -1: movl (%r8), %ebp +1: movl (%r8), %r9d _ASM_EXTABLE(1b, ia32_badarg) ASM_CLAC orl $TS_COMPAT, ASM_THREAD_INFO(TI_status, %rsp, SIZEOF_PTREGS) @@ -346,7 +346,7 @@ ENTRY(entry_SYSCALL_compat) cstar_do_call: /* 32-bit syscall -> 64-bit C ABI argument conversion */ movl %edi, %r8d /* arg5 */ - movl %ebp, %r9d /* arg6 */ + /* r9 already loaded */ /* arg6 */ xchg %ecx, %esi /* rsi:arg2, rcx:arg4 */ movl %ebx, %edi /* arg1 */ movl %edx, %edx /* arg3 (zero extension) */ @@ -358,7 +358,6 @@ cstar_dispatch: call *ia32_sys_call_table(, %rax, 8) movq %rax, RAX(%rsp) 1: - movl RCX(%rsp), %ebp DISABLE_INTERRUPTS(CLBR_NONE) TRACE_IRQS_OFF testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) @@ -392,7 +391,9 @@ sysretl_from_sys_call: #ifdef CONFIG_AUDITSYSCALL cstar_auditsys: + movl %r9d, R9(%rsp) /* register to be clobbered by call */ auditsys_entry_common + movl R9(%rsp), %r9d /* reload 6th syscall arg */ jmp cstar_dispatch sysretl_audit: @@ -404,14 +405,16 @@ cstar_tracesys: testl $(_TIF_WORK_SYSCALL_ENTRY & ~_TIF_SYSCALL_AUDIT), ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS) jz cstar_auditsys #endif + xchgl %r9d, %ebp SAVE_EXTRA_REGS xorl %eax, %eax /* Do not leak kernel information */ movq %rax, R11(%rsp) movq %rax, R10(%rsp) - movq %rax, R9(%rsp) + movq %r9, R9(%rsp) movq %rax, R8(%rsp) movq %rsp, %rdi /* &pt_regs -> arg1 */ call syscall_trace_enter + movl R9(%rsp), %r9d /* Reload arg registers from stack. (see sysenter_tracesys) */ movl RCX(%rsp), %ecx @@ -421,6 +424,7 @@ cstar_tracesys: movl %eax, %eax /* zero extension */ RESTORE_EXTRA_REGS + xchgl %ebp, %r9d jmp cstar_do_call END(entry_SYSCALL_compat) diff --git a/arch/x86/include/asm/Kbuild b/arch/x86/include/asm/Kbuild index 4dd1f2d770af..aeac434c9feb 100644 --- a/arch/x86/include/asm/Kbuild +++ b/arch/x86/include/asm/Kbuild @@ -9,3 +9,4 @@ generic-y += cputime.h generic-y += dma-contiguous.h generic-y += early_ioremap.h generic-y += mcs_spinlock.h +generic-y += mm-arch-hooks.h diff --git a/arch/x86/include/asm/espfix.h b/arch/x86/include/asm/espfix.h index 99efebb2f69d..ca3ce9ab9385 100644 --- a/arch/x86/include/asm/espfix.h +++ b/arch/x86/include/asm/espfix.h @@ -9,7 +9,7 @@ DECLARE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack); DECLARE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr); extern void init_espfix_bsp(void); -extern void init_espfix_ap(void); +extern void init_espfix_ap(int cpu); #endif /* CONFIG_X86_64 */ diff --git a/arch/x86/include/asm/fpu/types.h b/arch/x86/include/asm/fpu/types.h index 0637826292de..c49c5173158e 100644 --- a/arch/x86/include/asm/fpu/types.h +++ b/arch/x86/include/asm/fpu/types.h @@ -189,6 +189,7 @@ union fpregs_state { struct fxregs_state fxsave; struct swregs_state soft; struct xregs_state xsave; + u8 __padding[PAGE_SIZE]; }; /* @@ -198,40 +199,6 @@ union fpregs_state { */ struct fpu { /* - * @state: - * - * In-memory copy of all FPU registers that we save/restore - * over context switches. If the task is using the FPU then - * the registers in the FPU are more recent than this state - * copy. If the task context-switches away then they get - * saved here and represent the FPU state. - * - * After context switches there may be a (short) time period - * during which the in-FPU hardware registers are unchanged - * and still perfectly match this state, if the tasks - * scheduled afterwards are not using the FPU. - * - * This is the 'lazy restore' window of optimization, which - * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'. - * - * We detect whether a subsequent task uses the FPU via setting - * CR0::TS to 1, which causes any FPU use to raise a #NM fault. - * - * During this window, if the task gets scheduled again, we - * might be able to skip having to do a restore from this - * memory buffer to the hardware registers - at the cost of - * incurring the overhead of #NM fault traps. - * - * Note that on modern CPUs that support the XSAVEOPT (or other - * optimized XSAVE instructions), we don't use #NM traps anymore, - * as the hardware can track whether FPU registers need saving - * or not. On such CPUs we activate the non-lazy ('eagerfpu') - * logic, which unconditionally saves/restores all FPU state - * across context switches. (if FPU state exists.) - */ - union fpregs_state state; - - /* * @last_cpu: * * Records the last CPU on which this context was loaded into @@ -288,6 +255,43 @@ struct fpu { * deal with bursty apps that only use the FPU for a short time: */ unsigned char counter; + /* + * @state: + * + * In-memory copy of all FPU registers that we save/restore + * over context switches. If the task is using the FPU then + * the registers in the FPU are more recent than this state + * copy. If the task context-switches away then they get + * saved here and represent the FPU state. + * + * After context switches there may be a (short) time period + * during which the in-FPU hardware registers are unchanged + * and still perfectly match this state, if the tasks + * scheduled afterwards are not using the FPU. + * + * This is the 'lazy restore' window of optimization, which + * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'. + * + * We detect whether a subsequent task uses the FPU via setting + * CR0::TS to 1, which causes any FPU use to raise a #NM fault. + * + * During this window, if the task gets scheduled again, we + * might be able to skip having to do a restore from this + * memory buffer to the hardware registers - at the cost of + * incurring the overhead of #NM fault traps. + * + * Note that on modern CPUs that support the XSAVEOPT (or other + * optimized XSAVE instructions), we don't use #NM traps anymore, + * as the hardware can track whether FPU registers need saving + * or not. On such CPUs we activate the non-lazy ('eagerfpu') + * logic, which unconditionally saves/restores all FPU state + * across context switches. (if FPU state exists.) + */ + union fpregs_state state; + /* + * WARNING: 'state' is dynamically-sized. Do not put + * anything after it here. + */ }; #endif /* _ASM_X86_FPU_H */ diff --git a/arch/x86/include/asm/intel_pmc_ipc.h b/arch/x86/include/asm/intel_pmc_ipc.h index 200ec2e7821d..cd0310e186f4 100644 --- a/arch/x86/include/asm/intel_pmc_ipc.h +++ b/arch/x86/include/asm/intel_pmc_ipc.h @@ -25,36 +25,9 @@ #if IS_ENABLED(CONFIG_INTEL_PMC_IPC) -/* - * intel_pmc_ipc_simple_command - * @cmd: command - * @sub: sub type - */ int intel_pmc_ipc_simple_command(int cmd, int sub); - -/* - * intel_pmc_ipc_raw_cmd - * @cmd: command - * @sub: sub type - * @in: input data - * @inlen: input length in bytes - * @out: output data - * @outlen: output length in dwords - * @sptr: data writing to SPTR register - * @dptr: data writing to DPTR register - */ int intel_pmc_ipc_raw_cmd(u32 cmd, u32 sub, u8 *in, u32 inlen, u32 *out, u32 outlen, u32 dptr, u32 sptr); - -/* - * intel_pmc_ipc_command - * @cmd: command - * @sub: sub type - * @in: input data - * @inlen: input length in bytes - * @out: output data - * @outlen: output length in dwords - */ int intel_pmc_ipc_command(u32 cmd, u32 sub, u8 *in, u32 inlen, u32 *out, u32 outlen); diff --git a/arch/x86/include/asm/kasan.h b/arch/x86/include/asm/kasan.h index 8b22422fbad8..74a2a8dc9908 100644 --- a/arch/x86/include/asm/kasan.h +++ b/arch/x86/include/asm/kasan.h @@ -14,15 +14,11 @@ #ifndef __ASSEMBLY__ -extern pte_t kasan_zero_pte[]; -extern pte_t kasan_zero_pmd[]; -extern pte_t kasan_zero_pud[]; - #ifdef CONFIG_KASAN -void __init kasan_map_early_shadow(pgd_t *pgd); +void __init kasan_early_init(void); void __init kasan_init(void); #else -static inline void kasan_map_early_shadow(pgd_t *pgd) { } +static inline void kasan_early_init(void) { } static inline void kasan_init(void) { } #endif diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index 2a7f5d782c33..49ec9038ec14 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h @@ -604,6 +604,8 @@ struct kvm_arch { bool iommu_noncoherent; #define __KVM_HAVE_ARCH_NONCOHERENT_DMA atomic_t noncoherent_dma_count; +#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE + atomic_t assigned_device_count; struct kvm_pic *vpic; struct kvm_ioapic *vioapic; struct kvm_pit *vpit; diff --git a/arch/x86/include/asm/mm-arch-hooks.h b/arch/x86/include/asm/mm-arch-hooks.h deleted file mode 100644 index 4e881a342236..000000000000 --- a/arch/x86/include/asm/mm-arch-hooks.h +++ /dev/null @@ -1,15 +0,0 @@ -/* - * Architecture specific mm hooks - * - * Copyright (C) 2015, IBM Corporation - * Author: Laurent Dufour <ldufour@linux.vnet.ibm.com> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#ifndef _ASM_X86_MM_ARCH_HOOKS_H -#define _ASM_X86_MM_ARCH_HOOKS_H - -#endif /* _ASM_X86_MM_ARCH_HOOKS_H */ diff --git a/arch/x86/include/asm/mmu_context.h b/arch/x86/include/asm/mmu_context.h index 5e8daee7c5c9..804a3a6030ca 100644 --- a/arch/x86/include/asm/mmu_context.h +++ b/arch/x86/include/asm/mmu_context.h @@ -23,7 +23,7 @@ extern struct static_key rdpmc_always_available; static inline void load_mm_cr4(struct mm_struct *mm) { - if (static_key_true(&rdpmc_always_available) || + if (static_key_false(&rdpmc_always_available) || atomic_read(&mm->context.perf_rdpmc_allowed)) cr4_set_bits(X86_CR4_PCE); else diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h index 43e6519df0d5..944f1785ed0d 100644 --- a/arch/x86/include/asm/processor.h +++ b/arch/x86/include/asm/processor.h @@ -390,9 +390,6 @@ struct thread_struct { #endif unsigned long gs; - /* Floating point and extended processor state */ - struct fpu fpu; - /* Save middle states of ptrace breakpoints */ struct perf_event *ptrace_bps[HBP_NUM]; /* Debug status used for traps, single steps, etc... */ @@ -418,6 +415,13 @@ struct thread_struct { unsigned long iopl; /* Max allowed port in the bitmap, in bytes: */ unsigned io_bitmap_max; + + /* Floating point and extended processor state */ + struct fpu fpu; + /* + * WARNING: 'fpu' is dynamically-sized. It *MUST* be at + * the end. + */ }; /* diff --git a/arch/x86/include/uapi/asm/hyperv.h b/arch/x86/include/uapi/asm/hyperv.h index 8fba544e9cc4..f36d56bd7632 100644 --- a/arch/x86/include/uapi/asm/hyperv.h +++ b/arch/x86/include/uapi/asm/hyperv.h @@ -108,6 +108,8 @@ #define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE (1 << 4) /* Support for a virtual guest idle state is available */ #define HV_X64_GUEST_IDLE_STATE_AVAILABLE (1 << 5) +/* Guest crash data handler available */ +#define HV_X64_GUEST_CRASH_MSR_AVAILABLE (1 << 10) /* * Implementation recommendations. Indicates which behaviors the hypervisor diff --git a/arch/x86/include/uapi/asm/kvm.h b/arch/x86/include/uapi/asm/kvm.h index a4ae82eb82aa..cd54147cb365 100644 --- a/arch/x86/include/uapi/asm/kvm.h +++ b/arch/x86/include/uapi/asm/kvm.h @@ -354,7 +354,7 @@ struct kvm_xcrs { struct kvm_sync_regs { }; -#define KVM_QUIRK_LINT0_REENABLED (1 << 0) -#define KVM_QUIRK_CD_NW_CLEARED (1 << 1) +#define KVM_X86_QUIRK_LINT0_REENABLED (1 << 0) +#define KVM_X86_QUIRK_CD_NW_CLEARED (1 << 1) #endif /* _ASM_X86_KVM_H */ diff --git a/arch/x86/kernel/apic/vector.c b/arch/x86/kernel/apic/vector.c index 28eba2d38b15..f813261d9740 100644 --- a/arch/x86/kernel/apic/vector.c +++ b/arch/x86/kernel/apic/vector.c @@ -409,12 +409,6 @@ static void __setup_vector_irq(int cpu) int irq, vector; struct apic_chip_data *data; - /* - * vector_lock will make sure that we don't run into irq vector - * assignments that might be happening on another cpu in parallel, - * while we setup our initial vector to irq mappings. - */ - raw_spin_lock(&vector_lock); /* Mark the inuse vectors */ for_each_active_irq(irq) { data = apic_chip_data(irq_get_irq_data(irq)); @@ -436,16 +430,16 @@ static void __setup_vector_irq(int cpu) if (!cpumask_test_cpu(cpu, data->domain)) per_cpu(vector_irq, cpu)[vector] = VECTOR_UNDEFINED; } - raw_spin_unlock(&vector_lock); } /* - * Setup the vector to irq mappings. + * Setup the vector to irq mappings. Must be called with vector_lock held. */ void setup_vector_irq(int cpu) { int irq; + lockdep_assert_held(&vector_lock); /* * On most of the platforms, legacy PIC delivers the interrupts on the * boot cpu. But there are certain platforms where PIC interrupts are diff --git a/arch/x86/kernel/cpu/perf_event_intel_cqm.c b/arch/x86/kernel/cpu/perf_event_intel_cqm.c index 188076161c1b..63eb68b73589 100644 --- a/arch/x86/kernel/cpu/perf_event_intel_cqm.c +++ b/arch/x86/kernel/cpu/perf_event_intel_cqm.c @@ -952,6 +952,14 @@ static u64 intel_cqm_event_count(struct perf_event *event) return 0; /* + * Getting up-to-date values requires an SMP IPI which is not + * possible if we're being called in interrupt context. Return + * the cached values instead. + */ + if (unlikely(in_interrupt())) + goto out; + + /* * Notice that we don't perform the reading of an RMID * atomically, because we can't hold a spin lock across the * IPIs. diff --git a/arch/x86/kernel/early_printk.c b/arch/x86/kernel/early_printk.c index 89427d8d4fc5..eec40f595ab9 100644 --- a/arch/x86/kernel/early_printk.c +++ b/arch/x86/kernel/early_printk.c @@ -175,7 +175,9 @@ static __init void early_serial_init(char *s) } if (*s) { - if (kstrtoul(s, 0, &baud) < 0 || baud == 0) + baud = simple_strtoull(s, &e, 0); + + if (baud == 0 || s == e) baud = DEFAULT_BAUD; } diff --git a/arch/x86/kernel/espfix_64.c b/arch/x86/kernel/espfix_64.c index f5d0730e7b08..ce95676abd60 100644 --- a/arch/x86/kernel/espfix_64.c +++ b/arch/x86/kernel/espfix_64.c @@ -131,25 +131,24 @@ void __init init_espfix_bsp(void) init_espfix_random(); /* The rest is the same as for any other processor */ - init_espfix_ap(); + init_espfix_ap(0); } -void init_espfix_ap(void) +void init_espfix_ap(int cpu) { - unsigned int cpu, page; + unsigned int page; unsigned long addr; pud_t pud, *pud_p; pmd_t pmd, *pmd_p; pte_t pte, *pte_p; - int n; + int n, node; void *stack_page; pteval_t ptemask; /* We only have to do this once... */ - if (likely(this_cpu_read(espfix_stack))) + if (likely(per_cpu(espfix_stack, cpu))) return; /* Already initialized */ - cpu = smp_processor_id(); addr = espfix_base_addr(cpu); page = cpu/ESPFIX_STACKS_PER_PAGE; @@ -165,12 +164,15 @@ void init_espfix_ap(void) if (stack_page) goto unlock_done; + node = cpu_to_node(cpu); ptemask = __supported_pte_mask; pud_p = &espfix_pud_page[pud_index(addr)]; pud = *pud_p; if (!pud_present(pud)) { - pmd_p = (pmd_t *)__get_free_page(PGALLOC_GFP); + struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); + + pmd_p = (pmd_t *)page_address(page); pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask)); paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT); for (n = 0; n < ESPFIX_PUD_CLONES; n++) @@ -180,7 +182,9 @@ void init_espfix_ap(void) pmd_p = pmd_offset(&pud, addr); pmd = *pmd_p; if (!pmd_present(pmd)) { - pte_p = (pte_t *)__get_free_page(PGALLOC_GFP); + struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); + + pte_p = (pte_t *)page_address(page); pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask)); paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT); for (n = 0; n < ESPFIX_PMD_CLONES; n++) @@ -188,7 +192,7 @@ void init_espfix_ap(void) } pte_p = pte_offset_kernel(&pmd, addr); - stack_page = (void *)__get_free_page(GFP_KERNEL); + stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0)); pte = __pte(__pa(stack_page) | (__PAGE_KERNEL_RO & ptemask)); for (n = 0; n < ESPFIX_PTE_CLONES; n++) set_pte(&pte_p[n*PTE_STRIDE], pte); @@ -199,7 +203,7 @@ void init_espfix_ap(void) unlock_done: mutex_unlock(&espfix_init_mutex); done: - this_cpu_write(espfix_stack, addr); - this_cpu_write(espfix_waddr, (unsigned long)stack_page - + (addr & ~PAGE_MASK)); + per_cpu(espfix_stack, cpu) = addr; + per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page + + (addr & ~PAGE_MASK); } diff --git a/arch/x86/kernel/fpu/init.c b/arch/x86/kernel/fpu/init.c index 32826791e675..1e173f6285c7 100644 --- a/arch/x86/kernel/fpu/init.c +++ b/arch/x86/kernel/fpu/init.c @@ -4,6 +4,8 @@ #include <asm/fpu/internal.h> #include <asm/tlbflush.h> +#include <linux/sched.h> + /* * Initialize the TS bit in CR0 according to the style of context-switches * we are using: @@ -136,6 +138,43 @@ static void __init fpu__init_system_generic(void) unsigned int xstate_size; EXPORT_SYMBOL_GPL(xstate_size); +/* Enforce that 'MEMBER' is the last field of 'TYPE': */ +#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \ + BUILD_BUG_ON(sizeof(TYPE) != offsetofend(TYPE, MEMBER)) + +/* + * We append the 'struct fpu' to the task_struct: + */ +static void __init fpu__init_task_struct_size(void) +{ + int task_size = sizeof(struct task_struct); + + /* + * Subtract off the static size of the register state. + * It potentially has a bunch of padding. + */ + task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state); + + /* + * Add back the dynamically-calculated register state + * size. + */ + task_size += xstate_size; + + /* + * We dynamically size 'struct fpu', so we require that + * it be at the end of 'thread_struct' and that + * 'thread_struct' be at the end of 'task_struct'. If + * you hit a compile error here, check the structure to + * see if something got added to the end. + */ + CHECK_MEMBER_AT_END_OF(struct fpu, state); + CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu); + CHECK_MEMBER_AT_END_OF(struct task_struct, thread); + + arch_task_struct_size = task_size; +} + /* * Set up the xstate_size based on the legacy FPU context size. * @@ -287,6 +326,7 @@ void __init fpu__init_system(struct cpuinfo_x86 *c) fpu__init_system_generic(); fpu__init_system_xstate_size_legacy(); fpu__init_system_xstate(); + fpu__init_task_struct_size(); fpu__init_system_ctx_switch(); } @@ -311,9 +351,15 @@ static int __init x86_noxsave_setup(char *s) setup_clear_cpu_cap(X86_FEATURE_XSAVE); setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); + setup_clear_cpu_cap(X86_FEATURE_XSAVEC); setup_clear_cpu_cap(X86_FEATURE_XSAVES); setup_clear_cpu_cap(X86_FEATURE_AVX); setup_clear_cpu_cap(X86_FEATURE_AVX2); + setup_clear_cpu_cap(X86_FEATURE_AVX512F); + setup_clear_cpu_cap(X86_FEATURE_AVX512PF); + setup_clear_cpu_cap(X86_FEATURE_AVX512ER); + setup_clear_cpu_cap(X86_FEATURE_AVX512CD); + setup_clear_cpu_cap(X86_FEATURE_MPX); return 1; } diff --git a/arch/x86/kernel/head64.c b/arch/x86/kernel/head64.c index 5a4668136e98..f129a9af6357 100644 --- a/arch/x86/kernel/head64.c +++ b/arch/x86/kernel/head64.c @@ -161,11 +161,12 @@ asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data) /* Kill off the identity-map trampoline */ reset_early_page_tables(); - kasan_map_early_shadow(early_level4_pgt); - - /* clear bss before set_intr_gate with early_idt_handler */ clear_bss(); + clear_page(init_level4_pgt); + + kasan_early_init(); + for (i = 0; i < NUM_EXCEPTION_VECTORS; i++) set_intr_gate(i, early_idt_handler_array[i]); load_idt((const struct desc_ptr *)&idt_descr); @@ -177,12 +178,9 @@ asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data) */ load_ucode_bsp(); - clear_page(init_level4_pgt); /* set init_level4_pgt kernel high mapping*/ init_level4_pgt[511] = early_level4_pgt[511]; - kasan_map_early_shadow(init_level4_pgt); - x86_64_start_reservations(real_mode_data); } diff --git a/arch/x86/kernel/head_64.S b/arch/x86/kernel/head_64.S index e5c27f729a38..1d40ca8a73f2 100644 --- a/arch/x86/kernel/head_64.S +++ b/arch/x86/kernel/head_64.S @@ -516,38 +516,9 @@ ENTRY(phys_base) /* This must match the first entry in level2_kernel_pgt */ .quad 0x0000000000000000 -#ifdef CONFIG_KASAN -#define FILL(VAL, COUNT) \ - .rept (COUNT) ; \ - .quad (VAL) ; \ - .endr - -NEXT_PAGE(kasan_zero_pte) - FILL(kasan_zero_page - __START_KERNEL_map + _KERNPG_TABLE, 512) -NEXT_PAGE(kasan_zero_pmd) - FILL(kasan_zero_pte - __START_KERNEL_map + _KERNPG_TABLE, 512) -NEXT_PAGE(kasan_zero_pud) - FILL(kasan_zero_pmd - __START_KERNEL_map + _KERNPG_TABLE, 512) - -#undef FILL -#endif - - #include "../../x86/xen/xen-head.S" __PAGE_ALIGNED_BSS NEXT_PAGE(empty_zero_page) .skip PAGE_SIZE -#ifdef CONFIG_KASAN -/* - * This page used as early shadow. We don't use empty_zero_page - * at early stages, stack instrumentation could write some garbage - * to this page. - * Latter we reuse it as zero shadow for large ranges of memory - * that allowed to access, but not instrumented by kasan - * (vmalloc/vmemmap ...). - */ -NEXT_PAGE(kasan_zero_page) - .skip PAGE_SIZE -#endif diff --git a/arch/x86/kernel/irq.c b/arch/x86/kernel/irq.c index 88b366487b0e..c7dfe1be784e 100644 --- a/arch/x86/kernel/irq.c +++ b/arch/x86/kernel/irq.c @@ -347,14 +347,22 @@ int check_irq_vectors_for_cpu_disable(void) if (!desc) continue; + /* + * Protect against concurrent action removal, + * affinity changes etc. + */ + raw_spin_lock(&desc->lock); data = irq_desc_get_irq_data(desc); cpumask_copy(&affinity_new, data->affinity); cpumask_clear_cpu(this_cpu, &affinity_new); /* Do not count inactive or per-cpu irqs. */ - if (!irq_has_action(irq) || irqd_is_per_cpu(data)) + if (!irq_has_action(irq) || irqd_is_per_cpu(data)) { + raw_spin_unlock(&desc->lock); continue; + } + raw_spin_unlock(&desc->lock); /* * A single irq may be mapped to multiple * cpu's vector_irq[] (for example IOAPIC cluster @@ -385,6 +393,9 @@ int check_irq_vectors_for_cpu_disable(void) * vector. If the vector is marked in the used vectors * bitmap or an irq is assigned to it, we don't count * it as available. + * + * As this is an inaccurate snapshot anyway, we can do + * this w/o holding vector_lock. */ for (vector = FIRST_EXTERNAL_VECTOR; vector < first_system_vector; vector++) { @@ -486,6 +497,11 @@ void fixup_irqs(void) */ mdelay(1); + /* + * We can walk the vector array of this cpu without holding + * vector_lock because the cpu is already marked !online, so + * nothing else will touch it. + */ for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { unsigned int irr; @@ -497,9 +513,9 @@ void fixup_irqs(void) irq = __this_cpu_read(vector_irq[vector]); desc = irq_to_desc(irq); + raw_spin_lock(&desc->lock); data = irq_desc_get_irq_data(desc); chip = irq_data_get_irq_chip(data); - raw_spin_lock(&desc->lock); if (chip->irq_retrigger) { chip->irq_retrigger(data); __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); diff --git a/arch/x86/kernel/nmi.c b/arch/x86/kernel/nmi.c index c3e985d1751c..d05bd2e2ee91 100644 --- a/arch/x86/kernel/nmi.c +++ b/arch/x86/kernel/nmi.c @@ -408,15 +408,15 @@ static void default_do_nmi(struct pt_regs *regs) NOKPROBE_SYMBOL(default_do_nmi); /* - * NMIs can hit breakpoints which will cause it to lose its - * NMI context with the CPU when the breakpoint does an iret. - */ -#ifdef CONFIG_X86_32 -/* - * For i386, NMIs use the same stack as the kernel, and we can - * add a workaround to the iret problem in C (preventing nested - * NMIs if an NMI takes a trap). Simply have 3 states the NMI - * can be in: + * NMIs can page fault or hit breakpoints which will cause it to lose + * its NMI context with the CPU when the breakpoint or page fault does an IRET. + * + * As a result, NMIs can nest if NMIs get unmasked due an IRET during + * NMI processing. On x86_64, the asm glue protects us from nested NMIs + * if the outer NMI came from kernel mode, but we can still nest if the + * outer NMI came from user mode. + * + * To handle these nested NMIs, we have three states: * * 1) not running * 2) executing @@ -430,15 +430,14 @@ NOKPROBE_SYMBOL(default_do_nmi); * (Note, the latch is binary, thus multiple NMIs triggering, * when one is running, are ignored. Only one NMI is restarted.) * - * If an NMI hits a breakpoint that executes an iret, another - * NMI can preempt it. We do not want to allow this new NMI - * to run, but we want to execute it when the first one finishes. - * We set the state to "latched", and the exit of the first NMI will - * perform a dec_return, if the result is zero (NOT_RUNNING), then - * it will simply exit the NMI handler. If not, the dec_return - * would have set the state to NMI_EXECUTING (what we want it to - * be when we are running). In this case, we simply jump back - * to rerun the NMI handler again, and restart the 'latched' NMI. + * If an NMI executes an iret, another NMI can preempt it. We do not + * want to allow this new NMI to run, but we want to execute it when the + * first one finishes. We set the state to "latched", and the exit of + * the first NMI will perform a dec_return, if the result is zero + * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the + * dec_return would have set the state to NMI_EXECUTING (what we want it + * to be when we are running). In this case, we simply jump back to + * rerun the NMI handler again, and restart the 'latched' NMI. * * No trap (breakpoint or page fault) should be hit before nmi_restart, * thus there is no race between the first check of state for NOT_RUNNING @@ -461,49 +460,36 @@ enum nmi_states { static DEFINE_PER_CPU(enum nmi_states, nmi_state); static DEFINE_PER_CPU(unsigned long, nmi_cr2); -#define nmi_nesting_preprocess(regs) \ - do { \ - if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \ - this_cpu_write(nmi_state, NMI_LATCHED); \ - return; \ - } \ - this_cpu_write(nmi_state, NMI_EXECUTING); \ - this_cpu_write(nmi_cr2, read_cr2()); \ - } while (0); \ - nmi_restart: - -#define nmi_nesting_postprocess() \ - do { \ - if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \ - write_cr2(this_cpu_read(nmi_cr2)); \ - if (this_cpu_dec_return(nmi_state)) \ - goto nmi_restart; \ - } while (0) -#else /* x86_64 */ +#ifdef CONFIG_X86_64 /* - * In x86_64 things are a bit more difficult. This has the same problem - * where an NMI hitting a breakpoint that calls iret will remove the - * NMI context, allowing a nested NMI to enter. What makes this more - * difficult is that both NMIs and breakpoints have their own stack. - * When a new NMI or breakpoint is executed, the stack is set to a fixed - * point. If an NMI is nested, it will have its stack set at that same - * fixed address that the first NMI had, and will start corrupting the - * stack. This is handled in entry_64.S, but the same problem exists with - * the breakpoint stack. + * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without + * some care, the inner breakpoint will clobber the outer breakpoint's + * stack. * - * If a breakpoint is being processed, and the debug stack is being used, - * if an NMI comes in and also hits a breakpoint, the stack pointer - * will be set to the same fixed address as the breakpoint that was - * interrupted, causing that stack to be corrupted. To handle this case, - * check if the stack that was interrupted is the debug stack, and if - * so, change the IDT so that new breakpoints will use the current stack - * and not switch to the fixed address. On return of the NMI, switch back - * to the original IDT. + * If a breakpoint is being processed, and the debug stack is being + * used, if an NMI comes in and also hits a breakpoint, the stack + * pointer will be set to the same fixed address as the breakpoint that + * was interrupted, causing that stack to be corrupted. To handle this + * case, check if the stack that was interrupted is the debug stack, and + * if so, change the IDT so that new breakpoints will use the current + * stack and not switch to the fixed address. On return of the NMI, + * switch back to the original IDT. */ static DEFINE_PER_CPU(int, update_debug_stack); +#endif -static inline void nmi_nesting_preprocess(struct pt_regs *regs) +dotraplinkage notrace void +do_nmi(struct pt_regs *regs, long error_code) { + if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { + this_cpu_write(nmi_state, NMI_LATCHED); + return; + } + this_cpu_write(nmi_state, NMI_EXECUTING); + this_cpu_write(nmi_cr2, read_cr2()); +nmi_restart: + +#ifdef CONFIG_X86_64 /* * If we interrupted a breakpoint, it is possible that * the nmi handler will have breakpoints too. We need to @@ -514,22 +500,8 @@ static inline void nmi_nesting_preprocess(struct pt_regs *regs) debug_stack_set_zero(); this_cpu_write(update_debug_stack, 1); } -} - -static inline void nmi_nesting_postprocess(void) -{ - if (unlikely(this_cpu_read(update_debug_stack))) { - debug_stack_reset(); - this_cpu_write(update_debug_stack, 0); - } -} #endif -dotraplinkage notrace void -do_nmi(struct pt_regs *regs, long error_code) -{ - nmi_nesting_preprocess(regs); - nmi_enter(); inc_irq_stat(__nmi_count); @@ -539,8 +511,17 @@ do_nmi(struct pt_regs *regs, long error_code) nmi_exit(); - /* On i386, may loop back to preprocess */ - nmi_nesting_postprocess(); +#ifdef CONFIG_X86_64 + if (unlikely(this_cpu_read(update_debug_stack))) { + debug_stack_reset(); + this_cpu_write(update_debug_stack, 0); + } +#endif + + if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) + write_cr2(this_cpu_read(nmi_cr2)); + if (this_cpu_dec_return(nmi_state)) + goto nmi_restart; } NOKPROBE_SYMBOL(do_nmi); diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c index 9cad694ed7c4..397688beed4b 100644 --- a/arch/x86/kernel/process.c +++ b/arch/x86/kernel/process.c @@ -81,7 +81,7 @@ EXPORT_SYMBOL_GPL(idle_notifier_unregister); */ int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { - *dst = *src; + memcpy(dst, src, arch_task_struct_size); return fpu__copy(&dst->thread.fpu, &src->thread.fpu); } diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c index 8add66b22f33..b1f3ed9c7a9e 100644 --- a/arch/x86/kernel/smpboot.c +++ b/arch/x86/kernel/smpboot.c @@ -171,11 +171,6 @@ static void smp_callin(void) apic_ap_setup(); /* - * Need to setup vector mappings before we enable interrupts. - */ - setup_vector_irq(smp_processor_id()); - - /* * Save our processor parameters. Note: this information * is needed for clock calibration. */ @@ -239,18 +234,13 @@ static void notrace start_secondary(void *unused) check_tsc_sync_target(); /* - * Enable the espfix hack for this CPU - */ -#ifdef CONFIG_X86_ESPFIX64 - init_espfix_ap(); -#endif - - /* - * We need to hold vector_lock so there the set of online cpus - * does not change while we are assigning vectors to cpus. Holding - * this lock ensures we don't half assign or remove an irq from a cpu. + * Lock vector_lock and initialize the vectors on this cpu + * before setting the cpu online. We must set it online with + * vector_lock held to prevent a concurrent setup/teardown + * from seeing a half valid vector space. */ lock_vector_lock(); + setup_vector_irq(smp_processor_id()); set_cpu_online(smp_processor_id(), true); unlock_vector_lock(); cpu_set_state_online(smp_processor_id()); @@ -854,6 +844,13 @@ static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle) initial_code = (unsigned long)start_secondary; stack_start = idle->thread.sp; + /* + * Enable the espfix hack for this CPU + */ +#ifdef CONFIG_X86_ESPFIX64 + init_espfix_ap(cpu); +#endif + /* So we see what's up */ announce_cpu(cpu, apicid); @@ -995,8 +992,17 @@ int native_cpu_up(unsigned int cpu, struct task_struct *tidle) common_cpu_up(cpu, tidle); + /* + * We have to walk the irq descriptors to setup the vector + * space for the cpu which comes online. Prevent irq + * alloc/free across the bringup. + */ + irq_lock_sparse(); + err = do_boot_cpu(apicid, cpu, tidle); + if (err) { + irq_unlock_sparse(); pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); return -EIO; } @@ -1014,6 +1020,8 @@ int native_cpu_up(unsigned int cpu, struct task_struct *tidle) touch_nmi_watchdog(); } + irq_unlock_sparse(); + return 0; } diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c index 505449700e0c..7437b41f6a47 100644 --- a/arch/x86/kernel/tsc.c +++ b/arch/x86/kernel/tsc.c @@ -598,10 +598,19 @@ static unsigned long quick_pit_calibrate(void) if (!pit_expect_msb(0xff-i, &delta, &d2)) break; + delta -= tsc; + + /* + * Extrapolate the error and fail fast if the error will + * never be below 500 ppm. + */ + if (i == 1 && + d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) + return 0; + /* * Iterate until the error is less than 500 ppm */ - delta -= tsc; if (d1+d2 >= delta >> 11) continue; diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c index 64dd46793099..2fbea2544f24 100644 --- a/arch/x86/kvm/cpuid.c +++ b/arch/x86/kvm/cpuid.c @@ -98,6 +98,8 @@ int kvm_update_cpuid(struct kvm_vcpu *vcpu) best->ebx = xstate_required_size(vcpu->arch.xcr0, true); vcpu->arch.eager_fpu = use_eager_fpu() || guest_cpuid_has_mpx(vcpu); + if (vcpu->arch.eager_fpu) + kvm_x86_ops->fpu_activate(vcpu); /* * The existing code assumes virtual address is 48-bit in the canonical diff --git a/arch/x86/kvm/iommu.c b/arch/x86/kvm/iommu.c index 7dbced309ddb..5c520ebf6343 100644 --- a/arch/x86/kvm/iommu.c +++ b/arch/x86/kvm/iommu.c @@ -200,6 +200,7 @@ int kvm_assign_device(struct kvm *kvm, struct pci_dev *pdev) goto out_unmap; } + kvm_arch_start_assignment(kvm); pci_set_dev_assigned(pdev); dev_info(&pdev->dev, "kvm assign device\n"); @@ -224,6 +225,7 @@ int kvm_deassign_device(struct kvm *kvm, struct pci_dev *pdev) iommu_detach_device(domain, &pdev->dev); pci_clear_dev_assigned(pdev); + kvm_arch_end_assignment(kvm); dev_info(&pdev->dev, "kvm deassign device\n"); diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c index 954e98a8c2e3..2a5ca97c263b 100644 --- a/arch/x86/kvm/lapic.c +++ b/arch/x86/kvm/lapic.c @@ -1595,7 +1595,7 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) for (i = 0; i < APIC_LVT_NUM; i++) apic_set_reg(apic, APIC_LVTT + 0x10 * i, APIC_LVT_MASKED); apic_update_lvtt(apic); - if (!(vcpu->kvm->arch.disabled_quirks & KVM_QUIRK_LINT0_REENABLED)) + if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_LINT0_REENABLED)) apic_set_reg(apic, APIC_LVT0, SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT)); apic_manage_nmi_watchdog(apic, kvm_apic_get_reg(apic, APIC_LVT0)); diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index f807496b62c2..44171462bd2a 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c @@ -2479,6 +2479,14 @@ static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, return 0; } +static bool kvm_is_mmio_pfn(pfn_t pfn) +{ + if (pfn_valid(pfn)) + return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)); + + return true; +} + static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, int level, gfn_t gfn, pfn_t pfn, bool speculative, @@ -2506,7 +2514,7 @@ static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, spte |= PT_PAGE_SIZE_MASK; if (tdp_enabled) spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, - kvm_is_reserved_pfn(pfn)); + kvm_is_mmio_pfn(pfn)); if (host_writable) spte |= SPTE_HOST_WRITEABLE; diff --git a/arch/x86/kvm/mtrr.c b/arch/x86/kvm/mtrr.c index de1d2d8062e2..dc0a84a6f309 100644 --- a/arch/x86/kvm/mtrr.c +++ b/arch/x86/kvm/mtrr.c @@ -120,6 +120,16 @@ static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state) return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK; } +static u8 mtrr_disabled_type(void) +{ + /* + * Intel SDM 11.11.2.2: all MTRRs are disabled when + * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC + * memory type is applied to all of physical memory. + */ + return MTRR_TYPE_UNCACHABLE; +} + /* * Three terms are used in the following code: * - segment, it indicates the address segments covered by fixed MTRRs. @@ -434,6 +444,8 @@ struct mtrr_iter { /* output fields. */ int mem_type; + /* mtrr is completely disabled? */ + bool mtrr_disabled; /* [start, end) is not fully covered in MTRRs? */ bool partial_map; @@ -549,7 +561,7 @@ static void mtrr_lookup_var_next(struct mtrr_iter *iter) static void mtrr_lookup_start(struct mtrr_iter *iter) { if (!mtrr_is_enabled(iter->mtrr_state)) { - iter->partial_map = true; + iter->mtrr_disabled = true; return; } @@ -563,6 +575,7 @@ static void mtrr_lookup_init(struct mtrr_iter *iter, iter->mtrr_state = mtrr_state; iter->start = start; iter->end = end; + iter->mtrr_disabled = false; iter->partial_map = false; iter->fixed = false; iter->range = NULL; @@ -656,15 +669,19 @@ u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) return MTRR_TYPE_WRBACK; } - /* It is not covered by MTRRs. */ - if (iter.partial_map) { - /* - * We just check one page, partially covered by MTRRs is - * impossible. - */ - WARN_ON(type != -1); - type = mtrr_default_type(mtrr_state); - } + if (iter.mtrr_disabled) + return mtrr_disabled_type(); + + /* + * We just check one page, partially covered by MTRRs is + * impossible. + */ + WARN_ON(iter.partial_map); + + /* not contained in any MTRRs. */ + if (type == -1) + return mtrr_default_type(mtrr_state); + return type; } EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type); @@ -689,6 +706,9 @@ bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, return false; } + if (iter.mtrr_disabled) + return true; + if (!iter.partial_map) return true; diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c index 602b974a60a6..8e0c0844c6b9 100644 --- a/arch/x86/kvm/svm.c +++ b/arch/x86/kvm/svm.c @@ -865,6 +865,64 @@ static void svm_disable_lbrv(struct vcpu_svm *svm) set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); } +#define MTRR_TYPE_UC_MINUS 7 +#define MTRR2PROTVAL_INVALID 0xff + +static u8 mtrr2protval[8]; + +static u8 fallback_mtrr_type(int mtrr) +{ + /* + * WT and WP aren't always available in the host PAT. Treat + * them as UC and UC- respectively. Everything else should be + * there. + */ + switch (mtrr) + { + case MTRR_TYPE_WRTHROUGH: + return MTRR_TYPE_UNCACHABLE; + case MTRR_TYPE_WRPROT: + return MTRR_TYPE_UC_MINUS; + default: + BUG(); + } +} + +static void build_mtrr2protval(void) +{ + int i; + u64 pat; + + for (i = 0; i < 8; i++) + mtrr2protval[i] = MTRR2PROTVAL_INVALID; + + /* Ignore the invalid MTRR types. */ + mtrr2protval[2] = 0; + mtrr2protval[3] = 0; + + /* + * Use host PAT value to figure out the mapping from guest MTRR + * values to nested page table PAT/PCD/PWT values. We do not + * want to change the host PAT value every time we enter the + * guest. + */ + rdmsrl(MSR_IA32_CR_PAT, pat); + for (i = 0; i < 8; i++) { + u8 mtrr = pat >> (8 * i); + + if (mtrr2protval[mtrr] == MTRR2PROTVAL_INVALID) + mtrr2protval[mtrr] = __cm_idx2pte(i); + } + + for (i = 0; i < 8; i++) { + if (mtrr2protval[i] == MTRR2PROTVAL_INVALID) { + u8 fallback = fallback_mtrr_type(i); + mtrr2protval[i] = mtrr2protval[fallback]; + BUG_ON(mtrr2protval[i] == MTRR2PROTVAL_INVALID); + } + } +} + static __init int svm_hardware_setup(void) { int cpu; @@ -931,6 +989,7 @@ static __init int svm_hardware_setup(void) } else kvm_disable_tdp(); + build_mtrr2protval(); return 0; err: @@ -1085,6 +1144,39 @@ static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) return target_tsc - tsc; } +static void svm_set_guest_pat(struct vcpu_svm *svm, u64 *g_pat) +{ + struct kvm_vcpu *vcpu = &svm->vcpu; + + /* Unlike Intel, AMD takes the guest's CR0.CD into account. + * + * AMD does not have IPAT. To emulate it for the case of guests + * with no assigned devices, just set everything to WB. If guests + * have assigned devices, however, we cannot force WB for RAM + * pages only, so use the guest PAT directly. + */ + if (!kvm_arch_has_assigned_device(vcpu->kvm)) + *g_pat = 0x0606060606060606; + else + *g_pat = vcpu->arch.pat; +} + +static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) +{ + u8 mtrr; + + /* + * 1. MMIO: trust guest MTRR, so same as item 3. + * 2. No passthrough: always map as WB, and force guest PAT to WB as well + * 3. Passthrough: can't guarantee the result, try to trust guest. + */ + if (!is_mmio && !kvm_arch_has_assigned_device(vcpu->kvm)) + return 0; + + mtrr = kvm_mtrr_get_guest_memory_type(vcpu, gfn); + return mtrr2protval[mtrr]; +} + static void init_vmcb(struct vcpu_svm *svm, bool init_event) { struct vmcb_control_area *control = &svm->vmcb->control; @@ -1180,6 +1272,7 @@ static void init_vmcb(struct vcpu_svm *svm, bool init_event) clr_cr_intercept(svm, INTERCEPT_CR3_READ); clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); save->g_pat = svm->vcpu.arch.pat; + svm_set_guest_pat(svm, &save->g_pat); save->cr3 = 0; save->cr4 = 0; } @@ -1579,7 +1672,7 @@ static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) * does not do it - this results in some delay at * reboot */ - if (!(vcpu->kvm->arch.disabled_quirks & KVM_QUIRK_CD_NW_CLEARED)) + if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) cr0 &= ~(X86_CR0_CD | X86_CR0_NW); svm->vmcb->save.cr0 = cr0; mark_dirty(svm->vmcb, VMCB_CR); @@ -3254,6 +3347,16 @@ static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) case MSR_VM_IGNNE: vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); break; + case MSR_IA32_CR_PAT: + if (npt_enabled) { + if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) + return 1; + vcpu->arch.pat = data; + svm_set_guest_pat(svm, &svm->vmcb->save.g_pat); + mark_dirty(svm->vmcb, VMCB_NPT); + break; + } + /* fall through */ default: return kvm_set_msr_common(vcpu, msr); } @@ -4088,11 +4191,6 @@ static bool svm_has_high_real_mode_segbase(void) return true; } -static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) -{ - return 0; -} - static void svm_cpuid_update(struct kvm_vcpu *vcpu) { } diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c index e856dd566f4c..83b7b5cd75d5 100644 --- a/arch/x86/kvm/vmx.c +++ b/arch/x86/kvm/vmx.c @@ -8632,22 +8632,17 @@ static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) u64 ipat = 0; /* For VT-d and EPT combination - * 1. MMIO: always map as UC + * 1. MMIO: guest may want to apply WC, trust it. * 2. EPT with VT-d: * a. VT-d without snooping control feature: can't guarantee the - * result, try to trust guest. + * result, try to trust guest. So the same as item 1. * b. VT-d with snooping control feature: snooping control feature of * VT-d engine can guarantee the cache correctness. Just set it * to WB to keep consistent with host. So the same as item 3. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep * consistent with host MTRR */ - if (is_mmio) { - cache = MTRR_TYPE_UNCACHABLE; - goto exit; - } - - if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { + if (!is_mmio && !kvm_arch_has_noncoherent_dma(vcpu->kvm)) { ipat = VMX_EPT_IPAT_BIT; cache = MTRR_TYPE_WRBACK; goto exit; @@ -8655,7 +8650,10 @@ static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) if (kvm_read_cr0(vcpu) & X86_CR0_CD) { ipat = VMX_EPT_IPAT_BIT; - cache = MTRR_TYPE_UNCACHABLE; + if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) + cache = MTRR_TYPE_WRBACK; + else + cache = MTRR_TYPE_UNCACHABLE; goto exit; } diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index bbaf44e8f0d3..5ef2560075bf 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -3157,8 +3157,7 @@ static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) cpuid_count(XSTATE_CPUID, index, &size, &offset, &ecx, &edx); memcpy(dest, src + offset, size); - } else - WARN_ON_ONCE(1); + } valid -= feature; } @@ -7315,11 +7314,6 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, vcpu = kvm_x86_ops->vcpu_create(kvm, id); - /* - * Activate fpu unconditionally in case the guest needs eager FPU. It will be - * deactivated soon if it doesn't. - */ - kvm_x86_ops->fpu_activate(vcpu); return vcpu; } @@ -8218,6 +8212,24 @@ bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) kvm_x86_ops->interrupt_allowed(vcpu); } +void kvm_arch_start_assignment(struct kvm *kvm) +{ + atomic_inc(&kvm->arch.assigned_device_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); + +void kvm_arch_end_assignment(struct kvm *kvm) +{ + atomic_dec(&kvm->arch.assigned_device_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); + +bool kvm_arch_has_assigned_device(struct kvm *kvm) +{ + return atomic_read(&kvm->arch.assigned_device_count); +} +EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); + void kvm_arch_register_noncoherent_dma(struct kvm *kvm) { atomic_inc(&kvm->arch.noncoherent_dma_count); diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h index edc8cdcd786b..0ca2f3e4803c 100644 --- a/arch/x86/kvm/x86.h +++ b/arch/x86/kvm/x86.h @@ -147,6 +147,11 @@ static inline void kvm_register_writel(struct kvm_vcpu *vcpu, return kvm_register_write(vcpu, reg, val); } +static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) +{ + return !(kvm->arch.disabled_quirks & quirk); +} + void kvm_before_handle_nmi(struct kvm_vcpu *vcpu); void kvm_after_handle_nmi(struct kvm_vcpu *vcpu); void kvm_set_pending_timer(struct kvm_vcpu *vcpu); diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c index cc5ccc415cc0..b9c78f3bcd67 100644 --- a/arch/x86/mm/ioremap.c +++ b/arch/x86/mm/ioremap.c @@ -63,8 +63,6 @@ static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages, !PageReserved(pfn_to_page(start_pfn + i))) return 1; - WARN_ONCE(1, "ioremap on RAM pfn 0x%lx\n", start_pfn); - return 0; } @@ -94,7 +92,6 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, pgprot_t prot; int retval; void __iomem *ret_addr; - int ram_region; /* Don't allow wraparound or zero size */ last_addr = phys_addr + size - 1; @@ -117,23 +114,15 @@ static void __iomem *__ioremap_caller(resource_size_t phys_addr, /* * Don't allow anybody to remap normal RAM that we're using.. */ - /* First check if whole region can be identified as RAM or not */ - ram_region = region_is_ram(phys_addr, size); - if (ram_region > 0) { - WARN_ONCE(1, "ioremap on RAM at 0x%lx - 0x%lx\n", - (unsigned long int)phys_addr, - (unsigned long int)last_addr); + pfn = phys_addr >> PAGE_SHIFT; + last_pfn = last_addr >> PAGE_SHIFT; + if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL, + __ioremap_check_ram) == 1) { + WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n", + &phys_addr, &last_addr); return NULL; } - /* If could not be identified(-1), check page by page */ - if (ram_region < 0) { - pfn = phys_addr >> PAGE_SHIFT; - last_pfn = last_addr >> PAGE_SHIFT; - if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL, - __ioremap_check_ram) == 1) - return NULL; - } /* * Mappings have to be page-aligned */ diff --git a/arch/x86/mm/kasan_init_64.c b/arch/x86/mm/kasan_init_64.c index 4860906c6b9f..e1840f3db5b5 100644 --- a/arch/x86/mm/kasan_init_64.c +++ b/arch/x86/mm/kasan_init_64.c @@ -1,3 +1,4 @@ +#define pr_fmt(fmt) "kasan: " fmt #include <linux/bootmem.h> #include <linux/kasan.h> #include <linux/kdebug.h> @@ -11,7 +12,19 @@ extern pgd_t early_level4_pgt[PTRS_PER_PGD]; extern struct range pfn_mapped[E820_X_MAX]; -extern unsigned char kasan_zero_page[PAGE_SIZE]; +static pud_t kasan_zero_pud[PTRS_PER_PUD] __page_aligned_bss; +static pmd_t kasan_zero_pmd[PTRS_PER_PMD] __page_aligned_bss; +static pte_t kasan_zero_pte[PTRS_PER_PTE] __page_aligned_bss; + +/* + * This page used as early shadow. We don't use empty_zero_page + * at early stages, stack instrumentation could write some garbage + * to this page. + * Latter we reuse it as zero shadow for large ranges of memory + * that allowed to access, but not instrumented by kasan + * (vmalloc/vmemmap ...). + */ +static unsigned char kasan_zero_page[PAGE_SIZE] __page_aligned_bss; static int __init map_range(struct range *range) { @@ -36,7 +49,7 @@ static void __init clear_pgds(unsigned long start, pgd_clear(pgd_offset_k(start)); } -void __init kasan_map_early_shadow(pgd_t *pgd) +static void __init kasan_map_early_shadow(pgd_t *pgd) { int i; unsigned long start = KASAN_SHADOW_START; @@ -73,7 +86,7 @@ static int __init zero_pmd_populate(pud_t *pud, unsigned long addr, while (IS_ALIGNED(addr, PMD_SIZE) && addr + PMD_SIZE <= end) { WARN_ON(!pmd_none(*pmd)); set_pmd(pmd, __pmd(__pa_nodebug(kasan_zero_pte) - | __PAGE_KERNEL_RO)); + | _KERNPG_TABLE)); addr += PMD_SIZE; pmd = pmd_offset(pud, addr); } @@ -99,7 +112,7 @@ static int __init zero_pud_populate(pgd_t *pgd, unsigned long addr, while (IS_ALIGNED(addr, PUD_SIZE) && addr + PUD_SIZE <= end) { WARN_ON(!pud_none(*pud)); set_pud(pud, __pud(__pa_nodebug(kasan_zero_pmd) - | __PAGE_KERNEL_RO)); + | _KERNPG_TABLE)); addr += PUD_SIZE; pud = pud_offset(pgd, addr); } @@ -124,7 +137,7 @@ static int __init zero_pgd_populate(unsigned long addr, unsigned long end) while (IS_ALIGNED(addr, PGDIR_SIZE) && addr + PGDIR_SIZE <= end) { WARN_ON(!pgd_none(*pgd)); set_pgd(pgd, __pgd(__pa_nodebug(kasan_zero_pud) - | __PAGE_KERNEL_RO)); + | _KERNPG_TABLE)); addr += PGDIR_SIZE; pgd = pgd_offset_k(addr); } @@ -166,6 +179,26 @@ static struct notifier_block kasan_die_notifier = { }; #endif +void __init kasan_early_init(void) +{ + int i; + pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL; + pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE; + pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE; + + for (i = 0; i < PTRS_PER_PTE; i++) + kasan_zero_pte[i] = __pte(pte_val); + + for (i = 0; i < PTRS_PER_PMD; i++) + kasan_zero_pmd[i] = __pmd(pmd_val); + + for (i = 0; i < PTRS_PER_PUD; i++) + kasan_zero_pud[i] = __pud(pud_val); + + kasan_map_early_shadow(early_level4_pgt); + kasan_map_early_shadow(init_level4_pgt); +} + void __init kasan_init(void) { int i; @@ -176,6 +209,7 @@ void __init kasan_init(void) memcpy(early_level4_pgt, init_level4_pgt, sizeof(early_level4_pgt)); load_cr3(early_level4_pgt); + __flush_tlb_all(); clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END); @@ -202,5 +236,8 @@ void __init kasan_init(void) memset(kasan_zero_page, 0, PAGE_SIZE); load_cr3(init_level4_pgt); + __flush_tlb_all(); init_task.kasan_depth = 0; + + pr_info("Kernel address sanitizer initialized\n"); } diff --git a/arch/x86/mm/mmap.c b/arch/x86/mm/mmap.c index 9d518d693b4b..844b06d67df4 100644 --- a/arch/x86/mm/mmap.c +++ b/arch/x86/mm/mmap.c @@ -126,3 +126,10 @@ void arch_pick_mmap_layout(struct mm_struct *mm) mm->get_unmapped_area = arch_get_unmapped_area_topdown; } } + +const char *arch_vma_name(struct vm_area_struct *vma) +{ + if (vma->vm_flags & VM_MPX) + return "[mpx]"; + return NULL; +} diff --git a/arch/x86/mm/mpx.c b/arch/x86/mm/mpx.c index 7a657f58bbea..db1b0bc5017c 100644 --- a/arch/x86/mm/mpx.c +++ b/arch/x86/mm/mpx.c @@ -20,20 +20,6 @@ #define CREATE_TRACE_POINTS #include <asm/trace/mpx.h> -static const char *mpx_mapping_name(struct vm_area_struct *vma) -{ - return "[mpx]"; -} - -static struct vm_operations_struct mpx_vma_ops = { - .name = mpx_mapping_name, -}; - -static int is_mpx_vma(struct vm_area_struct *vma) -{ - return (vma->vm_ops == &mpx_vma_ops); -} - static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm) { if (is_64bit_mm(mm)) @@ -53,9 +39,6 @@ static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm) /* * This is really a simplified "vm_mmap". it only handles MPX * bounds tables (the bounds directory is user-allocated). - * - * Later on, we use the vma->vm_ops to uniquely identify these - * VMAs. */ static unsigned long mpx_mmap(unsigned long len) { @@ -101,7 +84,6 @@ static unsigned long mpx_mmap(unsigned long len) ret = -ENOMEM; goto out; } - vma->vm_ops = &mpx_vma_ops; if (vm_flags & VM_LOCKED) { up_write(&mm->mmap_sem); @@ -812,7 +794,7 @@ static noinline int zap_bt_entries_mapping(struct mm_struct *mm, * so stop immediately and return an error. This * probably results in a SIGSEGV. */ - if (!is_mpx_vma(vma)) + if (!(vma->vm_flags & VM_MPX)) return -EINVAL; len = min(vma->vm_end, end) - addr; @@ -945,9 +927,9 @@ static int try_unmap_single_bt(struct mm_struct *mm, * lots of tables even though we have no actual table * entries in use. */ - while (next && is_mpx_vma(next)) + while (next && (next->vm_flags & VM_MPX)) next = next->vm_next; - while (prev && is_mpx_vma(prev)) + while (prev && (prev->vm_flags & VM_MPX)) prev = prev->vm_prev; /* * We know 'start' and 'end' lie within an area controlled diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c index 3250f2371aea..90b924acd982 100644 --- a/arch/x86/mm/tlb.c +++ b/arch/x86/mm/tlb.c @@ -117,7 +117,7 @@ static void flush_tlb_func(void *info) } else { unsigned long addr; unsigned long nr_pages = - f->flush_end - f->flush_start / PAGE_SIZE; + (f->flush_end - f->flush_start) / PAGE_SIZE; addr = f->flush_start; while (addr < f->flush_end) { __flush_tlb_single(addr); |