diff options
Diffstat (limited to 'arch/x86/kvm/svm/sev.c')
-rw-r--r-- | arch/x86/kvm/svm/sev.c | 87 |
1 files changed, 56 insertions, 31 deletions
diff --git a/arch/x86/kvm/svm/sev.c b/arch/x86/kvm/svm/sev.c index 0f40267114a0..510901b8c369 100644 --- a/arch/x86/kvm/svm/sev.c +++ b/arch/x86/kvm/svm/sev.c @@ -2972,6 +2972,16 @@ void __init sev_hardware_setup(void) WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID))) goto out; + /* + * The kernel's initcall infrastructure lacks the ability to express + * dependencies between initcalls, whereas the modules infrastructure + * automatically handles dependencies via symbol loading. Ensure the + * PSP SEV driver is initialized before proceeding if KVM is built-in, + * as the dependency isn't handled by the initcall infrastructure. + */ + if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init()) + goto out; + /* Retrieve SEV CPUID information */ cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); @@ -3051,11 +3061,11 @@ out: min_sev_asid, max_sev_asid); if (boot_cpu_has(X86_FEATURE_SEV_ES)) pr_info("SEV-ES %s (ASIDs %u - %u)\n", - sev_es_supported ? "enabled" : "disabled", + str_enabled_disabled(sev_es_supported), min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); if (boot_cpu_has(X86_FEATURE_SEV_SNP)) pr_info("SEV-SNP %s (ASIDs %u - %u)\n", - sev_snp_supported ? "enabled" : "disabled", + str_enabled_disabled(sev_snp_supported), min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1); sev_enabled = sev_supported; @@ -3627,13 +3637,20 @@ static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr) return 1; /* resume guest */ } - if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { + if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR); return 1; /* resume guest */ } vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; + /* + * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) + * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that + * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting + * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. + */ + vcpu->run->hypercall.ret = 0; vcpu->run->hypercall.args[0] = gpa; vcpu->run->hypercall.args[1] = 1; vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE) @@ -3710,7 +3727,7 @@ static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc) bool huge; u64 gfn; - if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) { + if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) { snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC); return 1; } @@ -3797,6 +3814,13 @@ next_range: case VMGEXIT_PSC_OP_SHARED: vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; + /* + * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) + * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that + * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting + * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. + */ + vcpu->run->hypercall.ret = 0; vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn); vcpu->run->hypercall.args[1] = npages; vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE @@ -3945,16 +3969,12 @@ static int sev_snp_ap_creation(struct vcpu_svm *svm) /* * The target vCPU is valid, so the vCPU will be kicked unless the - * request is for CREATE_ON_INIT. For any errors at this stage, the - * kick will place the vCPU in an non-runnable state. + * request is for CREATE_ON_INIT. */ kick = true; mutex_lock(&target_svm->sev_es.snp_vmsa_mutex); - target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; - target_svm->sev_es.snp_ap_waiting_for_reset = true; - /* Interrupt injection mode shouldn't change for AP creation */ if (request < SVM_VMGEXIT_AP_DESTROY) { u64 sev_features; @@ -4000,20 +4020,23 @@ static int sev_snp_ap_creation(struct vcpu_svm *svm) target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2; break; case SVM_VMGEXIT_AP_DESTROY: + target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE; break; default: vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n", request); ret = -EINVAL; - break; + goto out; } -out: + target_svm->sev_es.snp_ap_waiting_for_reset = true; + if (kick) { kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu); kvm_vcpu_kick(target_vcpu); } +out: mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex); return ret; @@ -4435,8 +4458,8 @@ static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) struct kvm_vcpu *vcpu = &svm->vcpu; if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) { - bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || - guest_cpuid_has(vcpu, X86_FEATURE_RDPID); + bool v_tsc_aux = guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) || + guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID); set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux); } @@ -4445,16 +4468,15 @@ static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm) * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if * the host/guest supports its use. * - * guest_can_use() checks a number of requirements on the host/guest to - * ensure that MSR_IA32_XSS is available, but it might report true even - * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host - * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better - * to further check that the guest CPUID actually supports - * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved - * guests will still get intercepted and caught in the normal - * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths. + * KVM treats the guest as being capable of using XSAVES even if XSAVES + * isn't enabled in guest CPUID as there is no intercept for XSAVES, + * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is + * exposed to the guest and XSAVES is supported in hardware. Condition + * full XSS passthrough on the guest being able to use XSAVES *and* + * XSAVES being exposed to the guest so that KVM can at least honor + * guest CPUID for RDMSR and WRMSR. */ - if (guest_can_use(vcpu, X86_FEATURE_XSAVES) && + if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1); else @@ -4593,18 +4615,21 @@ void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_are /* * If DebugSwap is enabled, debug registers are loaded but NOT saved by * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does - * not save or load debug registers. Sadly, on CPUs without - * ALLOWED_SEV_FEATURES, KVM can't prevent SNP guests from enabling - * DebugSwap on secondary vCPUs without KVM's knowledge via "AP Create". - * Save all registers if DebugSwap is supported to prevent host state - * from being clobbered by a misbehaving guest. + * not save or load debug registers. Sadly, KVM can't prevent SNP + * guests from lying about DebugSwap on secondary vCPUs, i.e. the + * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what + * the guest has actually enabled (or not!) in the VMSA. + * + * If DebugSwap is *possible*, save the masks so that they're restored + * if the guest enables DebugSwap. But for the DRs themselves, do NOT + * rely on the CPU to restore the host values; KVM will restore them as + * needed in common code, via hw_breakpoint_restore(). Note, KVM does + * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs + * don't need to be restored per se, KVM just needs to ensure they are + * loaded with the correct values *if* the CPU writes the MSRs. */ if (sev_vcpu_has_debug_swap(svm) || (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) { - hostsa->dr0 = native_get_debugreg(0); - hostsa->dr1 = native_get_debugreg(1); - hostsa->dr2 = native_get_debugreg(2); - hostsa->dr3 = native_get_debugreg(3); hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0); hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1); hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2); |