diff options
Diffstat (limited to 'arch/x86/crypto/aes-gcm-aesni-x86_64.S')
-rw-r--r-- | arch/x86/crypto/aes-gcm-aesni-x86_64.S | 1128 |
1 files changed, 1128 insertions, 0 deletions
diff --git a/arch/x86/crypto/aes-gcm-aesni-x86_64.S b/arch/x86/crypto/aes-gcm-aesni-x86_64.S new file mode 100644 index 000000000000..45940e2883a0 --- /dev/null +++ b/arch/x86/crypto/aes-gcm-aesni-x86_64.S @@ -0,0 +1,1128 @@ +/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */ +// +// AES-NI optimized AES-GCM for x86_64 +// +// Copyright 2024 Google LLC +// +// Author: Eric Biggers <ebiggers@google.com> +// +//------------------------------------------------------------------------------ +// +// This file is dual-licensed, meaning that you can use it under your choice of +// either of the following two licenses: +// +// Licensed under the Apache License 2.0 (the "License"). You may obtain a copy +// of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// +// or +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// 1. Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE +// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +// POSSIBILITY OF SUCH DAMAGE. +// +//------------------------------------------------------------------------------ +// +// This file implements AES-GCM (Galois/Counter Mode) for x86_64 CPUs that +// support the original set of AES instructions, i.e. AES-NI. Two +// implementations are provided, one that uses AVX and one that doesn't. They +// are very similar, being generated by the same macros. The only difference is +// that the AVX implementation takes advantage of VEX-coded instructions in some +// places to avoid some 'movdqu' and 'movdqa' instructions. The AVX +// implementation does *not* use 256-bit vectors, as AES is not supported on +// 256-bit vectors until the VAES feature (which this file doesn't target). +// +// The specific CPU feature prerequisites are AES-NI and PCLMULQDQ, plus SSE4.1 +// for the *_aesni functions or AVX for the *_aesni_avx ones. (But it seems +// there are no CPUs that support AES-NI without also PCLMULQDQ and SSE4.1.) +// +// The design generally follows that of aes-gcm-avx10-x86_64.S, and that file is +// more thoroughly commented. This file has the following notable changes: +// +// - The vector length is fixed at 128-bit, i.e. xmm registers. This means +// there is only one AES block (and GHASH block) per register. +// +// - Without AVX512 / AVX10, only 16 SIMD registers are available instead of +// 32. We work around this by being much more careful about using +// registers, relying heavily on loads to load values as they are needed. +// +// - Masking is not available either. We work around this by implementing +// partial block loads and stores using overlapping scalar loads and stores +// combined with shifts and SSE4.1 insertion and extraction instructions. +// +// - The main loop is organized differently due to the different design +// constraints. First, with just one AES block per SIMD register, on some +// CPUs 4 registers don't saturate the 'aesenc' throughput. We therefore +// do an 8-register wide loop. Considering that and the fact that we have +// just 16 SIMD registers to work with, it's not feasible to cache AES +// round keys and GHASH key powers in registers across loop iterations. +// That's not ideal, but also not actually that bad, since loads can run in +// parallel with other instructions. Significantly, this also makes it +// possible to roll up the inner loops, relying on hardware loop unrolling +// instead of software loop unrolling, greatly reducing code size. +// +// - We implement the GHASH multiplications in the main loop using Karatsuba +// multiplication instead of schoolbook multiplication. This saves one +// pclmulqdq instruction per block, at the cost of one 64-bit load, one +// pshufd, and 0.25 pxors per block. (This is without the three-argument +// XOR support that would be provided by AVX512 / AVX10, which would be +// more beneficial to schoolbook than Karatsuba.) +// +// As a rough approximation, we can assume that Karatsuba multiplication is +// faster than schoolbook multiplication in this context if one pshufd and +// 0.25 pxors are cheaper than a pclmulqdq. (We assume that the 64-bit +// load is "free" due to running in parallel with arithmetic instructions.) +// This is true on AMD CPUs, including all that support pclmulqdq up to at +// least Zen 3. It's also true on older Intel CPUs: Westmere through +// Haswell on the Core side, and Silvermont through Goldmont Plus on the +// low-power side. On some of these CPUs, pclmulqdq is quite slow, and the +// benefit of Karatsuba should be substantial. On newer Intel CPUs, +// schoolbook multiplication should be faster, but only marginally. +// +// Not all these CPUs were available to be tested. However, benchmarks on +// available CPUs suggest that this approximation is plausible. Switching +// to Karatsuba showed negligible change (< 1%) on Intel Broadwell, +// Skylake, and Cascade Lake, but it improved AMD Zen 1-3 by 6-7%. +// Considering that and the fact that Karatsuba should be even more +// beneficial on older Intel CPUs, it seems like the right choice here. +// +// An additional 0.25 pclmulqdq per block (2 per 8 blocks) could be +// saved by using a multiplication-less reduction method. We don't do that +// because it would require a large number of shift and xor instructions, +// making it less worthwhile and likely harmful on newer CPUs. +// +// It does make sense to sometimes use a different reduction optimization +// that saves a pclmulqdq, though: precompute the hash key times x^64, and +// multiply the low half of the data block by the hash key with the extra +// factor of x^64. This eliminates one step of the reduction. However, +// this is incompatible with Karatsuba multiplication. Therefore, for +// multi-block processing we use Karatsuba multiplication with a regular +// reduction. For single-block processing, we use the x^64 optimization. + +#include <linux/linkage.h> + +.section .rodata +.p2align 4 +.Lbswap_mask: + .octa 0x000102030405060708090a0b0c0d0e0f +.Lgfpoly: + .quad 0xc200000000000000 +.Lone: + .quad 1 +.Lgfpoly_and_internal_carrybit: + .octa 0xc2000000000000010000000000000001 + // Loading 16 bytes from '.Lzeropad_mask + 16 - len' produces a mask of + // 'len' 0xff bytes and the rest zeroes. +.Lzeropad_mask: + .octa 0xffffffffffffffffffffffffffffffff + .octa 0 + +// Offsets in struct aes_gcm_key_aesni +#define OFFSETOF_AESKEYLEN 480 +#define OFFSETOF_H_POWERS 496 +#define OFFSETOF_H_POWERS_XORED 624 +#define OFFSETOF_H_TIMES_X64 688 + +.text + +// Do a vpclmulqdq, or fall back to a movdqa and a pclmulqdq. The fallback +// assumes that all operands are distinct and that any mem operand is aligned. +.macro _vpclmulqdq imm, src1, src2, dst +.if USE_AVX + vpclmulqdq \imm, \src1, \src2, \dst +.else + movdqa \src2, \dst + pclmulqdq \imm, \src1, \dst +.endif +.endm + +// Do a vpshufb, or fall back to a movdqa and a pshufb. The fallback assumes +// that all operands are distinct and that any mem operand is aligned. +.macro _vpshufb src1, src2, dst +.if USE_AVX + vpshufb \src1, \src2, \dst +.else + movdqa \src2, \dst + pshufb \src1, \dst +.endif +.endm + +// Do a vpand, or fall back to a movdqu and a pand. The fallback assumes that +// all operands are distinct. +.macro _vpand src1, src2, dst +.if USE_AVX + vpand \src1, \src2, \dst +.else + movdqu \src1, \dst + pand \src2, \dst +.endif +.endm + +// XOR the unaligned memory operand \mem into the xmm register \reg. \tmp must +// be a temporary xmm register. +.macro _xor_mem_to_reg mem, reg, tmp +.if USE_AVX + vpxor \mem, \reg, \reg +.else + movdqu \mem, \tmp + pxor \tmp, \reg +.endif +.endm + +// Test the unaligned memory operand \mem against the xmm register \reg. \tmp +// must be a temporary xmm register. +.macro _test_mem mem, reg, tmp +.if USE_AVX + vptest \mem, \reg +.else + movdqu \mem, \tmp + ptest \tmp, \reg +.endif +.endm + +// Load 1 <= %ecx <= 15 bytes from the pointer \src into the xmm register \dst +// and zeroize any remaining bytes. Clobbers %rax, %rcx, and \tmp{64,32}. +.macro _load_partial_block src, dst, tmp64, tmp32 + sub $8, %ecx // LEN - 8 + jle .Lle8\@ + + // Load 9 <= LEN <= 15 bytes. + movq (\src), \dst // Load first 8 bytes + mov (\src, %rcx), %rax // Load last 8 bytes + neg %ecx + shl $3, %ecx + shr %cl, %rax // Discard overlapping bytes + pinsrq $1, %rax, \dst + jmp .Ldone\@ + +.Lle8\@: + add $4, %ecx // LEN - 4 + jl .Llt4\@ + + // Load 4 <= LEN <= 8 bytes. + mov (\src), %eax // Load first 4 bytes + mov (\src, %rcx), \tmp32 // Load last 4 bytes + jmp .Lcombine\@ + +.Llt4\@: + // Load 1 <= LEN <= 3 bytes. + add $2, %ecx // LEN - 2 + movzbl (\src), %eax // Load first byte + jl .Lmovq\@ + movzwl (\src, %rcx), \tmp32 // Load last 2 bytes +.Lcombine\@: + shl $3, %ecx + shl %cl, \tmp64 + or \tmp64, %rax // Combine the two parts +.Lmovq\@: + movq %rax, \dst +.Ldone\@: +.endm + +// Store 1 <= %ecx <= 15 bytes from the xmm register \src to the pointer \dst. +// Clobbers %rax, %rcx, and %rsi. +.macro _store_partial_block src, dst + sub $8, %ecx // LEN - 8 + jl .Llt8\@ + + // Store 8 <= LEN <= 15 bytes. + pextrq $1, \src, %rax + mov %ecx, %esi + shl $3, %ecx + ror %cl, %rax + mov %rax, (\dst, %rsi) // Store last LEN - 8 bytes + movq \src, (\dst) // Store first 8 bytes + jmp .Ldone\@ + +.Llt8\@: + add $4, %ecx // LEN - 4 + jl .Llt4\@ + + // Store 4 <= LEN <= 7 bytes. + pextrd $1, \src, %eax + mov %ecx, %esi + shl $3, %ecx + ror %cl, %eax + mov %eax, (\dst, %rsi) // Store last LEN - 4 bytes + movd \src, (\dst) // Store first 4 bytes + jmp .Ldone\@ + +.Llt4\@: + // Store 1 <= LEN <= 3 bytes. + pextrb $0, \src, 0(\dst) + cmp $-2, %ecx // LEN - 4 == -2, i.e. LEN == 2? + jl .Ldone\@ + pextrb $1, \src, 1(\dst) + je .Ldone\@ + pextrb $2, \src, 2(\dst) +.Ldone\@: +.endm + +// Do one step of GHASH-multiplying \a by \b and storing the reduced product in +// \b. To complete all steps, this must be invoked with \i=0 through \i=9. +// \a_times_x64 must contain \a * x^64 in reduced form, \gfpoly must contain the +// .Lgfpoly constant, and \t0-\t1 must be temporary registers. +.macro _ghash_mul_step i, a, a_times_x64, b, gfpoly, t0, t1 + + // MI = (a_L * b_H) + ((a*x^64)_L * b_L) +.if \i == 0 + _vpclmulqdq $0x01, \a, \b, \t0 +.elseif \i == 1 + _vpclmulqdq $0x00, \a_times_x64, \b, \t1 +.elseif \i == 2 + pxor \t1, \t0 + + // HI = (a_H * b_H) + ((a*x^64)_H * b_L) +.elseif \i == 3 + _vpclmulqdq $0x11, \a, \b, \t1 +.elseif \i == 4 + pclmulqdq $0x10, \a_times_x64, \b +.elseif \i == 5 + pxor \t1, \b +.elseif \i == 6 + + // Fold MI into HI. + pshufd $0x4e, \t0, \t1 // Swap halves of MI +.elseif \i == 7 + pclmulqdq $0x00, \gfpoly, \t0 // MI_L*(x^63 + x^62 + x^57) +.elseif \i == 8 + pxor \t1, \b +.elseif \i == 9 + pxor \t0, \b +.endif +.endm + +// GHASH-multiply \a by \b and store the reduced product in \b. +// See _ghash_mul_step for details. +.macro _ghash_mul a, a_times_x64, b, gfpoly, t0, t1 +.irp i, 0,1,2,3,4,5,6,7,8,9 + _ghash_mul_step \i, \a, \a_times_x64, \b, \gfpoly, \t0, \t1 +.endr +.endm + +// GHASH-multiply \a by \b and add the unreduced product to \lo, \mi, and \hi. +// This does Karatsuba multiplication and must be paired with _ghash_reduce. On +// the first call, \lo, \mi, and \hi must be zero. \a_xored must contain the +// two halves of \a XOR'd together, i.e. a_L + a_H. \b is clobbered. +.macro _ghash_mul_noreduce a, a_xored, b, lo, mi, hi, t0 + + // LO += a_L * b_L + _vpclmulqdq $0x00, \a, \b, \t0 + pxor \t0, \lo + + // b_L + b_H + pshufd $0x4e, \b, \t0 + pxor \b, \t0 + + // HI += a_H * b_H + pclmulqdq $0x11, \a, \b + pxor \b, \hi + + // MI += (a_L + a_H) * (b_L + b_H) + pclmulqdq $0x00, \a_xored, \t0 + pxor \t0, \mi +.endm + +// Reduce the product from \lo, \mi, and \hi, and store the result in \dst. +// This assumes that _ghash_mul_noreduce was used. +.macro _ghash_reduce lo, mi, hi, dst, t0 + + movq .Lgfpoly(%rip), \t0 + + // MI += LO + HI (needed because we used Karatsuba multiplication) + pxor \lo, \mi + pxor \hi, \mi + + // Fold LO into MI. + pshufd $0x4e, \lo, \dst + pclmulqdq $0x00, \t0, \lo + pxor \dst, \mi + pxor \lo, \mi + + // Fold MI into HI. + pshufd $0x4e, \mi, \dst + pclmulqdq $0x00, \t0, \mi + pxor \hi, \dst + pxor \mi, \dst +.endm + +// Do the first step of the GHASH update of a set of 8 ciphertext blocks. +// +// The whole GHASH update does: +// +// GHASH_ACC = (blk0+GHASH_ACC)*H^8 + blk1*H^7 + blk2*H^6 + blk3*H^5 + +// blk4*H^4 + blk5*H^3 + blk6*H^2 + blk7*H^1 +// +// This macro just does the first step: it does the unreduced multiplication +// (blk0+GHASH_ACC)*H^8 and starts gathering the unreduced product in the xmm +// registers LO, MI, and GHASH_ACC a.k.a. HI. It also zero-initializes the +// inner block counter in %rax, which is a value that counts up by 8 for each +// block in the set of 8 and is used later to index by 8*blknum and 16*blknum. +// +// To reduce the number of pclmulqdq instructions required, both this macro and +// _ghash_update_continue_8x use Karatsuba multiplication instead of schoolbook +// multiplication. See the file comment for more details about this choice. +// +// Both macros expect the ciphertext blocks blk[0-7] to be available at DST if +// encrypting, or SRC if decrypting. They also expect the precomputed hash key +// powers H^i and their XOR'd-together halves to be available in the struct +// pointed to by KEY. Both macros clobber TMP[0-2]. +.macro _ghash_update_begin_8x enc + + // Initialize the inner block counter. + xor %eax, %eax + + // Load the highest hash key power, H^8. + movdqa OFFSETOF_H_POWERS(KEY), TMP0 + + // Load the first ciphertext block and byte-reflect it. +.if \enc + movdqu (DST), TMP1 +.else + movdqu (SRC), TMP1 +.endif + pshufb BSWAP_MASK, TMP1 + + // Add the GHASH accumulator to the ciphertext block to get the block + // 'b' that needs to be multiplied with the hash key power 'a'. + pxor TMP1, GHASH_ACC + + // b_L + b_H + pshufd $0x4e, GHASH_ACC, MI + pxor GHASH_ACC, MI + + // LO = a_L * b_L + _vpclmulqdq $0x00, TMP0, GHASH_ACC, LO + + // HI = a_H * b_H + pclmulqdq $0x11, TMP0, GHASH_ACC + + // MI = (a_L + a_H) * (b_L + b_H) + pclmulqdq $0x00, OFFSETOF_H_POWERS_XORED(KEY), MI +.endm + +// Continue the GHASH update of 8 ciphertext blocks as described above by doing +// an unreduced multiplication of the next ciphertext block by the next lowest +// key power and accumulating the result into LO, MI, and GHASH_ACC a.k.a. HI. +.macro _ghash_update_continue_8x enc + add $8, %eax + + // Load the next lowest key power. + movdqa OFFSETOF_H_POWERS(KEY,%rax,2), TMP0 + + // Load the next ciphertext block and byte-reflect it. +.if \enc + movdqu (DST,%rax,2), TMP1 +.else + movdqu (SRC,%rax,2), TMP1 +.endif + pshufb BSWAP_MASK, TMP1 + + // LO += a_L * b_L + _vpclmulqdq $0x00, TMP0, TMP1, TMP2 + pxor TMP2, LO + + // b_L + b_H + pshufd $0x4e, TMP1, TMP2 + pxor TMP1, TMP2 + + // HI += a_H * b_H + pclmulqdq $0x11, TMP0, TMP1 + pxor TMP1, GHASH_ACC + + // MI += (a_L + a_H) * (b_L + b_H) + movq OFFSETOF_H_POWERS_XORED(KEY,%rax), TMP1 + pclmulqdq $0x00, TMP1, TMP2 + pxor TMP2, MI +.endm + +// Reduce LO, MI, and GHASH_ACC a.k.a. HI into GHASH_ACC. This is similar to +// _ghash_reduce, but it's hardcoded to use the registers of the main loop and +// it uses the same register for HI and the destination. It's also divided into +// two steps. TMP1 must be preserved across steps. +// +// One pshufd could be saved by shuffling MI and XOR'ing LO into it, instead of +// shuffling LO, XOR'ing LO into MI, and shuffling MI. However, this would +// increase the critical path length, and it seems to slightly hurt performance. +.macro _ghash_update_end_8x_step i +.if \i == 0 + movq .Lgfpoly(%rip), TMP1 + pxor LO, MI + pxor GHASH_ACC, MI + pshufd $0x4e, LO, TMP2 + pclmulqdq $0x00, TMP1, LO + pxor TMP2, MI + pxor LO, MI +.elseif \i == 1 + pshufd $0x4e, MI, TMP2 + pclmulqdq $0x00, TMP1, MI + pxor TMP2, GHASH_ACC + pxor MI, GHASH_ACC +.endif +.endm + +// void aes_gcm_precompute_##suffix(struct aes_gcm_key_aesni *key); +// +// Given the expanded AES key, derive the GHASH subkey and initialize the GHASH +// related fields in the key struct. +.macro _aes_gcm_precompute + + // Function arguments + .set KEY, %rdi + + // Additional local variables. + // %xmm0-%xmm1 and %rax are used as temporaries. + .set RNDKEYLAST_PTR, %rsi + .set H_CUR, %xmm2 + .set H_POW1, %xmm3 // H^1 + .set H_POW1_X64, %xmm4 // H^1 * x^64 + .set GFPOLY, %xmm5 + + // Encrypt an all-zeroes block to get the raw hash subkey. + movl OFFSETOF_AESKEYLEN(KEY), %eax + lea 6*16(KEY,%rax,4), RNDKEYLAST_PTR + movdqa (KEY), H_POW1 // Zero-th round key XOR all-zeroes block + lea 16(KEY), %rax +1: + aesenc (%rax), H_POW1 + add $16, %rax + cmp %rax, RNDKEYLAST_PTR + jne 1b + aesenclast (RNDKEYLAST_PTR), H_POW1 + + // Preprocess the raw hash subkey as needed to operate on GHASH's + // bit-reflected values directly: reflect its bytes, then multiply it by + // x^-1 (using the backwards interpretation of polynomial coefficients + // from the GCM spec) or equivalently x^1 (using the alternative, + // natural interpretation of polynomial coefficients). + pshufb .Lbswap_mask(%rip), H_POW1 + movdqa H_POW1, %xmm0 + pshufd $0xd3, %xmm0, %xmm0 + psrad $31, %xmm0 + paddq H_POW1, H_POW1 + pand .Lgfpoly_and_internal_carrybit(%rip), %xmm0 + pxor %xmm0, H_POW1 + + // Store H^1. + movdqa H_POW1, OFFSETOF_H_POWERS+7*16(KEY) + + // Compute and store H^1 * x^64. + movq .Lgfpoly(%rip), GFPOLY + pshufd $0x4e, H_POW1, %xmm0 + _vpclmulqdq $0x00, H_POW1, GFPOLY, H_POW1_X64 + pxor %xmm0, H_POW1_X64 + movdqa H_POW1_X64, OFFSETOF_H_TIMES_X64(KEY) + + // Compute and store the halves of H^1 XOR'd together. + pxor H_POW1, %xmm0 + movq %xmm0, OFFSETOF_H_POWERS_XORED+7*8(KEY) + + // Compute and store the remaining key powers H^2 through H^8. + movdqa H_POW1, H_CUR + mov $6*8, %eax +.Lprecompute_next\@: + // Compute H^i = H^{i-1} * H^1. + _ghash_mul H_POW1, H_POW1_X64, H_CUR, GFPOLY, %xmm0, %xmm1 + // Store H^i. + movdqa H_CUR, OFFSETOF_H_POWERS(KEY,%rax,2) + // Compute and store the halves of H^i XOR'd together. + pshufd $0x4e, H_CUR, %xmm0 + pxor H_CUR, %xmm0 + movq %xmm0, OFFSETOF_H_POWERS_XORED(KEY,%rax) + sub $8, %eax + jge .Lprecompute_next\@ + + RET +.endm + +// void aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key, +// u8 ghash_acc[16], const u8 *aad, int aadlen); +// +// This function processes the AAD (Additional Authenticated Data) in GCM. +// Using the key |key|, it updates the GHASH accumulator |ghash_acc| with the +// data given by |aad| and |aadlen|. On the first call, |ghash_acc| must be all +// zeroes. |aadlen| must be a multiple of 16, except on the last call where it +// can be any length. The caller must do any buffering needed to ensure this. +.macro _aes_gcm_aad_update + + // Function arguments + .set KEY, %rdi + .set GHASH_ACC_PTR, %rsi + .set AAD, %rdx + .set AADLEN, %ecx + // Note: _load_partial_block relies on AADLEN being in %ecx. + + // Additional local variables. + // %rax, %r10, and %xmm0-%xmm1 are used as temporary registers. + .set BSWAP_MASK, %xmm2 + .set GHASH_ACC, %xmm3 + .set H_POW1, %xmm4 // H^1 + .set H_POW1_X64, %xmm5 // H^1 * x^64 + .set GFPOLY, %xmm6 + + movdqa .Lbswap_mask(%rip), BSWAP_MASK + movdqu (GHASH_ACC_PTR), GHASH_ACC + movdqa OFFSETOF_H_POWERS+7*16(KEY), H_POW1 + movdqa OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64 + movq .Lgfpoly(%rip), GFPOLY + + // Process the AAD one full block at a time. + sub $16, AADLEN + jl .Laad_loop_1x_done\@ +.Laad_loop_1x\@: + movdqu (AAD), %xmm0 + pshufb BSWAP_MASK, %xmm0 + pxor %xmm0, GHASH_ACC + _ghash_mul H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1 + add $16, AAD + sub $16, AADLEN + jge .Laad_loop_1x\@ +.Laad_loop_1x_done\@: + // Check whether there is a partial block at the end. + add $16, AADLEN + jz .Laad_done\@ + + // Process a partial block of length 1 <= AADLEN <= 15. + // _load_partial_block assumes that %ecx contains AADLEN. + _load_partial_block AAD, %xmm0, %r10, %r10d + pshufb BSWAP_MASK, %xmm0 + pxor %xmm0, GHASH_ACC + _ghash_mul H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm0, %xmm1 + +.Laad_done\@: + movdqu GHASH_ACC, (GHASH_ACC_PTR) + RET +.endm + +// Increment LE_CTR eight times to generate eight little-endian counter blocks, +// swap each to big-endian, and store them in AESDATA[0-7]. Also XOR them with +// the zero-th AES round key. Clobbers TMP0 and TMP1. +.macro _ctr_begin_8x + movq .Lone(%rip), TMP0 + movdqa (KEY), TMP1 // zero-th round key +.irp i, 0,1,2,3,4,5,6,7 + _vpshufb BSWAP_MASK, LE_CTR, AESDATA\i + pxor TMP1, AESDATA\i + paddd TMP0, LE_CTR +.endr +.endm + +// Do a non-last round of AES on AESDATA[0-7] using \round_key. +.macro _aesenc_8x round_key +.irp i, 0,1,2,3,4,5,6,7 + aesenc \round_key, AESDATA\i +.endr +.endm + +// Do the last round of AES on AESDATA[0-7] using \round_key. +.macro _aesenclast_8x round_key +.irp i, 0,1,2,3,4,5,6,7 + aesenclast \round_key, AESDATA\i +.endr +.endm + +// XOR eight blocks from SRC with the keystream blocks in AESDATA[0-7], and +// store the result to DST. Clobbers TMP0. +.macro _xor_data_8x +.irp i, 0,1,2,3,4,5,6,7 + _xor_mem_to_reg \i*16(SRC), AESDATA\i, tmp=TMP0 +.endr +.irp i, 0,1,2,3,4,5,6,7 + movdqu AESDATA\i, \i*16(DST) +.endr +.endm + +// void aes_gcm_{enc,dec}_update_##suffix(const struct aes_gcm_key_aesni *key, +// const u32 le_ctr[4], u8 ghash_acc[16], +// const u8 *src, u8 *dst, int datalen); +// +// This macro generates a GCM encryption or decryption update function with the +// above prototype (with \enc selecting which one). +// +// This function computes the next portion of the CTR keystream, XOR's it with +// |datalen| bytes from |src|, and writes the resulting encrypted or decrypted +// data to |dst|. It also updates the GHASH accumulator |ghash_acc| using the +// next |datalen| ciphertext bytes. +// +// |datalen| must be a multiple of 16, except on the last call where it can be +// any length. The caller must do any buffering needed to ensure this. Both +// in-place and out-of-place en/decryption are supported. +// +// |le_ctr| must give the current counter in little-endian format. For a new +// message, the low word of the counter must be 2. This function loads the +// counter from |le_ctr| and increments the loaded counter as needed, but it +// does *not* store the updated counter back to |le_ctr|. The caller must +// update |le_ctr| if any more data segments follow. Internally, only the low +// 32-bit word of the counter is incremented, following the GCM standard. +.macro _aes_gcm_update enc + + // Function arguments + .set KEY, %rdi + .set LE_CTR_PTR, %rsi // Note: overlaps with usage as temp reg + .set GHASH_ACC_PTR, %rdx + .set SRC, %rcx + .set DST, %r8 + .set DATALEN, %r9d + .set DATALEN64, %r9 // Zero-extend DATALEN before using! + // Note: the code setting up for _load_partial_block assumes that SRC is + // in %rcx (and that DATALEN is *not* in %rcx). + + // Additional local variables + + // %rax and %rsi are used as temporary registers. Note: %rsi overlaps + // with LE_CTR_PTR, which is used only at the beginning. + + .set AESKEYLEN, %r10d // AES key length in bytes + .set AESKEYLEN64, %r10 + .set RNDKEYLAST_PTR, %r11 // Pointer to last AES round key + + // Put the most frequently used values in %xmm0-%xmm7 to reduce code + // size. (%xmm0-%xmm7 take fewer bytes to encode than %xmm8-%xmm15.) + .set TMP0, %xmm0 + .set TMP1, %xmm1 + .set TMP2, %xmm2 + .set LO, %xmm3 // Low part of unreduced product + .set MI, %xmm4 // Middle part of unreduced product + .set GHASH_ACC, %xmm5 // GHASH accumulator; in main loop also + // the high part of unreduced product + .set BSWAP_MASK, %xmm6 // Shuffle mask for reflecting bytes + .set LE_CTR, %xmm7 // Little-endian counter value + .set AESDATA0, %xmm8 + .set AESDATA1, %xmm9 + .set AESDATA2, %xmm10 + .set AESDATA3, %xmm11 + .set AESDATA4, %xmm12 + .set AESDATA5, %xmm13 + .set AESDATA6, %xmm14 + .set AESDATA7, %xmm15 + + movdqa .Lbswap_mask(%rip), BSWAP_MASK + movdqu (GHASH_ACC_PTR), GHASH_ACC + movdqu (LE_CTR_PTR), LE_CTR + + movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN + lea 6*16(KEY,AESKEYLEN64,4), RNDKEYLAST_PTR + + // If there are at least 8*16 bytes of data, then continue into the main + // loop, which processes 8*16 bytes of data per iteration. + // + // The main loop interleaves AES and GHASH to improve performance on + // CPUs that can execute these instructions in parallel. When + // decrypting, the GHASH input (the ciphertext) is immediately + // available. When encrypting, we instead encrypt a set of 8 blocks + // first and then GHASH those blocks while encrypting the next set of 8, + // repeat that as needed, and finally GHASH the last set of 8 blocks. + // + // Code size optimization: Prefer adding or subtracting -8*16 over 8*16, + // as this makes the immediate fit in a signed byte, saving 3 bytes. + add $-8*16, DATALEN + jl .Lcrypt_loop_8x_done\@ +.if \enc + // Encrypt the first 8 plaintext blocks. + _ctr_begin_8x + lea 16(KEY), %rsi + .p2align 4 +1: + movdqa (%rsi), TMP0 + _aesenc_8x TMP0 + add $16, %rsi + cmp %rsi, RNDKEYLAST_PTR + jne 1b + movdqa (%rsi), TMP0 + _aesenclast_8x TMP0 + _xor_data_8x + // Don't increment DST until the ciphertext blocks have been hashed. + sub $-8*16, SRC + add $-8*16, DATALEN + jl .Lghash_last_ciphertext_8x\@ +.endif + + .p2align 4 +.Lcrypt_loop_8x\@: + + // Generate the next set of 8 counter blocks and start encrypting them. + _ctr_begin_8x + lea 16(KEY), %rsi + + // Do a round of AES, and start the GHASH update of 8 ciphertext blocks + // by doing the unreduced multiplication for the first ciphertext block. + movdqa (%rsi), TMP0 + add $16, %rsi + _aesenc_8x TMP0 + _ghash_update_begin_8x \enc + + // Do 7 more rounds of AES, and continue the GHASH update by doing the + // unreduced multiplication for the remaining ciphertext blocks. + .p2align 4 +1: + movdqa (%rsi), TMP0 + add $16, %rsi + _aesenc_8x TMP0 + _ghash_update_continue_8x \enc + cmp $7*8, %eax + jne 1b + + // Do the remaining AES rounds. + .p2align 4 +1: + movdqa (%rsi), TMP0 + add $16, %rsi + _aesenc_8x TMP0 + cmp %rsi, RNDKEYLAST_PTR + jne 1b + + // Do the GHASH reduction and the last round of AES. + movdqa (RNDKEYLAST_PTR), TMP0 + _ghash_update_end_8x_step 0 + _aesenclast_8x TMP0 + _ghash_update_end_8x_step 1 + + // XOR the data with the AES-CTR keystream blocks. +.if \enc + sub $-8*16, DST +.endif + _xor_data_8x + sub $-8*16, SRC +.if !\enc + sub $-8*16, DST +.endif + add $-8*16, DATALEN + jge .Lcrypt_loop_8x\@ + +.if \enc +.Lghash_last_ciphertext_8x\@: + // Update GHASH with the last set of 8 ciphertext blocks. + _ghash_update_begin_8x \enc + .p2align 4 +1: + _ghash_update_continue_8x \enc + cmp $7*8, %eax + jne 1b + _ghash_update_end_8x_step 0 + _ghash_update_end_8x_step 1 + sub $-8*16, DST +.endif + +.Lcrypt_loop_8x_done\@: + + sub $-8*16, DATALEN + jz .Ldone\@ + + // Handle the remainder of length 1 <= DATALEN < 8*16 bytes. We keep + // things simple and keep the code size down by just going one block at + // a time, again taking advantage of hardware loop unrolling. Since + // there are enough key powers available for all remaining data, we do + // the GHASH multiplications unreduced, and only reduce at the very end. + + .set HI, TMP2 + .set H_POW, AESDATA0 + .set H_POW_XORED, AESDATA1 + .set ONE, AESDATA2 + + movq .Lone(%rip), ONE + + // Start collecting the unreduced GHASH intermediate value LO, MI, HI. + pxor LO, LO + pxor MI, MI + pxor HI, HI + + // Set up a block counter %rax to contain 8*(8-n), where n is the number + // of blocks that remain, counting any partial block. This will be used + // to access the key powers H^n through H^1. + mov DATALEN, %eax + neg %eax + and $~15, %eax + sar $1, %eax + add $64, %eax + + sub $16, DATALEN + jl .Lcrypt_loop_1x_done\@ + + // Process the data one full block at a time. +.Lcrypt_loop_1x\@: + + // Encrypt the next counter block. + _vpshufb BSWAP_MASK, LE_CTR, TMP0 + paddd ONE, LE_CTR + pxor (KEY), TMP0 + lea -6*16(RNDKEYLAST_PTR), %rsi // Reduce code size + cmp $24, AESKEYLEN + jl 128f // AES-128? + je 192f // AES-192? + // AES-256 + aesenc -7*16(%rsi), TMP0 + aesenc -6*16(%rsi), TMP0 +192: + aesenc -5*16(%rsi), TMP0 + aesenc -4*16(%rsi), TMP0 +128: +.irp i, -3,-2,-1,0,1,2,3,4,5 + aesenc \i*16(%rsi), TMP0 +.endr + aesenclast (RNDKEYLAST_PTR), TMP0 + + // Load the next key power H^i. + movdqa OFFSETOF_H_POWERS(KEY,%rax,2), H_POW + movq OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED + + // XOR the keystream block that was just generated in TMP0 with the next + // source data block and store the resulting en/decrypted data to DST. +.if \enc + _xor_mem_to_reg (SRC), TMP0, tmp=TMP1 + movdqu TMP0, (DST) +.else + movdqu (SRC), TMP1 + pxor TMP1, TMP0 + movdqu TMP0, (DST) +.endif + + // Update GHASH with the ciphertext block. +.if \enc + pshufb BSWAP_MASK, TMP0 + pxor TMP0, GHASH_ACC +.else + pshufb BSWAP_MASK, TMP1 + pxor TMP1, GHASH_ACC +.endif + _ghash_mul_noreduce H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0 + pxor GHASH_ACC, GHASH_ACC + + add $8, %eax + add $16, SRC + add $16, DST + sub $16, DATALEN + jge .Lcrypt_loop_1x\@ +.Lcrypt_loop_1x_done\@: + // Check whether there is a partial block at the end. + add $16, DATALEN + jz .Lghash_reduce\@ + + // Process a partial block of length 1 <= DATALEN <= 15. + + // Encrypt a counter block for the last time. + pshufb BSWAP_MASK, LE_CTR + pxor (KEY), LE_CTR + lea 16(KEY), %rsi +1: + aesenc (%rsi), LE_CTR + add $16, %rsi + cmp %rsi, RNDKEYLAST_PTR + jne 1b + aesenclast (RNDKEYLAST_PTR), LE_CTR + + // Load the lowest key power, H^1. + movdqa OFFSETOF_H_POWERS(KEY,%rax,2), H_POW + movq OFFSETOF_H_POWERS_XORED(KEY,%rax), H_POW_XORED + + // Load and zero-pad 1 <= DATALEN <= 15 bytes of data from SRC. SRC is + // in %rcx, but _load_partial_block needs DATALEN in %rcx instead. + // RNDKEYLAST_PTR is no longer needed, so reuse it for SRC. + mov SRC, RNDKEYLAST_PTR + mov DATALEN, %ecx + _load_partial_block RNDKEYLAST_PTR, TMP0, %rsi, %esi + + // XOR the keystream block that was just generated in LE_CTR with the + // source data block and store the resulting en/decrypted data to DST. + pxor TMP0, LE_CTR + mov DATALEN, %ecx + _store_partial_block LE_CTR, DST + + // If encrypting, zero-pad the final ciphertext block for GHASH. (If + // decrypting, this was already done by _load_partial_block.) +.if \enc + lea .Lzeropad_mask+16(%rip), %rax + sub DATALEN64, %rax + _vpand (%rax), LE_CTR, TMP0 +.endif + + // Update GHASH with the final ciphertext block. + pshufb BSWAP_MASK, TMP0 + pxor TMP0, GHASH_ACC + _ghash_mul_noreduce H_POW, H_POW_XORED, GHASH_ACC, LO, MI, HI, TMP0 + +.Lghash_reduce\@: + // Finally, do the GHASH reduction. + _ghash_reduce LO, MI, HI, GHASH_ACC, TMP0 + +.Ldone\@: + // Store the updated GHASH accumulator back to memory. + movdqu GHASH_ACC, (GHASH_ACC_PTR) + + RET +.endm + +// void aes_gcm_enc_final_##suffix(const struct aes_gcm_key_aesni *key, +// const u32 le_ctr[4], u8 ghash_acc[16], +// u64 total_aadlen, u64 total_datalen); +// bool aes_gcm_dec_final_##suffix(const struct aes_gcm_key_aesni *key, +// const u32 le_ctr[4], const u8 ghash_acc[16], +// u64 total_aadlen, u64 total_datalen, +// const u8 tag[16], int taglen); +// +// This macro generates one of the above two functions (with \enc selecting +// which one). Both functions finish computing the GCM authentication tag by +// updating GHASH with the lengths block and encrypting the GHASH accumulator. +// |total_aadlen| and |total_datalen| must be the total length of the additional +// authenticated data and the en/decrypted data in bytes, respectively. +// +// The encryption function then stores the full-length (16-byte) computed +// authentication tag to |ghash_acc|. The decryption function instead loads the +// expected authentication tag (the one that was transmitted) from the 16-byte +// buffer |tag|, compares the first 4 <= |taglen| <= 16 bytes of it to the +// computed tag in constant time, and returns true if and only if they match. +.macro _aes_gcm_final enc + + // Function arguments + .set KEY, %rdi + .set LE_CTR_PTR, %rsi + .set GHASH_ACC_PTR, %rdx + .set TOTAL_AADLEN, %rcx + .set TOTAL_DATALEN, %r8 + .set TAG, %r9 + .set TAGLEN, %r10d // Originally at 8(%rsp) + .set TAGLEN64, %r10 + + // Additional local variables. + // %rax and %xmm0-%xmm2 are used as temporary registers. + .set AESKEYLEN, %r11d + .set AESKEYLEN64, %r11 + .set BSWAP_MASK, %xmm3 + .set GHASH_ACC, %xmm4 + .set H_POW1, %xmm5 // H^1 + .set H_POW1_X64, %xmm6 // H^1 * x^64 + .set GFPOLY, %xmm7 + + movdqa .Lbswap_mask(%rip), BSWAP_MASK + movl OFFSETOF_AESKEYLEN(KEY), AESKEYLEN + + // Set up a counter block with 1 in the low 32-bit word. This is the + // counter that produces the ciphertext needed to encrypt the auth tag. + movdqu (LE_CTR_PTR), %xmm0 + mov $1, %eax + pinsrd $0, %eax, %xmm0 + + // Build the lengths block and XOR it into the GHASH accumulator. + movq TOTAL_DATALEN, GHASH_ACC + pinsrq $1, TOTAL_AADLEN, GHASH_ACC + psllq $3, GHASH_ACC // Bytes to bits + _xor_mem_to_reg (GHASH_ACC_PTR), GHASH_ACC, %xmm1 + + movdqa OFFSETOF_H_POWERS+7*16(KEY), H_POW1 + movdqa OFFSETOF_H_TIMES_X64(KEY), H_POW1_X64 + movq .Lgfpoly(%rip), GFPOLY + + // Make %rax point to the 6th from last AES round key. (Using signed + // byte offsets -7*16 through 6*16 decreases code size.) + lea (KEY,AESKEYLEN64,4), %rax + + // AES-encrypt the counter block and also multiply GHASH_ACC by H^1. + // Interleave the AES and GHASH instructions to improve performance. + pshufb BSWAP_MASK, %xmm0 + pxor (KEY), %xmm0 + cmp $24, AESKEYLEN + jl 128f // AES-128? + je 192f // AES-192? + // AES-256 + aesenc -7*16(%rax), %xmm0 + aesenc -6*16(%rax), %xmm0 +192: + aesenc -5*16(%rax), %xmm0 + aesenc -4*16(%rax), %xmm0 +128: +.irp i, 0,1,2,3,4,5,6,7,8 + aesenc (\i-3)*16(%rax), %xmm0 + _ghash_mul_step \i, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2 +.endr + aesenclast 6*16(%rax), %xmm0 + _ghash_mul_step 9, H_POW1, H_POW1_X64, GHASH_ACC, GFPOLY, %xmm1, %xmm2 + + // Undo the byte reflection of the GHASH accumulator. + pshufb BSWAP_MASK, GHASH_ACC + + // Encrypt the GHASH accumulator. + pxor %xmm0, GHASH_ACC + +.if \enc + // Return the computed auth tag. + movdqu GHASH_ACC, (GHASH_ACC_PTR) +.else + .set ZEROPAD_MASK_PTR, TOTAL_AADLEN // Reusing TOTAL_AADLEN! + + // Verify the auth tag in constant time by XOR'ing the transmitted and + // computed auth tags together and using the ptest instruction to check + // whether the first TAGLEN bytes of the result are zero. + _xor_mem_to_reg (TAG), GHASH_ACC, tmp=%xmm0 + movl 8(%rsp), TAGLEN + lea .Lzeropad_mask+16(%rip), ZEROPAD_MASK_PTR + sub TAGLEN64, ZEROPAD_MASK_PTR + xor %eax, %eax + _test_mem (ZEROPAD_MASK_PTR), GHASH_ACC, tmp=%xmm0 + sete %al +.endif + RET +.endm + +.set USE_AVX, 0 +SYM_FUNC_START(aes_gcm_precompute_aesni) + _aes_gcm_precompute +SYM_FUNC_END(aes_gcm_precompute_aesni) +SYM_FUNC_START(aes_gcm_aad_update_aesni) + _aes_gcm_aad_update +SYM_FUNC_END(aes_gcm_aad_update_aesni) +SYM_FUNC_START(aes_gcm_enc_update_aesni) + _aes_gcm_update 1 +SYM_FUNC_END(aes_gcm_enc_update_aesni) +SYM_FUNC_START(aes_gcm_dec_update_aesni) + _aes_gcm_update 0 +SYM_FUNC_END(aes_gcm_dec_update_aesni) +SYM_FUNC_START(aes_gcm_enc_final_aesni) + _aes_gcm_final 1 +SYM_FUNC_END(aes_gcm_enc_final_aesni) +SYM_FUNC_START(aes_gcm_dec_final_aesni) + _aes_gcm_final 0 +SYM_FUNC_END(aes_gcm_dec_final_aesni) + +.set USE_AVX, 1 +SYM_FUNC_START(aes_gcm_precompute_aesni_avx) + _aes_gcm_precompute +SYM_FUNC_END(aes_gcm_precompute_aesni_avx) +SYM_FUNC_START(aes_gcm_aad_update_aesni_avx) + _aes_gcm_aad_update +SYM_FUNC_END(aes_gcm_aad_update_aesni_avx) +SYM_FUNC_START(aes_gcm_enc_update_aesni_avx) + _aes_gcm_update 1 +SYM_FUNC_END(aes_gcm_enc_update_aesni_avx) +SYM_FUNC_START(aes_gcm_dec_update_aesni_avx) + _aes_gcm_update 0 +SYM_FUNC_END(aes_gcm_dec_update_aesni_avx) +SYM_FUNC_START(aes_gcm_enc_final_aesni_avx) + _aes_gcm_final 1 +SYM_FUNC_END(aes_gcm_enc_final_aesni_avx) +SYM_FUNC_START(aes_gcm_dec_final_aesni_avx) + _aes_gcm_final 0 +SYM_FUNC_END(aes_gcm_dec_final_aesni_avx) |