diff options
Diffstat (limited to 'arch/x86/Kconfig')
-rw-r--r-- | arch/x86/Kconfig | 35 |
1 files changed, 20 insertions, 15 deletions
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig index 9af2e6338400..8f2e6659281b 100644 --- a/arch/x86/Kconfig +++ b/arch/x86/Kconfig @@ -303,6 +303,9 @@ config ARCH_SUPPORTS_UPROBES config FIX_EARLYCON_MEM def_bool y +config DEBUG_RODATA + def_bool y + config PGTABLE_LEVELS int default 4 if X86_64 @@ -475,6 +478,7 @@ config X86_UV depends on X86_64 depends on X86_EXTENDED_PLATFORM depends on NUMA + depends on EFI depends on X86_X2APIC depends on PCI ---help--- @@ -777,8 +781,8 @@ config HPET_TIMER HPET is the next generation timer replacing legacy 8254s. The HPET provides a stable time base on SMP systems, unlike the TSC, but it is more expensive to access, - as it is off-chip. You can find the HPET spec at - <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>. + as it is off-chip. The interface used is documented + in the HPET spec, revision 1. You can safely choose Y here. However, HPET will only be activated if the platform and the BIOS support this feature. @@ -1159,22 +1163,23 @@ config MICROCODE bool "CPU microcode loading support" default y depends on CPU_SUP_AMD || CPU_SUP_INTEL - depends on BLK_DEV_INITRD select FW_LOADER ---help--- - If you say Y here, you will be able to update the microcode on - certain Intel and AMD processors. The Intel support is for the - IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4, - Xeon etc. The AMD support is for families 0x10 and later. You will - obviously need the actual microcode binary data itself which is not - shipped with the Linux kernel. - - This option selects the general module only, you need to select - at least one vendor specific module as well. - - To compile this driver as a module, choose M here: the module - will be called microcode. + Intel and AMD processors. The Intel support is for the IA32 family, + e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4, Xeon etc. The + AMD support is for families 0x10 and later. You will obviously need + the actual microcode binary data itself which is not shipped with + the Linux kernel. + + The preferred method to load microcode from a detached initrd is described + in Documentation/x86/early-microcode.txt. For that you need to enable + CONFIG_BLK_DEV_INITRD in order for the loader to be able to scan the + initrd for microcode blobs. + + In addition, you can build-in the microcode into the kernel. For that you + need to enable FIRMWARE_IN_KERNEL and add the vendor-supplied microcode + to the CONFIG_EXTRA_FIRMWARE config option. config MICROCODE_INTEL bool "Intel microcode loading support" |