summaryrefslogtreecommitdiff
path: root/arch/x86/mm/fault.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm/fault.c')
-rw-r--r--arch/x86/mm/fault.c22
1 files changed, 11 insertions, 11 deletions
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index c5437f2964ee..0b03ae8c39cd 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -811,7 +811,7 @@ __bad_area(struct pt_regs *regs, unsigned long error_code,
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
- up_read(&mm->mmap_sem);
+ mmap_read_unlock(mm);
__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
}
@@ -865,7 +865,7 @@ bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
* 2. T1 : set PKRU to deny access to pkey=4, touches page
* 3. T1 : faults...
* 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
- * 5. T1 : enters fault handler, takes mmap_sem, etc...
+ * 5. T1 : enters fault handler, takes mmap_lock, etc...
* 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
* faulted on a pte with its pkey=4.
*/
@@ -1231,15 +1231,15 @@ void do_user_addr_fault(struct pt_regs *regs,
* Kernel-mode access to the user address space should only occur
* on well-defined single instructions listed in the exception
* tables. But, an erroneous kernel fault occurring outside one of
- * those areas which also holds mmap_sem might deadlock attempting
+ * those areas which also holds mmap_lock might deadlock attempting
* to validate the fault against the address space.
*
* Only do the expensive exception table search when we might be at
* risk of a deadlock. This happens if we
- * 1. Failed to acquire mmap_sem, and
+ * 1. Failed to acquire mmap_lock, and
* 2. The access did not originate in userspace.
*/
- if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
+ if (unlikely(!mmap_read_trylock(mm))) {
if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
/*
* Fault from code in kernel from
@@ -1249,7 +1249,7 @@ void do_user_addr_fault(struct pt_regs *regs,
return;
}
retry:
- down_read(&mm->mmap_sem);
+ mmap_read_lock(mm);
} else {
/*
* The above down_read_trylock() might have succeeded in
@@ -1289,9 +1289,9 @@ good_area:
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
- * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
+ * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
*
- * Note that handle_userfault() may also release and reacquire mmap_sem
+ * Note that handle_userfault() may also release and reacquire mmap_lock
* (and not return with VM_FAULT_RETRY), when returning to userland to
* repeat the page fault later with a VM_FAULT_NOPAGE retval
* (potentially after handling any pending signal during the return to
@@ -1310,7 +1310,7 @@ good_area:
}
/*
- * If we need to retry the mmap_sem has already been released,
+ * If we need to retry the mmap_lock has already been released,
* and if there is a fatal signal pending there is no guarantee
* that we made any progress. Handle this case first.
*/
@@ -1320,7 +1320,7 @@ good_area:
goto retry;
}
- up_read(&mm->mmap_sem);
+ mmap_read_unlock(mm);
if (unlikely(fault & VM_FAULT_ERROR)) {
mm_fault_error(regs, hw_error_code, address, fault);
return;
@@ -1359,7 +1359,7 @@ dotraplinkage void
do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
unsigned long address)
{
- prefetchw(&current->mm->mmap_sem);
+ prefetchw(&current->mm->mmap_lock);
/*
* KVM has two types of events that are, logically, interrupts, but
* are unfortunately delivered using the #PF vector. These events are