summaryrefslogtreecommitdiff
path: root/arch/s390
diff options
context:
space:
mode:
Diffstat (limited to 'arch/s390')
-rw-r--r--arch/s390/crypto/crc32be-vx.S207
-rw-r--r--arch/s390/crypto/crc32le-vx.S268
2 files changed, 475 insertions, 0 deletions
diff --git a/arch/s390/crypto/crc32be-vx.S b/arch/s390/crypto/crc32be-vx.S
new file mode 100644
index 000000000000..8013989cd2e5
--- /dev/null
+++ b/arch/s390/crypto/crc32be-vx.S
@@ -0,0 +1,207 @@
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of CRC-32 checksums.
+ *
+ * This CRC-32 implementation algorithm processes the most-significant
+ * bit first (BE).
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+
+#include <linux/linkage.h>
+#include <asm/vx-insn.h>
+
+/* Vector register range containing CRC-32 constants */
+#define CONST_R1R2 %v9
+#define CONST_R3R4 %v10
+#define CONST_R5 %v11
+#define CONST_R6 %v12
+#define CONST_RU_POLY %v13
+#define CONST_CRC_POLY %v14
+
+.data
+.align 8
+
+/*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these defintions:
+ *
+ * R1 = x4*128+64 mod P(x)
+ * R2 = x4*128 mod P(x)
+ * R3 = x128+64 mod P(x)
+ * R4 = x128 mod P(x)
+ * R5 = x96 mod P(x)
+ * R6 = x64 mod P(x)
+ *
+ * Barret reduction constant, u, is defined as floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * Note that the constant definitions below are extended in order to compute
+ * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
+ * The righmost doubleword can be 0 to prevent contribution to the result or
+ * can be multiplied by 1 to perform an XOR without the need for a separate
+ * VECTOR EXCLUSIVE OR instruction.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ */
+
+.Lconstants_CRC_32_BE:
+ .quad 0x08833794c, 0x0e6228b11 # R1, R2
+ .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4
+ .quad 0x0f200aa66, 1 << 32 # R5, x32
+ .quad 0x0490d678d, 1 # R6, 1
+ .quad 0x104d101df, 0 # u
+ .quad 0x104C11DB7, 0 # P(x)
+
+.previous
+
+.text
+/*
+ * The CRC-32 function(s) use these calling conventions:
+ *
+ * Parameters:
+ *
+ * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
+ * %r3: Input buffer pointer, performance might be improved if the
+ * buffer is on a doubleword boundary.
+ * %r4: Length of the buffer, must be 64 bytes or greater.
+ *
+ * Register usage:
+ *
+ * %r5: CRC-32 constant pool base pointer.
+ * V0: Initial CRC value and intermediate constants and results.
+ * V1..V4: Data for CRC computation.
+ * V5..V8: Next data chunks that are fetched from the input buffer.
+ *
+ * V9..V14: CRC-32 constants.
+ */
+ENTRY(crc32_be_vgfm_16)
+ /* Load CRC-32 constants */
+ larl %r5,.Lconstants_CRC_32_BE
+ VLM CONST_R1R2,CONST_CRC_POLY,0,%r5
+
+ /* Load the initial CRC value into the leftmost word of V0. */
+ VZERO %v0
+ VLVGF %v0,%r2,0
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
+ VX %v1,%v0,%v1 /* V1 ^= CRC */
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ /* Check remaining buffer size and jump to proper folding method */
+ cghi %r4,64
+ jl .Lless_than_64bytes
+
+.Lfold_64bytes_loop:
+ /* Load the next 64-byte data chunk into V5 to V8 */
+ VLM %v5,%v8,0,%r3
+
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the reduction constants in V0. The intermediate result is
+ * then folded (accumulated) with the next data chunk in V5 and
+ * stored in V1. Repeat this step for the register contents
+ * in V2, V3, and V4 respectively.
+ */
+ VGFMAG %v1,CONST_R1R2,%v1,%v5
+ VGFMAG %v2,CONST_R1R2,%v2,%v6
+ VGFMAG %v3,CONST_R1R2,%v3,%v7
+ VGFMAG %v4,CONST_R1R2,%v4,%v8
+
+ /* Adjust buffer pointer and length for next loop */
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ cghi %r4,64
+ jnl .Lfold_64bytes_loop
+
+.Lless_than_64bytes:
+ /* Fold V1 to V4 into a single 128-bit value in V1 */
+ VGFMAG %v1,CONST_R3R4,%v1,%v2
+ VGFMAG %v1,CONST_R3R4,%v1,%v3
+ VGFMAG %v1,CONST_R3R4,%v1,%v4
+
+ /* Check whether to continue with 64-bit folding */
+ cghi %r4,16
+ jl .Lfinal_fold
+
+.Lfold_16bytes_loop:
+
+ VL %v2,0,,%r3 /* Load next data chunk */
+ VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */
+
+ /* Adjust buffer pointer and size for folding next data chunk */
+ aghi %r3,16
+ aghi %r4,-16
+
+ /* Process remaining data chunks */
+ cghi %r4,16
+ jnl .Lfold_16bytes_loop
+
+.Lfinal_fold:
+ /*
+ * The R5 constant is used to fold a 128-bit value into an 96-bit value
+ * that is XORed with the next 96-bit input data chunk. To use a single
+ * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
+ * form an intermediate 96-bit value (with appended zeros) which is then
+ * XORed with the intermediate reduction result.
+ */
+ VGFMG %v1,CONST_R5,%v1
+
+ /*
+ * Further reduce the remaining 96-bit value to a 64-bit value using a
+ * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
+ * intermediate result is then XORed with the product of the leftmost
+ * doubleword with R6. The result is a 64-bit value and is subject to
+ * the Barret reduction.
+ */
+ VGFMG %v1,CONST_R6,%v1
+
+ /*
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: To compensate the division by x^32, use the vector unpack
+ * instruction to move the leftmost word into the leftmost doubleword
+ * of the vector register. The rightmost doubleword is multiplied
+ * with zero to not contribute to the intermedate results.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ VUPLLF %v2,%v1
+ VGFMG %v2,CONST_RU_POLY,%v2
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is in the rightmost word of V2.
+ */
+ VUPLLF %v2,%v2
+ VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
+
+.Ldone:
+ VLGVF %r2,%v2,3
+ br %r14
+
+.previous
diff --git a/arch/s390/crypto/crc32le-vx.S b/arch/s390/crypto/crc32le-vx.S
new file mode 100644
index 000000000000..17f2504c2633
--- /dev/null
+++ b/arch/s390/crypto/crc32le-vx.S
@@ -0,0 +1,268 @@
+/*
+ * Hardware-accelerated CRC-32 variants for Linux on z Systems
+ *
+ * Use the z/Architecture Vector Extension Facility to accelerate the
+ * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
+ * and Castagnoli.
+ *
+ * This CRC-32 implementation algorithm is bitreflected and processes
+ * the least-significant bit first (Little-Endian).
+ *
+ * Copyright IBM Corp. 2015
+ * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
+ */
+
+#include <linux/linkage.h>
+#include <asm/vx-insn.h>
+
+/* Vector register range containing CRC-32 constants */
+#define CONST_PERM_LE2BE %v9
+#define CONST_R2R1 %v10
+#define CONST_R4R3 %v11
+#define CONST_R5 %v12
+#define CONST_RU_POLY %v13
+#define CONST_CRC_POLY %v14
+
+.data
+.align 8
+
+/*
+ * The CRC-32 constant block contains reduction constants to fold and
+ * process particular chunks of the input data stream in parallel.
+ *
+ * For the CRC-32 variants, the constants are precomputed according to
+ * these definitions:
+ *
+ * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
+ * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
+ * R3 = [(x128+32 mod P'(x) << 32)]' << 1
+ * R4 = [(x128-32 mod P'(x) << 32)]' << 1
+ * R5 = [(x64 mod P'(x) << 32)]' << 1
+ * R6 = [(x32 mod P'(x) << 32)]' << 1
+ *
+ * The bitreflected Barret reduction constant, u', is defined as
+ * the bit reversal of floor(x**64 / P(x)).
+ *
+ * where P(x) is the polynomial in the normal domain and the P'(x) is the
+ * polynomial in the reversed (bitreflected) domain.
+ *
+ * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
+ *
+ * P(x) = 0x04C11DB7
+ * P'(x) = 0xEDB88320
+ *
+ * CRC-32C (Castagnoli) polynomials:
+ *
+ * P(x) = 0x1EDC6F41
+ * P'(x) = 0x82F63B78
+ */
+
+.Lconstants_CRC_32_LE:
+ .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
+ .quad 0x1c6e41596, 0x154442bd4 # R2, R1
+ .quad 0x0ccaa009e, 0x1751997d0 # R4, R3
+ .octa 0x163cd6124 # R5
+ .octa 0x1F7011641 # u'
+ .octa 0x1DB710641 # P'(x) << 1
+
+.Lconstants_CRC_32C_LE:
+ .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
+ .quad 0x09e4addf8, 0x740eef02 # R2, R1
+ .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
+ .octa 0x0dd45aab8 # R5
+ .octa 0x0dea713f1 # u'
+ .octa 0x105ec76f0 # P'(x) << 1
+
+.previous
+
+
+.text
+
+/*
+ * The CRC-32 functions use these calling conventions:
+ *
+ * Parameters:
+ *
+ * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
+ * %r3: Input buffer pointer, performance might be improved if the
+ * buffer is on a doubleword boundary.
+ * %r4: Length of the buffer, must be 64 bytes or greater.
+ *
+ * Register usage:
+ *
+ * %r5: CRC-32 constant pool base pointer.
+ * V0: Initial CRC value and intermediate constants and results.
+ * V1..V4: Data for CRC computation.
+ * V5..V8: Next data chunks that are fetched from the input buffer.
+ * V9: Constant for BE->LE conversion and shift operations
+ *
+ * V10..V14: CRC-32 constants.
+ */
+
+ENTRY(crc32_le_vgfm_16)
+ larl %r5,.Lconstants_CRC_32_LE
+ j crc32_le_vgfm_generic
+
+ENTRY(crc32c_le_vgfm_16)
+ larl %r5,.Lconstants_CRC_32C_LE
+ j crc32_le_vgfm_generic
+
+
+crc32_le_vgfm_generic:
+ /* Load CRC-32 constants */
+ VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
+
+ /*
+ * Load the initial CRC value.
+ *
+ * The CRC value is loaded into the rightmost word of the
+ * vector register and is later XORed with the LSB portion
+ * of the loaded input data.
+ */
+ VZERO %v0 /* Clear V0 */
+ VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
+
+ /* Load a 64-byte data chunk and XOR with CRC */
+ VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
+ VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
+ VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
+ VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
+ VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
+
+ VX %v1,%v0,%v1 /* V1 ^= CRC */
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ cghi %r4,64
+ jl .Lless_than_64bytes
+
+.Lfold_64bytes_loop:
+ /* Load the next 64-byte data chunk into V5 to V8 */
+ VLM %v5,%v8,0,%r3
+ VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
+ VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
+ VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
+ VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
+
+ /*
+ * Perform a GF(2) multiplication of the doublewords in V1 with
+ * the R1 and R2 reduction constants in V0. The intermediate result
+ * is then folded (accumulated) with the next data chunk in V5 and
+ * stored in V1. Repeat this step for the register contents
+ * in V2, V3, and V4 respectively.
+ */
+ VGFMAG %v1,CONST_R2R1,%v1,%v5
+ VGFMAG %v2,CONST_R2R1,%v2,%v6
+ VGFMAG %v3,CONST_R2R1,%v3,%v7
+ VGFMAG %v4,CONST_R2R1,%v4,%v8
+
+ aghi %r3,64 /* BUF = BUF + 64 */
+ aghi %r4,-64 /* LEN = LEN - 64 */
+
+ cghi %r4,64
+ jnl .Lfold_64bytes_loop
+
+.Lless_than_64bytes:
+ /*
+ * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
+ * and R4 and accumulating the next 128-bit chunk until a single 128-bit
+ * value remains.
+ */
+ VGFMAG %v1,CONST_R4R3,%v1,%v2
+ VGFMAG %v1,CONST_R4R3,%v1,%v3
+ VGFMAG %v1,CONST_R4R3,%v1,%v4
+
+ cghi %r4,16
+ jl .Lfinal_fold
+
+.Lfold_16bytes_loop:
+
+ VL %v2,0,,%r3 /* Load next data chunk */
+ VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
+ VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
+
+ aghi %r3,16
+ aghi %r4,-16
+
+ cghi %r4,16
+ jnl .Lfold_16bytes_loop
+
+.Lfinal_fold:
+ /*
+ * Set up a vector register for byte shifts. The shift value must
+ * be loaded in bits 1-4 in byte element 7 of a vector register.
+ * Shift by 8 bytes: 0x40
+ * Shift by 4 bytes: 0x20
+ */
+ VLEIB %v9,0x40,7
+
+ /*
+ * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
+ * to move R4 into the rightmost doubleword and set the leftmost
+ * doubleword to 0x1.
+ */
+ VSRLB %v0,CONST_R4R3,%v9
+ VLEIG %v0,1,0
+
+ /*
+ * Compute GF(2) product of V1 and V0. The rightmost doubleword
+ * of V1 is multiplied with R4. The leftmost doubleword of V1 is
+ * multiplied by 0x1 and is then XORed with rightmost product.
+ * Implicitly, the intermediate leftmost product becomes padded
+ */
+ VGFMG %v1,%v0,%v1
+
+ /*
+ * Now do the final 32-bit fold by multiplying the rightmost word
+ * in V1 with R5 and XOR the result with the remaining bits in V1.
+ *
+ * To achieve this by a single VGFMAG, right shift V1 by a word
+ * and store the result in V2 which is then accumulated. Use the
+ * vector unpack instruction to load the rightmost half of the
+ * doubleword into the rightmost doubleword element of V1; the other
+ * half is loaded in the leftmost doubleword.
+ * The vector register with CONST_R5 contains the R5 constant in the
+ * rightmost doubleword and the leftmost doubleword is zero to ignore
+ * the leftmost product of V1.
+ */
+ VLEIB %v9,0x20,7 /* Shift by words */
+ VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
+ VUPLLF %v1,%v1 /* Split rightmost doubleword */
+ VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
+
+ /*
+ * Apply a Barret reduction to compute the final 32-bit CRC value.
+ *
+ * The input values to the Barret reduction are the degree-63 polynomial
+ * in V1 (R(x)), degree-32 generator polynomial, and the reduction
+ * constant u. The Barret reduction result is the CRC value of R(x) mod
+ * P(x).
+ *
+ * The Barret reduction algorithm is defined as:
+ *
+ * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
+ * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
+ * 3. C(x) = R(x) XOR T2(x) mod x^32
+ *
+ * Note: The leftmost doubleword of vector register containing
+ * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
+ * is zero and does not contribute to the final result.
+ */
+
+ /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
+ VUPLLF %v2,%v1
+ VGFMG %v2,CONST_RU_POLY,%v2
+
+ /*
+ * Compute the GF(2) product of the CRC polynomial with T1(x) in
+ * V2 and XOR the intermediate result, T2(x), with the value in V1.
+ * The final result is stored in word element 2 of V2.
+ */
+ VUPLLF %v2,%v2
+ VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
+
+.Ldone:
+ VLGVF %r2,%v2,2
+ br %r14
+
+.previous