summaryrefslogtreecommitdiff
path: root/arch/m68k/ifpsp060/src/fpsp.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/m68k/ifpsp060/src/fpsp.S')
-rw-r--r--arch/m68k/ifpsp060/src/fpsp.S24785
1 files changed, 24785 insertions, 0 deletions
diff --git a/arch/m68k/ifpsp060/src/fpsp.S b/arch/m68k/ifpsp060/src/fpsp.S
new file mode 100644
index 000000000000..3b597a9bbf43
--- /dev/null
+++ b/arch/m68k/ifpsp060/src/fpsp.S
@@ -0,0 +1,24785 @@
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
+M68000 Hi-Performance Microprocessor Division
+M68060 Software Package
+Production Release P1.00 -- October 10, 1994
+
+M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.
+
+THE SOFTWARE is provided on an "AS IS" basis and without warranty.
+To the maximum extent permitted by applicable law,
+MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
+INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
+and any warranty against infringement with regard to the SOFTWARE
+(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.
+
+To the maximum extent permitted by applicable law,
+IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
+(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
+BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
+ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
+Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.
+
+You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE
+so long as this entire notice is retained without alteration in any modified and/or
+redistributed versions, and that such modified versions are clearly identified as such.
+No licenses are granted by implication, estoppel or otherwise under any patents
+or trademarks of Motorola, Inc.
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+#
+# freal.s:
+# This file is appended to the top of the 060FPSP package
+# and contains the entry points into the package. The user, in
+# effect, branches to one of the branch table entries located
+# after _060FPSP_TABLE.
+# Also, subroutine stubs exist in this file (_fpsp_done for
+# example) that are referenced by the FPSP package itself in order
+# to call a given routine. The stub routine actually performs the
+# callout. The FPSP code does a "bsr" to the stub routine. This
+# extra layer of hierarchy adds a slight performance penalty but
+# it makes the FPSP code easier to read and more mainatinable.
+#
+
+set _off_bsun, 0x00
+set _off_snan, 0x04
+set _off_operr, 0x08
+set _off_ovfl, 0x0c
+set _off_unfl, 0x10
+set _off_dz, 0x14
+set _off_inex, 0x18
+set _off_fline, 0x1c
+set _off_fpu_dis, 0x20
+set _off_trap, 0x24
+set _off_trace, 0x28
+set _off_access, 0x2c
+set _off_done, 0x30
+
+set _off_imr, 0x40
+set _off_dmr, 0x44
+set _off_dmw, 0x48
+set _off_irw, 0x4c
+set _off_irl, 0x50
+set _off_drb, 0x54
+set _off_drw, 0x58
+set _off_drl, 0x5c
+set _off_dwb, 0x60
+set _off_dww, 0x64
+set _off_dwl, 0x68
+
+_060FPSP_TABLE:
+
+###############################################################
+
+# Here's the table of ENTRY POINTS for those linking the package.
+ bra.l _fpsp_snan
+ short 0x0000
+ bra.l _fpsp_operr
+ short 0x0000
+ bra.l _fpsp_ovfl
+ short 0x0000
+ bra.l _fpsp_unfl
+ short 0x0000
+ bra.l _fpsp_dz
+ short 0x0000
+ bra.l _fpsp_inex
+ short 0x0000
+ bra.l _fpsp_fline
+ short 0x0000
+ bra.l _fpsp_unsupp
+ short 0x0000
+ bra.l _fpsp_effadd
+ short 0x0000
+
+ space 56
+
+###############################################################
+ global _fpsp_done
+_fpsp_done:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_done,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_ovfl
+_real_ovfl:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_ovfl,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_unfl
+_real_unfl:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_unfl,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_inex
+_real_inex:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_inex,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_bsun
+_real_bsun:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_bsun,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_operr
+_real_operr:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_operr,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_snan
+_real_snan:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_snan,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_dz
+_real_dz:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_dz,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_fline
+_real_fline:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_fline,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_fpu_disabled
+_real_fpu_disabled:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_fpu_dis,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_trap
+_real_trap:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_trap,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_trace
+_real_trace:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_trace,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _real_access
+_real_access:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_access,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+#######################################
+
+ global _imem_read
+_imem_read:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_imr,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_read
+_dmem_read:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_dmr,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_write
+_dmem_write:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_dmw,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _imem_read_word
+_imem_read_word:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_irw,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _imem_read_long
+_imem_read_long:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_irl,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_read_byte
+_dmem_read_byte:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_drb,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_read_word
+_dmem_read_word:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_drw,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_read_long
+_dmem_read_long:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_drl,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_write_byte
+_dmem_write_byte:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_dwb,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_write_word
+_dmem_write_word:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_dww,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+ global _dmem_write_long
+_dmem_write_long:
+ mov.l %d0,-(%sp)
+ mov.l (_060FPSP_TABLE-0x80+_off_dwl,%pc),%d0
+ pea.l (_060FPSP_TABLE-0x80,%pc,%d0)
+ mov.l 0x4(%sp),%d0
+ rtd &0x4
+
+#
+# This file contains a set of define statements for constants
+# in order to promote readability within the corecode itself.
+#
+
+set LOCAL_SIZE, 192 # stack frame size(bytes)
+set LV, -LOCAL_SIZE # stack offset
+
+set EXC_SR, 0x4 # stack status register
+set EXC_PC, 0x6 # stack pc
+set EXC_VOFF, 0xa # stacked vector offset
+set EXC_EA, 0xc # stacked <ea>
+
+set EXC_FP, 0x0 # frame pointer
+
+set EXC_AREGS, -68 # offset of all address regs
+set EXC_DREGS, -100 # offset of all data regs
+set EXC_FPREGS, -36 # offset of all fp regs
+
+set EXC_A7, EXC_AREGS+(7*4) # offset of saved a7
+set OLD_A7, EXC_AREGS+(6*4) # extra copy of saved a7
+set EXC_A6, EXC_AREGS+(6*4) # offset of saved a6
+set EXC_A5, EXC_AREGS+(5*4)
+set EXC_A4, EXC_AREGS+(4*4)
+set EXC_A3, EXC_AREGS+(3*4)
+set EXC_A2, EXC_AREGS+(2*4)
+set EXC_A1, EXC_AREGS+(1*4)
+set EXC_A0, EXC_AREGS+(0*4)
+set EXC_D7, EXC_DREGS+(7*4)
+set EXC_D6, EXC_DREGS+(6*4)
+set EXC_D5, EXC_DREGS+(5*4)
+set EXC_D4, EXC_DREGS+(4*4)
+set EXC_D3, EXC_DREGS+(3*4)
+set EXC_D2, EXC_DREGS+(2*4)
+set EXC_D1, EXC_DREGS+(1*4)
+set EXC_D0, EXC_DREGS+(0*4)
+
+set EXC_FP0, EXC_FPREGS+(0*12) # offset of saved fp0
+set EXC_FP1, EXC_FPREGS+(1*12) # offset of saved fp1
+set EXC_FP2, EXC_FPREGS+(2*12) # offset of saved fp2 (not used)
+
+set FP_SCR1, LV+80 # fp scratch 1
+set FP_SCR1_EX, FP_SCR1+0
+set FP_SCR1_SGN, FP_SCR1+2
+set FP_SCR1_HI, FP_SCR1+4
+set FP_SCR1_LO, FP_SCR1+8
+
+set FP_SCR0, LV+68 # fp scratch 0
+set FP_SCR0_EX, FP_SCR0+0
+set FP_SCR0_SGN, FP_SCR0+2
+set FP_SCR0_HI, FP_SCR0+4
+set FP_SCR0_LO, FP_SCR0+8
+
+set FP_DST, LV+56 # fp destination operand
+set FP_DST_EX, FP_DST+0
+set FP_DST_SGN, FP_DST+2
+set FP_DST_HI, FP_DST+4
+set FP_DST_LO, FP_DST+8
+
+set FP_SRC, LV+44 # fp source operand
+set FP_SRC_EX, FP_SRC+0
+set FP_SRC_SGN, FP_SRC+2
+set FP_SRC_HI, FP_SRC+4
+set FP_SRC_LO, FP_SRC+8
+
+set USER_FPIAR, LV+40 # FP instr address register
+
+set USER_FPSR, LV+36 # FP status register
+set FPSR_CC, USER_FPSR+0 # FPSR condition codes
+set FPSR_QBYTE, USER_FPSR+1 # FPSR qoutient byte
+set FPSR_EXCEPT, USER_FPSR+2 # FPSR exception status byte
+set FPSR_AEXCEPT, USER_FPSR+3 # FPSR accrued exception byte
+
+set USER_FPCR, LV+32 # FP control register
+set FPCR_ENABLE, USER_FPCR+2 # FPCR exception enable
+set FPCR_MODE, USER_FPCR+3 # FPCR rounding mode control
+
+set L_SCR3, LV+28 # integer scratch 3
+set L_SCR2, LV+24 # integer scratch 2
+set L_SCR1, LV+20 # integer scratch 1
+
+set STORE_FLG, LV+19 # flag: operand store (ie. not fcmp/ftst)
+
+set EXC_TEMP2, LV+24 # temporary space
+set EXC_TEMP, LV+16 # temporary space
+
+set DTAG, LV+15 # destination operand type
+set STAG, LV+14 # source operand type
+
+set SPCOND_FLG, LV+10 # flag: special case (see below)
+
+set EXC_CC, LV+8 # saved condition codes
+set EXC_EXTWPTR, LV+4 # saved current PC (active)
+set EXC_EXTWORD, LV+2 # saved extension word
+set EXC_CMDREG, LV+2 # saved extension word
+set EXC_OPWORD, LV+0 # saved operation word
+
+################################
+
+# Helpful macros
+
+set FTEMP, 0 # offsets within an
+set FTEMP_EX, 0 # extended precision
+set FTEMP_SGN, 2 # value saved in memory.
+set FTEMP_HI, 4
+set FTEMP_LO, 8
+set FTEMP_GRS, 12
+
+set LOCAL, 0 # offsets within an
+set LOCAL_EX, 0 # extended precision
+set LOCAL_SGN, 2 # value saved in memory.
+set LOCAL_HI, 4
+set LOCAL_LO, 8
+set LOCAL_GRS, 12
+
+set DST, 0 # offsets within an
+set DST_EX, 0 # extended precision
+set DST_HI, 4 # value saved in memory.
+set DST_LO, 8
+
+set SRC, 0 # offsets within an
+set SRC_EX, 0 # extended precision
+set SRC_HI, 4 # value saved in memory.
+set SRC_LO, 8
+
+set SGL_LO, 0x3f81 # min sgl prec exponent
+set SGL_HI, 0x407e # max sgl prec exponent
+set DBL_LO, 0x3c01 # min dbl prec exponent
+set DBL_HI, 0x43fe # max dbl prec exponent
+set EXT_LO, 0x0 # min ext prec exponent
+set EXT_HI, 0x7ffe # max ext prec exponent
+
+set EXT_BIAS, 0x3fff # extended precision bias
+set SGL_BIAS, 0x007f # single precision bias
+set DBL_BIAS, 0x03ff # double precision bias
+
+set NORM, 0x00 # operand type for STAG/DTAG
+set ZERO, 0x01 # operand type for STAG/DTAG
+set INF, 0x02 # operand type for STAG/DTAG
+set QNAN, 0x03 # operand type for STAG/DTAG
+set DENORM, 0x04 # operand type for STAG/DTAG
+set SNAN, 0x05 # operand type for STAG/DTAG
+set UNNORM, 0x06 # operand type for STAG/DTAG
+
+##################
+# FPSR/FPCR bits #
+##################
+set neg_bit, 0x3 # negative result
+set z_bit, 0x2 # zero result
+set inf_bit, 0x1 # infinite result
+set nan_bit, 0x0 # NAN result
+
+set q_sn_bit, 0x7 # sign bit of quotient byte
+
+set bsun_bit, 7 # branch on unordered
+set snan_bit, 6 # signalling NAN
+set operr_bit, 5 # operand error
+set ovfl_bit, 4 # overflow
+set unfl_bit, 3 # underflow
+set dz_bit, 2 # divide by zero
+set inex2_bit, 1 # inexact result 2
+set inex1_bit, 0 # inexact result 1
+
+set aiop_bit, 7 # accrued inexact operation bit
+set aovfl_bit, 6 # accrued overflow bit
+set aunfl_bit, 5 # accrued underflow bit
+set adz_bit, 4 # accrued dz bit
+set ainex_bit, 3 # accrued inexact bit
+
+#############################
+# FPSR individual bit masks #
+#############################
+set neg_mask, 0x08000000 # negative bit mask (lw)
+set inf_mask, 0x02000000 # infinity bit mask (lw)
+set z_mask, 0x04000000 # zero bit mask (lw)
+set nan_mask, 0x01000000 # nan bit mask (lw)
+
+set neg_bmask, 0x08 # negative bit mask (byte)
+set inf_bmask, 0x02 # infinity bit mask (byte)
+set z_bmask, 0x04 # zero bit mask (byte)
+set nan_bmask, 0x01 # nan bit mask (byte)
+
+set bsun_mask, 0x00008000 # bsun exception mask
+set snan_mask, 0x00004000 # snan exception mask
+set operr_mask, 0x00002000 # operr exception mask
+set ovfl_mask, 0x00001000 # overflow exception mask
+set unfl_mask, 0x00000800 # underflow exception mask
+set dz_mask, 0x00000400 # dz exception mask
+set inex2_mask, 0x00000200 # inex2 exception mask
+set inex1_mask, 0x00000100 # inex1 exception mask
+
+set aiop_mask, 0x00000080 # accrued illegal operation
+set aovfl_mask, 0x00000040 # accrued overflow
+set aunfl_mask, 0x00000020 # accrued underflow
+set adz_mask, 0x00000010 # accrued divide by zero
+set ainex_mask, 0x00000008 # accrued inexact
+
+######################################
+# FPSR combinations used in the FPSP #
+######################################
+set dzinf_mask, inf_mask+dz_mask+adz_mask
+set opnan_mask, nan_mask+operr_mask+aiop_mask
+set nzi_mask, 0x01ffffff #clears N, Z, and I
+set unfinx_mask, unfl_mask+inex2_mask+aunfl_mask+ainex_mask
+set unf2inx_mask, unfl_mask+inex2_mask+ainex_mask
+set ovfinx_mask, ovfl_mask+inex2_mask+aovfl_mask+ainex_mask
+set inx1a_mask, inex1_mask+ainex_mask
+set inx2a_mask, inex2_mask+ainex_mask
+set snaniop_mask, nan_mask+snan_mask+aiop_mask
+set snaniop2_mask, snan_mask+aiop_mask
+set naniop_mask, nan_mask+aiop_mask
+set neginf_mask, neg_mask+inf_mask
+set infaiop_mask, inf_mask+aiop_mask
+set negz_mask, neg_mask+z_mask
+set opaop_mask, operr_mask+aiop_mask
+set unfl_inx_mask, unfl_mask+aunfl_mask+ainex_mask
+set ovfl_inx_mask, ovfl_mask+aovfl_mask+ainex_mask
+
+#########
+# misc. #
+#########
+set rnd_stky_bit, 29 # stky bit pos in longword
+
+set sign_bit, 0x7 # sign bit
+set signan_bit, 0x6 # signalling nan bit
+
+set sgl_thresh, 0x3f81 # minimum sgl exponent
+set dbl_thresh, 0x3c01 # minimum dbl exponent
+
+set x_mode, 0x0 # extended precision
+set s_mode, 0x4 # single precision
+set d_mode, 0x8 # double precision
+
+set rn_mode, 0x0 # round-to-nearest
+set rz_mode, 0x1 # round-to-zero
+set rm_mode, 0x2 # round-tp-minus-infinity
+set rp_mode, 0x3 # round-to-plus-infinity
+
+set mantissalen, 64 # length of mantissa in bits
+
+set BYTE, 1 # len(byte) == 1 byte
+set WORD, 2 # len(word) == 2 bytes
+set LONG, 4 # len(longword) == 2 bytes
+
+set BSUN_VEC, 0xc0 # bsun vector offset
+set INEX_VEC, 0xc4 # inexact vector offset
+set DZ_VEC, 0xc8 # dz vector offset
+set UNFL_VEC, 0xcc # unfl vector offset
+set OPERR_VEC, 0xd0 # operr vector offset
+set OVFL_VEC, 0xd4 # ovfl vector offset
+set SNAN_VEC, 0xd8 # snan vector offset
+
+###########################
+# SPecial CONDition FLaGs #
+###########################
+set ftrapcc_flg, 0x01 # flag bit: ftrapcc exception
+set fbsun_flg, 0x02 # flag bit: bsun exception
+set mia7_flg, 0x04 # flag bit: (a7)+ <ea>
+set mda7_flg, 0x08 # flag bit: -(a7) <ea>
+set fmovm_flg, 0x40 # flag bit: fmovm instruction
+set immed_flg, 0x80 # flag bit: &<data> <ea>
+
+set ftrapcc_bit, 0x0
+set fbsun_bit, 0x1
+set mia7_bit, 0x2
+set mda7_bit, 0x3
+set immed_bit, 0x7
+
+##################################
+# TRANSCENDENTAL "LAST-OP" FLAGS #
+##################################
+set FMUL_OP, 0x0 # fmul instr performed last
+set FDIV_OP, 0x1 # fdiv performed last
+set FADD_OP, 0x2 # fadd performed last
+set FMOV_OP, 0x3 # fmov performed last
+
+#############
+# CONSTANTS #
+#############
+T1: long 0x40C62D38,0xD3D64634 # 16381 LOG2 LEAD
+T2: long 0x3D6F90AE,0xB1E75CC7 # 16381 LOG2 TRAIL
+
+PI: long 0x40000000,0xC90FDAA2,0x2168C235,0x00000000
+PIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
+
+TWOBYPI:
+ long 0x3FE45F30,0x6DC9C883
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_ovfl(): 060FPSP entry point for FP Overflow exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Overflow exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read instruction longword #
+# fix_skewed_ops() - adjust src operand in fsave frame #
+# set_tag_x() - determine optype of src/dst operands #
+# store_fpreg() - store opclass 0 or 2 result to FP regfile #
+# unnorm_fix() - change UNNORM operands to NORM or ZERO #
+# load_fpn2() - load dst operand from FP regfile #
+# fout() - emulate an opclass 3 instruction #
+# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
+# _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
+# _real_ovfl() - "callout" for Overflow exception enabled code #
+# _real_inex() - "callout" for Inexact exception enabled code #
+# _real_trace() - "callout" for Trace exception code #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the FP Ovfl exception stack frame #
+# - The fsave frame contains the source operand #
+# #
+# OUTPUT ************************************************************** #
+# Overflow Exception enabled: #
+# - The system stack is unchanged #
+# - The fsave frame contains the adjusted src op for opclass 0,2 #
+# Overflow Exception disabled: #
+# - The system stack is unchanged #
+# - The "exception present" flag in the fsave frame is cleared #
+# #
+# ALGORITHM *********************************************************** #
+# On the 060, if an FP overflow is present as the result of any #
+# instruction, the 060 will take an overflow exception whether the #
+# exception is enabled or disabled in the FPCR. For the disabled case, #
+# This handler emulates the instruction to determine what the correct #
+# default result should be for the operation. This default result is #
+# then stored in either the FP regfile, data regfile, or memory. #
+# Finally, the handler exits through the "callout" _fpsp_done() #
+# denoting that no exceptional conditions exist within the machine. #
+# If the exception is enabled, then this handler must create the #
+# exceptional operand and plave it in the fsave state frame, and store #
+# the default result (only if the instruction is opclass 3). For #
+# exceptions enabled, this handler must exit through the "callout" #
+# _real_ovfl() so that the operating system enabled overflow handler #
+# can handle this case. #
+# Two other conditions exist. First, if overflow was disabled #
+# but the inexact exception was enabled, this handler must exit #
+# through the "callout" _real_inex() regardless of whether the result #
+# was inexact. #
+# Also, in the case of an opclass three instruction where #
+# overflow was disabled and the trace exception was enabled, this #
+# handler must exit through the "callout" _real_trace(). #
+# #
+#########################################################################
+
+ global _fpsp_ovfl
+_fpsp_ovfl:
+
+#$# sub.l &24,%sp # make room for src/dst
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ fsave FP_SRC(%a6) # grab the "busy" frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+ btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
+ bne.w fovfl_out
+
+
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l fix_skewed_ops # fix src op
+
+# since, I believe, only NORMs and DENORMs can come through here,
+# maybe we can avoid the subroutine call.
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l set_tag_x # tag the operand type
+ mov.b %d0,STAG(%a6) # maybe NORM,DENORM
+
+# bit five of the fp extension word separates the monadic and dyadic operations
+# that can pass through fpsp_ovfl(). remember that fcmp, ftst, and fsincos
+# will never take this exception.
+ btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
+ beq.b fovfl_extract # monadic
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+ bsr.l load_fpn2 # load dst into FP_DST
+
+ lea FP_DST(%a6),%a0 # pass: ptr to dst op
+ bsr.l set_tag_x # tag the operand type
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b fovfl_op2_done # no
+ bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
+fovfl_op2_done:
+ mov.b %d0,DTAG(%a6) # save dst optype tag
+
+fovfl_extract:
+
+#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
+#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
+#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
+
+ mov.b 1+EXC_CMDREG(%a6),%d1
+ andi.w &0x007f,%d1 # extract extension
+
+ andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+ lea FP_SRC(%a6),%a0
+ lea FP_DST(%a6),%a1
+
+# maybe we can make these entry points ONLY the OVFL entry points of each routine.
+ mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+ jsr (tbl_unsupp.l,%pc,%d1.l*1)
+
+# the operation has been emulated. the result is in fp0.
+# the EXOP, if an exception occurred, is in fp1.
+# we must save the default result regardless of whether
+# traps are enabled or disabled.
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0
+ bsr.l store_fpreg
+
+# the exceptional possibilities we have left ourselves with are ONLY overflow
+# and inexact. and, the inexact is such that overflow occurred and was disabled
+# but inexact was enabled.
+ btst &ovfl_bit,FPCR_ENABLE(%a6)
+ bne.b fovfl_ovfl_on
+
+ btst &inex2_bit,FPCR_ENABLE(%a6)
+ bne.b fovfl_inex_on
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+#$# add.l &24,%sp
+ bra.l _fpsp_done
+
+# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
+# in fp1. now, simply jump to _real_ovfl()!
+fovfl_ovfl_on:
+ fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
+
+ mov.w &0xe005,2+FP_SRC(%a6) # save exc status
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
+
+ unlk %a6
+
+ bra.l _real_ovfl
+
+# overflow occurred but is disabled. meanwhile, inexact is enabled. therefore,
+# we must jump to real_inex().
+fovfl_inex_on:
+
+ fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
+
+ mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
+ mov.w &0xe001,2+FP_SRC(%a6) # save exc status
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
+
+ unlk %a6
+
+ bra.l _real_inex
+
+########################################################################
+fovfl_out:
+
+
+#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+
+# the src operand is definitely a NORM(!), so tag it as such
+ mov.b &NORM,STAG(%a6) # set src optype tag
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
+
+ and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+ lea FP_SRC(%a6),%a0 # pass ptr to src operand
+
+ bsr.l fout
+
+ btst &ovfl_bit,FPCR_ENABLE(%a6)
+ bne.w fovfl_ovfl_on
+
+ btst &inex2_bit,FPCR_ENABLE(%a6)
+ bne.w fovfl_inex_on
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+#$# add.l &24,%sp
+
+ btst &0x7,(%sp) # is trace on?
+ beq.l _fpsp_done # no
+
+ fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
+ mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
+ bra.l _real_trace
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_unfl(): 060FPSP entry point for FP Underflow exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Underflow exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read instruction longword #
+# fix_skewed_ops() - adjust src operand in fsave frame #
+# set_tag_x() - determine optype of src/dst operands #
+# store_fpreg() - store opclass 0 or 2 result to FP regfile #
+# unnorm_fix() - change UNNORM operands to NORM or ZERO #
+# load_fpn2() - load dst operand from FP regfile #
+# fout() - emulate an opclass 3 instruction #
+# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
+# _fpsp_done() - "callout" for 060FPSP exit (all work done!) #
+# _real_ovfl() - "callout" for Overflow exception enabled code #
+# _real_inex() - "callout" for Inexact exception enabled code #
+# _real_trace() - "callout" for Trace exception code #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the FP Unfl exception stack frame #
+# - The fsave frame contains the source operand #
+# #
+# OUTPUT ************************************************************** #
+# Underflow Exception enabled: #
+# - The system stack is unchanged #
+# - The fsave frame contains the adjusted src op for opclass 0,2 #
+# Underflow Exception disabled: #
+# - The system stack is unchanged #
+# - The "exception present" flag in the fsave frame is cleared #
+# #
+# ALGORITHM *********************************************************** #
+# On the 060, if an FP underflow is present as the result of any #
+# instruction, the 060 will take an underflow exception whether the #
+# exception is enabled or disabled in the FPCR. For the disabled case, #
+# This handler emulates the instruction to determine what the correct #
+# default result should be for the operation. This default result is #
+# then stored in either the FP regfile, data regfile, or memory. #
+# Finally, the handler exits through the "callout" _fpsp_done() #
+# denoting that no exceptional conditions exist within the machine. #
+# If the exception is enabled, then this handler must create the #
+# exceptional operand and plave it in the fsave state frame, and store #
+# the default result (only if the instruction is opclass 3). For #
+# exceptions enabled, this handler must exit through the "callout" #
+# _real_unfl() so that the operating system enabled overflow handler #
+# can handle this case. #
+# Two other conditions exist. First, if underflow was disabled #
+# but the inexact exception was enabled and the result was inexact, #
+# this handler must exit through the "callout" _real_inex(). #
+# was inexact. #
+# Also, in the case of an opclass three instruction where #
+# underflow was disabled and the trace exception was enabled, this #
+# handler must exit through the "callout" _real_trace(). #
+# #
+#########################################################################
+
+ global _fpsp_unfl
+_fpsp_unfl:
+
+#$# sub.l &24,%sp # make room for src/dst
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ fsave FP_SRC(%a6) # grab the "busy" frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+ btst &0x5,EXC_CMDREG(%a6) # is instr an fmove out?
+ bne.w funfl_out
+
+
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l fix_skewed_ops # fix src op
+
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l set_tag_x # tag the operand type
+ mov.b %d0,STAG(%a6) # maybe NORM,DENORM
+
+# bit five of the fp ext word separates the monadic and dyadic operations
+# that can pass through fpsp_unfl(). remember that fcmp, and ftst
+# will never take this exception.
+ btst &0x5,1+EXC_CMDREG(%a6) # is op monadic or dyadic?
+ beq.b funfl_extract # monadic
+
+# now, what's left that's not dyadic is fsincos. we can distinguish it
+# from all dyadics by the '0110xxx pattern
+ btst &0x4,1+EXC_CMDREG(%a6) # is op an fsincos?
+ bne.b funfl_extract # yes
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+ bsr.l load_fpn2 # load dst into FP_DST
+
+ lea FP_DST(%a6),%a0 # pass: ptr to dst op
+ bsr.l set_tag_x # tag the operand type
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b funfl_op2_done # no
+ bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
+funfl_op2_done:
+ mov.b %d0,DTAG(%a6) # save dst optype tag
+
+funfl_extract:
+
+#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+#$# mov.l FP_DST_EX(%a6),TRAP_DSTOP_EX(%a6)
+#$# mov.l FP_DST_HI(%a6),TRAP_DSTOP_HI(%a6)
+#$# mov.l FP_DST_LO(%a6),TRAP_DSTOP_LO(%a6)
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
+
+ mov.b 1+EXC_CMDREG(%a6),%d1
+ andi.w &0x007f,%d1 # extract extension
+
+ andi.l &0x00ff01ff,USER_FPSR(%a6)
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+ lea FP_SRC(%a6),%a0
+ lea FP_DST(%a6),%a1
+
+# maybe we can make these entry points ONLY the OVFL entry points of each routine.
+ mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+ jsr (tbl_unsupp.l,%pc,%d1.l*1)
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0
+ bsr.l store_fpreg
+
+# The `060 FPU multiplier hardware is such that if the result of a
+# multiply operation is the smallest possible normalized number
+# (0x00000000_80000000_00000000), then the machine will take an
+# underflow exception. Since this is incorrect, we need to check
+# if our emulation, after re-doing the operation, decided that
+# no underflow was called for. We do these checks only in
+# funfl_{unfl,inex}_on() because w/ both exceptions disabled, this
+# special case will simply exit gracefully with the correct result.
+
+# the exceptional possibilities we have left ourselves with are ONLY overflow
+# and inexact. and, the inexact is such that overflow occurred and was disabled
+# but inexact was enabled.
+ btst &unfl_bit,FPCR_ENABLE(%a6)
+ bne.b funfl_unfl_on
+
+funfl_chkinex:
+ btst &inex2_bit,FPCR_ENABLE(%a6)
+ bne.b funfl_inex_on
+
+funfl_exit:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+#$# add.l &24,%sp
+ bra.l _fpsp_done
+
+# overflow is enabled AND overflow, of course, occurred. so, we have the EXOP
+# in fp1 (don't forget to save fp0). what to do now?
+# well, we simply have to get to go to _real_unfl()!
+funfl_unfl_on:
+
+# The `060 FPU multiplier hardware is such that if the result of a
+# multiply operation is the smallest possible normalized number
+# (0x00000000_80000000_00000000), then the machine will take an
+# underflow exception. Since this is incorrect, we check here to see
+# if our emulation, after re-doing the operation, decided that
+# no underflow was called for.
+ btst &unfl_bit,FPSR_EXCEPT(%a6)
+ beq.w funfl_chkinex
+
+funfl_unfl_on2:
+ fmovm.x &0x40,FP_SRC(%a6) # save EXOP (fp1) to stack
+
+ mov.w &0xe003,2+FP_SRC(%a6) # save exc status
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
+
+ unlk %a6
+
+ bra.l _real_unfl
+
+# undeflow occurred but is disabled. meanwhile, inexact is enabled. therefore,
+# we must jump to real_inex().
+funfl_inex_on:
+
+# The `060 FPU multiplier hardware is such that if the result of a
+# multiply operation is the smallest possible normalized number
+# (0x00000000_80000000_00000000), then the machine will take an
+# underflow exception.
+# But, whether bogus or not, if inexact is enabled AND it occurred,
+# then we have to branch to real_inex.
+
+ btst &inex2_bit,FPSR_EXCEPT(%a6)
+ beq.w funfl_exit
+
+funfl_inex_on2:
+
+ fmovm.x &0x40,FP_SRC(%a6) # save EXOP to stack
+
+ mov.b &0xc4,1+EXC_VOFF(%a6) # vector offset = 0xc4
+ mov.w &0xe001,2+FP_SRC(%a6) # save exc status
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # do this after fmovm,other f<op>s!
+
+ unlk %a6
+
+ bra.l _real_inex
+
+#######################################################################
+funfl_out:
+
+
+#$# mov.l FP_SRC_EX(%a6),TRAP_SRCOP_EX(%a6)
+#$# mov.l FP_SRC_HI(%a6),TRAP_SRCOP_HI(%a6)
+#$# mov.l FP_SRC_LO(%a6),TRAP_SRCOP_LO(%a6)
+
+# the src operand is definitely a NORM(!), so tag it as such
+ mov.b &NORM,STAG(%a6) # set src optype tag
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
+
+ and.l &0xffff00ff,USER_FPSR(%a6) # zero all but accured field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+ lea FP_SRC(%a6),%a0 # pass ptr to src operand
+
+ bsr.l fout
+
+ btst &unfl_bit,FPCR_ENABLE(%a6)
+ bne.w funfl_unfl_on2
+
+ btst &inex2_bit,FPCR_ENABLE(%a6)
+ bne.w funfl_inex_on2
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+#$# add.l &24,%sp
+
+ btst &0x7,(%sp) # is trace on?
+ beq.l _fpsp_done # no
+
+ fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
+ mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
+ bra.l _real_trace
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_unsupp(): 060FPSP entry point for FP "Unimplemented #
+# Data Type" exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Unimplemented Data Type exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_{word,long}() - read instruction word/longword #
+# fix_skewed_ops() - adjust src operand in fsave frame #
+# set_tag_x() - determine optype of src/dst operands #
+# store_fpreg() - store opclass 0 or 2 result to FP regfile #
+# unnorm_fix() - change UNNORM operands to NORM or ZERO #
+# load_fpn2() - load dst operand from FP regfile #
+# load_fpn1() - load src operand from FP regfile #
+# fout() - emulate an opclass 3 instruction #
+# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
+# _real_inex() - "callout" to operating system inexact handler #
+# _fpsp_done() - "callout" for exit; work all done #
+# _real_trace() - "callout" for Trace enabled exception #
+# funimp_skew() - adjust fsave src ops to "incorrect" value #
+# _real_snan() - "callout" for SNAN exception #
+# _real_operr() - "callout" for OPERR exception #
+# _real_ovfl() - "callout" for OVFL exception #
+# _real_unfl() - "callout" for UNFL exception #
+# get_packed() - fetch packed operand from memory #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the "Unimp Data Type" stk frame #
+# - The fsave frame contains the ssrc op (for UNNORM/DENORM) #
+# #
+# OUTPUT ************************************************************** #
+# If Inexact exception (opclass 3): #
+# - The system stack is changed to an Inexact exception stk frame #
+# If SNAN exception (opclass 3): #
+# - The system stack is changed to an SNAN exception stk frame #
+# If OPERR exception (opclass 3): #
+# - The system stack is changed to an OPERR exception stk frame #
+# If OVFL exception (opclass 3): #
+# - The system stack is changed to an OVFL exception stk frame #
+# If UNFL exception (opclass 3): #
+# - The system stack is changed to an UNFL exception stack frame #
+# If Trace exception enabled: #
+# - The system stack is changed to a Trace exception stack frame #
+# Else: (normal case) #
+# - Correct result has been stored as appropriate #
+# #
+# ALGORITHM *********************************************************** #
+# Two main instruction types can enter here: (1) DENORM or UNNORM #
+# unimplemented data types. These can be either opclass 0,2 or 3 #
+# instructions, and (2) PACKED unimplemented data format instructions #
+# also of opclasses 0,2, or 3. #
+# For UNNORM/DENORM opclass 0 and 2, the handler fetches the src #
+# operand from the fsave state frame and the dst operand (if dyadic) #
+# from the FP register file. The instruction is then emulated by #
+# choosing an emulation routine from a table of routines indexed by #
+# instruction type. Once the instruction has been emulated and result #
+# saved, then we check to see if any enabled exceptions resulted from #
+# instruction emulation. If none, then we exit through the "callout" #
+# _fpsp_done(). If there is an enabled FP exception, then we insert #
+# this exception into the FPU in the fsave state frame and then exit #
+# through _fpsp_done(). #
+# PACKED opclass 0 and 2 is similar in how the instruction is #
+# emulated and exceptions handled. The differences occur in how the #
+# handler loads the packed op (by calling get_packed() routine) and #
+# by the fact that a Trace exception could be pending for PACKED ops. #
+# If a Trace exception is pending, then the current exception stack #
+# frame is changed to a Trace exception stack frame and an exit is #
+# made through _real_trace(). #
+# For UNNORM/DENORM opclass 3, the actual move out to memory is #
+# performed by calling the routine fout(). If no exception should occur #
+# as the result of emulation, then an exit either occurs through #
+# _fpsp_done() or through _real_trace() if a Trace exception is pending #
+# (a Trace stack frame must be created here, too). If an FP exception #
+# should occur, then we must create an exception stack frame of that #
+# type and jump to either _real_snan(), _real_operr(), _real_inex(), #
+# _real_unfl(), or _real_ovfl() as appropriate. PACKED opclass 3 #
+# emulation is performed in a similar manner. #
+# #
+#########################################################################
+
+#
+# (1) DENORM and UNNORM (unimplemented) data types:
+#
+# post-instruction
+# *****************
+# * EA *
+# pre-instruction * *
+# ***************** *****************
+# * 0x0 * 0x0dc * * 0x3 * 0x0dc *
+# ***************** *****************
+# * Next * * Next *
+# * PC * * PC *
+# ***************** *****************
+# * SR * * SR *
+# ***************** *****************
+#
+# (2) PACKED format (unsupported) opclasses two and three:
+# *****************
+# * EA *
+# * *
+# *****************
+# * 0x2 * 0x0dc *
+# *****************
+# * Next *
+# * PC *
+# *****************
+# * SR *
+# *****************
+#
+ global _fpsp_unsupp
+_fpsp_unsupp:
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ fsave FP_SRC(%a6) # save fp state
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+ btst &0x5,EXC_SR(%a6) # user or supervisor mode?
+ bne.b fu_s
+fu_u:
+ mov.l %usp,%a0 # fetch user stack pointer
+ mov.l %a0,EXC_A7(%a6) # save on stack
+ bra.b fu_cont
+# if the exception is an opclass zero or two unimplemented data type
+# exception, then the a7' calculated here is wrong since it doesn't
+# stack an ea. however, we don't need an a7' for this case anyways.
+fu_s:
+ lea 0x4+EXC_EA(%a6),%a0 # load old a7'
+ mov.l %a0,EXC_A7(%a6) # save on stack
+
+fu_cont:
+
+# the FPIAR holds the "current PC" of the faulting instruction
+# the FPIAR should be set correctly for ALL exceptions passing through
+# this point.
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
+
+############################
+
+ clr.b SPCOND_FLG(%a6) # clear special condition flag
+
+# Separate opclass three (fpn-to-mem) ops since they have a different
+# stack frame and protocol.
+ btst &0x5,EXC_CMDREG(%a6) # is it an fmove out?
+ bne.w fu_out # yes
+
+# Separate packed opclass two instructions.
+ bfextu EXC_CMDREG(%a6){&0:&6},%d0
+ cmpi.b %d0,&0x13
+ beq.w fu_in_pack
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field
+ andi.l &0x00ff00ff,USER_FPSR(%a6) # zero exception field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+# Opclass two w/ memory-to-fpn operation will have an incorrect extended
+# precision format if the src format was single or double and the
+# source data type was an INF, NAN, DENORM, or UNNORM
+ lea FP_SRC(%a6),%a0 # pass ptr to input
+ bsr.l fix_skewed_ops
+
+# we don't know whether the src operand or the dst operand (or both) is the
+# UNNORM or DENORM. call the function that tags the operand type. if the
+# input is an UNNORM, then convert it to a NORM, DENORM, or ZERO.
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l set_tag_x # tag the operand type
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b fu_op2 # no
+ bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
+
+fu_op2:
+ mov.b %d0,STAG(%a6) # save src optype tag
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+
+# bit five of the fp extension word separates the monadic and dyadic operations
+# at this point
+ btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
+ beq.b fu_extract # monadic
+ cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
+ beq.b fu_extract # yes, so it's monadic, too
+
+ bsr.l load_fpn2 # load dst into FP_DST
+
+ lea FP_DST(%a6),%a0 # pass: ptr to dst op
+ bsr.l set_tag_x # tag the operand type
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b fu_op2_done # no
+ bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
+fu_op2_done:
+ mov.b %d0,DTAG(%a6) # save dst optype tag
+
+fu_extract:
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
+
+ bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
+
+ lea FP_SRC(%a6),%a0
+ lea FP_DST(%a6),%a1
+
+ mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
+ jsr (tbl_unsupp.l,%pc,%d1.l*1)
+
+#
+# Exceptions in order of precedence:
+# BSUN : none
+# SNAN : all dyadic ops
+# OPERR : fsqrt(-NORM)
+# OVFL : all except ftst,fcmp
+# UNFL : all except ftst,fcmp
+# DZ : fdiv
+# INEX2 : all except ftst,fcmp
+# INEX1 : none (packed doesn't go through here)
+#
+
+# we determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+ mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions set
+ bne.b fu_in_ena # some are enabled
+
+fu_in_cont:
+# fcmp and ftst do not store any result.
+ mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
+ andi.b &0x38,%d0 # extract bits 3-5
+ cmpi.b %d0,&0x38 # is instr fcmp or ftst?
+ beq.b fu_in_exit # yes
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+ bsr.l store_fpreg # store the result
+
+fu_in_exit:
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ bra.l _fpsp_done
+
+fu_in_ena:
+ and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
+ bfffo %d0{&24:&8},%d0 # find highest priority exception
+ bne.b fu_in_exc # there is at least one set
+
+#
+# No exceptions occurred that were also enabled. Now:
+#
+# if (OVFL && ovfl_disabled && inexact_enabled) {
+# branch to _real_inex() (even if the result was exact!);
+# } else {
+# save the result in the proper fp reg (unless the op is fcmp or ftst);
+# return;
+# }
+#
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
+ beq.b fu_in_cont # no
+
+fu_in_ovflchk:
+ btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
+ beq.b fu_in_cont # no
+ bra.w fu_in_exc_ovfl # go insert overflow frame
+
+#
+# An exception occurred and that exception was enabled:
+#
+# shift enabled exception field into lo byte of d0;
+# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
+# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
+# /*
+# * this is the case where we must call _real_inex() now or else
+# * there will be no other way to pass it the exceptional operand
+# */
+# call _real_inex();
+# } else {
+# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
+# }
+#
+fu_in_exc:
+ subi.l &24,%d0 # fix offset to be 0-8
+ cmpi.b %d0,&0x6 # is exception INEX? (6)
+ bne.b fu_in_exc_exit # no
+
+# the enabled exception was inexact
+ btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
+ bne.w fu_in_exc_unfl # yes
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
+ bne.w fu_in_exc_ovfl # yes
+
+# here, we insert the correct fsave status value into the fsave frame for the
+# corresponding exception. the operand in the fsave frame should be the original
+# src operand.
+fu_in_exc_exit:
+ mov.l %d0,-(%sp) # save d0
+ bsr.l funimp_skew # skew sgl or dbl inputs
+ mov.l (%sp)+,%d0 # restore d0
+
+ mov.w (tbl_except.b,%pc,%d0.w*2),2+FP_SRC(%a6) # create exc status
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # restore src op
+
+ unlk %a6
+
+ bra.l _fpsp_done
+
+tbl_except:
+ short 0xe000,0xe006,0xe004,0xe005
+ short 0xe003,0xe002,0xe001,0xe001
+
+fu_in_exc_unfl:
+ mov.w &0x4,%d0
+ bra.b fu_in_exc_exit
+fu_in_exc_ovfl:
+ mov.w &0x03,%d0
+ bra.b fu_in_exc_exit
+
+# If the input operand to this operation was opclass two and a single
+# or double precision denorm, inf, or nan, the operand needs to be
+# "corrected" in order to have the proper equivalent extended precision
+# number.
+ global fix_skewed_ops
+fix_skewed_ops:
+ bfextu EXC_CMDREG(%a6){&0:&6},%d0 # extract opclass,src fmt
+ cmpi.b %d0,&0x11 # is class = 2 & fmt = sgl?
+ beq.b fso_sgl # yes
+ cmpi.b %d0,&0x15 # is class = 2 & fmt = dbl?
+ beq.b fso_dbl # yes
+ rts # no
+
+fso_sgl:
+ mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
+ andi.w &0x7fff,%d0 # strip sign
+ cmpi.w %d0,&0x3f80 # is |exp| == $3f80?
+ beq.b fso_sgl_dnrm_zero # yes
+ cmpi.w %d0,&0x407f # no; is |exp| == $407f?
+ beq.b fso_infnan # yes
+ rts # no
+
+fso_sgl_dnrm_zero:
+ andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
+ beq.b fso_zero # it's a skewed zero
+fso_sgl_dnrm:
+# here, we count on norm not to alter a0...
+ bsr.l norm # normalize mantissa
+ neg.w %d0 # -shft amt
+ addi.w &0x3f81,%d0 # adjust new exponent
+ andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
+ or.w %d0,LOCAL_EX(%a0) # insert new exponent
+ rts
+
+fso_zero:
+ andi.w &0x8000,LOCAL_EX(%a0) # clear bogus exponent
+ rts
+
+fso_infnan:
+ andi.b &0x7f,LOCAL_HI(%a0) # clear j-bit
+ ori.w &0x7fff,LOCAL_EX(%a0) # make exponent = $7fff
+ rts
+
+fso_dbl:
+ mov.w LOCAL_EX(%a0),%d0 # fetch src exponent
+ andi.w &0x7fff,%d0 # strip sign
+ cmpi.w %d0,&0x3c00 # is |exp| == $3c00?
+ beq.b fso_dbl_dnrm_zero # yes
+ cmpi.w %d0,&0x43ff # no; is |exp| == $43ff?
+ beq.b fso_infnan # yes
+ rts # no
+
+fso_dbl_dnrm_zero:
+ andi.l &0x7fffffff,LOCAL_HI(%a0) # clear j-bit
+ bne.b fso_dbl_dnrm # it's a skewed denorm
+ tst.l LOCAL_LO(%a0) # is it a zero?
+ beq.b fso_zero # yes
+fso_dbl_dnrm:
+# here, we count on norm not to alter a0...
+ bsr.l norm # normalize mantissa
+ neg.w %d0 # -shft amt
+ addi.w &0x3c01,%d0 # adjust new exponent
+ andi.w &0x8000,LOCAL_EX(%a0) # clear old exponent
+ or.w %d0,LOCAL_EX(%a0) # insert new exponent
+ rts
+
+#################################################################
+
+# fmove out took an unimplemented data type exception.
+# the src operand is in FP_SRC. Call _fout() to write out the result and
+# to determine which exceptions, if any, to take.
+fu_out:
+
+# Separate packed move outs from the UNNORM and DENORM move outs.
+ bfextu EXC_CMDREG(%a6){&3:&3},%d0
+ cmpi.b %d0,&0x3
+ beq.w fu_out_pack
+ cmpi.b %d0,&0x7
+ beq.w fu_out_pack
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field.
+# fmove out doesn't affect ccodes.
+ and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+# the src can ONLY be a DENORM or an UNNORM! so, don't make any big subroutine
+# call here. just figure out what it is...
+ mov.w FP_SRC_EX(%a6),%d0 # get exponent
+ andi.w &0x7fff,%d0 # strip sign
+ beq.b fu_out_denorm # it's a DENORM
+
+ lea FP_SRC(%a6),%a0
+ bsr.l unnorm_fix # yes; fix it
+
+ mov.b %d0,STAG(%a6)
+
+ bra.b fu_out_cont
+fu_out_denorm:
+ mov.b &DENORM,STAG(%a6)
+fu_out_cont:
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
+
+ lea FP_SRC(%a6),%a0 # pass ptr to src operand
+
+ mov.l (%a6),EXC_A6(%a6) # in case a6 changes
+ bsr.l fout # call fmove out routine
+
+# Exceptions in order of precedence:
+# BSUN : none
+# SNAN : none
+# OPERR : fmove.{b,w,l} out of large UNNORM
+# OVFL : fmove.{s,d}
+# UNFL : fmove.{s,d,x}
+# DZ : none
+# INEX2 : all
+# INEX1 : none (packed doesn't travel through here)
+
+# determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+ mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
+ bne.w fu_out_ena # some are enabled
+
+fu_out_done:
+
+ mov.l EXC_A6(%a6),(%a6) # in case a6 changed
+
+# on extended precision opclass three instructions using pre-decrement or
+# post-increment addressing mode, the address register is not updated. is the
+# address register was the stack pointer used from user mode, then let's update
+# it here. if it was used from supervisor mode, then we have to handle this
+# as a special case.
+ btst &0x5,EXC_SR(%a6)
+ bne.b fu_out_done_s
+
+ mov.l EXC_A7(%a6),%a0 # restore a7
+ mov.l %a0,%usp
+
+fu_out_done_cont:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ btst &0x7,(%sp) # is trace on?
+ bne.b fu_out_trace # yes
+
+ bra.l _fpsp_done
+
+# is the ea mode pre-decrement of the stack pointer from supervisor mode?
+# ("fmov.x fpm,-(a7)") if so,
+fu_out_done_s:
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg
+ bne.b fu_out_done_cont
+
+# the extended precision result is still in fp0. but, we need to save it
+# somewhere on the stack until we can copy it to its final resting place.
+# here, we're counting on the top of the stack to be the old place-holders
+# for fp0/fp1 which have already been restored. that way, we can write
+# over those destinations with the shifted stack frame.
+ fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.l (%a6),%a6 # restore frame pointer
+
+ mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+ mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+
+# now, copy the result to the proper place on the stack
+ mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
+ mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
+ mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
+
+ add.l &LOCAL_SIZE-0x8,%sp
+
+ btst &0x7,(%sp)
+ bne.b fu_out_trace
+
+ bra.l _fpsp_done
+
+fu_out_ena:
+ and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
+ bfffo %d0{&24:&8},%d0 # find highest priority exception
+ bne.b fu_out_exc # there is at least one set
+
+# no exceptions were set.
+# if a disabled overflow occurred and inexact was enabled but the result
+# was exact, then a branch to _real_inex() is made.
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
+ beq.w fu_out_done # no
+
+fu_out_ovflchk:
+ btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
+ beq.w fu_out_done # no
+ bra.w fu_inex # yes
+
+#
+# The fp move out that took the "Unimplemented Data Type" exception was
+# being traced. Since the stack frames are similar, get the "current" PC
+# from FPIAR and put it in the trace stack frame then jump to _real_trace().
+#
+# UNSUPP FRAME TRACE FRAME
+# ***************** *****************
+# * EA * * Current *
+# * * * PC *
+# ***************** *****************
+# * 0x3 * 0x0dc * * 0x2 * 0x024 *
+# ***************** *****************
+# * Next * * Next *
+# * PC * * PC *
+# ***************** *****************
+# * SR * * SR *
+# ***************** *****************
+#
+fu_out_trace:
+ mov.w &0x2024,0x6(%sp)
+ fmov.l %fpiar,0x8(%sp)
+ bra.l _real_trace
+
+# an exception occurred and that exception was enabled.
+fu_out_exc:
+ subi.l &24,%d0 # fix offset to be 0-8
+
+# we don't mess with the existing fsave frame. just re-insert it and
+# jump to the "_real_{}()" handler...
+ mov.w (tbl_fu_out.b,%pc,%d0.w*2),%d0
+ jmp (tbl_fu_out.b,%pc,%d0.w*1)
+
+ swbeg &0x8
+tbl_fu_out:
+ short tbl_fu_out - tbl_fu_out # BSUN can't happen
+ short tbl_fu_out - tbl_fu_out # SNAN can't happen
+ short fu_operr - tbl_fu_out # OPERR
+ short fu_ovfl - tbl_fu_out # OVFL
+ short fu_unfl - tbl_fu_out # UNFL
+ short tbl_fu_out - tbl_fu_out # DZ can't happen
+ short fu_inex - tbl_fu_out # INEX2
+ short tbl_fu_out - tbl_fu_out # INEX1 won't make it here
+
+# for snan,operr,ovfl,unfl, src op is still in FP_SRC so just
+# frestore it.
+fu_snan:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd8
+ mov.w &0xe006,2+FP_SRC(%a6)
+
+ frestore FP_SRC(%a6)
+
+ unlk %a6
+
+
+ bra.l _real_snan
+
+fu_operr:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
+ mov.w &0xe004,2+FP_SRC(%a6)
+
+ frestore FP_SRC(%a6)
+
+ unlk %a6
+
+
+ bra.l _real_operr
+
+fu_ovfl:
+ fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30d4,EXC_VOFF(%a6) # vector offset = 0xd4
+ mov.w &0xe005,2+FP_SRC(%a6)
+
+ frestore FP_SRC(%a6) # restore EXOP
+
+ unlk %a6
+
+ bra.l _real_ovfl
+
+# underflow can happen for extended precision. extended precision opclass
+# three instruction exceptions don't update the stack pointer. so, if the
+# exception occurred from user mode, then simply update a7 and exit normally.
+# if the exception occurred from supervisor mode, check if
+fu_unfl:
+ mov.l EXC_A6(%a6),(%a6) # restore a6
+
+ btst &0x5,EXC_SR(%a6)
+ bne.w fu_unfl_s
+
+ mov.l EXC_A7(%a6),%a0 # restore a7 whether we need
+ mov.l %a0,%usp # to or not...
+
+fu_unfl_cont:
+ fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
+ mov.w &0xe003,2+FP_SRC(%a6)
+
+ frestore FP_SRC(%a6) # restore EXOP
+
+ unlk %a6
+
+ bra.l _real_unfl
+
+fu_unfl_s:
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the <ea> mode -(sp)?
+ bne.b fu_unfl_cont
+
+# the extended precision result is still in fp0. but, we need to save it
+# somewhere on the stack until we can copy it to its final resting place
+# (where the exc frame is currently). make sure it's not at the top of the
+# frame or it will get overwritten when the exc stack frame is shifted "down".
+ fmovm.x &0x80,FP_SRC(%a6) # put answer on stack
+ fmovm.x &0x40,FP_DST(%a6) # put EXOP on stack
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30cc,EXC_VOFF(%a6) # vector offset = 0xcc
+ mov.w &0xe003,2+FP_DST(%a6)
+
+ frestore FP_DST(%a6) # restore EXOP
+
+ mov.l (%a6),%a6 # restore frame pointer
+
+ mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+ mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+ mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, copy the result to the proper place on the stack
+ mov.l LOCAL_SIZE+FP_SRC_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
+ mov.l LOCAL_SIZE+FP_SRC_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
+ mov.l LOCAL_SIZE+FP_SRC_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
+
+ add.l &LOCAL_SIZE-0x8,%sp
+
+ bra.l _real_unfl
+
+# fmove in and out enter here.
+fu_inex:
+ fmovm.x &0x40,FP_SRC(%a6) # save EXOP to the stack
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
+ mov.w &0xe001,2+FP_SRC(%a6)
+
+ frestore FP_SRC(%a6) # restore EXOP
+
+ unlk %a6
+
+
+ bra.l _real_inex
+
+#########################################################################
+#########################################################################
+fu_in_pack:
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field
+ andi.l &0x0ff00ff,USER_FPSR(%a6) # zero exception field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+ bsr.l get_packed # fetch packed src operand
+
+ lea FP_SRC(%a6),%a0 # pass ptr to src
+ bsr.l set_tag_x # set src optype tag
+
+ mov.b %d0,STAG(%a6) # save src optype tag
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+
+# bit five of the fp extension word separates the monadic and dyadic operations
+# at this point
+ btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
+ beq.b fu_extract_p # monadic
+ cmpi.b 1+EXC_CMDREG(%a6),&0x3a # is operation an ftst?
+ beq.b fu_extract_p # yes, so it's monadic, too
+
+ bsr.l load_fpn2 # load dst into FP_DST
+
+ lea FP_DST(%a6),%a0 # pass: ptr to dst op
+ bsr.l set_tag_x # tag the operand type
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b fu_op2_done_p # no
+ bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
+fu_op2_done_p:
+ mov.b %d0,DTAG(%a6) # save dst optype tag
+
+fu_extract_p:
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
+
+ bfextu 1+EXC_CMDREG(%a6){&1:&7},%d1 # extract extension
+
+ lea FP_SRC(%a6),%a0
+ lea FP_DST(%a6),%a1
+
+ mov.l (tbl_unsupp.l,%pc,%d1.l*4),%d1 # fetch routine addr
+ jsr (tbl_unsupp.l,%pc,%d1.l*1)
+
+#
+# Exceptions in order of precedence:
+# BSUN : none
+# SNAN : all dyadic ops
+# OPERR : fsqrt(-NORM)
+# OVFL : all except ftst,fcmp
+# UNFL : all except ftst,fcmp
+# DZ : fdiv
+# INEX2 : all except ftst,fcmp
+# INEX1 : all
+#
+
+# we determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+ mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
+ bne.w fu_in_ena_p # some are enabled
+
+fu_in_cont_p:
+# fcmp and ftst do not store any result.
+ mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension
+ andi.b &0x38,%d0 # extract bits 3-5
+ cmpi.b %d0,&0x38 # is instr fcmp or ftst?
+ beq.b fu_in_exit_p # yes
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+ bsr.l store_fpreg # store the result
+
+fu_in_exit_p:
+
+ btst &0x5,EXC_SR(%a6) # user or supervisor?
+ bne.w fu_in_exit_s_p # supervisor
+
+ mov.l EXC_A7(%a6),%a0 # update user a7
+ mov.l %a0,%usp
+
+fu_in_exit_cont_p:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6 # unravel stack frame
+
+ btst &0x7,(%sp) # is trace on?
+ bne.w fu_trace_p # yes
+
+ bra.l _fpsp_done # exit to os
+
+# the exception occurred in supervisor mode. check to see if the
+# addressing mode was (a7)+. if so, we'll need to shift the
+# stack frame "up".
+fu_in_exit_s_p:
+ btst &mia7_bit,SPCOND_FLG(%a6) # was ea mode (a7)+
+ beq.b fu_in_exit_cont_p # no
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6 # unravel stack frame
+
+# shift the stack frame "up". we don't really care about the <ea> field.
+ mov.l 0x4(%sp),0x10(%sp)
+ mov.l 0x0(%sp),0xc(%sp)
+ add.l &0xc,%sp
+
+ btst &0x7,(%sp) # is trace on?
+ bne.w fu_trace_p # yes
+
+ bra.l _fpsp_done # exit to os
+
+fu_in_ena_p:
+ and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled & set
+ bfffo %d0{&24:&8},%d0 # find highest priority exception
+ bne.b fu_in_exc_p # at least one was set
+
+#
+# No exceptions occurred that were also enabled. Now:
+#
+# if (OVFL && ovfl_disabled && inexact_enabled) {
+# branch to _real_inex() (even if the result was exact!);
+# } else {
+# save the result in the proper fp reg (unless the op is fcmp or ftst);
+# return;
+# }
+#
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # was overflow set?
+ beq.w fu_in_cont_p # no
+
+fu_in_ovflchk_p:
+ btst &inex2_bit,FPCR_ENABLE(%a6) # was inexact enabled?
+ beq.w fu_in_cont_p # no
+ bra.w fu_in_exc_ovfl_p # do _real_inex() now
+
+#
+# An exception occurred and that exception was enabled:
+#
+# shift enabled exception field into lo byte of d0;
+# if (((INEX2 || INEX1) && inex_enabled && OVFL && ovfl_disabled) ||
+# ((INEX2 || INEX1) && inex_enabled && UNFL && unfl_disabled)) {
+# /*
+# * this is the case where we must call _real_inex() now or else
+# * there will be no other way to pass it the exceptional operand
+# */
+# call _real_inex();
+# } else {
+# restore exc state (SNAN||OPERR||OVFL||UNFL||DZ||INEX) into the FPU;
+# }
+#
+fu_in_exc_p:
+ subi.l &24,%d0 # fix offset to be 0-8
+ cmpi.b %d0,&0x6 # is exception INEX? (6 or 7)
+ blt.b fu_in_exc_exit_p # no
+
+# the enabled exception was inexact
+ btst &unfl_bit,FPSR_EXCEPT(%a6) # did disabled underflow occur?
+ bne.w fu_in_exc_unfl_p # yes
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # did disabled overflow occur?
+ bne.w fu_in_exc_ovfl_p # yes
+
+# here, we insert the correct fsave status value into the fsave frame for the
+# corresponding exception. the operand in the fsave frame should be the original
+# src operand.
+# as a reminder for future predicted pain and agony, we are passing in fsave the
+# "non-skewed" operand for cases of sgl and dbl src INFs,NANs, and DENORMs.
+# this is INCORRECT for enabled SNAN which would give to the user the skewed SNAN!!!
+fu_in_exc_exit_p:
+ btst &0x5,EXC_SR(%a6) # user or supervisor?
+ bne.w fu_in_exc_exit_s_p # supervisor
+
+ mov.l EXC_A7(%a6),%a0 # update user a7
+ mov.l %a0,%usp
+
+fu_in_exc_exit_cont_p:
+ mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # restore src op
+
+ unlk %a6
+
+ btst &0x7,(%sp) # is trace enabled?
+ bne.w fu_trace_p # yes
+
+ bra.l _fpsp_done
+
+tbl_except_p:
+ short 0xe000,0xe006,0xe004,0xe005
+ short 0xe003,0xe002,0xe001,0xe001
+
+fu_in_exc_ovfl_p:
+ mov.w &0x3,%d0
+ bra.w fu_in_exc_exit_p
+
+fu_in_exc_unfl_p:
+ mov.w &0x4,%d0
+ bra.w fu_in_exc_exit_p
+
+fu_in_exc_exit_s_p:
+ btst &mia7_bit,SPCOND_FLG(%a6)
+ beq.b fu_in_exc_exit_cont_p
+
+ mov.w (tbl_except_p.b,%pc,%d0.w*2),2+FP_SRC(%a6)
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # restore src op
+
+ unlk %a6 # unravel stack frame
+
+# shift stack frame "up". who cares about <ea> field.
+ mov.l 0x4(%sp),0x10(%sp)
+ mov.l 0x0(%sp),0xc(%sp)
+ add.l &0xc,%sp
+
+ btst &0x7,(%sp) # is trace on?
+ bne.b fu_trace_p # yes
+
+ bra.l _fpsp_done # exit to os
+
+#
+# The opclass two PACKED instruction that took an "Unimplemented Data Type"
+# exception was being traced. Make the "current" PC the FPIAR and put it in the
+# trace stack frame then jump to _real_trace().
+#
+# UNSUPP FRAME TRACE FRAME
+# ***************** *****************
+# * EA * * Current *
+# * * * PC *
+# ***************** *****************
+# * 0x2 * 0x0dc * * 0x2 * 0x024 *
+# ***************** *****************
+# * Next * * Next *
+# * PC * * PC *
+# ***************** *****************
+# * SR * * SR *
+# ***************** *****************
+fu_trace_p:
+ mov.w &0x2024,0x6(%sp)
+ fmov.l %fpiar,0x8(%sp)
+
+ bra.l _real_trace
+
+#########################################################
+#########################################################
+fu_out_pack:
+
+
+# I'm not sure at this point what FPSR bits are valid for this instruction.
+# so, since the emulation routines re-create them anyways, zero exception field.
+# fmove out doesn't affect ccodes.
+ and.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0
+ bsr.l load_fpn1
+
+# unlike other opclass 3, unimplemented data type exceptions, packed must be
+# able to detect all operand types.
+ lea FP_SRC(%a6),%a0
+ bsr.l set_tag_x # tag the operand type
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b fu_op2_p # no
+ bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
+
+fu_op2_p:
+ mov.b %d0,STAG(%a6) # save src optype tag
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode/prec
+
+ lea FP_SRC(%a6),%a0 # pass ptr to src operand
+
+ mov.l (%a6),EXC_A6(%a6) # in case a6 changes
+ bsr.l fout # call fmove out routine
+
+# Exceptions in order of precedence:
+# BSUN : no
+# SNAN : yes
+# OPERR : if ((k_factor > +17) || (dec. exp exceeds 3 digits))
+# OVFL : no
+# UNFL : no
+# DZ : no
+# INEX2 : yes
+# INEX1 : no
+
+# determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+ mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
+ bne.w fu_out_ena_p # some are enabled
+
+fu_out_exit_p:
+ mov.l EXC_A6(%a6),(%a6) # restore a6
+
+ btst &0x5,EXC_SR(%a6) # user or supervisor?
+ bne.b fu_out_exit_s_p # supervisor
+
+ mov.l EXC_A7(%a6),%a0 # update user a7
+ mov.l %a0,%usp
+
+fu_out_exit_cont_p:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6 # unravel stack frame
+
+ btst &0x7,(%sp) # is trace on?
+ bne.w fu_trace_p # yes
+
+ bra.l _fpsp_done # exit to os
+
+# the exception occurred in supervisor mode. check to see if the
+# addressing mode was -(a7). if so, we'll need to shift the
+# stack frame "down".
+fu_out_exit_s_p:
+ btst &mda7_bit,SPCOND_FLG(%a6) # was ea mode -(a7)
+ beq.b fu_out_exit_cont_p # no
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.l (%a6),%a6 # restore frame pointer
+
+ mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+ mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+
+# now, copy the result to the proper place on the stack
+ mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+EXC_SR+0x0(%sp)
+ mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+EXC_SR+0x4(%sp)
+ mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+EXC_SR+0x8(%sp)
+
+ add.l &LOCAL_SIZE-0x8,%sp
+
+ btst &0x7,(%sp)
+ bne.w fu_trace_p
+
+ bra.l _fpsp_done
+
+fu_out_ena_p:
+ and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled
+ bfffo %d0{&24:&8},%d0 # find highest priority exception
+ beq.w fu_out_exit_p
+
+ mov.l EXC_A6(%a6),(%a6) # restore a6
+
+# an exception occurred and that exception was enabled.
+# the only exception possible on packed move out are INEX, OPERR, and SNAN.
+fu_out_exc_p:
+ cmpi.b %d0,&0x1a
+ bgt.w fu_inex_p2
+ beq.w fu_operr_p
+
+fu_snan_p:
+ btst &0x5,EXC_SR(%a6)
+ bne.b fu_snan_s_p
+
+ mov.l EXC_A7(%a6),%a0
+ mov.l %a0,%usp
+ bra.w fu_snan
+
+fu_snan_s_p:
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg
+ bne.w fu_snan
+
+# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
+# the strategy is to move the exception frame "down" 12 bytes. then, we
+# can store the default result where the exception frame was.
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30d8,EXC_VOFF(%a6) # vector offset = 0xd0
+ mov.w &0xe006,2+FP_SRC(%a6) # set fsave status
+
+ frestore FP_SRC(%a6) # restore src operand
+
+ mov.l (%a6),%a6 # restore frame pointer
+
+ mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+ mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+ mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, we copy the default result to its proper location
+ mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
+ mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
+ mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
+
+ add.l &LOCAL_SIZE-0x8,%sp
+
+
+ bra.l _real_snan
+
+fu_operr_p:
+ btst &0x5,EXC_SR(%a6)
+ bne.w fu_operr_p_s
+
+ mov.l EXC_A7(%a6),%a0
+ mov.l %a0,%usp
+ bra.w fu_operr
+
+fu_operr_p_s:
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg
+ bne.w fu_operr
+
+# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
+# the strategy is to move the exception frame "down" 12 bytes. then, we
+# can store the default result where the exception frame was.
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30d0,EXC_VOFF(%a6) # vector offset = 0xd0
+ mov.w &0xe004,2+FP_SRC(%a6) # set fsave status
+
+ frestore FP_SRC(%a6) # restore src operand
+
+ mov.l (%a6),%a6 # restore frame pointer
+
+ mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+ mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+ mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, we copy the default result to its proper location
+ mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
+ mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
+ mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
+
+ add.l &LOCAL_SIZE-0x8,%sp
+
+
+ bra.l _real_operr
+
+fu_inex_p2:
+ btst &0x5,EXC_SR(%a6)
+ bne.w fu_inex_s_p2
+
+ mov.l EXC_A7(%a6),%a0
+ mov.l %a0,%usp
+ bra.w fu_inex
+
+fu_inex_s_p2:
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg
+ bne.w fu_inex
+
+# the instruction was "fmove.p fpn,-(a7)" from supervisor mode.
+# the strategy is to move the exception frame "down" 12 bytes. then, we
+# can store the default result where the exception frame was.
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0/fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.w &0x30c4,EXC_VOFF(%a6) # vector offset = 0xc4
+ mov.w &0xe001,2+FP_SRC(%a6) # set fsave status
+
+ frestore FP_SRC(%a6) # restore src operand
+
+ mov.l (%a6),%a6 # restore frame pointer
+
+ mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+ mov.l LOCAL_SIZE+2+EXC_PC(%sp),LOCAL_SIZE+2+EXC_PC-0xc(%sp)
+ mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+# now, we copy the default result to its proper location
+ mov.l LOCAL_SIZE+FP_DST_EX(%sp),LOCAL_SIZE+0x4(%sp)
+ mov.l LOCAL_SIZE+FP_DST_HI(%sp),LOCAL_SIZE+0x8(%sp)
+ mov.l LOCAL_SIZE+FP_DST_LO(%sp),LOCAL_SIZE+0xc(%sp)
+
+ add.l &LOCAL_SIZE-0x8,%sp
+
+
+ bra.l _real_inex
+
+#########################################################################
+
+#
+# if we're stuffing a source operand back into an fsave frame then we
+# have to make sure that for single or double source operands that the
+# format stuffed is as weird as the hardware usually makes it.
+#
+ global funimp_skew
+funimp_skew:
+ bfextu EXC_EXTWORD(%a6){&3:&3},%d0 # extract src specifier
+ cmpi.b %d0,&0x1 # was src sgl?
+ beq.b funimp_skew_sgl # yes
+ cmpi.b %d0,&0x5 # was src dbl?
+ beq.b funimp_skew_dbl # yes
+ rts
+
+funimp_skew_sgl:
+ mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
+ andi.w &0x7fff,%d0 # strip sign
+ beq.b funimp_skew_sgl_not
+ cmpi.w %d0,&0x3f80
+ bgt.b funimp_skew_sgl_not
+ neg.w %d0 # make exponent negative
+ addi.w &0x3f81,%d0 # find amt to shift
+ mov.l FP_SRC_HI(%a6),%d1 # fetch DENORM hi(man)
+ lsr.l %d0,%d1 # shift it
+ bset &31,%d1 # set j-bit
+ mov.l %d1,FP_SRC_HI(%a6) # insert new hi(man)
+ andi.w &0x8000,FP_SRC_EX(%a6) # clear old exponent
+ ori.w &0x3f80,FP_SRC_EX(%a6) # insert new "skewed" exponent
+funimp_skew_sgl_not:
+ rts
+
+funimp_skew_dbl:
+ mov.w FP_SRC_EX(%a6),%d0 # fetch DENORM exponent
+ andi.w &0x7fff,%d0 # strip sign
+ beq.b funimp_skew_dbl_not
+ cmpi.w %d0,&0x3c00
+ bgt.b funimp_skew_dbl_not
+
+ tst.b FP_SRC_EX(%a6) # make "internal format"
+ smi.b 0x2+FP_SRC(%a6)
+ mov.w %d0,FP_SRC_EX(%a6) # insert exponent with cleared sign
+ clr.l %d0 # clear g,r,s
+ lea FP_SRC(%a6),%a0 # pass ptr to src op
+ mov.w &0x3c01,%d1 # pass denorm threshold
+ bsr.l dnrm_lp # denorm it
+ mov.w &0x3c00,%d0 # new exponent
+ tst.b 0x2+FP_SRC(%a6) # is sign set?
+ beq.b fss_dbl_denorm_done # no
+ bset &15,%d0 # set sign
+fss_dbl_denorm_done:
+ bset &0x7,FP_SRC_HI(%a6) # set j-bit
+ mov.w %d0,FP_SRC_EX(%a6) # insert new exponent
+funimp_skew_dbl_not:
+ rts
+
+#########################################################################
+ global _mem_write2
+_mem_write2:
+ btst &0x5,EXC_SR(%a6)
+ beq.l _dmem_write
+ mov.l 0x0(%a0),FP_DST_EX(%a6)
+ mov.l 0x4(%a0),FP_DST_HI(%a6)
+ mov.l 0x8(%a0),FP_DST_LO(%a6)
+ clr.l %d1
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_effadd(): 060FPSP entry point for FP "Unimplemented #
+# effective address" exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Unimplemented Effective Address exception in an operating #
+# system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read instruction longword #
+# fix_skewed_ops() - adjust src operand in fsave frame #
+# set_tag_x() - determine optype of src/dst operands #
+# store_fpreg() - store opclass 0 or 2 result to FP regfile #
+# unnorm_fix() - change UNNORM operands to NORM or ZERO #
+# load_fpn2() - load dst operand from FP regfile #
+# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
+# decbin() - convert packed data to FP binary data #
+# _real_fpu_disabled() - "callout" for "FPU disabled" exception #
+# _real_access() - "callout" for access error exception #
+# _mem_read() - read extended immediate operand from memory #
+# _fpsp_done() - "callout" for exit; work all done #
+# _real_trace() - "callout" for Trace enabled exception #
+# fmovm_dynamic() - emulate dynamic fmovm instruction #
+# fmovm_ctrl() - emulate fmovm control instruction #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the "Unimplemented <ea>" stk frame #
+# #
+# OUTPUT ************************************************************** #
+# If access error: #
+# - The system stack is changed to an access error stack frame #
+# If FPU disabled: #
+# - The system stack is changed to an FPU disabled stack frame #
+# If Trace exception enabled: #
+# - The system stack is changed to a Trace exception stack frame #
+# Else: (normal case) #
+# - None (correct result has been stored as appropriate) #
+# #
+# ALGORITHM *********************************************************** #
+# This exception handles 3 types of operations: #
+# (1) FP Instructions using extended precision or packed immediate #
+# addressing mode. #
+# (2) The "fmovm.x" instruction w/ dynamic register specification. #
+# (3) The "fmovm.l" instruction w/ 2 or 3 control registers. #
+# #
+# For immediate data operations, the data is read in w/ a #
+# _mem_read() "callout", converted to FP binary (if packed), and used #
+# as the source operand to the instruction specified by the instruction #
+# word. If no FP exception should be reported ads a result of the #
+# emulation, then the result is stored to the destination register and #
+# the handler exits through _fpsp_done(). If an enabled exc has been #
+# signalled as a result of emulation, then an fsave state frame #
+# corresponding to the FP exception type must be entered into the 060 #
+# FPU before exiting. In either the enabled or disabled cases, we #
+# must also check if a Trace exception is pending, in which case, we #
+# must create a Trace exception stack frame from the current exception #
+# stack frame. If no Trace is pending, we simply exit through #
+# _fpsp_done(). #
+# For "fmovm.x", call the routine fmovm_dynamic() which will #
+# decode and emulate the instruction. No FP exceptions can be pending #
+# as a result of this operation emulation. A Trace exception can be #
+# pending, though, which means the current stack frame must be changed #
+# to a Trace stack frame and an exit made through _real_trace(). #
+# For the case of "fmovm.x Dn,-(a7)", where the offending instruction #
+# was executed from supervisor mode, this handler must store the FP #
+# register file values to the system stack by itself since #
+# fmovm_dynamic() can't handle this. A normal exit is made through #
+# fpsp_done(). #
+# For "fmovm.l", fmovm_ctrl() is used to emulate the instruction. #
+# Again, a Trace exception may be pending and an exit made through #
+# _real_trace(). Else, a normal exit is made through _fpsp_done(). #
+# #
+# Before any of the above is attempted, it must be checked to #
+# see if the FPU is disabled. Since the "Unimp <ea>" exception is taken #
+# before the "FPU disabled" exception, but the "FPU disabled" exception #
+# has higher priority, we check the disabled bit in the PCR. If set, #
+# then we must create an 8 word "FPU disabled" exception stack frame #
+# from the current 4 word exception stack frame. This includes #
+# reproducing the effective address of the instruction to put on the #
+# new stack frame. #
+# #
+# In the process of all emulation work, if a _mem_read() #
+# "callout" returns a failing result indicating an access error, then #
+# we must create an access error stack frame from the current stack #
+# frame. This information includes a faulting address and a fault- #
+# status-longword. These are created within this handler. #
+# #
+#########################################################################
+
+ global _fpsp_effadd
+_fpsp_effadd:
+
+# This exception type takes priority over the "Line F Emulator"
+# exception. Therefore, the FPU could be disabled when entering here.
+# So, we must check to see if it's disabled and handle that case separately.
+ mov.l %d0,-(%sp) # save d0
+ movc %pcr,%d0 # load proc cr
+ btst &0x1,%d0 # is FPU disabled?
+ bne.w iea_disabled # yes
+ mov.l (%sp)+,%d0 # restore d0
+
+ link %a6,&-LOCAL_SIZE # init stack frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+# PC of instruction that took the exception is the PC in the frame
+ mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
+
+#########################################################################
+
+ tst.w %d0 # is operation fmovem?
+ bmi.w iea_fmovm # yes
+
+#
+# here, we will have:
+# fabs fdabs fsabs facos fmod
+# fadd fdadd fsadd fasin frem
+# fcmp fatan fscale
+# fdiv fddiv fsdiv fatanh fsin
+# fint fcos fsincos
+# fintrz fcosh fsinh
+# fmove fdmove fsmove fetox ftan
+# fmul fdmul fsmul fetoxm1 ftanh
+# fneg fdneg fsneg fgetexp ftentox
+# fsgldiv fgetman ftwotox
+# fsglmul flog10
+# fsqrt flog2
+# fsub fdsub fssub flogn
+# ftst flognp1
+# which can all use f<op>.{x,p}
+# so, now it's immediate data extended precision AND PACKED FORMAT!
+#
+iea_op:
+ andi.l &0x00ff00ff,USER_FPSR(%a6)
+
+ btst &0xa,%d0 # is src fmt x or p?
+ bne.b iea_op_pack # packed
+
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
+ lea FP_SRC(%a6),%a1 # pass: ptr to super addr
+ mov.l &0xc,%d0 # pass: 12 bytes
+ bsr.l _imem_read # read extended immediate
+
+ tst.l %d1 # did ifetch fail?
+ bne.w iea_iacc # yes
+
+ bra.b iea_op_setsrc
+
+iea_op_pack:
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # pass: ptr to #<data>
+ lea FP_SRC(%a6),%a1 # pass: ptr to super dst
+ mov.l &0xc,%d0 # pass: 12 bytes
+ bsr.l _imem_read # read packed operand
+
+ tst.l %d1 # did ifetch fail?
+ bne.w iea_iacc # yes
+
+# The packed operand is an INF or a NAN if the exponent field is all ones.
+ bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
+ cmpi.w %d0,&0x7fff # INF or NAN?
+ beq.b iea_op_setsrc # operand is an INF or NAN
+
+# The packed operand is a zero if the mantissa is all zero, else it's
+# a normal packed op.
+ mov.b 3+FP_SRC(%a6),%d0 # get byte 4
+ andi.b &0x0f,%d0 # clear all but last nybble
+ bne.b iea_op_gp_not_spec # not a zero
+ tst.l FP_SRC_HI(%a6) # is lw 2 zero?
+ bne.b iea_op_gp_not_spec # not a zero
+ tst.l FP_SRC_LO(%a6) # is lw 3 zero?
+ beq.b iea_op_setsrc # operand is a ZERO
+iea_op_gp_not_spec:
+ lea FP_SRC(%a6),%a0 # pass: ptr to packed op
+ bsr.l decbin # convert to extended
+ fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
+
+iea_op_setsrc:
+ addi.l &0xc,EXC_EXTWPTR(%a6) # update extension word pointer
+
+# FP_SRC now holds the src operand.
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l set_tag_x # tag the operand type
+ mov.b %d0,STAG(%a6) # could be ANYTHING!!!
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b iea_op_getdst # no
+ bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
+ mov.b %d0,STAG(%a6) # set new optype tag
+iea_op_getdst:
+ clr.b STORE_FLG(%a6) # clear "store result" boolean
+
+ btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
+ beq.b iea_op_extract # monadic
+ btst &0x4,1+EXC_CMDREG(%a6) # is operation fsincos,ftst,fcmp?
+ bne.b iea_op_spec # yes
+
+iea_op_loaddst:
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
+ bsr.l load_fpn2 # load dst operand
+
+ lea FP_DST(%a6),%a0 # pass: ptr to dst op
+ bsr.l set_tag_x # tag the operand type
+ mov.b %d0,DTAG(%a6) # could be ANYTHING!!!
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b iea_op_extract # no
+ bsr.l unnorm_fix # yes; convert to NORM/DENORM/ZERO
+ mov.b %d0,DTAG(%a6) # set new optype tag
+ bra.b iea_op_extract
+
+# the operation is fsincos, ftst, or fcmp. only fcmp is dyadic
+iea_op_spec:
+ btst &0x3,1+EXC_CMDREG(%a6) # is operation fsincos?
+ beq.b iea_op_extract # yes
+# now, we're left with ftst and fcmp. so, first let's tag them so that they don't
+# store a result. then, only fcmp will branch back and pick up a dst operand.
+ st STORE_FLG(%a6) # don't store a final result
+ btst &0x1,1+EXC_CMDREG(%a6) # is operation fcmp?
+ beq.b iea_op_loaddst # yes
+
+iea_op_extract:
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass: rnd mode,prec
+
+ mov.b 1+EXC_CMDREG(%a6),%d1
+ andi.w &0x007f,%d1 # extract extension
+
+ fmov.l &0x0,%fpcr
+ fmov.l &0x0,%fpsr
+
+ lea FP_SRC(%a6),%a0
+ lea FP_DST(%a6),%a1
+
+ mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+ jsr (tbl_unsupp.l,%pc,%d1.l*1)
+
+#
+# Exceptions in order of precedence:
+# BSUN : none
+# SNAN : all operations
+# OPERR : all reg-reg or mem-reg operations that can normally operr
+# OVFL : same as OPERR
+# UNFL : same as OPERR
+# DZ : same as OPERR
+# INEX2 : same as OPERR
+# INEX1 : all packed immediate operations
+#
+
+# we determine the highest priority exception(if any) set by the
+# emulation routine that has also been enabled by the user.
+ mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
+ bne.b iea_op_ena # some are enabled
+
+# now, we save the result, unless, of course, the operation was ftst or fcmp.
+# these don't save results.
+iea_op_save:
+ tst.b STORE_FLG(%a6) # does this op store a result?
+ bne.b iea_op_exit1 # exit with no frestore
+
+iea_op_store:
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch dst regno
+ bsr.l store_fpreg # store the result
+
+iea_op_exit1:
+ mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
+ mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6 # unravel the frame
+
+ btst &0x7,(%sp) # is trace on?
+ bne.w iea_op_trace # yes
+
+ bra.l _fpsp_done # exit to os
+
+iea_op_ena:
+ and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enable and set
+ bfffo %d0{&24:&8},%d0 # find highest priority exception
+ bne.b iea_op_exc # at least one was set
+
+# no exception occurred. now, did a disabled, exact overflow occur with inexact
+# enabled? if so, then we have to stuff an overflow frame into the FPU.
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
+ beq.b iea_op_save
+
+iea_op_ovfl:
+ btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
+ beq.b iea_op_store # no
+ bra.b iea_op_exc_ovfl # yes
+
+# an enabled exception occurred. we have to insert the exception type back into
+# the machine.
+iea_op_exc:
+ subi.l &24,%d0 # fix offset to be 0-8
+ cmpi.b %d0,&0x6 # is exception INEX?
+ bne.b iea_op_exc_force # no
+
+# the enabled exception was inexact. so, if it occurs with an overflow
+# or underflow that was disabled, then we have to force an overflow or
+# underflow frame.
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
+ bne.b iea_op_exc_ovfl # yes
+ btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
+ bne.b iea_op_exc_unfl # yes
+
+iea_op_exc_force:
+ mov.w (tbl_iea_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
+ bra.b iea_op_exit2 # exit with frestore
+
+tbl_iea_except:
+ short 0xe002, 0xe006, 0xe004, 0xe005
+ short 0xe003, 0xe002, 0xe001, 0xe001
+
+iea_op_exc_ovfl:
+ mov.w &0xe005,2+FP_SRC(%a6)
+ bra.b iea_op_exit2
+
+iea_op_exc_unfl:
+ mov.w &0xe003,2+FP_SRC(%a6)
+
+iea_op_exit2:
+ mov.l EXC_PC(%a6),USER_FPIAR(%a6) # set FPIAR to "Current PC"
+ mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set "Next PC" in exc frame
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # restore exceptional state
+
+ unlk %a6 # unravel the frame
+
+ btst &0x7,(%sp) # is trace on?
+ bne.b iea_op_trace # yes
+
+ bra.l _fpsp_done # exit to os
+
+#
+# The opclass two instruction that took an "Unimplemented Effective Address"
+# exception was being traced. Make the "current" PC the FPIAR and put it in
+# the trace stack frame then jump to _real_trace().
+#
+# UNIMP EA FRAME TRACE FRAME
+# ***************** *****************
+# * 0x0 * 0x0f0 * * Current *
+# ***************** * PC *
+# * Current * *****************
+# * PC * * 0x2 * 0x024 *
+# ***************** *****************
+# * SR * * Next *
+# ***************** * PC *
+# *****************
+# * SR *
+# *****************
+iea_op_trace:
+ mov.l (%sp),-(%sp) # shift stack frame "down"
+ mov.w 0x8(%sp),0x4(%sp)
+ mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x024
+ fmov.l %fpiar,0x8(%sp) # "Current PC" is in FPIAR
+
+ bra.l _real_trace
+
+#########################################################################
+iea_fmovm:
+ btst &14,%d0 # ctrl or data reg
+ beq.w iea_fmovm_ctrl
+
+iea_fmovm_data:
+
+ btst &0x5,EXC_SR(%a6) # user or supervisor mode
+ bne.b iea_fmovm_data_s
+
+iea_fmovm_data_u:
+ mov.l %usp,%a0
+ mov.l %a0,EXC_A7(%a6) # store current a7
+ bsr.l fmovm_dynamic # do dynamic fmovm
+ mov.l EXC_A7(%a6),%a0 # load possibly new a7
+ mov.l %a0,%usp # update usp
+ bra.w iea_fmovm_exit
+
+iea_fmovm_data_s:
+ clr.b SPCOND_FLG(%a6)
+ lea 0x2+EXC_VOFF(%a6),%a0
+ mov.l %a0,EXC_A7(%a6)
+ bsr.l fmovm_dynamic # do dynamic fmovm
+
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg
+ beq.w iea_fmovm_data_predec
+ cmpi.b SPCOND_FLG(%a6),&mia7_flg
+ bne.w iea_fmovm_exit
+
+# right now, d0 = the size.
+# the data has been fetched from the supervisor stack, but we have not
+# incremented the stack pointer by the appropriate number of bytes.
+# do it here.
+iea_fmovm_data_postinc:
+ btst &0x7,EXC_SR(%a6)
+ bne.b iea_fmovm_data_pi_trace
+
+ mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
+ mov.l EXC_EXTWPTR(%a6),(EXC_PC,%a6,%d0)
+ mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
+
+ lea (EXC_SR,%a6,%d0),%a0
+ mov.l %a0,EXC_SR(%a6)
+
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+ mov.l (%sp)+,%sp
+ bra.l _fpsp_done
+
+iea_fmovm_data_pi_trace:
+ mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
+ mov.l EXC_EXTWPTR(%a6),(EXC_PC-0x4,%a6,%d0)
+ mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
+ mov.l EXC_PC(%a6),(EXC_VOFF+0x2-0x4,%a6,%d0)
+
+ lea (EXC_SR-0x4,%a6,%d0),%a0
+ mov.l %a0,EXC_SR(%a6)
+
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+ mov.l (%sp)+,%sp
+ bra.l _real_trace
+
+# right now, d1 = size and d0 = the strg.
+iea_fmovm_data_predec:
+ mov.b %d1,EXC_VOFF(%a6) # store strg
+ mov.b %d0,0x1+EXC_VOFF(%a6) # store size
+
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ mov.l (%a6),-(%sp) # make a copy of a6
+ mov.l %d0,-(%sp) # save d0
+ mov.l %d1,-(%sp) # save d1
+ mov.l EXC_EXTWPTR(%a6),-(%sp) # make a copy of Next PC
+
+ clr.l %d0
+ mov.b 0x1+EXC_VOFF(%a6),%d0 # fetch size
+ neg.l %d0 # get negative of size
+
+ btst &0x7,EXC_SR(%a6) # is trace enabled?
+ beq.b iea_fmovm_data_p2
+
+ mov.w EXC_SR(%a6),(EXC_SR-0x4,%a6,%d0)
+ mov.l EXC_PC(%a6),(EXC_VOFF-0x2,%a6,%d0)
+ mov.l (%sp)+,(EXC_PC-0x4,%a6,%d0)
+ mov.w &0x2024,(EXC_VOFF-0x4,%a6,%d0)
+
+ pea (%a6,%d0) # create final sp
+ bra.b iea_fmovm_data_p3
+
+iea_fmovm_data_p2:
+ mov.w EXC_SR(%a6),(EXC_SR,%a6,%d0)
+ mov.l (%sp)+,(EXC_PC,%a6,%d0)
+ mov.w &0x00f0,(EXC_VOFF,%a6,%d0)
+
+ pea (0x4,%a6,%d0) # create final sp
+
+iea_fmovm_data_p3:
+ clr.l %d1
+ mov.b EXC_VOFF(%a6),%d1 # fetch strg
+
+ tst.b %d1
+ bpl.b fm_1
+ fmovm.x &0x80,(0x4+0x8,%a6,%d0)
+ addi.l &0xc,%d0
+fm_1:
+ lsl.b &0x1,%d1
+ bpl.b fm_2
+ fmovm.x &0x40,(0x4+0x8,%a6,%d0)
+ addi.l &0xc,%d0
+fm_2:
+ lsl.b &0x1,%d1
+ bpl.b fm_3
+ fmovm.x &0x20,(0x4+0x8,%a6,%d0)
+ addi.l &0xc,%d0
+fm_3:
+ lsl.b &0x1,%d1
+ bpl.b fm_4
+ fmovm.x &0x10,(0x4+0x8,%a6,%d0)
+ addi.l &0xc,%d0
+fm_4:
+ lsl.b &0x1,%d1
+ bpl.b fm_5
+ fmovm.x &0x08,(0x4+0x8,%a6,%d0)
+ addi.l &0xc,%d0
+fm_5:
+ lsl.b &0x1,%d1
+ bpl.b fm_6
+ fmovm.x &0x04,(0x4+0x8,%a6,%d0)
+ addi.l &0xc,%d0
+fm_6:
+ lsl.b &0x1,%d1
+ bpl.b fm_7
+ fmovm.x &0x02,(0x4+0x8,%a6,%d0)
+ addi.l &0xc,%d0
+fm_7:
+ lsl.b &0x1,%d1
+ bpl.b fm_end
+ fmovm.x &0x01,(0x4+0x8,%a6,%d0)
+fm_end:
+ mov.l 0x4(%sp),%d1
+ mov.l 0x8(%sp),%d0
+ mov.l 0xc(%sp),%a6
+ mov.l (%sp)+,%sp
+
+ btst &0x7,(%sp) # is trace enabled?
+ beq.l _fpsp_done
+ bra.l _real_trace
+
+#########################################################################
+iea_fmovm_ctrl:
+
+ bsr.l fmovm_ctrl # load ctrl regs
+
+iea_fmovm_exit:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ btst &0x7,EXC_SR(%a6) # is trace on?
+ bne.b iea_fmovm_trace # yes
+
+ mov.l EXC_EXTWPTR(%a6),EXC_PC(%a6) # set Next PC
+
+ unlk %a6 # unravel the frame
+
+ bra.l _fpsp_done # exit to os
+
+#
+# The control reg instruction that took an "Unimplemented Effective Address"
+# exception was being traced. The "Current PC" for the trace frame is the
+# PC stacked for Unimp EA. The "Next PC" is in EXC_EXTWPTR.
+# After fixing the stack frame, jump to _real_trace().
+#
+# UNIMP EA FRAME TRACE FRAME
+# ***************** *****************
+# * 0x0 * 0x0f0 * * Current *
+# ***************** * PC *
+# * Current * *****************
+# * PC * * 0x2 * 0x024 *
+# ***************** *****************
+# * SR * * Next *
+# ***************** * PC *
+# *****************
+# * SR *
+# *****************
+# this ain't a pretty solution, but it works:
+# -restore a6 (not with unlk)
+# -shift stack frame down over where old a6 used to be
+# -add LOCAL_SIZE to stack pointer
+iea_fmovm_trace:
+ mov.l (%a6),%a6 # restore frame pointer
+ mov.w EXC_SR+LOCAL_SIZE(%sp),0x0+LOCAL_SIZE(%sp)
+ mov.l EXC_PC+LOCAL_SIZE(%sp),0x8+LOCAL_SIZE(%sp)
+ mov.l EXC_EXTWPTR+LOCAL_SIZE(%sp),0x2+LOCAL_SIZE(%sp)
+ mov.w &0x2024,0x6+LOCAL_SIZE(%sp) # stk fmt = 0x2; voff = 0x024
+ add.l &LOCAL_SIZE,%sp # clear stack frame
+
+ bra.l _real_trace
+
+#########################################################################
+# The FPU is disabled and so we should really have taken the "Line
+# F Emulator" exception. So, here we create an 8-word stack frame
+# from our 4-word stack frame. This means we must calculate the length
+# the faulting instruction to get the "next PC". This is trivial for
+# immediate operands but requires some extra work for fmovm dynamic
+# which can use most addressing modes.
+iea_disabled:
+ mov.l (%sp)+,%d0 # restore d0
+
+ link %a6,&-LOCAL_SIZE # init stack frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+
+# PC of instruction that took the exception is the PC in the frame
+ mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6) # store OPWORD and EXTWORD
+
+ tst.w %d0 # is instr fmovm?
+ bmi.b iea_dis_fmovm # yes
+# instruction is using an extended precision immediate operand. therefore,
+# the total instruction length is 16 bytes.
+iea_dis_immed:
+ mov.l &0x10,%d0 # 16 bytes of instruction
+ bra.b iea_dis_cont
+iea_dis_fmovm:
+ btst &0xe,%d0 # is instr fmovm ctrl
+ bne.b iea_dis_fmovm_data # no
+# the instruction is a fmovm.l with 2 or 3 registers.
+ bfextu %d0{&19:&3},%d1
+ mov.l &0xc,%d0
+ cmpi.b %d1,&0x7 # move all regs?
+ bne.b iea_dis_cont
+ addq.l &0x4,%d0
+ bra.b iea_dis_cont
+# the instruction is an fmovm.x dynamic which can use many addressing
+# modes and thus can have several different total instruction lengths.
+# call fmovm_calc_ea which will go through the ea calc process and,
+# as a by-product, will tell us how long the instruction is.
+iea_dis_fmovm_data:
+ clr.l %d0
+ bsr.l fmovm_calc_ea
+ mov.l EXC_EXTWPTR(%a6),%d0
+ sub.l EXC_PC(%a6),%d0
+iea_dis_cont:
+ mov.w %d0,EXC_VOFF(%a6) # store stack shift value
+
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+# here, we actually create the 8-word frame from the 4-word frame,
+# with the "next PC" as additional info.
+# the <ea> field is let as undefined.
+ subq.l &0x8,%sp # make room for new stack
+ mov.l %d0,-(%sp) # save d0
+ mov.w 0xc(%sp),0x4(%sp) # move SR
+ mov.l 0xe(%sp),0x6(%sp) # move Current PC
+ clr.l %d0
+ mov.w 0x12(%sp),%d0
+ mov.l 0x6(%sp),0x10(%sp) # move Current PC
+ add.l %d0,0x6(%sp) # make Next PC
+ mov.w &0x402c,0xa(%sp) # insert offset,frame format
+ mov.l (%sp)+,%d0 # restore d0
+
+ bra.l _real_fpu_disabled
+
+##########
+
+iea_iacc:
+ movc %pcr,%d0
+ btst &0x1,%d0
+ bne.b iea_iacc_cont
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
+iea_iacc_cont:
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ subq.w &0x8,%sp # make stack frame bigger
+ mov.l 0x8(%sp),(%sp) # store SR,hi(PC)
+ mov.w 0xc(%sp),0x4(%sp) # store lo(PC)
+ mov.w &0x4008,0x6(%sp) # store voff
+ mov.l 0x2(%sp),0x8(%sp) # store ea
+ mov.l &0x09428001,0xc(%sp) # store fslw
+
+iea_acc_done:
+ btst &0x5,(%sp) # user or supervisor mode?
+ beq.b iea_acc_done2 # user
+ bset &0x2,0xd(%sp) # set supervisor TM bit
+
+iea_acc_done2:
+ bra.l _real_access
+
+iea_dacc:
+ lea -LOCAL_SIZE(%a6),%sp
+
+ movc %pcr,%d1
+ btst &0x1,%d1
+ bne.b iea_dacc_cont
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1 on stack
+ fmovm.l LOCAL_SIZE+USER_FPCR(%sp),%fpcr,%fpsr,%fpiar # restore ctrl regs
+iea_dacc_cont:
+ mov.l (%a6),%a6
+
+ mov.l 0x4+LOCAL_SIZE(%sp),-0x8+0x4+LOCAL_SIZE(%sp)
+ mov.w 0x8+LOCAL_SIZE(%sp),-0x8+0x8+LOCAL_SIZE(%sp)
+ mov.w &0x4008,-0x8+0xa+LOCAL_SIZE(%sp)
+ mov.l %a0,-0x8+0xc+LOCAL_SIZE(%sp)
+ mov.w %d0,-0x8+0x10+LOCAL_SIZE(%sp)
+ mov.w &0x0001,-0x8+0x12+LOCAL_SIZE(%sp)
+
+ movm.l LOCAL_SIZE+EXC_DREGS(%sp),&0x0303 # restore d0-d1/a0-a1
+ add.w &LOCAL_SIZE-0x4,%sp
+
+ bra.b iea_acc_done
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_operr(): 060FPSP entry point for FP Operr exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Operand Error exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read instruction longword #
+# fix_skewed_ops() - adjust src operand in fsave frame #
+# _real_operr() - "callout" to operating system operr handler #
+# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
+# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
+# facc_out_{b,w,l}() - store to memory took access error (opcl 3) #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the FP Operr exception frame #
+# - The fsave frame contains the source operand #
+# #
+# OUTPUT ************************************************************** #
+# No access error: #
+# - The system stack is unchanged #
+# - The fsave frame contains the adjusted src op for opclass 0,2 #
+# #
+# ALGORITHM *********************************************************** #
+# In a system where the FP Operr exception is enabled, the goal #
+# is to get to the handler specified at _real_operr(). But, on the 060, #
+# for opclass zero and two instruction taking this exception, the #
+# input operand in the fsave frame may be incorrect for some cases #
+# and needs to be corrected. This handler calls fix_skewed_ops() to #
+# do just this and then exits through _real_operr(). #
+# For opclass 3 instructions, the 060 doesn't store the default #
+# operr result out to memory or data register file as it should. #
+# This code must emulate the move out before finally exiting through #
+# _real_inex(). The move out, if to memory, is performed using #
+# _mem_write() "callout" routines that may return a failing result. #
+# In this special case, the handler must exit through facc_out() #
+# which creates an access error stack frame from the current operr #
+# stack frame. #
+# #
+#########################################################################
+
+ global _fpsp_operr
+_fpsp_operr:
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ fsave FP_SRC(%a6) # grab the "busy" frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+ btst &13,%d0 # is instr an fmove out?
+ bne.b foperr_out # fmove out
+
+
+# here, we simply see if the operand in the fsave frame needs to be "unskewed".
+# this would be the case for opclass two operations with a source infinity or
+# denorm operand in the sgl or dbl format. NANs also become skewed, but can't
+# cause an operr so we don't need to check for them here.
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l fix_skewed_ops # fix src op
+
+foperr_exit:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6)
+
+ unlk %a6
+ bra.l _real_operr
+
+########################################################################
+
+#
+# the hardware does not save the default result to memory on enabled
+# operand error exceptions. we do this here before passing control to
+# the user operand error handler.
+#
+# byte, word, and long destination format operations can pass
+# through here. we simply need to test the sign of the src
+# operand and save the appropriate minimum or maximum integer value
+# to the effective address as pointed to by the stacked effective address.
+#
+# although packed opclass three operations can take operand error
+# exceptions, they won't pass through here since they are caught
+# first by the unsupported data format exception handler. that handler
+# sends them directly to _real_operr() if necessary.
+#
+foperr_out:
+
+ mov.w FP_SRC_EX(%a6),%d1 # fetch exponent
+ andi.w &0x7fff,%d1
+ cmpi.w %d1,&0x7fff
+ bne.b foperr_out_not_qnan
+# the operand is either an infinity or a QNAN.
+ tst.l FP_SRC_LO(%a6)
+ bne.b foperr_out_qnan
+ mov.l FP_SRC_HI(%a6),%d1
+ andi.l &0x7fffffff,%d1
+ beq.b foperr_out_not_qnan
+foperr_out_qnan:
+ mov.l FP_SRC_HI(%a6),L_SCR1(%a6)
+ bra.b foperr_out_jmp
+
+foperr_out_not_qnan:
+ mov.l &0x7fffffff,%d1
+ tst.b FP_SRC_EX(%a6)
+ bpl.b foperr_out_not_qnan2
+ addq.l &0x1,%d1
+foperr_out_not_qnan2:
+ mov.l %d1,L_SCR1(%a6)
+
+foperr_out_jmp:
+ bfextu %d0{&19:&3},%d0 # extract dst format field
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
+ mov.w (tbl_operr.b,%pc,%d0.w*2),%a0
+ jmp (tbl_operr.b,%pc,%a0)
+
+tbl_operr:
+ short foperr_out_l - tbl_operr # long word integer
+ short tbl_operr - tbl_operr # sgl prec shouldn't happen
+ short tbl_operr - tbl_operr # ext prec shouldn't happen
+ short foperr_exit - tbl_operr # packed won't enter here
+ short foperr_out_w - tbl_operr # word integer
+ short tbl_operr - tbl_operr # dbl prec shouldn't happen
+ short foperr_out_b - tbl_operr # byte integer
+ short tbl_operr - tbl_operr # packed won't enter here
+
+foperr_out_b:
+ mov.b L_SCR1(%a6),%d0 # load positive default result
+ cmpi.b %d1,&0x7 # is <ea> mode a data reg?
+ ble.b foperr_out_b_save_dn # yes
+ mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
+ bsr.l _dmem_write_byte # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_b # yes
+
+ bra.w foperr_exit
+foperr_out_b_save_dn:
+ andi.w &0x0007,%d1
+ bsr.l store_dreg_b # store result to regfile
+ bra.w foperr_exit
+
+foperr_out_w:
+ mov.w L_SCR1(%a6),%d0 # load positive default result
+ cmpi.b %d1,&0x7 # is <ea> mode a data reg?
+ ble.b foperr_out_w_save_dn # yes
+ mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
+ bsr.l _dmem_write_word # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_w # yes
+
+ bra.w foperr_exit
+foperr_out_w_save_dn:
+ andi.w &0x0007,%d1
+ bsr.l store_dreg_w # store result to regfile
+ bra.w foperr_exit
+
+foperr_out_l:
+ mov.l L_SCR1(%a6),%d0 # load positive default result
+ cmpi.b %d1,&0x7 # is <ea> mode a data reg?
+ ble.b foperr_out_l_save_dn # yes
+ mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
+ bsr.l _dmem_write_long # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_l # yes
+
+ bra.w foperr_exit
+foperr_out_l_save_dn:
+ andi.w &0x0007,%d1
+ bsr.l store_dreg_l # store result to regfile
+ bra.w foperr_exit
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_snan(): 060FPSP entry point for FP SNAN exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Signalling NAN exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read instruction longword #
+# fix_skewed_ops() - adjust src operand in fsave frame #
+# _real_snan() - "callout" to operating system SNAN handler #
+# _dmem_write_{byte,word,long}() - store data to mem (opclass 3) #
+# store_dreg_{b,w,l}() - store data to data regfile (opclass 3) #
+# facc_out_{b,w,l,d,x}() - store to mem took acc error (opcl 3) #
+# _calc_ea_fout() - fix An if <ea> is -() or ()+; also get <ea> #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the FP SNAN exception frame #
+# - The fsave frame contains the source operand #
+# #
+# OUTPUT ************************************************************** #
+# No access error: #
+# - The system stack is unchanged #
+# - The fsave frame contains the adjusted src op for opclass 0,2 #
+# #
+# ALGORITHM *********************************************************** #
+# In a system where the FP SNAN exception is enabled, the goal #
+# is to get to the handler specified at _real_snan(). But, on the 060, #
+# for opclass zero and two instructions taking this exception, the #
+# input operand in the fsave frame may be incorrect for some cases #
+# and needs to be corrected. This handler calls fix_skewed_ops() to #
+# do just this and then exits through _real_snan(). #
+# For opclass 3 instructions, the 060 doesn't store the default #
+# SNAN result out to memory or data register file as it should. #
+# This code must emulate the move out before finally exiting through #
+# _real_snan(). The move out, if to memory, is performed using #
+# _mem_write() "callout" routines that may return a failing result. #
+# In this special case, the handler must exit through facc_out() #
+# which creates an access error stack frame from the current SNAN #
+# stack frame. #
+# For the case of an extended precision opclass 3 instruction, #
+# if the effective addressing mode was -() or ()+, then the address #
+# register must get updated by calling _calc_ea_fout(). If the <ea> #
+# was -(a7) from supervisor mode, then the exception frame currently #
+# on the system stack must be carefully moved "down" to make room #
+# for the operand being moved. #
+# #
+#########################################################################
+
+ global _fpsp_snan
+_fpsp_snan:
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ fsave FP_SRC(%a6) # grab the "busy" frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+ btst &13,%d0 # is instr an fmove out?
+ bne.w fsnan_out # fmove out
+
+
+# here, we simply see if the operand in the fsave frame needs to be "unskewed".
+# this would be the case for opclass two operations with a source infinity or
+# denorm operand in the sgl or dbl format. NANs also become skewed and must be
+# fixed here.
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l fix_skewed_ops # fix src op
+
+fsnan_exit:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6)
+
+ unlk %a6
+ bra.l _real_snan
+
+########################################################################
+
+#
+# the hardware does not save the default result to memory on enabled
+# snan exceptions. we do this here before passing control to
+# the user snan handler.
+#
+# byte, word, long, and packed destination format operations can pass
+# through here. since packed format operations already were handled by
+# fpsp_unsupp(), then we need to do nothing else for them here.
+# for byte, word, and long, we simply need to test the sign of the src
+# operand and save the appropriate minimum or maximum integer value
+# to the effective address as pointed to by the stacked effective address.
+#
+fsnan_out:
+
+ bfextu %d0{&19:&3},%d0 # extract dst format field
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract <ea> mode,reg
+ mov.w (tbl_snan.b,%pc,%d0.w*2),%a0
+ jmp (tbl_snan.b,%pc,%a0)
+
+tbl_snan:
+ short fsnan_out_l - tbl_snan # long word integer
+ short fsnan_out_s - tbl_snan # sgl prec shouldn't happen
+ short fsnan_out_x - tbl_snan # ext prec shouldn't happen
+ short tbl_snan - tbl_snan # packed needs no help
+ short fsnan_out_w - tbl_snan # word integer
+ short fsnan_out_d - tbl_snan # dbl prec shouldn't happen
+ short fsnan_out_b - tbl_snan # byte integer
+ short tbl_snan - tbl_snan # packed needs no help
+
+fsnan_out_b:
+ mov.b FP_SRC_HI(%a6),%d0 # load upper byte of SNAN
+ bset &6,%d0 # set SNAN bit
+ cmpi.b %d1,&0x7 # is <ea> mode a data reg?
+ ble.b fsnan_out_b_dn # yes
+ mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
+ bsr.l _dmem_write_byte # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_b # yes
+
+ bra.w fsnan_exit
+fsnan_out_b_dn:
+ andi.w &0x0007,%d1
+ bsr.l store_dreg_b # store result to regfile
+ bra.w fsnan_exit
+
+fsnan_out_w:
+ mov.w FP_SRC_HI(%a6),%d0 # load upper word of SNAN
+ bset &14,%d0 # set SNAN bit
+ cmpi.b %d1,&0x7 # is <ea> mode a data reg?
+ ble.b fsnan_out_w_dn # yes
+ mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
+ bsr.l _dmem_write_word # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_w # yes
+
+ bra.w fsnan_exit
+fsnan_out_w_dn:
+ andi.w &0x0007,%d1
+ bsr.l store_dreg_w # store result to regfile
+ bra.w fsnan_exit
+
+fsnan_out_l:
+ mov.l FP_SRC_HI(%a6),%d0 # load upper longword of SNAN
+ bset &30,%d0 # set SNAN bit
+ cmpi.b %d1,&0x7 # is <ea> mode a data reg?
+ ble.b fsnan_out_l_dn # yes
+ mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
+ bsr.l _dmem_write_long # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_l # yes
+
+ bra.w fsnan_exit
+fsnan_out_l_dn:
+ andi.w &0x0007,%d1
+ bsr.l store_dreg_l # store result to regfile
+ bra.w fsnan_exit
+
+fsnan_out_s:
+ cmpi.b %d1,&0x7 # is <ea> mode a data reg?
+ ble.b fsnan_out_d_dn # yes
+ mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
+ andi.l &0x80000000,%d0 # keep sign
+ ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
+ mov.l FP_SRC_HI(%a6),%d1 # load mantissa
+ lsr.l &0x8,%d1 # shift mantissa for sgl
+ or.l %d1,%d0 # create sgl SNAN
+ mov.l EXC_EA(%a6),%a0 # pass: <ea> of default result
+ bsr.l _dmem_write_long # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_l # yes
+
+ bra.w fsnan_exit
+fsnan_out_d_dn:
+ mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
+ andi.l &0x80000000,%d0 # keep sign
+ ori.l &0x7fc00000,%d0 # insert new exponent,SNAN bit
+ mov.l %d1,-(%sp)
+ mov.l FP_SRC_HI(%a6),%d1 # load mantissa
+ lsr.l &0x8,%d1 # shift mantissa for sgl
+ or.l %d1,%d0 # create sgl SNAN
+ mov.l (%sp)+,%d1
+ andi.w &0x0007,%d1
+ bsr.l store_dreg_l # store result to regfile
+ bra.w fsnan_exit
+
+fsnan_out_d:
+ mov.l FP_SRC_EX(%a6),%d0 # fetch SNAN sign
+ andi.l &0x80000000,%d0 # keep sign
+ ori.l &0x7ff80000,%d0 # insert new exponent,SNAN bit
+ mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
+ mov.l %d0,FP_SCR0_EX(%a6) # store to temp space
+ mov.l &11,%d0 # load shift amt
+ lsr.l %d0,%d1
+ or.l %d1,FP_SCR0_EX(%a6) # create dbl hi
+ mov.l FP_SRC_HI(%a6),%d1 # load hi mantissa
+ andi.l &0x000007ff,%d1
+ ror.l %d0,%d1
+ mov.l %d1,FP_SCR0_HI(%a6) # store to temp space
+ mov.l FP_SRC_LO(%a6),%d1 # load lo mantissa
+ lsr.l %d0,%d1
+ or.l %d1,FP_SCR0_HI(%a6) # create dbl lo
+ lea FP_SCR0(%a6),%a0 # pass: ptr to operand
+ mov.l EXC_EA(%a6),%a1 # pass: dst addr
+ movq.l &0x8,%d0 # pass: size of 8 bytes
+ bsr.l _dmem_write # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_d # yes
+
+ bra.w fsnan_exit
+
+# for extended precision, if the addressing mode is pre-decrement or
+# post-increment, then the address register did not get updated.
+# in addition, for pre-decrement, the stacked <ea> is incorrect.
+fsnan_out_x:
+ clr.b SPCOND_FLG(%a6) # clear special case flag
+
+ mov.w FP_SRC_EX(%a6),FP_SCR0_EX(%a6)
+ clr.w 2+FP_SCR0(%a6)
+ mov.l FP_SRC_HI(%a6),%d0
+ bset &30,%d0
+ mov.l %d0,FP_SCR0_HI(%a6)
+ mov.l FP_SRC_LO(%a6),FP_SCR0_LO(%a6)
+
+ btst &0x5,EXC_SR(%a6) # supervisor mode exception?
+ bne.b fsnan_out_x_s # yes
+
+ mov.l %usp,%a0 # fetch user stack pointer
+ mov.l %a0,EXC_A7(%a6) # save on stack for calc_ea()
+ mov.l (%a6),EXC_A6(%a6)
+
+ bsr.l _calc_ea_fout # find the correct ea,update An
+ mov.l %a0,%a1
+ mov.l %a0,EXC_EA(%a6) # stack correct <ea>
+
+ mov.l EXC_A7(%a6),%a0
+ mov.l %a0,%usp # restore user stack pointer
+ mov.l EXC_A6(%a6),(%a6)
+
+fsnan_out_x_save:
+ lea FP_SCR0(%a6),%a0 # pass: ptr to operand
+ movq.l &0xc,%d0 # pass: size of extended
+ bsr.l _dmem_write # write the default result
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_x # yes
+
+ bra.w fsnan_exit
+
+fsnan_out_x_s:
+ mov.l (%a6),EXC_A6(%a6)
+
+ bsr.l _calc_ea_fout # find the correct ea,update An
+ mov.l %a0,%a1
+ mov.l %a0,EXC_EA(%a6) # stack correct <ea>
+
+ mov.l EXC_A6(%a6),(%a6)
+
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
+ bne.b fsnan_out_x_save # no
+
+# the operation was "fmove.x SNAN,-(a7)" from supervisor mode.
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6)
+
+ mov.l EXC_A6(%a6),%a6 # restore frame pointer
+
+ mov.l LOCAL_SIZE+EXC_SR(%sp),LOCAL_SIZE+EXC_SR-0xc(%sp)
+ mov.l LOCAL_SIZE+EXC_PC+0x2(%sp),LOCAL_SIZE+EXC_PC+0x2-0xc(%sp)
+ mov.l LOCAL_SIZE+EXC_EA(%sp),LOCAL_SIZE+EXC_EA-0xc(%sp)
+
+ mov.l LOCAL_SIZE+FP_SCR0_EX(%sp),LOCAL_SIZE+EXC_SR(%sp)
+ mov.l LOCAL_SIZE+FP_SCR0_HI(%sp),LOCAL_SIZE+EXC_PC+0x2(%sp)
+ mov.l LOCAL_SIZE+FP_SCR0_LO(%sp),LOCAL_SIZE+EXC_EA(%sp)
+
+ add.l &LOCAL_SIZE-0x8,%sp
+
+ bra.l _real_snan
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_inex(): 060FPSP entry point for FP Inexact exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Inexact exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read instruction longword #
+# fix_skewed_ops() - adjust src operand in fsave frame #
+# set_tag_x() - determine optype of src/dst operands #
+# store_fpreg() - store opclass 0 or 2 result to FP regfile #
+# unnorm_fix() - change UNNORM operands to NORM or ZERO #
+# load_fpn2() - load dst operand from FP regfile #
+# smovcr() - emulate an "fmovcr" instruction #
+# fout() - emulate an opclass 3 instruction #
+# tbl_unsupp - add of table of emulation routines for opclass 0,2 #
+# _real_inex() - "callout" to operating system inexact handler #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the FP Inexact exception frame #
+# - The fsave frame contains the source operand #
+# #
+# OUTPUT ************************************************************** #
+# - The system stack is unchanged #
+# - The fsave frame contains the adjusted src op for opclass 0,2 #
+# #
+# ALGORITHM *********************************************************** #
+# In a system where the FP Inexact exception is enabled, the goal #
+# is to get to the handler specified at _real_inex(). But, on the 060, #
+# for opclass zero and two instruction taking this exception, the #
+# hardware doesn't store the correct result to the destination FP #
+# register as did the '040 and '881/2. This handler must emulate the #
+# instruction in order to get this value and then store it to the #
+# correct register before calling _real_inex(). #
+# For opclass 3 instructions, the 060 doesn't store the default #
+# inexact result out to memory or data register file as it should. #
+# This code must emulate the move out by calling fout() before finally #
+# exiting through _real_inex(). #
+# #
+#########################################################################
+
+ global _fpsp_inex
+_fpsp_inex:
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ fsave FP_SRC(%a6) # grab the "busy" frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+ btst &13,%d0 # is instr an fmove out?
+ bne.w finex_out # fmove out
+
+
+# the hardware, for "fabs" and "fneg" w/ a long source format, puts the
+# longword integer directly into the upper longword of the mantissa along
+# w/ an exponent value of 0x401e. we convert this to extended precision here.
+ bfextu %d0{&19:&3},%d0 # fetch instr size
+ bne.b finex_cont # instr size is not long
+ cmpi.w FP_SRC_EX(%a6),&0x401e # is exponent 0x401e?
+ bne.b finex_cont # no
+ fmov.l &0x0,%fpcr
+ fmov.l FP_SRC_HI(%a6),%fp0 # load integer src
+ fmov.x %fp0,FP_SRC(%a6) # store integer as extended precision
+ mov.w &0xe001,0x2+FP_SRC(%a6)
+
+finex_cont:
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l fix_skewed_ops # fix src op
+
+# Here, we zero the ccode and exception byte field since we're going to
+# emulate the whole instruction. Notice, though, that we don't kill the
+# INEX1 bit. This is because a packed op has long since been converted
+# to extended before arriving here. Therefore, we need to retain the
+# INEX1 bit from when the operand was first converted.
+ andi.l &0x00ff01ff,USER_FPSR(%a6) # zero all but accured field
+
+ fmov.l &0x0,%fpcr # zero current control regs
+ fmov.l &0x0,%fpsr
+
+ bfextu EXC_EXTWORD(%a6){&0:&6},%d1 # extract upper 6 of cmdreg
+ cmpi.b %d1,&0x17 # is op an fmovecr?
+ beq.w finex_fmovcr # yes
+
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l set_tag_x # tag the operand type
+ mov.b %d0,STAG(%a6) # maybe NORM,DENORM
+
+# bits four and five of the fp extension word separate the monadic and dyadic
+# operations that can pass through fpsp_inex(). remember that fcmp and ftst
+# will never take this exception, but fsincos will.
+ btst &0x5,1+EXC_CMDREG(%a6) # is operation monadic or dyadic?
+ beq.b finex_extract # monadic
+
+ btst &0x4,1+EXC_CMDREG(%a6) # is operation an fsincos?
+ bne.b finex_extract # yes
+
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # dyadic; load dst reg
+ bsr.l load_fpn2 # load dst into FP_DST
+
+ lea FP_DST(%a6),%a0 # pass: ptr to dst op
+ bsr.l set_tag_x # tag the operand type
+ cmpi.b %d0,&UNNORM # is operand an UNNORM?
+ bne.b finex_op2_done # no
+ bsr.l unnorm_fix # yes; convert to NORM,DENORM,or ZERO
+finex_op2_done:
+ mov.b %d0,DTAG(%a6) # save dst optype tag
+
+finex_extract:
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass rnd prec/mode
+
+ mov.b 1+EXC_CMDREG(%a6),%d1
+ andi.w &0x007f,%d1 # extract extension
+
+ lea FP_SRC(%a6),%a0
+ lea FP_DST(%a6),%a1
+
+ mov.l (tbl_unsupp.l,%pc,%d1.w*4),%d1 # fetch routine addr
+ jsr (tbl_unsupp.l,%pc,%d1.l*1)
+
+# the operation has been emulated. the result is in fp0.
+finex_save:
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0
+ bsr.l store_fpreg
+
+finex_exit:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6)
+
+ unlk %a6
+ bra.l _real_inex
+
+finex_fmovcr:
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
+ mov.b 1+EXC_CMDREG(%a6),%d1
+ andi.l &0x0000007f,%d1 # pass rom offset
+ bsr.l smovcr
+ bra.b finex_save
+
+########################################################################
+
+#
+# the hardware does not save the default result to memory on enabled
+# inexact exceptions. we do this here before passing control to
+# the user inexact handler.
+#
+# byte, word, and long destination format operations can pass
+# through here. so can double and single precision.
+# although packed opclass three operations can take inexact
+# exceptions, they won't pass through here since they are caught
+# first by the unsupported data format exception handler. that handler
+# sends them directly to _real_inex() if necessary.
+#
+finex_out:
+
+ mov.b &NORM,STAG(%a6) # src is a NORM
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # pass rnd prec,mode
+
+ andi.l &0xffff00ff,USER_FPSR(%a6) # zero exception field
+
+ lea FP_SRC(%a6),%a0 # pass ptr to src operand
+
+ bsr.l fout # store the default result
+
+ bra.b finex_exit
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_dz(): 060FPSP entry point for FP DZ exception. #
+# #
+# This handler should be the first code executed upon taking #
+# the FP DZ exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read instruction longword from memory #
+# fix_skewed_ops() - adjust fsave operand #
+# _real_dz() - "callout" exit point from FP DZ handler #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the FP DZ exception stack. #
+# - The fsave frame contains the source operand. #
+# #
+# OUTPUT ************************************************************** #
+# - The system stack contains the FP DZ exception stack. #
+# - The fsave frame contains the adjusted source operand. #
+# #
+# ALGORITHM *********************************************************** #
+# In a system where the DZ exception is enabled, the goal is to #
+# get to the handler specified at _real_dz(). But, on the 060, when the #
+# exception is taken, the input operand in the fsave state frame may #
+# be incorrect for some cases and need to be adjusted. So, this package #
+# adjusts the operand using fix_skewed_ops() and then branches to #
+# _real_dz(). #
+# #
+#########################################################################
+
+ global _fpsp_dz
+_fpsp_dz:
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ fsave FP_SRC(%a6) # grab the "busy" frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1 on stack
+
+# the FPIAR holds the "current PC" of the faulting instruction
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6)
+
+##############################################################################
+
+
+# here, we simply see if the operand in the fsave frame needs to be "unskewed".
+# this would be the case for opclass two operations with a source zero
+# in the sgl or dbl format.
+ lea FP_SRC(%a6),%a0 # pass: ptr to src op
+ bsr.l fix_skewed_ops # fix src op
+
+fdz_exit:
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6)
+
+ unlk %a6
+ bra.l _real_dz
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_fline(): 060FPSP entry point for "Line F emulator" exc. #
+# #
+# This handler should be the first code executed upon taking the #
+# "Line F Emulator" exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _fpsp_unimp() - handle "FP Unimplemented" exceptions #
+# _real_fpu_disabled() - handle "FPU disabled" exceptions #
+# _real_fline() - handle "FLINE" exceptions #
+# _imem_read_long() - read instruction longword #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains a "Line F Emulator" exception #
+# stack frame. #
+# #
+# OUTPUT ************************************************************** #
+# - The system stack is unchanged #
+# #
+# ALGORITHM *********************************************************** #
+# When a "Line F Emulator" exception occurs, there are 3 possible #
+# exception types, denoted by the exception stack frame format number: #
+# (1) FPU unimplemented instruction (6 word stack frame) #
+# (2) FPU disabled (8 word stack frame) #
+# (3) Line F (4 word stack frame) #
+# #
+# This module determines which and forks the flow off to the #
+# appropriate "callout" (for "disabled" and "Line F") or to the #
+# correct emulation code (for "FPU unimplemented"). #
+# This code also must check for "fmovecr" instructions w/ a #
+# non-zero <ea> field. These may get flagged as "Line F" but should #
+# really be flagged as "FPU Unimplemented". (This is a "feature" on #
+# the '060. #
+# #
+#########################################################################
+
+ global _fpsp_fline
+_fpsp_fline:
+
+# check to see if this exception is a "FP Unimplemented Instruction"
+# exception. if so, branch directly to that handler's entry point.
+ cmpi.w 0x6(%sp),&0x202c
+ beq.l _fpsp_unimp
+
+# check to see if the FPU is disabled. if so, jump to the OS entry
+# point for that condition.
+ cmpi.w 0x6(%sp),&0x402c
+ beq.l _real_fpu_disabled
+
+# the exception was an "F-Line Illegal" exception. we check to see
+# if the F-Line instruction is an "fmovecr" w/ a non-zero <ea>. if
+# so, convert the F-Line exception stack frame to an FP Unimplemented
+# Instruction exception stack frame else branch to the OS entry
+# point for the F-Line exception handler.
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+
+ mov.l EXC_PC(%a6),EXC_EXTWPTR(%a6)
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch instruction words
+
+ bfextu %d0{&0:&10},%d1 # is it an fmovecr?
+ cmpi.w %d1,&0x03c8
+ bne.b fline_fline # no
+
+ bfextu %d0{&16:&6},%d1 # is it an fmovecr?
+ cmpi.b %d1,&0x17
+ bne.b fline_fline # no
+
+# it's an fmovecr w/ a non-zero <ea> that has entered through
+# the F-Line Illegal exception.
+# so, we need to convert the F-Line exception stack frame into an
+# FP Unimplemented Instruction stack frame and jump to that entry
+# point.
+#
+# but, if the FPU is disabled, then we need to jump to the FPU diabled
+# entry point.
+ movc %pcr,%d0
+ btst &0x1,%d0
+ beq.b fline_fmovcr
+
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ sub.l &0x8,%sp # make room for "Next PC", <ea>
+ mov.w 0x8(%sp),(%sp)
+ mov.l 0xa(%sp),0x2(%sp) # move "Current PC"
+ mov.w &0x402c,0x6(%sp)
+ mov.l 0x2(%sp),0xc(%sp)
+ addq.l &0x4,0x2(%sp) # set "Next PC"
+
+ bra.l _real_fpu_disabled
+
+fline_fmovcr:
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ fmov.l 0x2(%sp),%fpiar # set current PC
+ addq.l &0x4,0x2(%sp) # set Next PC
+
+ mov.l (%sp),-(%sp)
+ mov.l 0x8(%sp),0x4(%sp)
+ mov.b &0x20,0x6(%sp)
+
+ bra.l _fpsp_unimp
+
+fline_fline:
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ bra.l _real_fline
+
+#########################################################################
+# XDEF **************************************************************** #
+# _fpsp_unimp(): 060FPSP entry point for FP "Unimplemented #
+# Instruction" exception. #
+# #
+# This handler should be the first code executed upon taking the #
+# FP Unimplemented Instruction exception in an operating system. #
+# #
+# XREF **************************************************************** #
+# _imem_read_{word,long}() - read instruction word/longword #
+# load_fop() - load src/dst ops from memory and/or FP regfile #
+# store_fpreg() - store opclass 0 or 2 result to FP regfile #
+# tbl_trans - addr of table of emulation routines for trnscndls #
+# _real_access() - "callout" for access error exception #
+# _fpsp_done() - "callout" for exit; work all done #
+# _real_trace() - "callout" for Trace enabled exception #
+# smovcr() - emulate "fmovecr" instruction #
+# funimp_skew() - adjust fsave src ops to "incorrect" value #
+# _ftrapcc() - emulate an "ftrapcc" instruction #
+# _fdbcc() - emulate an "fdbcc" instruction #
+# _fscc() - emulate an "fscc" instruction #
+# _real_trap() - "callout" for Trap exception #
+# _real_bsun() - "callout" for enabled Bsun exception #
+# #
+# INPUT *************************************************************** #
+# - The system stack contains the "Unimplemented Instr" stk frame #
+# #
+# OUTPUT ************************************************************** #
+# If access error: #
+# - The system stack is changed to an access error stack frame #
+# If Trace exception enabled: #
+# - The system stack is changed to a Trace exception stack frame #
+# Else: (normal case) #
+# - Correct result has been stored as appropriate #
+# #
+# ALGORITHM *********************************************************** #
+# There are two main cases of instructions that may enter here to #
+# be emulated: (1) the FPgen instructions, most of which were also #
+# unimplemented on the 040, and (2) "ftrapcc", "fscc", and "fdbcc". #
+# For the first set, this handler calls the routine load_fop() #
+# to load the source and destination (for dyadic) operands to be used #
+# for instruction emulation. The correct emulation routine is then #
+# chosen by decoding the instruction type and indexing into an #
+# emulation subroutine index table. After emulation returns, this #
+# handler checks to see if an exception should occur as a result of the #
+# FP instruction emulation. If so, then an FP exception of the correct #
+# type is inserted into the FPU state frame using the "frestore" #
+# instruction before exiting through _fpsp_done(). In either the #
+# exceptional or non-exceptional cases, we must check to see if the #
+# Trace exception is enabled. If so, then we must create a Trace #
+# exception frame from the current exception frame and exit through #
+# _real_trace(). #
+# For "fdbcc", "ftrapcc", and "fscc", the emulation subroutines #
+# _fdbcc(), _ftrapcc(), and _fscc() respectively are used. All three #
+# may flag that a BSUN exception should be taken. If so, then the #
+# current exception stack frame is converted into a BSUN exception #
+# stack frame and an exit is made through _real_bsun(). If the #
+# instruction was "ftrapcc" and a Trap exception should result, a Trap #
+# exception stack frame is created from the current frame and an exit #
+# is made through _real_trap(). If a Trace exception is pending, then #
+# a Trace exception frame is created from the current frame and a jump #
+# is made to _real_trace(). Finally, if none of these conditions exist, #
+# then the handler exits though the callout _fpsp_done(). #
+# #
+# In any of the above scenarios, if a _mem_read() or _mem_write() #
+# "callout" returns a failing value, then an access error stack frame #
+# is created from the current stack frame and an exit is made through #
+# _real_access(). #
+# #
+#########################################################################
+
+#
+# FP UNIMPLEMENTED INSTRUCTION STACK FRAME:
+#
+# *****************
+# * * => <ea> of fp unimp instr.
+# - EA -
+# * *
+# *****************
+# * 0x2 * 0x02c * => frame format and vector offset(vector #11)
+# *****************
+# * *
+# - Next PC - => PC of instr to execute after exc handling
+# * *
+# *****************
+# * SR * => SR at the time the exception was taken
+# *****************
+#
+# Note: the !NULL bit does not get set in the fsave frame when the
+# machine encounters an fp unimp exception. Therefore, it must be set
+# before leaving this handler.
+#
+ global _fpsp_unimp
+_fpsp_unimp:
+
+ link.w %a6,&-LOCAL_SIZE # init stack frame
+
+ movm.l &0x0303,EXC_DREGS(%a6) # save d0-d1/a0-a1
+ fmovm.l %fpcr,%fpsr,%fpiar,USER_FPCR(%a6) # save ctrl regs
+ fmovm.x &0xc0,EXC_FPREGS(%a6) # save fp0-fp1
+
+ btst &0x5,EXC_SR(%a6) # user mode exception?
+ bne.b funimp_s # no; supervisor mode
+
+# save the value of the user stack pointer onto the stack frame
+funimp_u:
+ mov.l %usp,%a0 # fetch user stack pointer
+ mov.l %a0,EXC_A7(%a6) # store in stack frame
+ bra.b funimp_cont
+
+# store the value of the supervisor stack pointer BEFORE the exc occurred.
+# old_sp is address just above stacked effective address.
+funimp_s:
+ lea 4+EXC_EA(%a6),%a0 # load old a7'
+ mov.l %a0,EXC_A7(%a6) # store a7'
+ mov.l %a0,OLD_A7(%a6) # make a copy
+
+funimp_cont:
+
+# the FPIAR holds the "current PC" of the faulting instruction.
+ mov.l USER_FPIAR(%a6),EXC_EXTWPTR(%a6)
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch the instruction words
+ mov.l %d0,EXC_OPWORD(%a6)
+
+############################################################################
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ clr.b SPCOND_FLG(%a6) # clear "special case" flag
+
+# Divide the fp instructions into 8 types based on the TYPE field in
+# bits 6-8 of the opword(classes 6,7 are undefined).
+# (for the '060, only two types can take this exception)
+# bftst %d0{&7:&3} # test TYPE
+ btst &22,%d0 # type 0 or 1 ?
+ bne.w funimp_misc # type 1
+
+#########################################
+# TYPE == 0: General instructions #
+#########################################
+funimp_gen:
+
+ clr.b STORE_FLG(%a6) # clear "store result" flag
+
+# clear the ccode byte and exception status byte
+ andi.l &0x00ff00ff,USER_FPSR(%a6)
+
+ bfextu %d0{&16:&6},%d1 # extract upper 6 of cmdreg
+ cmpi.b %d1,&0x17 # is op an fmovecr?
+ beq.w funimp_fmovcr # yes
+
+funimp_gen_op:
+ bsr.l _load_fop # load
+
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0 # fetch rnd mode
+
+ mov.b 1+EXC_CMDREG(%a6),%d1
+ andi.w &0x003f,%d1 # extract extension bits
+ lsl.w &0x3,%d1 # shift right 3 bits
+ or.b STAG(%a6),%d1 # insert src optag bits
+
+ lea FP_DST(%a6),%a1 # pass dst ptr in a1
+ lea FP_SRC(%a6),%a0 # pass src ptr in a0
+
+ mov.w (tbl_trans.w,%pc,%d1.w*2),%d1
+ jsr (tbl_trans.w,%pc,%d1.w*1) # emulate
+
+funimp_fsave:
+ mov.b FPCR_ENABLE(%a6),%d0 # fetch exceptions enabled
+ bne.w funimp_ena # some are enabled
+
+funimp_store:
+ bfextu EXC_CMDREG(%a6){&6:&3},%d0 # fetch Dn
+ bsr.l store_fpreg # store result to fp regfile
+
+funimp_gen_exit:
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+funimp_gen_exit_cmp:
+ cmpi.b SPCOND_FLG(%a6),&mia7_flg # was the ea mode (sp)+ ?
+ beq.b funimp_gen_exit_a7 # yes
+
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg # was the ea mode -(sp) ?
+ beq.b funimp_gen_exit_a7 # yes
+
+funimp_gen_exit_cont:
+ unlk %a6
+
+funimp_gen_exit_cont2:
+ btst &0x7,(%sp) # is trace on?
+ beq.l _fpsp_done # no
+
+# this catches a problem with the case where an exception will be re-inserted
+# into the machine. the frestore has already been executed...so, the fmov.l
+# alone of the control register would trigger an unwanted exception.
+# until I feel like fixing this, we'll sidestep the exception.
+ fsave -(%sp)
+ fmov.l %fpiar,0x14(%sp) # "Current PC" is in FPIAR
+ frestore (%sp)+
+ mov.w &0x2024,0x6(%sp) # stk fmt = 0x2; voff = 0x24
+ bra.l _real_trace
+
+funimp_gen_exit_a7:
+ btst &0x5,EXC_SR(%a6) # supervisor or user mode?
+ bne.b funimp_gen_exit_a7_s # supervisor
+
+ mov.l %a0,-(%sp)
+ mov.l EXC_A7(%a6),%a0
+ mov.l %a0,%usp
+ mov.l (%sp)+,%a0
+ bra.b funimp_gen_exit_cont
+
+# if the instruction was executed from supervisor mode and the addressing
+# mode was (a7)+, then the stack frame for the rte must be shifted "up"
+# "n" bytes where "n" is the size of the src operand type.
+# f<op>.{b,w,l,s,d,x,p}
+funimp_gen_exit_a7_s:
+ mov.l %d0,-(%sp) # save d0
+ mov.l EXC_A7(%a6),%d0 # load new a7'
+ sub.l OLD_A7(%a6),%d0 # subtract old a7'
+ mov.l 0x2+EXC_PC(%a6),(0x2+EXC_PC,%a6,%d0) # shift stack frame
+ mov.l EXC_SR(%a6),(EXC_SR,%a6,%d0) # shift stack frame
+ mov.w %d0,EXC_SR(%a6) # store incr number
+ mov.l (%sp)+,%d0 # restore d0
+
+ unlk %a6
+
+ add.w (%sp),%sp # stack frame shifted
+ bra.b funimp_gen_exit_cont2
+
+######################
+# fmovecr.x #ccc,fpn #
+######################
+funimp_fmovcr:
+ clr.l %d0
+ mov.b FPCR_MODE(%a6),%d0
+ mov.b 1+EXC_CMDREG(%a6),%d1
+ andi.l &0x0000007f,%d1 # pass rom offset in d1
+ bsr.l smovcr
+ bra.w funimp_fsave
+
+#########################################################################
+
+#
+# the user has enabled some exceptions. we figure not to see this too
+# often so that's why it gets lower priority.
+#
+funimp_ena:
+
+# was an exception set that was also enabled?
+ and.b FPSR_EXCEPT(%a6),%d0 # keep only ones enabled and set
+ bfffo %d0{&24:&8},%d0 # find highest priority exception
+ bne.b funimp_exc # at least one was set
+
+# no exception that was enabled was set BUT if we got an exact overflow
+# and overflow wasn't enabled but inexact was (yech!) then this is
+# an inexact exception; otherwise, return to normal non-exception flow.
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
+ beq.w funimp_store # no; return to normal flow
+
+# the overflow w/ exact result happened but was inexact set in the FPCR?
+funimp_ovfl:
+ btst &inex2_bit,FPCR_ENABLE(%a6) # is inexact enabled?
+ beq.w funimp_store # no; return to normal flow
+ bra.b funimp_exc_ovfl # yes
+
+# some exception happened that was actually enabled.
+# we'll insert this new exception into the FPU and then return.
+funimp_exc:
+ subi.l &24,%d0 # fix offset to be 0-8
+ cmpi.b %d0,&0x6 # is exception INEX?
+ bne.b funimp_exc_force # no
+
+# the enabled exception was inexact. so, if it occurs with an overflow
+# or underflow that was disabled, then we have to force an overflow or
+# underflow frame. the eventual overflow or underflow handler will see that
+# it's actually an inexact and act appropriately. this is the only easy
+# way to have the EXOP available for the enabled inexact handler when
+# a disabled overflow or underflow has also happened.
+ btst &ovfl_bit,FPSR_EXCEPT(%a6) # did overflow occur?
+ bne.b funimp_exc_ovfl # yes
+ btst &unfl_bit,FPSR_EXCEPT(%a6) # did underflow occur?
+ bne.b funimp_exc_unfl # yes
+
+# force the fsave exception status bits to signal an exception of the
+# appropriate type. don't forget to "skew" the source operand in case we
+# "unskewed" the one the hardware initially gave us.
+funimp_exc_force:
+ mov.l %d0,-(%sp) # save d0
+ bsr.l funimp_skew # check for special case
+ mov.l (%sp)+,%d0 # restore d0
+ mov.w (tbl_funimp_except.b,%pc,%d0.w*2),2+FP_SRC(%a6)
+ bra.b funimp_gen_exit2 # exit with frestore
+
+tbl_funimp_except:
+ short 0xe002, 0xe006, 0xe004, 0xe005
+ short 0xe003, 0xe002, 0xe001, 0xe001
+
+# insert an overflow frame
+funimp_exc_ovfl:
+ bsr.l funimp_skew # check for special case
+ mov.w &0xe005,2+FP_SRC(%a6)
+ bra.b funimp_gen_exit2
+
+# insert an underflow frame
+funimp_exc_unfl:
+ bsr.l funimp_skew # check for special case
+ mov.w &0xe003,2+FP_SRC(%a6)
+
+# this is the general exit point for an enabled exception that will be
+# restored into the machine for the instruction just emulated.
+funimp_gen_exit2:
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # insert exceptional status
+
+ bra.w funimp_gen_exit_cmp
+
+############################################################################
+
+#
+# TYPE == 1: FDB<cc>, FS<cc>, FTRAP<cc>
+#
+# These instructions were implemented on the '881/2 and '040 in hardware but
+# are emulated in software on the '060.
+#
+funimp_misc:
+ bfextu %d0{&10:&3},%d1 # extract mode field
+ cmpi.b %d1,&0x1 # is it an fdb<cc>?
+ beq.w funimp_fdbcc # yes
+ cmpi.b %d1,&0x7 # is it an fs<cc>?
+ bne.w funimp_fscc # yes
+ bfextu %d0{&13:&3},%d1
+ cmpi.b %d1,&0x2 # is it an fs<cc>?
+ blt.w funimp_fscc # yes
+
+#########################
+# ftrap<cc> #
+# ftrap<cc>.w #<data> #
+# ftrap<cc>.l #<data> #
+#########################
+funimp_ftrapcc:
+
+ bsr.l _ftrapcc # FTRAP<cc>()
+
+ cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
+ beq.w funimp_bsun # yes
+
+ cmpi.b SPCOND_FLG(%a6),&ftrapcc_flg # should a trap occur?
+ bne.w funimp_done # no
+
+# FP UNIMP FRAME TRAP FRAME
+# ***************** *****************
+# ** <EA> ** ** Current PC **
+# ***************** *****************
+# * 0x2 * 0x02c * * 0x2 * 0x01c *
+# ***************** *****************
+# ** Next PC ** ** Next PC **
+# ***************** *****************
+# * SR * * SR *
+# ***************** *****************
+# (6 words) (6 words)
+#
+# the ftrapcc instruction should take a trap. so, here we must create a
+# trap stack frame from an unimplemented fp instruction stack frame and
+# jump to the user supplied entry point for the trap exception
+funimp_ftrapcc_tp:
+ mov.l USER_FPIAR(%a6),EXC_EA(%a6) # Address = Current PC
+ mov.w &0x201c,EXC_VOFF(%a6) # Vector Offset = 0x01c
+
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+ bra.l _real_trap
+
+#########################
+# fdb<cc> Dn,<label> #
+#########################
+funimp_fdbcc:
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word # read displacement
+
+ tst.l %d1 # did ifetch fail?
+ bne.w funimp_iacc # yes
+
+ ext.l %d0 # sign extend displacement
+
+ bsr.l _fdbcc # FDB<cc>()
+
+ cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
+ beq.w funimp_bsun
+
+ bra.w funimp_done # branch to finish
+
+#################
+# fs<cc>.b <ea> #
+#################
+funimp_fscc:
+
+ bsr.l _fscc # FS<cc>()
+
+# I am assuming here that an "fs<cc>.b -(An)" or "fs<cc>.b (An)+" instruction
+# does not need to update "An" before taking a bsun exception.
+ cmpi.b SPCOND_FLG(%a6),&fbsun_flg # is enabled bsun occurring?
+ beq.w funimp_bsun
+
+ btst &0x5,EXC_SR(%a6) # yes; is it a user mode exception?
+ bne.b funimp_fscc_s # no
+
+funimp_fscc_u:
+ mov.l EXC_A7(%a6),%a0 # yes; set new USP
+ mov.l %a0,%usp
+ bra.w funimp_done # branch to finish
+
+# remember, I'm assuming that post-increment is bogus...(it IS!!!)
+# so, the least significant WORD of the stacked effective address got
+# overwritten by the "fs<cc> -(An)". We must shift the stack frame "down"
+# so that the rte will work correctly without destroying the result.
+# even though the operation size is byte, the stack ptr is decr by 2.
+#
+# remember, also, this instruction may be traced.
+funimp_fscc_s:
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg # was a7 modified?
+ bne.w funimp_done # no
+
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ btst &0x7,(%sp) # is trace enabled?
+ bne.b funimp_fscc_s_trace # yes
+
+ subq.l &0x2,%sp
+ mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down"
+ mov.l 0x6(%sp),0x4(%sp) # shift lo(PC),voff "down"
+ bra.l _fpsp_done
+
+funimp_fscc_s_trace:
+ subq.l &0x2,%sp
+ mov.l 0x2(%sp),(%sp) # shift SR,hi(PC) "down"
+ mov.w 0x6(%sp),0x4(%sp) # shift lo(PC)
+ mov.w &0x2024,0x6(%sp) # fmt/voff = $2024
+ fmov.l %fpiar,0x8(%sp) # insert "current PC"
+
+ bra.l _real_trace
+
+#
+# The ftrap<cc>, fs<cc>, or fdb<cc> is to take an enabled bsun. we must convert
+# the fp unimplemented instruction exception stack frame into a bsun stack frame,
+# restore a bsun exception into the machine, and branch to the user
+# supplied bsun hook.
+#
+# FP UNIMP FRAME BSUN FRAME
+# ***************** *****************
+# ** <EA> ** * 0x0 * 0x0c0 *
+# ***************** *****************
+# * 0x2 * 0x02c * ** Current PC **
+# ***************** *****************
+# ** Next PC ** * SR *
+# ***************** *****************
+# * SR * (4 words)
+# *****************
+# (6 words)
+#
+funimp_bsun:
+ mov.w &0x00c0,2+EXC_EA(%a6) # Fmt = 0x0; Vector Offset = 0x0c0
+ mov.l USER_FPIAR(%a6),EXC_VOFF(%a6) # PC = Current PC
+ mov.w EXC_SR(%a6),2+EXC_PC(%a6) # shift SR "up"
+
+ mov.w &0xe000,2+FP_SRC(%a6) # bsun exception enabled
+
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ frestore FP_SRC(%a6) # restore bsun exception
+
+ unlk %a6
+
+ addq.l &0x4,%sp # erase sludge
+
+ bra.l _real_bsun # branch to user bsun hook
+
+#
+# all ftrapcc/fscc/fdbcc processing has been completed. unwind the stack frame
+# and return.
+#
+# as usual, we have to check for trace mode being on here. since instructions
+# modifying the supervisor stack frame don't pass through here, this is a
+# relatively easy task.
+#
+funimp_done:
+ fmovm.x EXC_FP0(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ btst &0x7,(%sp) # is trace enabled?
+ bne.b funimp_trace # yes
+
+ bra.l _fpsp_done
+
+# FP UNIMP FRAME TRACE FRAME
+# ***************** *****************
+# ** <EA> ** ** Current PC **
+# ***************** *****************
+# * 0x2 * 0x02c * * 0x2 * 0x024 *
+# ***************** *****************
+# ** Next PC ** ** Next PC **
+# ***************** *****************
+# * SR * * SR *
+# ***************** *****************
+# (6 words) (6 words)
+#
+# the fscc instruction should take a trace trap. so, here we must create a
+# trace stack frame from an unimplemented fp instruction stack frame and
+# jump to the user supplied entry point for the trace exception
+funimp_trace:
+ fmov.l %fpiar,0x8(%sp) # current PC is in fpiar
+ mov.b &0x24,0x7(%sp) # vector offset = 0x024
+
+ bra.l _real_trace
+
+################################################################
+
+ global tbl_trans
+ swbeg &0x1c0
+tbl_trans:
+ short tbl_trans - tbl_trans # $00-0 fmovecr all
+ short tbl_trans - tbl_trans # $00-1 fmovecr all
+ short tbl_trans - tbl_trans # $00-2 fmovecr all
+ short tbl_trans - tbl_trans # $00-3 fmovecr all
+ short tbl_trans - tbl_trans # $00-4 fmovecr all
+ short tbl_trans - tbl_trans # $00-5 fmovecr all
+ short tbl_trans - tbl_trans # $00-6 fmovecr all
+ short tbl_trans - tbl_trans # $00-7 fmovecr all
+
+ short tbl_trans - tbl_trans # $01-0 fint norm
+ short tbl_trans - tbl_trans # $01-1 fint zero
+ short tbl_trans - tbl_trans # $01-2 fint inf
+ short tbl_trans - tbl_trans # $01-3 fint qnan
+ short tbl_trans - tbl_trans # $01-5 fint denorm
+ short tbl_trans - tbl_trans # $01-4 fint snan
+ short tbl_trans - tbl_trans # $01-6 fint unnorm
+ short tbl_trans - tbl_trans # $01-7 ERROR
+
+ short ssinh - tbl_trans # $02-0 fsinh norm
+ short src_zero - tbl_trans # $02-1 fsinh zero
+ short src_inf - tbl_trans # $02-2 fsinh inf
+ short src_qnan - tbl_trans # $02-3 fsinh qnan
+ short ssinhd - tbl_trans # $02-5 fsinh denorm
+ short src_snan - tbl_trans # $02-4 fsinh snan
+ short tbl_trans - tbl_trans # $02-6 fsinh unnorm
+ short tbl_trans - tbl_trans # $02-7 ERROR
+
+ short tbl_trans - tbl_trans # $03-0 fintrz norm
+ short tbl_trans - tbl_trans # $03-1 fintrz zero
+ short tbl_trans - tbl_trans # $03-2 fintrz inf
+ short tbl_trans - tbl_trans # $03-3 fintrz qnan
+ short tbl_trans - tbl_trans # $03-5 fintrz denorm
+ short tbl_trans - tbl_trans # $03-4 fintrz snan
+ short tbl_trans - tbl_trans # $03-6 fintrz unnorm
+ short tbl_trans - tbl_trans # $03-7 ERROR
+
+ short tbl_trans - tbl_trans # $04-0 fsqrt norm
+ short tbl_trans - tbl_trans # $04-1 fsqrt zero
+ short tbl_trans - tbl_trans # $04-2 fsqrt inf
+ short tbl_trans - tbl_trans # $04-3 fsqrt qnan
+ short tbl_trans - tbl_trans # $04-5 fsqrt denorm
+ short tbl_trans - tbl_trans # $04-4 fsqrt snan
+ short tbl_trans - tbl_trans # $04-6 fsqrt unnorm
+ short tbl_trans - tbl_trans # $04-7 ERROR
+
+ short tbl_trans - tbl_trans # $05-0 ERROR
+ short tbl_trans - tbl_trans # $05-1 ERROR
+ short tbl_trans - tbl_trans # $05-2 ERROR
+ short tbl_trans - tbl_trans # $05-3 ERROR
+ short tbl_trans - tbl_trans # $05-4 ERROR
+ short tbl_trans - tbl_trans # $05-5 ERROR
+ short tbl_trans - tbl_trans # $05-6 ERROR
+ short tbl_trans - tbl_trans # $05-7 ERROR
+
+ short slognp1 - tbl_trans # $06-0 flognp1 norm
+ short src_zero - tbl_trans # $06-1 flognp1 zero
+ short sopr_inf - tbl_trans # $06-2 flognp1 inf
+ short src_qnan - tbl_trans # $06-3 flognp1 qnan
+ short slognp1d - tbl_trans # $06-5 flognp1 denorm
+ short src_snan - tbl_trans # $06-4 flognp1 snan
+ short tbl_trans - tbl_trans # $06-6 flognp1 unnorm
+ short tbl_trans - tbl_trans # $06-7 ERROR
+
+ short tbl_trans - tbl_trans # $07-0 ERROR
+ short tbl_trans - tbl_trans # $07-1 ERROR
+ short tbl_trans - tbl_trans # $07-2 ERROR
+ short tbl_trans - tbl_trans # $07-3 ERROR
+ short tbl_trans - tbl_trans # $07-4 ERROR
+ short tbl_trans - tbl_trans # $07-5 ERROR
+ short tbl_trans - tbl_trans # $07-6 ERROR
+ short tbl_trans - tbl_trans # $07-7 ERROR
+
+ short setoxm1 - tbl_trans # $08-0 fetoxm1 norm
+ short src_zero - tbl_trans # $08-1 fetoxm1 zero
+ short setoxm1i - tbl_trans # $08-2 fetoxm1 inf
+ short src_qnan - tbl_trans # $08-3 fetoxm1 qnan
+ short setoxm1d - tbl_trans # $08-5 fetoxm1 denorm
+ short src_snan - tbl_trans # $08-4 fetoxm1 snan
+ short tbl_trans - tbl_trans # $08-6 fetoxm1 unnorm
+ short tbl_trans - tbl_trans # $08-7 ERROR
+
+ short stanh - tbl_trans # $09-0 ftanh norm
+ short src_zero - tbl_trans # $09-1 ftanh zero
+ short src_one - tbl_trans # $09-2 ftanh inf
+ short src_qnan - tbl_trans # $09-3 ftanh qnan
+ short stanhd - tbl_trans # $09-5 ftanh denorm
+ short src_snan - tbl_trans # $09-4 ftanh snan
+ short tbl_trans - tbl_trans # $09-6 ftanh unnorm
+ short tbl_trans - tbl_trans # $09-7 ERROR
+
+ short satan - tbl_trans # $0a-0 fatan norm
+ short src_zero - tbl_trans # $0a-1 fatan zero
+ short spi_2 - tbl_trans # $0a-2 fatan inf
+ short src_qnan - tbl_trans # $0a-3 fatan qnan
+ short satand - tbl_trans # $0a-5 fatan denorm
+ short src_snan - tbl_trans # $0a-4 fatan snan
+ short tbl_trans - tbl_trans # $0a-6 fatan unnorm
+ short tbl_trans - tbl_trans # $0a-7 ERROR
+
+ short tbl_trans - tbl_trans # $0b-0 ERROR
+ short tbl_trans - tbl_trans # $0b-1 ERROR
+ short tbl_trans - tbl_trans # $0b-2 ERROR
+ short tbl_trans - tbl_trans # $0b-3 ERROR
+ short tbl_trans - tbl_trans # $0b-4 ERROR
+ short tbl_trans - tbl_trans # $0b-5 ERROR
+ short tbl_trans - tbl_trans # $0b-6 ERROR
+ short tbl_trans - tbl_trans # $0b-7 ERROR
+
+ short sasin - tbl_trans # $0c-0 fasin norm
+ short src_zero - tbl_trans # $0c-1 fasin zero
+ short t_operr - tbl_trans # $0c-2 fasin inf
+ short src_qnan - tbl_trans # $0c-3 fasin qnan
+ short sasind - tbl_trans # $0c-5 fasin denorm
+ short src_snan - tbl_trans # $0c-4 fasin snan
+ short tbl_trans - tbl_trans # $0c-6 fasin unnorm
+ short tbl_trans - tbl_trans # $0c-7 ERROR
+
+ short satanh - tbl_trans # $0d-0 fatanh norm
+ short src_zero - tbl_trans # $0d-1 fatanh zero
+ short t_operr - tbl_trans # $0d-2 fatanh inf
+ short src_qnan - tbl_trans # $0d-3 fatanh qnan
+ short satanhd - tbl_trans # $0d-5 fatanh denorm
+ short src_snan - tbl_trans # $0d-4 fatanh snan
+ short tbl_trans - tbl_trans # $0d-6 fatanh unnorm
+ short tbl_trans - tbl_trans # $0d-7 ERROR
+
+ short ssin - tbl_trans # $0e-0 fsin norm
+ short src_zero - tbl_trans # $0e-1 fsin zero
+ short t_operr - tbl_trans # $0e-2 fsin inf
+ short src_qnan - tbl_trans # $0e-3 fsin qnan
+ short ssind - tbl_trans # $0e-5 fsin denorm
+ short src_snan - tbl_trans # $0e-4 fsin snan
+ short tbl_trans - tbl_trans # $0e-6 fsin unnorm
+ short tbl_trans - tbl_trans # $0e-7 ERROR
+
+ short stan - tbl_trans # $0f-0 ftan norm
+ short src_zero - tbl_trans # $0f-1 ftan zero
+ short t_operr - tbl_trans # $0f-2 ftan inf
+ short src_qnan - tbl_trans # $0f-3 ftan qnan
+ short stand - tbl_trans # $0f-5 ftan denorm
+ short src_snan - tbl_trans # $0f-4 ftan snan
+ short tbl_trans - tbl_trans # $0f-6 ftan unnorm
+ short tbl_trans - tbl_trans # $0f-7 ERROR
+
+ short setox - tbl_trans # $10-0 fetox norm
+ short ld_pone - tbl_trans # $10-1 fetox zero
+ short szr_inf - tbl_trans # $10-2 fetox inf
+ short src_qnan - tbl_trans # $10-3 fetox qnan
+ short setoxd - tbl_trans # $10-5 fetox denorm
+ short src_snan - tbl_trans # $10-4 fetox snan
+ short tbl_trans - tbl_trans # $10-6 fetox unnorm
+ short tbl_trans - tbl_trans # $10-7 ERROR
+
+ short stwotox - tbl_trans # $11-0 ftwotox norm
+ short ld_pone - tbl_trans # $11-1 ftwotox zero
+ short szr_inf - tbl_trans # $11-2 ftwotox inf
+ short src_qnan - tbl_trans # $11-3 ftwotox qnan
+ short stwotoxd - tbl_trans # $11-5 ftwotox denorm
+ short src_snan - tbl_trans # $11-4 ftwotox snan
+ short tbl_trans - tbl_trans # $11-6 ftwotox unnorm
+ short tbl_trans - tbl_trans # $11-7 ERROR
+
+ short stentox - tbl_trans # $12-0 ftentox norm
+ short ld_pone - tbl_trans # $12-1 ftentox zero
+ short szr_inf - tbl_trans # $12-2 ftentox inf
+ short src_qnan - tbl_trans # $12-3 ftentox qnan
+ short stentoxd - tbl_trans # $12-5 ftentox denorm
+ short src_snan - tbl_trans # $12-4 ftentox snan
+ short tbl_trans - tbl_trans # $12-6 ftentox unnorm
+ short tbl_trans - tbl_trans # $12-7 ERROR
+
+ short tbl_trans - tbl_trans # $13-0 ERROR
+ short tbl_trans - tbl_trans # $13-1 ERROR
+ short tbl_trans - tbl_trans # $13-2 ERROR
+ short tbl_trans - tbl_trans # $13-3 ERROR
+ short tbl_trans - tbl_trans # $13-4 ERROR
+ short tbl_trans - tbl_trans # $13-5 ERROR
+ short tbl_trans - tbl_trans # $13-6 ERROR
+ short tbl_trans - tbl_trans # $13-7 ERROR
+
+ short slogn - tbl_trans # $14-0 flogn norm
+ short t_dz2 - tbl_trans # $14-1 flogn zero
+ short sopr_inf - tbl_trans # $14-2 flogn inf
+ short src_qnan - tbl_trans # $14-3 flogn qnan
+ short slognd - tbl_trans # $14-5 flogn denorm
+ short src_snan - tbl_trans # $14-4 flogn snan
+ short tbl_trans - tbl_trans # $14-6 flogn unnorm
+ short tbl_trans - tbl_trans # $14-7 ERROR
+
+ short slog10 - tbl_trans # $15-0 flog10 norm
+ short t_dz2 - tbl_trans # $15-1 flog10 zero
+ short sopr_inf - tbl_trans # $15-2 flog10 inf
+ short src_qnan - tbl_trans # $15-3 flog10 qnan
+ short slog10d - tbl_trans # $15-5 flog10 denorm
+ short src_snan - tbl_trans # $15-4 flog10 snan
+ short tbl_trans - tbl_trans # $15-6 flog10 unnorm
+ short tbl_trans - tbl_trans # $15-7 ERROR
+
+ short slog2 - tbl_trans # $16-0 flog2 norm
+ short t_dz2 - tbl_trans # $16-1 flog2 zero
+ short sopr_inf - tbl_trans # $16-2 flog2 inf
+ short src_qnan - tbl_trans # $16-3 flog2 qnan
+ short slog2d - tbl_trans # $16-5 flog2 denorm
+ short src_snan - tbl_trans # $16-4 flog2 snan
+ short tbl_trans - tbl_trans # $16-6 flog2 unnorm
+ short tbl_trans - tbl_trans # $16-7 ERROR
+
+ short tbl_trans - tbl_trans # $17-0 ERROR
+ short tbl_trans - tbl_trans # $17-1 ERROR
+ short tbl_trans - tbl_trans # $17-2 ERROR
+ short tbl_trans - tbl_trans # $17-3 ERROR
+ short tbl_trans - tbl_trans # $17-4 ERROR
+ short tbl_trans - tbl_trans # $17-5 ERROR
+ short tbl_trans - tbl_trans # $17-6 ERROR
+ short tbl_trans - tbl_trans # $17-7 ERROR
+
+ short tbl_trans - tbl_trans # $18-0 fabs norm
+ short tbl_trans - tbl_trans # $18-1 fabs zero
+ short tbl_trans - tbl_trans # $18-2 fabs inf
+ short tbl_trans - tbl_trans # $18-3 fabs qnan
+ short tbl_trans - tbl_trans # $18-5 fabs denorm
+ short tbl_trans - tbl_trans # $18-4 fabs snan
+ short tbl_trans - tbl_trans # $18-6 fabs unnorm
+ short tbl_trans - tbl_trans # $18-7 ERROR
+
+ short scosh - tbl_trans # $19-0 fcosh norm
+ short ld_pone - tbl_trans # $19-1 fcosh zero
+ short ld_pinf - tbl_trans # $19-2 fcosh inf
+ short src_qnan - tbl_trans # $19-3 fcosh qnan
+ short scoshd - tbl_trans # $19-5 fcosh denorm
+ short src_snan - tbl_trans # $19-4 fcosh snan
+ short tbl_trans - tbl_trans # $19-6 fcosh unnorm
+ short tbl_trans - tbl_trans # $19-7 ERROR
+
+ short tbl_trans - tbl_trans # $1a-0 fneg norm
+ short tbl_trans - tbl_trans # $1a-1 fneg zero
+ short tbl_trans - tbl_trans # $1a-2 fneg inf
+ short tbl_trans - tbl_trans # $1a-3 fneg qnan
+ short tbl_trans - tbl_trans # $1a-5 fneg denorm
+ short tbl_trans - tbl_trans # $1a-4 fneg snan
+ short tbl_trans - tbl_trans # $1a-6 fneg unnorm
+ short tbl_trans - tbl_trans # $1a-7 ERROR
+
+ short tbl_trans - tbl_trans # $1b-0 ERROR
+ short tbl_trans - tbl_trans # $1b-1 ERROR
+ short tbl_trans - tbl_trans # $1b-2 ERROR
+ short tbl_trans - tbl_trans # $1b-3 ERROR
+ short tbl_trans - tbl_trans # $1b-4 ERROR
+ short tbl_trans - tbl_trans # $1b-5 ERROR
+ short tbl_trans - tbl_trans # $1b-6 ERROR
+ short tbl_trans - tbl_trans # $1b-7 ERROR
+
+ short sacos - tbl_trans # $1c-0 facos norm
+ short ld_ppi2 - tbl_trans # $1c-1 facos zero
+ short t_operr - tbl_trans # $1c-2 facos inf
+ short src_qnan - tbl_trans # $1c-3 facos qnan
+ short sacosd - tbl_trans # $1c-5 facos denorm
+ short src_snan - tbl_trans # $1c-4 facos snan
+ short tbl_trans - tbl_trans # $1c-6 facos unnorm
+ short tbl_trans - tbl_trans # $1c-7 ERROR
+
+ short scos - tbl_trans # $1d-0 fcos norm
+ short ld_pone - tbl_trans # $1d-1 fcos zero
+ short t_operr - tbl_trans # $1d-2 fcos inf
+ short src_qnan - tbl_trans # $1d-3 fcos qnan
+ short scosd - tbl_trans # $1d-5 fcos denorm
+ short src_snan - tbl_trans # $1d-4 fcos snan
+ short tbl_trans - tbl_trans # $1d-6 fcos unnorm
+ short tbl_trans - tbl_trans # $1d-7 ERROR
+
+ short sgetexp - tbl_trans # $1e-0 fgetexp norm
+ short src_zero - tbl_trans # $1e-1 fgetexp zero
+ short t_operr - tbl_trans # $1e-2 fgetexp inf
+ short src_qnan - tbl_trans # $1e-3 fgetexp qnan
+ short sgetexpd - tbl_trans # $1e-5 fgetexp denorm
+ short src_snan - tbl_trans # $1e-4 fgetexp snan
+ short tbl_trans - tbl_trans # $1e-6 fgetexp unnorm
+ short tbl_trans - tbl_trans # $1e-7 ERROR
+
+ short sgetman - tbl_trans # $1f-0 fgetman norm
+ short src_zero - tbl_trans # $1f-1 fgetman zero
+ short t_operr - tbl_trans # $1f-2 fgetman inf
+ short src_qnan - tbl_trans # $1f-3 fgetman qnan
+ short sgetmand - tbl_trans # $1f-5 fgetman denorm
+ short src_snan - tbl_trans # $1f-4 fgetman snan
+ short tbl_trans - tbl_trans # $1f-6 fgetman unnorm
+ short tbl_trans - tbl_trans # $1f-7 ERROR
+
+ short tbl_trans - tbl_trans # $20-0 fdiv norm
+ short tbl_trans - tbl_trans # $20-1 fdiv zero
+ short tbl_trans - tbl_trans # $20-2 fdiv inf
+ short tbl_trans - tbl_trans # $20-3 fdiv qnan
+ short tbl_trans - tbl_trans # $20-5 fdiv denorm
+ short tbl_trans - tbl_trans # $20-4 fdiv snan
+ short tbl_trans - tbl_trans # $20-6 fdiv unnorm
+ short tbl_trans - tbl_trans # $20-7 ERROR
+
+ short smod_snorm - tbl_trans # $21-0 fmod norm
+ short smod_szero - tbl_trans # $21-1 fmod zero
+ short smod_sinf - tbl_trans # $21-2 fmod inf
+ short sop_sqnan - tbl_trans # $21-3 fmod qnan
+ short smod_sdnrm - tbl_trans # $21-5 fmod denorm
+ short sop_ssnan - tbl_trans # $21-4 fmod snan
+ short tbl_trans - tbl_trans # $21-6 fmod unnorm
+ short tbl_trans - tbl_trans # $21-7 ERROR
+
+ short tbl_trans - tbl_trans # $22-0 fadd norm
+ short tbl_trans - tbl_trans # $22-1 fadd zero
+ short tbl_trans - tbl_trans # $22-2 fadd inf
+ short tbl_trans - tbl_trans # $22-3 fadd qnan
+ short tbl_trans - tbl_trans # $22-5 fadd denorm
+ short tbl_trans - tbl_trans # $22-4 fadd snan
+ short tbl_trans - tbl_trans # $22-6 fadd unnorm
+ short tbl_trans - tbl_trans # $22-7 ERROR
+
+ short tbl_trans - tbl_trans # $23-0 fmul norm
+ short tbl_trans - tbl_trans # $23-1 fmul zero
+ short tbl_trans - tbl_trans # $23-2 fmul inf
+ short tbl_trans - tbl_trans # $23-3 fmul qnan
+ short tbl_trans - tbl_trans # $23-5 fmul denorm
+ short tbl_trans - tbl_trans # $23-4 fmul snan
+ short tbl_trans - tbl_trans # $23-6 fmul unnorm
+ short tbl_trans - tbl_trans # $23-7 ERROR
+
+ short tbl_trans - tbl_trans # $24-0 fsgldiv norm
+ short tbl_trans - tbl_trans # $24-1 fsgldiv zero
+ short tbl_trans - tbl_trans # $24-2 fsgldiv inf
+ short tbl_trans - tbl_trans # $24-3 fsgldiv qnan
+ short tbl_trans - tbl_trans # $24-5 fsgldiv denorm
+ short tbl_trans - tbl_trans # $24-4 fsgldiv snan
+ short tbl_trans - tbl_trans # $24-6 fsgldiv unnorm
+ short tbl_trans - tbl_trans # $24-7 ERROR
+
+ short srem_snorm - tbl_trans # $25-0 frem norm
+ short srem_szero - tbl_trans # $25-1 frem zero
+ short srem_sinf - tbl_trans # $25-2 frem inf
+ short sop_sqnan - tbl_trans # $25-3 frem qnan
+ short srem_sdnrm - tbl_trans # $25-5 frem denorm
+ short sop_ssnan - tbl_trans # $25-4 frem snan
+ short tbl_trans - tbl_trans # $25-6 frem unnorm
+ short tbl_trans - tbl_trans # $25-7 ERROR
+
+ short sscale_snorm - tbl_trans # $26-0 fscale norm
+ short sscale_szero - tbl_trans # $26-1 fscale zero
+ short sscale_sinf - tbl_trans # $26-2 fscale inf
+ short sop_sqnan - tbl_trans # $26-3 fscale qnan
+ short sscale_sdnrm - tbl_trans # $26-5 fscale denorm
+ short sop_ssnan - tbl_trans # $26-4 fscale snan
+ short tbl_trans - tbl_trans # $26-6 fscale unnorm
+ short tbl_trans - tbl_trans # $26-7 ERROR
+
+ short tbl_trans - tbl_trans # $27-0 fsglmul norm
+ short tbl_trans - tbl_trans # $27-1 fsglmul zero
+ short tbl_trans - tbl_trans # $27-2 fsglmul inf
+ short tbl_trans - tbl_trans # $27-3 fsglmul qnan
+ short tbl_trans - tbl_trans # $27-5 fsglmul denorm
+ short tbl_trans - tbl_trans # $27-4 fsglmul snan
+ short tbl_trans - tbl_trans # $27-6 fsglmul unnorm
+ short tbl_trans - tbl_trans # $27-7 ERROR
+
+ short tbl_trans - tbl_trans # $28-0 fsub norm
+ short tbl_trans - tbl_trans # $28-1 fsub zero
+ short tbl_trans - tbl_trans # $28-2 fsub inf
+ short tbl_trans - tbl_trans # $28-3 fsub qnan
+ short tbl_trans - tbl_trans # $28-5 fsub denorm
+ short tbl_trans - tbl_trans # $28-4 fsub snan
+ short tbl_trans - tbl_trans # $28-6 fsub unnorm
+ short tbl_trans - tbl_trans # $28-7 ERROR
+
+ short tbl_trans - tbl_trans # $29-0 ERROR
+ short tbl_trans - tbl_trans # $29-1 ERROR
+ short tbl_trans - tbl_trans # $29-2 ERROR
+ short tbl_trans - tbl_trans # $29-3 ERROR
+ short tbl_trans - tbl_trans # $29-4 ERROR
+ short tbl_trans - tbl_trans # $29-5 ERROR
+ short tbl_trans - tbl_trans # $29-6 ERROR
+ short tbl_trans - tbl_trans # $29-7 ERROR
+
+ short tbl_trans - tbl_trans # $2a-0 ERROR
+ short tbl_trans - tbl_trans # $2a-1 ERROR
+ short tbl_trans - tbl_trans # $2a-2 ERROR
+ short tbl_trans - tbl_trans # $2a-3 ERROR
+ short tbl_trans - tbl_trans # $2a-4 ERROR
+ short tbl_trans - tbl_trans # $2a-5 ERROR
+ short tbl_trans - tbl_trans # $2a-6 ERROR
+ short tbl_trans - tbl_trans # $2a-7 ERROR
+
+ short tbl_trans - tbl_trans # $2b-0 ERROR
+ short tbl_trans - tbl_trans # $2b-1 ERROR
+ short tbl_trans - tbl_trans # $2b-2 ERROR
+ short tbl_trans - tbl_trans # $2b-3 ERROR
+ short tbl_trans - tbl_trans # $2b-4 ERROR
+ short tbl_trans - tbl_trans # $2b-5 ERROR
+ short tbl_trans - tbl_trans # $2b-6 ERROR
+ short tbl_trans - tbl_trans # $2b-7 ERROR
+
+ short tbl_trans - tbl_trans # $2c-0 ERROR
+ short tbl_trans - tbl_trans # $2c-1 ERROR
+ short tbl_trans - tbl_trans # $2c-2 ERROR
+ short tbl_trans - tbl_trans # $2c-3 ERROR
+ short tbl_trans - tbl_trans # $2c-4 ERROR
+ short tbl_trans - tbl_trans # $2c-5 ERROR
+ short tbl_trans - tbl_trans # $2c-6 ERROR
+ short tbl_trans - tbl_trans # $2c-7 ERROR
+
+ short tbl_trans - tbl_trans # $2d-0 ERROR
+ short tbl_trans - tbl_trans # $2d-1 ERROR
+ short tbl_trans - tbl_trans # $2d-2 ERROR
+ short tbl_trans - tbl_trans # $2d-3 ERROR
+ short tbl_trans - tbl_trans # $2d-4 ERROR
+ short tbl_trans - tbl_trans # $2d-5 ERROR
+ short tbl_trans - tbl_trans # $2d-6 ERROR
+ short tbl_trans - tbl_trans # $2d-7 ERROR
+
+ short tbl_trans - tbl_trans # $2e-0 ERROR
+ short tbl_trans - tbl_trans # $2e-1 ERROR
+ short tbl_trans - tbl_trans # $2e-2 ERROR
+ short tbl_trans - tbl_trans # $2e-3 ERROR
+ short tbl_trans - tbl_trans # $2e-4 ERROR
+ short tbl_trans - tbl_trans # $2e-5 ERROR
+ short tbl_trans - tbl_trans # $2e-6 ERROR
+ short tbl_trans - tbl_trans # $2e-7 ERROR
+
+ short tbl_trans - tbl_trans # $2f-0 ERROR
+ short tbl_trans - tbl_trans # $2f-1 ERROR
+ short tbl_trans - tbl_trans # $2f-2 ERROR
+ short tbl_trans - tbl_trans # $2f-3 ERROR
+ short tbl_trans - tbl_trans # $2f-4 ERROR
+ short tbl_trans - tbl_trans # $2f-5 ERROR
+ short tbl_trans - tbl_trans # $2f-6 ERROR
+ short tbl_trans - tbl_trans # $2f-7 ERROR
+
+ short ssincos - tbl_trans # $30-0 fsincos norm
+ short ssincosz - tbl_trans # $30-1 fsincos zero
+ short ssincosi - tbl_trans # $30-2 fsincos inf
+ short ssincosqnan - tbl_trans # $30-3 fsincos qnan
+ short ssincosd - tbl_trans # $30-5 fsincos denorm
+ short ssincossnan - tbl_trans # $30-4 fsincos snan
+ short tbl_trans - tbl_trans # $30-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $30-7 ERROR
+
+ short ssincos - tbl_trans # $31-0 fsincos norm
+ short ssincosz - tbl_trans # $31-1 fsincos zero
+ short ssincosi - tbl_trans # $31-2 fsincos inf
+ short ssincosqnan - tbl_trans # $31-3 fsincos qnan
+ short ssincosd - tbl_trans # $31-5 fsincos denorm
+ short ssincossnan - tbl_trans # $31-4 fsincos snan
+ short tbl_trans - tbl_trans # $31-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $31-7 ERROR
+
+ short ssincos - tbl_trans # $32-0 fsincos norm
+ short ssincosz - tbl_trans # $32-1 fsincos zero
+ short ssincosi - tbl_trans # $32-2 fsincos inf
+ short ssincosqnan - tbl_trans # $32-3 fsincos qnan
+ short ssincosd - tbl_trans # $32-5 fsincos denorm
+ short ssincossnan - tbl_trans # $32-4 fsincos snan
+ short tbl_trans - tbl_trans # $32-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $32-7 ERROR
+
+ short ssincos - tbl_trans # $33-0 fsincos norm
+ short ssincosz - tbl_trans # $33-1 fsincos zero
+ short ssincosi - tbl_trans # $33-2 fsincos inf
+ short ssincosqnan - tbl_trans # $33-3 fsincos qnan
+ short ssincosd - tbl_trans # $33-5 fsincos denorm
+ short ssincossnan - tbl_trans # $33-4 fsincos snan
+ short tbl_trans - tbl_trans # $33-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $33-7 ERROR
+
+ short ssincos - tbl_trans # $34-0 fsincos norm
+ short ssincosz - tbl_trans # $34-1 fsincos zero
+ short ssincosi - tbl_trans # $34-2 fsincos inf
+ short ssincosqnan - tbl_trans # $34-3 fsincos qnan
+ short ssincosd - tbl_trans # $34-5 fsincos denorm
+ short ssincossnan - tbl_trans # $34-4 fsincos snan
+ short tbl_trans - tbl_trans # $34-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $34-7 ERROR
+
+ short ssincos - tbl_trans # $35-0 fsincos norm
+ short ssincosz - tbl_trans # $35-1 fsincos zero
+ short ssincosi - tbl_trans # $35-2 fsincos inf
+ short ssincosqnan - tbl_trans # $35-3 fsincos qnan
+ short ssincosd - tbl_trans # $35-5 fsincos denorm
+ short ssincossnan - tbl_trans # $35-4 fsincos snan
+ short tbl_trans - tbl_trans # $35-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $35-7 ERROR
+
+ short ssincos - tbl_trans # $36-0 fsincos norm
+ short ssincosz - tbl_trans # $36-1 fsincos zero
+ short ssincosi - tbl_trans # $36-2 fsincos inf
+ short ssincosqnan - tbl_trans # $36-3 fsincos qnan
+ short ssincosd - tbl_trans # $36-5 fsincos denorm
+ short ssincossnan - tbl_trans # $36-4 fsincos snan
+ short tbl_trans - tbl_trans # $36-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $36-7 ERROR
+
+ short ssincos - tbl_trans # $37-0 fsincos norm
+ short ssincosz - tbl_trans # $37-1 fsincos zero
+ short ssincosi - tbl_trans # $37-2 fsincos inf
+ short ssincosqnan - tbl_trans # $37-3 fsincos qnan
+ short ssincosd - tbl_trans # $37-5 fsincos denorm
+ short ssincossnan - tbl_trans # $37-4 fsincos snan
+ short tbl_trans - tbl_trans # $37-6 fsincos unnorm
+ short tbl_trans - tbl_trans # $37-7 ERROR
+
+##########
+
+# the instruction fetch access for the displacement word for the
+# fdbcc emulation failed. here, we create an access error frame
+# from the current frame and branch to _real_access().
+funimp_iacc:
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+
+ mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
+
+ unlk %a6
+
+ mov.l (%sp),-(%sp) # store SR,hi(PC)
+ mov.w 0x8(%sp),0x4(%sp) # store lo(PC)
+ mov.w &0x4008,0x6(%sp) # store voff
+ mov.l 0x2(%sp),0x8(%sp) # store EA
+ mov.l &0x09428001,0xc(%sp) # store FSLW
+
+ btst &0x5,(%sp) # user or supervisor mode?
+ beq.b funimp_iacc_end # user
+ bset &0x2,0xd(%sp) # set supervisor TM bit
+
+funimp_iacc_end:
+ bra.l _real_access
+
+#########################################################################
+# ssin(): computes the sine of a normalized input #
+# ssind(): computes the sine of a denormalized input #
+# scos(): computes the cosine of a normalized input #
+# scosd(): computes the cosine of a denormalized input #
+# ssincos(): computes the sine and cosine of a normalized input #
+# ssincosd(): computes the sine and cosine of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = sin(X) or cos(X) #
+# #
+# For ssincos(X): #
+# fp0 = sin(X) #
+# fp1 = cos(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 1 ulp in 64 significant bit, i.e. #
+# within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# SIN and COS: #
+# 1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1. #
+# #
+# 2. If |X| >= 15Pi or |X| < 2**(-40), go to 7. #
+# #
+# 3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
+# k = N mod 4, so in particular, k = 0,1,2,or 3. #
+# Overwrite k by k := k + AdjN. #
+# #
+# 4. If k is even, go to 6. #
+# #
+# 5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. #
+# Return sgn*cos(r) where cos(r) is approximated by an #
+# even polynomial in r, 1 + r*r*(B1+s*(B2+ ... + s*B8)), #
+# s = r*r. #
+# Exit. #
+# #
+# 6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r) #
+# where sin(r) is approximated by an odd polynomial in r #
+# r + r*s*(A1+s*(A2+ ... + s*A7)), s = r*r. #
+# Exit. #
+# #
+# 7. If |X| > 1, go to 9. #
+# #
+# 8. (|X|<2**(-40)) If SIN is invoked, return X; #
+# otherwise return 1. #
+# #
+# 9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
+# go back to 3. #
+# #
+# SINCOS: #
+# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
+# #
+# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
+# k = N mod 4, so in particular, k = 0,1,2,or 3. #
+# #
+# 3. If k is even, go to 5. #
+# #
+# 4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), ie. #
+# j1 exclusive or with the l.s.b. of k. #
+# sgn1 := (-1)**j1, sgn2 := (-1)**j2. #
+# SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where #
+# sin(r) and cos(r) are computed as odd and even #
+# polynomials in r, respectively. Exit #
+# #
+# 5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1. #
+# SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where #
+# sin(r) and cos(r) are computed as odd and even #
+# polynomials in r, respectively. Exit #
+# #
+# 6. If |X| > 1, go to 8. #
+# #
+# 7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit. #
+# #
+# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, #
+# go back to 2. #
+# #
+#########################################################################
+
+SINA7: long 0xBD6AAA77,0xCCC994F5
+SINA6: long 0x3DE61209,0x7AAE8DA1
+SINA5: long 0xBE5AE645,0x2A118AE4
+SINA4: long 0x3EC71DE3,0xA5341531
+SINA3: long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
+SINA2: long 0x3FF80000,0x88888888,0x888859AF,0x00000000
+SINA1: long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
+
+COSB8: long 0x3D2AC4D0,0xD6011EE3
+COSB7: long 0xBDA9396F,0x9F45AC19
+COSB6: long 0x3E21EED9,0x0612C972
+COSB5: long 0xBE927E4F,0xB79D9FCF
+COSB4: long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
+COSB3: long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
+COSB2: long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
+COSB1: long 0xBF000000
+
+ set INARG,FP_SCR0
+
+ set X,FP_SCR0
+# set XDCARE,X+2
+ set XFRAC,X+4
+
+ set RPRIME,FP_SCR0
+ set SPRIME,FP_SCR1
+
+ set POSNEG1,L_SCR1
+ set TWOTO63,L_SCR1
+
+ set ENDFLAG,L_SCR2
+ set INT,L_SCR2
+
+ set ADJN,L_SCR3
+
+############################################
+ global ssin
+ssin:
+ mov.l &0,ADJN(%a6) # yes; SET ADJN TO 0
+ bra.b SINBGN
+
+############################################
+ global scos
+scos:
+ mov.l &1,ADJN(%a6) # yes; SET ADJN TO 1
+
+############################################
+SINBGN:
+#--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
+
+ fmov.x (%a0),%fp0 # LOAD INPUT
+ fmov.x %fp0,X(%a6) # save input at X
+
+# "COMPACTIFY" X
+ mov.l (%a0),%d1 # put exp in hi word
+ mov.w 4(%a0),%d1 # fetch hi(man)
+ and.l &0x7FFFFFFF,%d1 # strip sign
+
+ cmpi.l %d1,&0x3FD78000 # is |X| >= 2**(-40)?
+ bge.b SOK1 # no
+ bra.w SINSM # yes; input is very small
+
+SOK1:
+ cmp.l %d1,&0x4004BC7E # is |X| < 15 PI?
+ blt.b SINMAIN # no
+ bra.w SREDUCEX # yes; input is very large
+
+#--THIS IS THE USUAL CASE, |X| <= 15 PI.
+#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
+SINMAIN:
+ fmov.x %fp0,%fp1
+ fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
+
+ lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
+
+ fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
+
+ mov.l INT(%a6),%d1 # make a copy of N
+ asl.l &4,%d1 # N *= 16
+ add.l %d1,%a1 # tbl_addr = a1 + (N*16)
+
+# A1 IS THE ADDRESS OF N*PIBY2
+# ...WHICH IS IN TWO PIECES Y1 & Y2
+ fsub.x (%a1)+,%fp0 # X-Y1
+ fsub.s (%a1),%fp0 # fp0 = R = (X-Y1)-Y2
+
+SINCONT:
+#--continuation from REDUCEX
+
+#--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
+ mov.l INT(%a6),%d1
+ add.l ADJN(%a6),%d1 # SEE IF D0 IS ODD OR EVEN
+ ror.l &1,%d1 # D0 WAS ODD IFF D0 IS NEGATIVE
+ cmp.l %d1,&0
+ blt.w COSPOLY
+
+#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
+#--THEN WE RETURN SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
+#--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
+#--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
+#--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
+#--WHERE T=S*S.
+#--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
+#--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
+SINPOLY:
+ fmovm.x &0x0c,-(%sp) # save fp2/fp3
+
+ fmov.x %fp0,X(%a6) # X IS R
+ fmul.x %fp0,%fp0 # FP0 IS S
+
+ fmov.d SINA7(%pc),%fp3
+ fmov.d SINA6(%pc),%fp2
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # FP1 IS T
+
+ ror.l &1,%d1
+ and.l &0x80000000,%d1
+# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
+ eor.l %d1,X(%a6) # X IS NOW R'= SGN*R
+
+ fmul.x %fp1,%fp3 # TA7
+ fmul.x %fp1,%fp2 # TA6
+
+ fadd.d SINA5(%pc),%fp3 # A5+TA7
+ fadd.d SINA4(%pc),%fp2 # A4+TA6
+
+ fmul.x %fp1,%fp3 # T(A5+TA7)
+ fmul.x %fp1,%fp2 # T(A4+TA6)
+
+ fadd.d SINA3(%pc),%fp3 # A3+T(A5+TA7)
+ fadd.x SINA2(%pc),%fp2 # A2+T(A4+TA6)
+
+ fmul.x %fp3,%fp1 # T(A3+T(A5+TA7))
+
+ fmul.x %fp0,%fp2 # S(A2+T(A4+TA6))
+ fadd.x SINA1(%pc),%fp1 # A1+T(A3+T(A5+TA7))
+ fmul.x X(%a6),%fp0 # R'*S
+
+ fadd.x %fp2,%fp1 # [A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
+
+ fmul.x %fp1,%fp0 # SIN(R')-R'
+
+ fmovm.x (%sp)+,&0x30 # restore fp2/fp3
+
+ fmov.l %d0,%fpcr # restore users round mode,prec
+ fadd.x X(%a6),%fp0 # last inst - possible exception set
+ bra t_inx2
+
+#--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
+#--THEN WE RETURN SGN*COS(R). SGN*COS(R) IS COMPUTED BY
+#--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
+#--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
+#--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
+#--WHERE T=S*S.
+#--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
+#--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
+#--AND IS THEREFORE STORED AS SINGLE PRECISION.
+COSPOLY:
+ fmovm.x &0x0c,-(%sp) # save fp2/fp3
+
+ fmul.x %fp0,%fp0 # FP0 IS S
+
+ fmov.d COSB8(%pc),%fp2
+ fmov.d COSB7(%pc),%fp3
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # FP1 IS T
+
+ fmov.x %fp0,X(%a6) # X IS S
+ ror.l &1,%d1
+ and.l &0x80000000,%d1
+# ...LEAST SIG. BIT OF D0 IN SIGN POSITION
+
+ fmul.x %fp1,%fp2 # TB8
+
+ eor.l %d1,X(%a6) # X IS NOW S'= SGN*S
+ and.l &0x80000000,%d1
+
+ fmul.x %fp1,%fp3 # TB7
+
+ or.l &0x3F800000,%d1 # D0 IS SGN IN SINGLE
+ mov.l %d1,POSNEG1(%a6)
+
+ fadd.d COSB6(%pc),%fp2 # B6+TB8
+ fadd.d COSB5(%pc),%fp3 # B5+TB7
+
+ fmul.x %fp1,%fp2 # T(B6+TB8)
+ fmul.x %fp1,%fp3 # T(B5+TB7)
+
+ fadd.d COSB4(%pc),%fp2 # B4+T(B6+TB8)
+ fadd.x COSB3(%pc),%fp3 # B3+T(B5+TB7)
+
+ fmul.x %fp1,%fp2 # T(B4+T(B6+TB8))
+ fmul.x %fp3,%fp1 # T(B3+T(B5+TB7))
+
+ fadd.x COSB2(%pc),%fp2 # B2+T(B4+T(B6+TB8))
+ fadd.s COSB1(%pc),%fp1 # B1+T(B3+T(B5+TB7))
+
+ fmul.x %fp2,%fp0 # S(B2+T(B4+T(B6+TB8)))
+
+ fadd.x %fp1,%fp0
+
+ fmul.x X(%a6),%fp0
+
+ fmovm.x (%sp)+,&0x30 # restore fp2/fp3
+
+ fmov.l %d0,%fpcr # restore users round mode,prec
+ fadd.s POSNEG1(%a6),%fp0 # last inst - possible exception set
+ bra t_inx2
+
+##############################################
+
+# SINe: Big OR Small?
+#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
+#--IF |X| < 2**(-40), RETURN X OR 1.
+SINBORS:
+ cmp.l %d1,&0x3FFF8000
+ bgt.l SREDUCEX
+
+SINSM:
+ mov.l ADJN(%a6),%d1
+ cmp.l %d1,&0
+ bgt.b COSTINY
+
+# here, the operation may underflow iff the precision is sgl or dbl.
+# extended denorms are handled through another entry point.
+SINTINY:
+# mov.w &0x0000,XDCARE(%a6) # JUST IN CASE
+
+ fmov.l %d0,%fpcr # restore users round mode,prec
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x X(%a6),%fp0 # last inst - possible exception set
+ bra t_catch
+
+COSTINY:
+ fmov.s &0x3F800000,%fp0 # fp0 = 1.0
+ fmov.l %d0,%fpcr # restore users round mode,prec
+ fadd.s &0x80800000,%fp0 # last inst - possible exception set
+ bra t_pinx2
+
+################################################
+ global ssind
+#--SIN(X) = X FOR DENORMALIZED X
+ssind:
+ bra t_extdnrm
+
+############################################
+ global scosd
+#--COS(X) = 1 FOR DENORMALIZED X
+scosd:
+ fmov.s &0x3F800000,%fp0 # fp0 = 1.0
+ bra t_pinx2
+
+##################################################
+
+ global ssincos
+ssincos:
+#--SET ADJN TO 4
+ mov.l &4,ADJN(%a6)
+
+ fmov.x (%a0),%fp0 # LOAD INPUT
+ fmov.x %fp0,X(%a6)
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ and.l &0x7FFFFFFF,%d1 # COMPACTIFY X
+
+ cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
+ bge.b SCOK1
+ bra.w SCSM
+
+SCOK1:
+ cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
+ blt.b SCMAIN
+ bra.w SREDUCEX
+
+
+#--THIS IS THE USUAL CASE, |X| <= 15 PI.
+#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
+SCMAIN:
+ fmov.x %fp0,%fp1
+
+ fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
+
+ lea PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
+
+ fmov.l %fp1,INT(%a6) # CONVERT TO INTEGER
+
+ mov.l INT(%a6),%d1
+ asl.l &4,%d1
+ add.l %d1,%a1 # ADDRESS OF N*PIBY2, IN Y1, Y2
+
+ fsub.x (%a1)+,%fp0 # X-Y1
+ fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
+
+SCCONT:
+#--continuation point from REDUCEX
+
+ mov.l INT(%a6),%d1
+ ror.l &1,%d1
+ cmp.l %d1,&0 # D0 < 0 IFF N IS ODD
+ bge.w NEVEN
+
+SNODD:
+#--REGISTERS SAVED SO FAR: D0, A0, FP2.
+ fmovm.x &0x04,-(%sp) # save fp2
+
+ fmov.x %fp0,RPRIME(%a6)
+ fmul.x %fp0,%fp0 # FP0 IS S = R*R
+ fmov.d SINA7(%pc),%fp1 # A7
+ fmov.d COSB8(%pc),%fp2 # B8
+ fmul.x %fp0,%fp1 # SA7
+ fmul.x %fp0,%fp2 # SB8
+
+ mov.l %d2,-(%sp)
+ mov.l %d1,%d2
+ ror.l &1,%d2
+ and.l &0x80000000,%d2
+ eor.l %d1,%d2
+ and.l &0x80000000,%d2
+
+ fadd.d SINA6(%pc),%fp1 # A6+SA7
+ fadd.d COSB7(%pc),%fp2 # B7+SB8
+
+ fmul.x %fp0,%fp1 # S(A6+SA7)
+ eor.l %d2,RPRIME(%a6)
+ mov.l (%sp)+,%d2
+ fmul.x %fp0,%fp2 # S(B7+SB8)
+ ror.l &1,%d1
+ and.l &0x80000000,%d1
+ mov.l &0x3F800000,POSNEG1(%a6)
+ eor.l %d1,POSNEG1(%a6)
+
+ fadd.d SINA5(%pc),%fp1 # A5+S(A6+SA7)
+ fadd.d COSB6(%pc),%fp2 # B6+S(B7+SB8)
+
+ fmul.x %fp0,%fp1 # S(A5+S(A6+SA7))
+ fmul.x %fp0,%fp2 # S(B6+S(B7+SB8))
+ fmov.x %fp0,SPRIME(%a6)
+
+ fadd.d SINA4(%pc),%fp1 # A4+S(A5+S(A6+SA7))
+ eor.l %d1,SPRIME(%a6)
+ fadd.d COSB5(%pc),%fp2 # B5+S(B6+S(B7+SB8))
+
+ fmul.x %fp0,%fp1 # S(A4+...)
+ fmul.x %fp0,%fp2 # S(B5+...)
+
+ fadd.d SINA3(%pc),%fp1 # A3+S(A4+...)
+ fadd.d COSB4(%pc),%fp2 # B4+S(B5+...)
+
+ fmul.x %fp0,%fp1 # S(A3+...)
+ fmul.x %fp0,%fp2 # S(B4+...)
+
+ fadd.x SINA2(%pc),%fp1 # A2+S(A3+...)
+ fadd.x COSB3(%pc),%fp2 # B3+S(B4+...)
+
+ fmul.x %fp0,%fp1 # S(A2+...)
+ fmul.x %fp0,%fp2 # S(B3+...)
+
+ fadd.x SINA1(%pc),%fp1 # A1+S(A2+...)
+ fadd.x COSB2(%pc),%fp2 # B2+S(B3+...)
+
+ fmul.x %fp0,%fp1 # S(A1+...)
+ fmul.x %fp2,%fp0 # S(B2+...)
+
+ fmul.x RPRIME(%a6),%fp1 # R'S(A1+...)
+ fadd.s COSB1(%pc),%fp0 # B1+S(B2...)
+ fmul.x SPRIME(%a6),%fp0 # S'(B1+S(B2+...))
+
+ fmovm.x (%sp)+,&0x20 # restore fp2
+
+ fmov.l %d0,%fpcr
+ fadd.x RPRIME(%a6),%fp1 # COS(X)
+ bsr sto_cos # store cosine result
+ fadd.s POSNEG1(%a6),%fp0 # SIN(X)
+ bra t_inx2
+
+NEVEN:
+#--REGISTERS SAVED SO FAR: FP2.
+ fmovm.x &0x04,-(%sp) # save fp2
+
+ fmov.x %fp0,RPRIME(%a6)
+ fmul.x %fp0,%fp0 # FP0 IS S = R*R
+
+ fmov.d COSB8(%pc),%fp1 # B8
+ fmov.d SINA7(%pc),%fp2 # A7
+
+ fmul.x %fp0,%fp1 # SB8
+ fmov.x %fp0,SPRIME(%a6)
+ fmul.x %fp0,%fp2 # SA7
+
+ ror.l &1,%d1
+ and.l &0x80000000,%d1
+
+ fadd.d COSB7(%pc),%fp1 # B7+SB8
+ fadd.d SINA6(%pc),%fp2 # A6+SA7
+
+ eor.l %d1,RPRIME(%a6)
+ eor.l %d1,SPRIME(%a6)
+
+ fmul.x %fp0,%fp1 # S(B7+SB8)
+
+ or.l &0x3F800000,%d1
+ mov.l %d1,POSNEG1(%a6)
+
+ fmul.x %fp0,%fp2 # S(A6+SA7)
+
+ fadd.d COSB6(%pc),%fp1 # B6+S(B7+SB8)
+ fadd.d SINA5(%pc),%fp2 # A5+S(A6+SA7)
+
+ fmul.x %fp0,%fp1 # S(B6+S(B7+SB8))
+ fmul.x %fp0,%fp2 # S(A5+S(A6+SA7))
+
+ fadd.d COSB5(%pc),%fp1 # B5+S(B6+S(B7+SB8))
+ fadd.d SINA4(%pc),%fp2 # A4+S(A5+S(A6+SA7))
+
+ fmul.x %fp0,%fp1 # S(B5+...)
+ fmul.x %fp0,%fp2 # S(A4+...)
+
+ fadd.d COSB4(%pc),%fp1 # B4+S(B5+...)
+ fadd.d SINA3(%pc),%fp2 # A3+S(A4+...)
+
+ fmul.x %fp0,%fp1 # S(B4+...)
+ fmul.x %fp0,%fp2 # S(A3+...)
+
+ fadd.x COSB3(%pc),%fp1 # B3+S(B4+...)
+ fadd.x SINA2(%pc),%fp2 # A2+S(A3+...)
+
+ fmul.x %fp0,%fp1 # S(B3+...)
+ fmul.x %fp0,%fp2 # S(A2+...)
+
+ fadd.x COSB2(%pc),%fp1 # B2+S(B3+...)
+ fadd.x SINA1(%pc),%fp2 # A1+S(A2+...)
+
+ fmul.x %fp0,%fp1 # S(B2+...)
+ fmul.x %fp2,%fp0 # s(a1+...)
+
+
+ fadd.s COSB1(%pc),%fp1 # B1+S(B2...)
+ fmul.x RPRIME(%a6),%fp0 # R'S(A1+...)
+ fmul.x SPRIME(%a6),%fp1 # S'(B1+S(B2+...))
+
+ fmovm.x (%sp)+,&0x20 # restore fp2
+
+ fmov.l %d0,%fpcr
+ fadd.s POSNEG1(%a6),%fp1 # COS(X)
+ bsr sto_cos # store cosine result
+ fadd.x RPRIME(%a6),%fp0 # SIN(X)
+ bra t_inx2
+
+################################################
+
+SCBORS:
+ cmp.l %d1,&0x3FFF8000
+ bgt.w SREDUCEX
+
+################################################
+
+SCSM:
+# mov.w &0x0000,XDCARE(%a6)
+ fmov.s &0x3F800000,%fp1
+
+ fmov.l %d0,%fpcr
+ fsub.s &0x00800000,%fp1
+ bsr sto_cos # store cosine result
+ fmov.l %fpcr,%d0 # d0 must have fpcr,too
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x X(%a6),%fp0
+ bra t_catch
+
+##############################################
+
+ global ssincosd
+#--SIN AND COS OF X FOR DENORMALIZED X
+ssincosd:
+ mov.l %d0,-(%sp) # save d0
+ fmov.s &0x3F800000,%fp1
+ bsr sto_cos # store cosine result
+ mov.l (%sp)+,%d0 # restore d0
+ bra t_extdnrm
+
+############################################
+
+#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
+#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
+#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
+SREDUCEX:
+ fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
+ mov.l %d2,-(%sp) # save d2
+ fmov.s &0x00000000,%fp1 # fp1 = 0
+
+#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
+#--there is a danger of unwanted overflow in first LOOP iteration. In this
+#--case, reduce argument by one remainder step to make subsequent reduction
+#--safe.
+ cmp.l %d1,&0x7ffeffff # is arg dangerously large?
+ bne.b SLOOP # no
+
+# yes; create 2**16383*PI/2
+ mov.w &0x7ffe,FP_SCR0_EX(%a6)
+ mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
+ clr.l FP_SCR0_LO(%a6)
+
+# create low half of 2**16383*PI/2 at FP_SCR1
+ mov.w &0x7fdc,FP_SCR1_EX(%a6)
+ mov.l &0x85a308d3,FP_SCR1_HI(%a6)
+ clr.l FP_SCR1_LO(%a6)
+
+ ftest.x %fp0 # test sign of argument
+ fblt.w sred_neg
+
+ or.b &0x80,FP_SCR0_EX(%a6) # positive arg
+ or.b &0x80,FP_SCR1_EX(%a6)
+sred_neg:
+ fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
+ fmov.x %fp0,%fp1 # save high result in fp1
+ fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
+ fsub.x %fp0,%fp1 # determine low component of result
+ fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
+
+#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
+#--integer quotient will be stored in N
+#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
+SLOOP:
+ fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
+ mov.w INARG(%a6),%d1
+ mov.l %d1,%a1 # save a copy of D0
+ and.l &0x00007FFF,%d1
+ sub.l &0x00003FFF,%d1 # d0 = K
+ cmp.l %d1,&28
+ ble.b SLASTLOOP
+SCONTLOOP:
+ sub.l &27,%d1 # d0 = L := K-27
+ mov.b &0,ENDFLAG(%a6)
+ bra.b SWORK
+SLASTLOOP:
+ clr.l %d1 # d0 = L := 0
+ mov.b &1,ENDFLAG(%a6)
+
+SWORK:
+#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
+#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
+
+#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
+#--2**L * (PIby2_1), 2**L * (PIby2_2)
+
+ mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
+ sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
+
+ mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
+ mov.l &0x4E44152A,FP_SCR0_LO(%a6)
+ mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
+
+ fmov.x %fp0,%fp2
+ fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
+
+#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
+#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
+#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
+#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
+#--US THE DESIRED VALUE IN FLOATING POINT.
+ mov.l %a1,%d2
+ swap %d2
+ and.l &0x80000000,%d2
+ or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
+ mov.l %d2,TWOTO63(%a6)
+ fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
+ fsub.s TWOTO63(%a6),%fp2 # fp2 = N
+# fint.x %fp2
+
+#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
+ mov.l %d1,%d2 # d2 = L
+
+ add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
+ mov.w %d2,FP_SCR0_EX(%a6)
+ mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
+ clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
+
+ add.l &0x00003FDD,%d1
+ mov.w %d1,FP_SCR1_EX(%a6)
+ mov.l &0x85A308D3,FP_SCR1_HI(%a6)
+ clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
+
+ mov.b ENDFLAG(%a6),%d1
+
+#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
+#--P2 = 2**(L) * Piby2_2
+ fmov.x %fp2,%fp4 # fp4 = N
+ fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
+ fmov.x %fp2,%fp5 # fp5 = N
+ fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
+ fmov.x %fp4,%fp3 # fp3 = W = N*P1
+
+#--we want P+p = W+w but |p| <= half ulp of P
+#--Then, we need to compute A := R-P and a := r-p
+ fadd.x %fp5,%fp3 # fp3 = P
+ fsub.x %fp3,%fp4 # fp4 = W-P
+
+ fsub.x %fp3,%fp0 # fp0 = A := R - P
+ fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
+
+ fmov.x %fp0,%fp3 # fp3 = A
+ fsub.x %fp4,%fp1 # fp1 = a := r - p
+
+#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
+#--|r| <= half ulp of R.
+ fadd.x %fp1,%fp0 # fp0 = R := A+a
+#--No need to calculate r if this is the last loop
+ cmp.b %d1,&0
+ bgt.w SRESTORE
+
+#--Need to calculate r
+ fsub.x %fp0,%fp3 # fp3 = A-R
+ fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
+ bra.w SLOOP
+
+SRESTORE:
+ fmov.l %fp2,INT(%a6)
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
+
+ mov.l ADJN(%a6),%d1
+ cmp.l %d1,&4
+
+ blt.w SINCONT
+ bra.w SCCONT
+
+#########################################################################
+# stan(): computes the tangent of a normalized input #
+# stand(): computes the tangent of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = tan(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 3 ulp in 64 significant bit, i.e. #
+# within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# 1. If |X| >= 15Pi or |X| < 2**(-40), go to 6. #
+# #
+# 2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let #
+# k = N mod 2, so in particular, k = 0 or 1. #
+# #
+# 3. If k is odd, go to 5. #
+# #
+# 4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a #
+# rational function U/V where #
+# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
+# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r. #
+# Exit. #
+# #
+# 4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by #
+# a rational function U/V where #
+# U = r + r*s*(P1 + s*(P2 + s*P3)), and #
+# V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r, #
+# -Cot(r) = -V/U. Exit. #
+# #
+# 6. If |X| > 1, go to 8. #
+# #
+# 7. (|X|<2**(-40)) Tan(X) = X. Exit. #
+# #
+# 8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back #
+# to 2. #
+# #
+#########################################################################
+
+TANQ4:
+ long 0x3EA0B759,0xF50F8688
+TANP3:
+ long 0xBEF2BAA5,0xA8924F04
+
+TANQ3:
+ long 0xBF346F59,0xB39BA65F,0x00000000,0x00000000
+
+TANP2:
+ long 0x3FF60000,0xE073D3FC,0x199C4A00,0x00000000
+
+TANQ2:
+ long 0x3FF90000,0xD23CD684,0x15D95FA1,0x00000000
+
+TANP1:
+ long 0xBFFC0000,0x8895A6C5,0xFB423BCA,0x00000000
+
+TANQ1:
+ long 0xBFFD0000,0xEEF57E0D,0xA84BC8CE,0x00000000
+
+INVTWOPI:
+ long 0x3FFC0000,0xA2F9836E,0x4E44152A,0x00000000
+
+TWOPI1:
+ long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
+TWOPI2:
+ long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
+
+#--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
+#--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
+#--MOST 69 BITS LONG.
+# global PITBL
+PITBL:
+ long 0xC0040000,0xC90FDAA2,0x2168C235,0x21800000
+ long 0xC0040000,0xC2C75BCD,0x105D7C23,0xA0D00000
+ long 0xC0040000,0xBC7EDCF7,0xFF523611,0xA1E80000
+ long 0xC0040000,0xB6365E22,0xEE46F000,0x21480000
+ long 0xC0040000,0xAFEDDF4D,0xDD3BA9EE,0xA1200000
+ long 0xC0040000,0xA9A56078,0xCC3063DD,0x21FC0000
+ long 0xC0040000,0xA35CE1A3,0xBB251DCB,0x21100000
+ long 0xC0040000,0x9D1462CE,0xAA19D7B9,0xA1580000
+ long 0xC0040000,0x96CBE3F9,0x990E91A8,0x21E00000
+ long 0xC0040000,0x90836524,0x88034B96,0x20B00000
+ long 0xC0040000,0x8A3AE64F,0x76F80584,0xA1880000
+ long 0xC0040000,0x83F2677A,0x65ECBF73,0x21C40000
+ long 0xC0030000,0xFB53D14A,0xA9C2F2C2,0x20000000
+ long 0xC0030000,0xEEC2D3A0,0x87AC669F,0x21380000
+ long 0xC0030000,0xE231D5F6,0x6595DA7B,0xA1300000
+ long 0xC0030000,0xD5A0D84C,0x437F4E58,0x9FC00000
+ long 0xC0030000,0xC90FDAA2,0x2168C235,0x21000000
+ long 0xC0030000,0xBC7EDCF7,0xFF523611,0xA1680000
+ long 0xC0030000,0xAFEDDF4D,0xDD3BA9EE,0xA0A00000
+ long 0xC0030000,0xA35CE1A3,0xBB251DCB,0x20900000
+ long 0xC0030000,0x96CBE3F9,0x990E91A8,0x21600000
+ long 0xC0030000,0x8A3AE64F,0x76F80584,0xA1080000
+ long 0xC0020000,0xFB53D14A,0xA9C2F2C2,0x1F800000
+ long 0xC0020000,0xE231D5F6,0x6595DA7B,0xA0B00000
+ long 0xC0020000,0xC90FDAA2,0x2168C235,0x20800000
+ long 0xC0020000,0xAFEDDF4D,0xDD3BA9EE,0xA0200000
+ long 0xC0020000,0x96CBE3F9,0x990E91A8,0x20E00000
+ long 0xC0010000,0xFB53D14A,0xA9C2F2C2,0x1F000000
+ long 0xC0010000,0xC90FDAA2,0x2168C235,0x20000000
+ long 0xC0010000,0x96CBE3F9,0x990E91A8,0x20600000
+ long 0xC0000000,0xC90FDAA2,0x2168C235,0x1F800000
+ long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x1F000000
+ long 0x00000000,0x00000000,0x00000000,0x00000000
+ long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x9F000000
+ long 0x40000000,0xC90FDAA2,0x2168C235,0x9F800000
+ long 0x40010000,0x96CBE3F9,0x990E91A8,0xA0600000
+ long 0x40010000,0xC90FDAA2,0x2168C235,0xA0000000
+ long 0x40010000,0xFB53D14A,0xA9C2F2C2,0x9F000000
+ long 0x40020000,0x96CBE3F9,0x990E91A8,0xA0E00000
+ long 0x40020000,0xAFEDDF4D,0xDD3BA9EE,0x20200000
+ long 0x40020000,0xC90FDAA2,0x2168C235,0xA0800000
+ long 0x40020000,0xE231D5F6,0x6595DA7B,0x20B00000
+ long 0x40020000,0xFB53D14A,0xA9C2F2C2,0x9F800000
+ long 0x40030000,0x8A3AE64F,0x76F80584,0x21080000
+ long 0x40030000,0x96CBE3F9,0x990E91A8,0xA1600000
+ long 0x40030000,0xA35CE1A3,0xBB251DCB,0xA0900000
+ long 0x40030000,0xAFEDDF4D,0xDD3BA9EE,0x20A00000
+ long 0x40030000,0xBC7EDCF7,0xFF523611,0x21680000
+ long 0x40030000,0xC90FDAA2,0x2168C235,0xA1000000
+ long 0x40030000,0xD5A0D84C,0x437F4E58,0x1FC00000
+ long 0x40030000,0xE231D5F6,0x6595DA7B,0x21300000
+ long 0x40030000,0xEEC2D3A0,0x87AC669F,0xA1380000
+ long 0x40030000,0xFB53D14A,0xA9C2F2C2,0xA0000000
+ long 0x40040000,0x83F2677A,0x65ECBF73,0xA1C40000
+ long 0x40040000,0x8A3AE64F,0x76F80584,0x21880000
+ long 0x40040000,0x90836524,0x88034B96,0xA0B00000
+ long 0x40040000,0x96CBE3F9,0x990E91A8,0xA1E00000
+ long 0x40040000,0x9D1462CE,0xAA19D7B9,0x21580000
+ long 0x40040000,0xA35CE1A3,0xBB251DCB,0xA1100000
+ long 0x40040000,0xA9A56078,0xCC3063DD,0xA1FC0000
+ long 0x40040000,0xAFEDDF4D,0xDD3BA9EE,0x21200000
+ long 0x40040000,0xB6365E22,0xEE46F000,0xA1480000
+ long 0x40040000,0xBC7EDCF7,0xFF523611,0x21E80000
+ long 0x40040000,0xC2C75BCD,0x105D7C23,0x20D00000
+ long 0x40040000,0xC90FDAA2,0x2168C235,0xA1800000
+
+ set INARG,FP_SCR0
+
+ set TWOTO63,L_SCR1
+ set INT,L_SCR1
+ set ENDFLAG,L_SCR2
+
+ global stan
+stan:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ and.l &0x7FFFFFFF,%d1
+
+ cmp.l %d1,&0x3FD78000 # |X| >= 2**(-40)?
+ bge.b TANOK1
+ bra.w TANSM
+TANOK1:
+ cmp.l %d1,&0x4004BC7E # |X| < 15 PI?
+ blt.b TANMAIN
+ bra.w REDUCEX
+
+TANMAIN:
+#--THIS IS THE USUAL CASE, |X| <= 15 PI.
+#--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
+ fmov.x %fp0,%fp1
+ fmul.d TWOBYPI(%pc),%fp1 # X*2/PI
+
+ lea.l PITBL+0x200(%pc),%a1 # TABLE OF N*PI/2, N = -32,...,32
+
+ fmov.l %fp1,%d1 # CONVERT TO INTEGER
+
+ asl.l &4,%d1
+ add.l %d1,%a1 # ADDRESS N*PIBY2 IN Y1, Y2
+
+ fsub.x (%a1)+,%fp0 # X-Y1
+
+ fsub.s (%a1),%fp0 # FP0 IS R = (X-Y1)-Y2
+
+ ror.l &5,%d1
+ and.l &0x80000000,%d1 # D0 WAS ODD IFF D0 < 0
+
+TANCONT:
+ fmovm.x &0x0c,-(%sp) # save fp2,fp3
+
+ cmp.l %d1,&0
+ blt.w NODD
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # S = R*R
+
+ fmov.d TANQ4(%pc),%fp3
+ fmov.d TANP3(%pc),%fp2
+
+ fmul.x %fp1,%fp3 # SQ4
+ fmul.x %fp1,%fp2 # SP3
+
+ fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
+ fadd.x TANP2(%pc),%fp2 # P2+SP3
+
+ fmul.x %fp1,%fp3 # S(Q3+SQ4)
+ fmul.x %fp1,%fp2 # S(P2+SP3)
+
+ fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
+ fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
+
+ fmul.x %fp1,%fp3 # S(Q2+S(Q3+SQ4))
+ fmul.x %fp1,%fp2 # S(P1+S(P2+SP3))
+
+ fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
+ fmul.x %fp0,%fp2 # RS(P1+S(P2+SP3))
+
+ fmul.x %fp3,%fp1 # S(Q1+S(Q2+S(Q3+SQ4)))
+
+ fadd.x %fp2,%fp0 # R+RS(P1+S(P2+SP3))
+
+ fadd.s &0x3F800000,%fp1 # 1+S(Q1+...)
+
+ fmovm.x (%sp)+,&0x30 # restore fp2,fp3
+
+ fmov.l %d0,%fpcr # restore users round mode,prec
+ fdiv.x %fp1,%fp0 # last inst - possible exception set
+ bra t_inx2
+
+NODD:
+ fmov.x %fp0,%fp1
+ fmul.x %fp0,%fp0 # S = R*R
+
+ fmov.d TANQ4(%pc),%fp3
+ fmov.d TANP3(%pc),%fp2
+
+ fmul.x %fp0,%fp3 # SQ4
+ fmul.x %fp0,%fp2 # SP3
+
+ fadd.d TANQ3(%pc),%fp3 # Q3+SQ4
+ fadd.x TANP2(%pc),%fp2 # P2+SP3
+
+ fmul.x %fp0,%fp3 # S(Q3+SQ4)
+ fmul.x %fp0,%fp2 # S(P2+SP3)
+
+ fadd.x TANQ2(%pc),%fp3 # Q2+S(Q3+SQ4)
+ fadd.x TANP1(%pc),%fp2 # P1+S(P2+SP3)
+
+ fmul.x %fp0,%fp3 # S(Q2+S(Q3+SQ4))
+ fmul.x %fp0,%fp2 # S(P1+S(P2+SP3))
+
+ fadd.x TANQ1(%pc),%fp3 # Q1+S(Q2+S(Q3+SQ4))
+ fmul.x %fp1,%fp2 # RS(P1+S(P2+SP3))
+
+ fmul.x %fp3,%fp0 # S(Q1+S(Q2+S(Q3+SQ4)))
+
+ fadd.x %fp2,%fp1 # R+RS(P1+S(P2+SP3))
+ fadd.s &0x3F800000,%fp0 # 1+S(Q1+...)
+
+ fmovm.x (%sp)+,&0x30 # restore fp2,fp3
+
+ fmov.x %fp1,-(%sp)
+ eor.l &0x80000000,(%sp)
+
+ fmov.l %d0,%fpcr # restore users round mode,prec
+ fdiv.x (%sp)+,%fp0 # last inst - possible exception set
+ bra t_inx2
+
+TANBORS:
+#--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
+#--IF |X| < 2**(-40), RETURN X OR 1.
+ cmp.l %d1,&0x3FFF8000
+ bgt.b REDUCEX
+
+TANSM:
+ fmov.x %fp0,-(%sp)
+ fmov.l %d0,%fpcr # restore users round mode,prec
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x (%sp)+,%fp0 # last inst - posibble exception set
+ bra t_catch
+
+ global stand
+#--TAN(X) = X FOR DENORMALIZED X
+stand:
+ bra t_extdnrm
+
+#--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
+#--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
+#--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
+REDUCEX:
+ fmovm.x &0x3c,-(%sp) # save {fp2-fp5}
+ mov.l %d2,-(%sp) # save d2
+ fmov.s &0x00000000,%fp1 # fp1 = 0
+
+#--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
+#--there is a danger of unwanted overflow in first LOOP iteration. In this
+#--case, reduce argument by one remainder step to make subsequent reduction
+#--safe.
+ cmp.l %d1,&0x7ffeffff # is arg dangerously large?
+ bne.b LOOP # no
+
+# yes; create 2**16383*PI/2
+ mov.w &0x7ffe,FP_SCR0_EX(%a6)
+ mov.l &0xc90fdaa2,FP_SCR0_HI(%a6)
+ clr.l FP_SCR0_LO(%a6)
+
+# create low half of 2**16383*PI/2 at FP_SCR1
+ mov.w &0x7fdc,FP_SCR1_EX(%a6)
+ mov.l &0x85a308d3,FP_SCR1_HI(%a6)
+ clr.l FP_SCR1_LO(%a6)
+
+ ftest.x %fp0 # test sign of argument
+ fblt.w red_neg
+
+ or.b &0x80,FP_SCR0_EX(%a6) # positive arg
+ or.b &0x80,FP_SCR1_EX(%a6)
+red_neg:
+ fadd.x FP_SCR0(%a6),%fp0 # high part of reduction is exact
+ fmov.x %fp0,%fp1 # save high result in fp1
+ fadd.x FP_SCR1(%a6),%fp0 # low part of reduction
+ fsub.x %fp0,%fp1 # determine low component of result
+ fadd.x FP_SCR1(%a6),%fp1 # fp0/fp1 are reduced argument.
+
+#--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
+#--integer quotient will be stored in N
+#--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)
+LOOP:
+ fmov.x %fp0,INARG(%a6) # +-2**K * F, 1 <= F < 2
+ mov.w INARG(%a6),%d1
+ mov.l %d1,%a1 # save a copy of D0
+ and.l &0x00007FFF,%d1
+ sub.l &0x00003FFF,%d1 # d0 = K
+ cmp.l %d1,&28
+ ble.b LASTLOOP
+CONTLOOP:
+ sub.l &27,%d1 # d0 = L := K-27
+ mov.b &0,ENDFLAG(%a6)
+ bra.b WORK
+LASTLOOP:
+ clr.l %d1 # d0 = L := 0
+ mov.b &1,ENDFLAG(%a6)
+
+WORK:
+#--FIND THE REMAINDER OF (R,r) W.R.T. 2**L * (PI/2). L IS SO CHOSEN
+#--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.
+
+#--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
+#--2**L * (PIby2_1), 2**L * (PIby2_2)
+
+ mov.l &0x00003FFE,%d2 # BIASED EXP OF 2/PI
+ sub.l %d1,%d2 # BIASED EXP OF 2**(-L)*(2/PI)
+
+ mov.l &0xA2F9836E,FP_SCR0_HI(%a6)
+ mov.l &0x4E44152A,FP_SCR0_LO(%a6)
+ mov.w %d2,FP_SCR0_EX(%a6) # FP_SCR0 = 2**(-L)*(2/PI)
+
+ fmov.x %fp0,%fp2
+ fmul.x FP_SCR0(%a6),%fp2 # fp2 = X * 2**(-L)*(2/PI)
+
+#--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
+#--FLOATING POINT FORMAT, THE TWO FMOVE'S FMOVE.L FP <--> N
+#--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
+#--(SIGN(INARG)*2**63 + FP2) - SIGN(INARG)*2**63 WILL GIVE
+#--US THE DESIRED VALUE IN FLOATING POINT.
+ mov.l %a1,%d2
+ swap %d2
+ and.l &0x80000000,%d2
+ or.l &0x5F000000,%d2 # d2 = SIGN(INARG)*2**63 IN SGL
+ mov.l %d2,TWOTO63(%a6)
+ fadd.s TWOTO63(%a6),%fp2 # THE FRACTIONAL PART OF FP1 IS ROUNDED
+ fsub.s TWOTO63(%a6),%fp2 # fp2 = N
+# fintrz.x %fp2,%fp2
+
+#--CREATING 2**(L)*Piby2_1 and 2**(L)*Piby2_2
+ mov.l %d1,%d2 # d2 = L
+
+ add.l &0x00003FFF,%d2 # BIASED EXP OF 2**L * (PI/2)
+ mov.w %d2,FP_SCR0_EX(%a6)
+ mov.l &0xC90FDAA2,FP_SCR0_HI(%a6)
+ clr.l FP_SCR0_LO(%a6) # FP_SCR0 = 2**(L) * Piby2_1
+
+ add.l &0x00003FDD,%d1
+ mov.w %d1,FP_SCR1_EX(%a6)
+ mov.l &0x85A308D3,FP_SCR1_HI(%a6)
+ clr.l FP_SCR1_LO(%a6) # FP_SCR1 = 2**(L) * Piby2_2
+
+ mov.b ENDFLAG(%a6),%d1
+
+#--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
+#--P2 = 2**(L) * Piby2_2
+ fmov.x %fp2,%fp4 # fp4 = N
+ fmul.x FP_SCR0(%a6),%fp4 # fp4 = W = N*P1
+ fmov.x %fp2,%fp5 # fp5 = N
+ fmul.x FP_SCR1(%a6),%fp5 # fp5 = w = N*P2
+ fmov.x %fp4,%fp3 # fp3 = W = N*P1
+
+#--we want P+p = W+w but |p| <= half ulp of P
+#--Then, we need to compute A := R-P and a := r-p
+ fadd.x %fp5,%fp3 # fp3 = P
+ fsub.x %fp3,%fp4 # fp4 = W-P
+
+ fsub.x %fp3,%fp0 # fp0 = A := R - P
+ fadd.x %fp5,%fp4 # fp4 = p = (W-P)+w
+
+ fmov.x %fp0,%fp3 # fp3 = A
+ fsub.x %fp4,%fp1 # fp1 = a := r - p
+
+#--Now we need to normalize (A,a) to "new (R,r)" where R+r = A+a but
+#--|r| <= half ulp of R.
+ fadd.x %fp1,%fp0 # fp0 = R := A+a
+#--No need to calculate r if this is the last loop
+ cmp.b %d1,&0
+ bgt.w RESTORE
+
+#--Need to calculate r
+ fsub.x %fp0,%fp3 # fp3 = A-R
+ fadd.x %fp3,%fp1 # fp1 = r := (A-R)+a
+ bra.w LOOP
+
+RESTORE:
+ fmov.l %fp2,INT(%a6)
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x (%sp)+,&0x3c # restore {fp2-fp5}
+
+ mov.l INT(%a6),%d1
+ ror.l &1,%d1
+
+ bra.w TANCONT
+
+#########################################################################
+# satan(): computes the arctangent of a normalized number #
+# satand(): computes the arctangent of a denormalized number #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = arctan(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 2 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5. #
+# #
+# Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. #
+# Note that k = -4, -3,..., or 3. #
+# Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 #
+# significant bits of X with a bit-1 attached at the 6-th #
+# bit position. Define u to be u = (X-F) / (1 + X*F). #
+# #
+# Step 3. Approximate arctan(u) by a polynomial poly. #
+# #
+# Step 4. Return arctan(F) + poly, arctan(F) is fetched from a #
+# table of values calculated beforehand. Exit. #
+# #
+# Step 5. If |X| >= 16, go to Step 7. #
+# #
+# Step 6. Approximate arctan(X) by an odd polynomial in X. Exit. #
+# #
+# Step 7. Define X' = -1/X. Approximate arctan(X') by an odd #
+# polynomial in X'. #
+# Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit. #
+# #
+#########################################################################
+
+ATANA3: long 0xBFF6687E,0x314987D8
+ATANA2: long 0x4002AC69,0x34A26DB3
+ATANA1: long 0xBFC2476F,0x4E1DA28E
+
+ATANB6: long 0x3FB34444,0x7F876989
+ATANB5: long 0xBFB744EE,0x7FAF45DB
+ATANB4: long 0x3FBC71C6,0x46940220
+ATANB3: long 0xBFC24924,0x921872F9
+ATANB2: long 0x3FC99999,0x99998FA9
+ATANB1: long 0xBFD55555,0x55555555
+
+ATANC5: long 0xBFB70BF3,0x98539E6A
+ATANC4: long 0x3FBC7187,0x962D1D7D
+ATANC3: long 0xBFC24924,0x827107B8
+ATANC2: long 0x3FC99999,0x9996263E
+ATANC1: long 0xBFD55555,0x55555536
+
+PPIBY2: long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
+NPIBY2: long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
+
+PTINY: long 0x00010000,0x80000000,0x00000000,0x00000000
+NTINY: long 0x80010000,0x80000000,0x00000000,0x00000000
+
+ATANTBL:
+ long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
+ long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
+ long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
+ long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
+ long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
+ long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000
+ long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
+ long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
+ long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
+ long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
+ long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
+ long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
+ long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
+ long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
+ long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
+ long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
+ long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
+ long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
+ long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
+ long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
+ long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
+ long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
+ long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
+ long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
+ long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
+ long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
+ long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
+ long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
+ long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
+ long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
+ long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
+ long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
+ long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
+ long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
+ long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
+ long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
+ long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
+ long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
+ long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
+ long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
+ long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
+ long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
+ long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
+ long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
+ long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
+ long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
+ long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
+ long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
+ long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
+ long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
+ long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
+ long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
+ long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
+ long 0x3FFE0000,0x97731420,0x365E538C,0x00000000
+ long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
+ long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
+ long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
+ long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
+ long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
+ long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
+ long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
+ long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
+ long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
+ long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
+ long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
+ long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
+ long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
+ long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
+ long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000
+ long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
+ long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
+ long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
+ long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
+ long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
+ long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
+ long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
+ long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
+ long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
+ long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
+ long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
+ long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
+ long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
+ long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
+ long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
+ long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
+ long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
+ long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
+ long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000
+ long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
+ long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
+ long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
+ long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
+ long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
+ long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
+ long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
+ long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
+ long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
+ long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
+ long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
+ long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
+ long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
+ long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
+ long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
+ long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
+ long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
+ long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000
+ long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
+ long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
+ long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
+ long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
+ long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
+ long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
+ long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
+ long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
+ long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
+ long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
+ long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
+ long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
+ long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
+ long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
+ long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
+ long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
+ long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
+ long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
+ long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
+ long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
+ long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
+ long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
+
+ set X,FP_SCR0
+ set XDCARE,X+2
+ set XFRAC,X+4
+ set XFRACLO,X+8
+
+ set ATANF,FP_SCR1
+ set ATANFHI,ATANF+4
+ set ATANFLO,ATANF+8
+
+ global satan
+#--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
+satan:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ fmov.x %fp0,X(%a6)
+ and.l &0x7FFFFFFF,%d1
+
+ cmp.l %d1,&0x3FFB8000 # |X| >= 1/16?
+ bge.b ATANOK1
+ bra.w ATANSM
+
+ATANOK1:
+ cmp.l %d1,&0x4002FFFF # |X| < 16 ?
+ ble.b ATANMAIN
+ bra.w ATANBIG
+
+#--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
+#--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
+#--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
+#--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
+#--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
+#--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
+#--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
+#--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
+#--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
+#--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
+#--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
+#--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
+#--WILL INVOLVE A VERY LONG POLYNOMIAL.
+
+#--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
+#--WE CHOSE F TO BE +-2^K * 1.BBBB1
+#--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
+#--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
+#--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
+#-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
+
+ATANMAIN:
+
+ and.l &0xF8000000,XFRAC(%a6) # FIRST 5 BITS
+ or.l &0x04000000,XFRAC(%a6) # SET 6-TH BIT TO 1
+ mov.l &0x00000000,XFRACLO(%a6) # LOCATION OF X IS NOW F
+
+ fmov.x %fp0,%fp1 # FP1 IS X
+ fmul.x X(%a6),%fp1 # FP1 IS X*F, NOTE THAT X*F > 0
+ fsub.x X(%a6),%fp0 # FP0 IS X-F
+ fadd.s &0x3F800000,%fp1 # FP1 IS 1 + X*F
+ fdiv.x %fp1,%fp0 # FP0 IS U = (X-F)/(1+X*F)
+
+#--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
+#--CREATE ATAN(F) AND STORE IT IN ATANF, AND
+#--SAVE REGISTERS FP2.
+
+ mov.l %d2,-(%sp) # SAVE d2 TEMPORARILY
+ mov.l %d1,%d2 # THE EXP AND 16 BITS OF X
+ and.l &0x00007800,%d1 # 4 VARYING BITS OF F'S FRACTION
+ and.l &0x7FFF0000,%d2 # EXPONENT OF F
+ sub.l &0x3FFB0000,%d2 # K+4
+ asr.l &1,%d2
+ add.l %d2,%d1 # THE 7 BITS IDENTIFYING F
+ asr.l &7,%d1 # INDEX INTO TBL OF ATAN(|F|)
+ lea ATANTBL(%pc),%a1
+ add.l %d1,%a1 # ADDRESS OF ATAN(|F|)
+ mov.l (%a1)+,ATANF(%a6)
+ mov.l (%a1)+,ATANFHI(%a6)
+ mov.l (%a1)+,ATANFLO(%a6) # ATANF IS NOW ATAN(|F|)
+ mov.l X(%a6),%d1 # LOAD SIGN AND EXPO. AGAIN
+ and.l &0x80000000,%d1 # SIGN(F)
+ or.l %d1,ATANF(%a6) # ATANF IS NOW SIGN(F)*ATAN(|F|)
+ mov.l (%sp)+,%d2 # RESTORE d2
+
+#--THAT'S ALL I HAVE TO DO FOR NOW,
+#--BUT ALAS, THE DIVIDE IS STILL CRANKING!
+
+#--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
+#--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
+#--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
+#--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
+#--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
+#--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
+#--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
+
+ fmovm.x &0x04,-(%sp) # save fp2
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1
+ fmov.d ATANA3(%pc),%fp2
+ fadd.x %fp1,%fp2 # A3+V
+ fmul.x %fp1,%fp2 # V*(A3+V)
+ fmul.x %fp0,%fp1 # U*V
+ fadd.d ATANA2(%pc),%fp2 # A2+V*(A3+V)
+ fmul.d ATANA1(%pc),%fp1 # A1*U*V
+ fmul.x %fp2,%fp1 # A1*U*V*(A2+V*(A3+V))
+ fadd.x %fp1,%fp0 # ATAN(U), FP1 RELEASED
+
+ fmovm.x (%sp)+,&0x20 # restore fp2
+
+ fmov.l %d0,%fpcr # restore users rnd mode,prec
+ fadd.x ATANF(%a6),%fp0 # ATAN(X)
+ bra t_inx2
+
+ATANBORS:
+#--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
+#--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
+ cmp.l %d1,&0x3FFF8000
+ bgt.w ATANBIG # I.E. |X| >= 16
+
+ATANSM:
+#--|X| <= 1/16
+#--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
+#--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
+#--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
+#--WHERE Y = X*X, AND Z = Y*Y.
+
+ cmp.l %d1,&0x3FD78000
+ blt.w ATANTINY
+
+#--COMPUTE POLYNOMIAL
+ fmovm.x &0x0c,-(%sp) # save fp2/fp3
+
+ fmul.x %fp0,%fp0 # FPO IS Y = X*X
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
+
+ fmov.d ATANB6(%pc),%fp2
+ fmov.d ATANB5(%pc),%fp3
+
+ fmul.x %fp1,%fp2 # Z*B6
+ fmul.x %fp1,%fp3 # Z*B5
+
+ fadd.d ATANB4(%pc),%fp2 # B4+Z*B6
+ fadd.d ATANB3(%pc),%fp3 # B3+Z*B5
+
+ fmul.x %fp1,%fp2 # Z*(B4+Z*B6)
+ fmul.x %fp3,%fp1 # Z*(B3+Z*B5)
+
+ fadd.d ATANB2(%pc),%fp2 # B2+Z*(B4+Z*B6)
+ fadd.d ATANB1(%pc),%fp1 # B1+Z*(B3+Z*B5)
+
+ fmul.x %fp0,%fp2 # Y*(B2+Z*(B4+Z*B6))
+ fmul.x X(%a6),%fp0 # X*Y
+
+ fadd.x %fp2,%fp1 # [B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
+
+ fmul.x %fp1,%fp0 # X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
+
+ fmovm.x (%sp)+,&0x30 # restore fp2/fp3
+
+ fmov.l %d0,%fpcr # restore users rnd mode,prec
+ fadd.x X(%a6),%fp0
+ bra t_inx2
+
+ATANTINY:
+#--|X| < 2^(-40), ATAN(X) = X
+
+ fmov.l %d0,%fpcr # restore users rnd mode,prec
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x X(%a6),%fp0 # last inst - possible exception set
+
+ bra t_catch
+
+ATANBIG:
+#--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
+#--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
+ cmp.l %d1,&0x40638000
+ bgt.w ATANHUGE
+
+#--APPROXIMATE ATAN(-1/X) BY
+#--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
+#--THIS CAN BE RE-WRITTEN AS
+#--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
+
+ fmovm.x &0x0c,-(%sp) # save fp2/fp3
+
+ fmov.s &0xBF800000,%fp1 # LOAD -1
+ fdiv.x %fp0,%fp1 # FP1 IS -1/X
+
+#--DIVIDE IS STILL CRANKING
+
+ fmov.x %fp1,%fp0 # FP0 IS X'
+ fmul.x %fp0,%fp0 # FP0 IS Y = X'*X'
+ fmov.x %fp1,X(%a6) # X IS REALLY X'
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # FP1 IS Z = Y*Y
+
+ fmov.d ATANC5(%pc),%fp3
+ fmov.d ATANC4(%pc),%fp2
+
+ fmul.x %fp1,%fp3 # Z*C5
+ fmul.x %fp1,%fp2 # Z*B4
+
+ fadd.d ATANC3(%pc),%fp3 # C3+Z*C5
+ fadd.d ATANC2(%pc),%fp2 # C2+Z*C4
+
+ fmul.x %fp3,%fp1 # Z*(C3+Z*C5), FP3 RELEASED
+ fmul.x %fp0,%fp2 # Y*(C2+Z*C4)
+
+ fadd.d ATANC1(%pc),%fp1 # C1+Z*(C3+Z*C5)
+ fmul.x X(%a6),%fp0 # X'*Y
+
+ fadd.x %fp2,%fp1 # [Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
+
+ fmul.x %fp1,%fp0 # X'*Y*([B1+Z*(B3+Z*B5)]
+# ... +[Y*(B2+Z*(B4+Z*B6))])
+ fadd.x X(%a6),%fp0
+
+ fmovm.x (%sp)+,&0x30 # restore fp2/fp3
+
+ fmov.l %d0,%fpcr # restore users rnd mode,prec
+ tst.b (%a0)
+ bpl.b pos_big
+
+neg_big:
+ fadd.x NPIBY2(%pc),%fp0
+ bra t_minx2
+
+pos_big:
+ fadd.x PPIBY2(%pc),%fp0
+ bra t_pinx2
+
+ATANHUGE:
+#--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
+ tst.b (%a0)
+ bpl.b pos_huge
+
+neg_huge:
+ fmov.x NPIBY2(%pc),%fp0
+ fmov.l %d0,%fpcr
+ fadd.x PTINY(%pc),%fp0
+ bra t_minx2
+
+pos_huge:
+ fmov.x PPIBY2(%pc),%fp0
+ fmov.l %d0,%fpcr
+ fadd.x NTINY(%pc),%fp0
+ bra t_pinx2
+
+ global satand
+#--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
+satand:
+ bra t_extdnrm
+
+#########################################################################
+# sasin(): computes the inverse sine of a normalized input #
+# sasind(): computes the inverse sine of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = arcsin(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 3 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# ASIN #
+# 1. If |X| >= 1, go to 3. #
+# #
+# 2. (|X| < 1) Calculate asin(X) by #
+# z := sqrt( [1-X][1+X] ) #
+# asin(X) = atan( x / z ). #
+# Exit. #
+# #
+# 3. If |X| > 1, go to 5. #
+# #
+# 4. (|X| = 1) sgn := sign(X), return asin(X) := sgn * Pi/2. Exit.#
+# #
+# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
+# Exit. #
+# #
+#########################################################################
+
+ global sasin
+sasin:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ and.l &0x7FFFFFFF,%d1
+ cmp.l %d1,&0x3FFF8000
+ bge.b ASINBIG
+
+# This catch is added here for the '060 QSP. Originally, the call to
+# satan() would handle this case by causing the exception which would
+# not be caught until gen_except(). Now, with the exceptions being
+# detected inside of satan(), the exception would have been handled there
+# instead of inside sasin() as expected.
+ cmp.l %d1,&0x3FD78000
+ blt.w ASINTINY
+
+#--THIS IS THE USUAL CASE, |X| < 1
+#--ASIN(X) = ATAN( X / SQRT( (1-X)(1+X) ) )
+
+ASINMAIN:
+ fmov.s &0x3F800000,%fp1
+ fsub.x %fp0,%fp1 # 1-X
+ fmovm.x &0x4,-(%sp) # {fp2}
+ fmov.s &0x3F800000,%fp2
+ fadd.x %fp0,%fp2 # 1+X
+ fmul.x %fp2,%fp1 # (1+X)(1-X)
+ fmovm.x (%sp)+,&0x20 # {fp2}
+ fsqrt.x %fp1 # SQRT([1-X][1+X])
+ fdiv.x %fp1,%fp0 # X/SQRT([1-X][1+X])
+ fmovm.x &0x01,-(%sp) # save X/SQRT(...)
+ lea (%sp),%a0 # pass ptr to X/SQRT(...)
+ bsr satan
+ add.l &0xc,%sp # clear X/SQRT(...) from stack
+ bra t_inx2
+
+ASINBIG:
+ fabs.x %fp0 # |X|
+ fcmp.s %fp0,&0x3F800000
+ fbgt t_operr # cause an operr exception
+
+#--|X| = 1, ASIN(X) = +- PI/2.
+ASINONE:
+ fmov.x PIBY2(%pc),%fp0
+ mov.l (%a0),%d1
+ and.l &0x80000000,%d1 # SIGN BIT OF X
+ or.l &0x3F800000,%d1 # +-1 IN SGL FORMAT
+ mov.l %d1,-(%sp) # push SIGN(X) IN SGL-FMT
+ fmov.l %d0,%fpcr
+ fmul.s (%sp)+,%fp0
+ bra t_inx2
+
+#--|X| < 2^(-40), ATAN(X) = X
+ASINTINY:
+ fmov.l %d0,%fpcr # restore users rnd mode,prec
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x (%a0),%fp0 # last inst - possible exception
+ bra t_catch
+
+ global sasind
+#--ASIN(X) = X FOR DENORMALIZED X
+sasind:
+ bra t_extdnrm
+
+#########################################################################
+# sacos(): computes the inverse cosine of a normalized input #
+# sacosd(): computes the inverse cosine of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = arccos(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 3 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# ACOS #
+# 1. If |X| >= 1, go to 3. #
+# #
+# 2. (|X| < 1) Calculate acos(X) by #
+# z := (1-X) / (1+X) #
+# acos(X) = 2 * atan( sqrt(z) ). #
+# Exit. #
+# #
+# 3. If |X| > 1, go to 5. #
+# #
+# 4. (|X| = 1) If X > 0, return 0. Otherwise, return Pi. Exit. #
+# #
+# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
+# Exit. #
+# #
+#########################################################################
+
+ global sacos
+sacos:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+
+ mov.l (%a0),%d1 # pack exp w/ upper 16 fraction
+ mov.w 4(%a0),%d1
+ and.l &0x7FFFFFFF,%d1
+ cmp.l %d1,&0x3FFF8000
+ bge.b ACOSBIG
+
+#--THIS IS THE USUAL CASE, |X| < 1
+#--ACOS(X) = 2 * ATAN( SQRT( (1-X)/(1+X) ) )
+
+ACOSMAIN:
+ fmov.s &0x3F800000,%fp1
+ fadd.x %fp0,%fp1 # 1+X
+ fneg.x %fp0 # -X
+ fadd.s &0x3F800000,%fp0 # 1-X
+ fdiv.x %fp1,%fp0 # (1-X)/(1+X)
+ fsqrt.x %fp0 # SQRT((1-X)/(1+X))
+ mov.l %d0,-(%sp) # save original users fpcr
+ clr.l %d0
+ fmovm.x &0x01,-(%sp) # save SQRT(...) to stack
+ lea (%sp),%a0 # pass ptr to sqrt
+ bsr satan # ATAN(SQRT([1-X]/[1+X]))
+ add.l &0xc,%sp # clear SQRT(...) from stack
+
+ fmov.l (%sp)+,%fpcr # restore users round prec,mode
+ fadd.x %fp0,%fp0 # 2 * ATAN( STUFF )
+ bra t_pinx2
+
+ACOSBIG:
+ fabs.x %fp0
+ fcmp.s %fp0,&0x3F800000
+ fbgt t_operr # cause an operr exception
+
+#--|X| = 1, ACOS(X) = 0 OR PI
+ tst.b (%a0) # is X positive or negative?
+ bpl.b ACOSP1
+
+#--X = -1
+#Returns PI and inexact exception
+ACOSM1:
+ fmov.x PI(%pc),%fp0 # load PI
+ fmov.l %d0,%fpcr # load round mode,prec
+ fadd.s &0x00800000,%fp0 # add a small value
+ bra t_pinx2
+
+ACOSP1:
+ bra ld_pzero # answer is positive zero
+
+ global sacosd
+#--ACOS(X) = PI/2 FOR DENORMALIZED X
+sacosd:
+ fmov.l %d0,%fpcr # load user's rnd mode/prec
+ fmov.x PIBY2(%pc),%fp0
+ bra t_pinx2
+
+#########################################################################
+# setox(): computes the exponential for a normalized input #
+# setoxd(): computes the exponential for a denormalized input #
+# setoxm1(): computes the exponential minus 1 for a normalized input #
+# setoxm1d(): computes the exponential minus 1 for a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = exp(X) or exp(X)-1 #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 0.85 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM and IMPLEMENTATION **************************************** #
+# #
+# setoxd #
+# ------ #
+# Step 1. Set ans := 1.0 #
+# #
+# Step 2. Return ans := ans + sign(X)*2^(-126). Exit. #
+# Notes: This will always generate one exception -- inexact. #
+# #
+# #
+# setox #
+# ----- #
+# #
+# Step 1. Filter out extreme cases of input argument. #
+# 1.1 If |X| >= 2^(-65), go to Step 1.3. #
+# 1.2 Go to Step 7. #
+# 1.3 If |X| < 16380 log(2), go to Step 2. #
+# 1.4 Go to Step 8. #
+# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
+# To avoid the use of floating-point comparisons, a #
+# compact representation of |X| is used. This format is a #
+# 32-bit integer, the upper (more significant) 16 bits #
+# are the sign and biased exponent field of |X|; the #
+# lower 16 bits are the 16 most significant fraction #
+# (including the explicit bit) bits of |X|. Consequently, #
+# the comparisons in Steps 1.1 and 1.3 can be performed #
+# by integer comparison. Note also that the constant #
+# 16380 log(2) used in Step 1.3 is also in the compact #
+# form. Thus taking the branch to Step 2 guarantees #
+# |X| < 16380 log(2). There is no harm to have a small #
+# number of cases where |X| is less than, but close to, #
+# 16380 log(2) and the branch to Step 9 is taken. #
+# #
+# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
+# 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 #
+# was taken) #
+# 2.2 N := round-to-nearest-integer( X * 64/log2 ). #
+# 2.3 Calculate J = N mod 64; so J = 0,1,2,..., #
+# or 63. #
+# 2.4 Calculate M = (N - J)/64; so N = 64M + J. #
+# 2.5 Calculate the address of the stored value of #
+# 2^(J/64). #
+# 2.6 Create the value Scale = 2^M. #
+# Notes: The calculation in 2.2 is really performed by #
+# Z := X * constant #
+# N := round-to-nearest-integer(Z) #
+# where #
+# constant := single-precision( 64/log 2 ). #
+# #
+# Using a single-precision constant avoids memory #
+# access. Another effect of using a single-precision #
+# "constant" is that the calculated value Z is #
+# #
+# Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24). #
+# #
+# This error has to be considered later in Steps 3 and 4. #
+# #
+# Step 3. Calculate X - N*log2/64. #
+# 3.1 R := X + N*L1, #
+# where L1 := single-precision(-log2/64). #
+# 3.2 R := R + N*L2, #
+# L2 := extended-precision(-log2/64 - L1).#
+# Notes: a) The way L1 and L2 are chosen ensures L1+L2 #
+# approximate the value -log2/64 to 88 bits of accuracy. #
+# b) N*L1 is exact because N is no longer than 22 bits #
+# and L1 is no longer than 24 bits. #
+# c) The calculation X+N*L1 is also exact due to #
+# cancellation. Thus, R is practically X+N(L1+L2) to full #
+# 64 bits. #
+# d) It is important to estimate how large can |R| be #
+# after Step 3.2. #
+# #
+# N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24) #
+# X*64/log2 (1+eps) = N + f, |f| <= 0.5 #
+# X*64/log2 - N = f - eps*X 64/log2 #
+# X - N*log2/64 = f*log2/64 - eps*X #
+# #
+# #
+# Now |X| <= 16446 log2, thus #
+# #
+# |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64 #
+# <= 0.57 log2/64. #
+# This bound will be used in Step 4. #
+# #
+# Step 4. Approximate exp(R)-1 by a polynomial #
+# p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5)))) #
+# Notes: a) In order to reduce memory access, the coefficients #
+# are made as "short" as possible: A1 (which is 1/2), A4 #
+# and A5 are single precision; A2 and A3 are double #
+# precision. #
+# b) Even with the restrictions above, #
+# |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062. #
+# Note that 0.0062 is slightly bigger than 0.57 log2/64. #
+# c) To fully utilize the pipeline, p is separated into #
+# two independent pieces of roughly equal complexities #
+# p = [ R + R*S*(A2 + S*A4) ] + #
+# [ S*(A1 + S*(A3 + S*A5)) ] #
+# where S = R*R. #
+# #
+# Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by #
+# ans := T + ( T*p + t) #
+# where T and t are the stored values for 2^(J/64). #
+# Notes: 2^(J/64) is stored as T and t where T+t approximates #
+# 2^(J/64) to roughly 85 bits; T is in extended precision #
+# and t is in single precision. Note also that T is #
+# rounded to 62 bits so that the last two bits of T are #
+# zero. The reason for such a special form is that T-1, #
+# T-2, and T-8 will all be exact --- a property that will #
+# give much more accurate computation of the function #
+# EXPM1. #
+# #
+# Step 6. Reconstruction of exp(X) #
+# exp(X) = 2^M * 2^(J/64) * exp(R). #
+# 6.1 If AdjFlag = 0, go to 6.3 #
+# 6.2 ans := ans * AdjScale #
+# 6.3 Restore the user FPCR #
+# 6.4 Return ans := ans * Scale. Exit. #
+# Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R, #
+# |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will #
+# neither overflow nor underflow. If AdjFlag = 1, that #
+# means that #
+# X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380. #
+# Hence, exp(X) may overflow or underflow or neither. #
+# When that is the case, AdjScale = 2^(M1) where M1 is #
+# approximately M. Thus 6.2 will never cause #
+# over/underflow. Possible exception in 6.4 is overflow #
+# or underflow. The inexact exception is not generated in #
+# 6.4. Although one can argue that the inexact flag #
+# should always be raised, to simulate that exception #
+# cost to much than the flag is worth in practical uses. #
+# #
+# Step 7. Return 1 + X. #
+# 7.1 ans := X #
+# 7.2 Restore user FPCR. #
+# 7.3 Return ans := 1 + ans. Exit #
+# Notes: For non-zero X, the inexact exception will always be #
+# raised by 7.3. That is the only exception raised by 7.3.#
+# Note also that we use the FMOVEM instruction to move X #
+# in Step 7.1 to avoid unnecessary trapping. (Although #
+# the FMOVEM may not seem relevant since X is normalized, #
+# the precaution will be useful in the library version of #
+# this code where the separate entry for denormalized #
+# inputs will be done away with.) #
+# #
+# Step 8. Handle exp(X) where |X| >= 16380log2. #
+# 8.1 If |X| > 16480 log2, go to Step 9. #
+# (mimic 2.2 - 2.6) #
+# 8.2 N := round-to-integer( X * 64/log2 ) #
+# 8.3 Calculate J = N mod 64, J = 0,1,...,63 #
+# 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, #
+# AdjFlag := 1. #
+# 8.5 Calculate the address of the stored value #
+# 2^(J/64). #
+# 8.6 Create the values Scale = 2^M, AdjScale = 2^M1. #
+# 8.7 Go to Step 3. #
+# Notes: Refer to notes for 2.2 - 2.6. #
+# #
+# Step 9. Handle exp(X), |X| > 16480 log2. #
+# 9.1 If X < 0, go to 9.3 #
+# 9.2 ans := Huge, go to 9.4 #
+# 9.3 ans := Tiny. #
+# 9.4 Restore user FPCR. #
+# 9.5 Return ans := ans * ans. Exit. #
+# Notes: Exp(X) will surely overflow or underflow, depending on #
+# X's sign. "Huge" and "Tiny" are respectively large/tiny #
+# extended-precision numbers whose square over/underflow #
+# with an inexact result. Thus, 9.5 always raises the #
+# inexact together with either overflow or underflow. #
+# #
+# setoxm1d #
+# -------- #
+# #
+# Step 1. Set ans := 0 #
+# #
+# Step 2. Return ans := X + ans. Exit. #
+# Notes: This will return X with the appropriate rounding #
+# precision prescribed by the user FPCR. #
+# #
+# setoxm1 #
+# ------- #
+# #
+# Step 1. Check |X| #
+# 1.1 If |X| >= 1/4, go to Step 1.3. #
+# 1.2 Go to Step 7. #
+# 1.3 If |X| < 70 log(2), go to Step 2. #
+# 1.4 Go to Step 10. #
+# Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.#
+# However, it is conceivable |X| can be small very often #
+# because EXPM1 is intended to evaluate exp(X)-1 #
+# accurately when |X| is small. For further details on #
+# the comparisons, see the notes on Step 1 of setox. #
+# #
+# Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ). #
+# 2.1 N := round-to-nearest-integer( X * 64/log2 ). #
+# 2.2 Calculate J = N mod 64; so J = 0,1,2,..., #
+# or 63. #
+# 2.3 Calculate M = (N - J)/64; so N = 64M + J. #
+# 2.4 Calculate the address of the stored value of #
+# 2^(J/64). #
+# 2.5 Create the values Sc = 2^M and #
+# OnebySc := -2^(-M). #
+# Notes: See the notes on Step 2 of setox. #
+# #
+# Step 3. Calculate X - N*log2/64. #
+# 3.1 R := X + N*L1, #
+# where L1 := single-precision(-log2/64). #
+# 3.2 R := R + N*L2, #
+# L2 := extended-precision(-log2/64 - L1).#
+# Notes: Applying the analysis of Step 3 of setox in this case #
+# shows that |R| <= 0.0055 (note that |X| <= 70 log2 in #
+# this case). #
+# #
+# Step 4. Approximate exp(R)-1 by a polynomial #
+# p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6))))) #
+# Notes: a) In order to reduce memory access, the coefficients #
+# are made as "short" as possible: A1 (which is 1/2), A5 #
+# and A6 are single precision; A2, A3 and A4 are double #
+# precision. #
+# b) Even with the restriction above, #
+# |p - (exp(R)-1)| < |R| * 2^(-72.7) #
+# for all |R| <= 0.0055. #
+# c) To fully utilize the pipeline, p is separated into #
+# two independent pieces of roughly equal complexity #
+# p = [ R*S*(A2 + S*(A4 + S*A6)) ] + #
+# [ R + S*(A1 + S*(A3 + S*A5)) ] #
+# where S = R*R. #
+# #
+# Step 5. Compute 2^(J/64)*p by #
+# p := T*p #
+# where T and t are the stored values for 2^(J/64). #
+# Notes: 2^(J/64) is stored as T and t where T+t approximates #
+# 2^(J/64) to roughly 85 bits; T is in extended precision #
+# and t is in single precision. Note also that T is #
+# rounded to 62 bits so that the last two bits of T are #
+# zero. The reason for such a special form is that T-1, #
+# T-2, and T-8 will all be exact --- a property that will #
+# be exploited in Step 6 below. The total relative error #
+# in p is no bigger than 2^(-67.7) compared to the final #
+# result. #
+# #
+# Step 6. Reconstruction of exp(X)-1 #
+# exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ). #
+# 6.1 If M <= 63, go to Step 6.3. #
+# 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6 #
+# 6.3 If M >= -3, go to 6.5. #
+# 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6 #
+# 6.5 ans := (T + OnebySc) + (p + t). #
+# 6.6 Restore user FPCR. #
+# 6.7 Return ans := Sc * ans. Exit. #
+# Notes: The various arrangements of the expressions give #
+# accurate evaluations. #
+# #
+# Step 7. exp(X)-1 for |X| < 1/4. #
+# 7.1 If |X| >= 2^(-65), go to Step 9. #
+# 7.2 Go to Step 8. #
+# #
+# Step 8. Calculate exp(X)-1, |X| < 2^(-65). #
+# 8.1 If |X| < 2^(-16312), goto 8.3 #
+# 8.2 Restore FPCR; return ans := X - 2^(-16382). #
+# Exit. #
+# 8.3 X := X * 2^(140). #
+# 8.4 Restore FPCR; ans := ans - 2^(-16382). #
+# Return ans := ans*2^(140). Exit #
+# Notes: The idea is to return "X - tiny" under the user #
+# precision and rounding modes. To avoid unnecessary #
+# inefficiency, we stay away from denormalized numbers #
+# the best we can. For |X| >= 2^(-16312), the #
+# straightforward 8.2 generates the inexact exception as #
+# the case warrants. #
+# #
+# Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial #
+# p = X + X*X*(B1 + X*(B2 + ... + X*B12)) #
+# Notes: a) In order to reduce memory access, the coefficients #
+# are made as "short" as possible: B1 (which is 1/2), B9 #
+# to B12 are single precision; B3 to B8 are double #
+# precision; and B2 is double extended. #
+# b) Even with the restriction above, #
+# |p - (exp(X)-1)| < |X| 2^(-70.6) #
+# for all |X| <= 0.251. #
+# Note that 0.251 is slightly bigger than 1/4. #
+# c) To fully preserve accuracy, the polynomial is #
+# computed as #
+# X + ( S*B1 + Q ) where S = X*X and #
+# Q = X*S*(B2 + X*(B3 + ... + X*B12)) #
+# d) To fully utilize the pipeline, Q is separated into #
+# two independent pieces of roughly equal complexity #
+# Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] + #
+# [ S*S*(B3 + S*(B5 + ... + S*B11)) ] #
+# #
+# Step 10. Calculate exp(X)-1 for |X| >= 70 log 2. #
+# 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all #
+# practical purposes. Therefore, go to Step 1 of setox. #
+# 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical #
+# purposes. #
+# ans := -1 #
+# Restore user FPCR #
+# Return ans := ans + 2^(-126). Exit. #
+# Notes: 10.2 will always create an inexact and return -1 + tiny #
+# in the user rounding precision and mode. #
+# #
+#########################################################################
+
+L2: long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
+
+EEXPA3: long 0x3FA55555,0x55554CC1
+EEXPA2: long 0x3FC55555,0x55554A54
+
+EM1A4: long 0x3F811111,0x11174385
+EM1A3: long 0x3FA55555,0x55554F5A
+
+EM1A2: long 0x3FC55555,0x55555555,0x00000000,0x00000000
+
+EM1B8: long 0x3EC71DE3,0xA5774682
+EM1B7: long 0x3EFA01A0,0x19D7CB68
+
+EM1B6: long 0x3F2A01A0,0x1A019DF3
+EM1B5: long 0x3F56C16C,0x16C170E2
+
+EM1B4: long 0x3F811111,0x11111111
+EM1B3: long 0x3FA55555,0x55555555
+
+EM1B2: long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
+ long 0x00000000
+
+TWO140: long 0x48B00000,0x00000000
+TWON140:
+ long 0x37300000,0x00000000
+
+EEXPTBL:
+ long 0x3FFF0000,0x80000000,0x00000000,0x00000000
+ long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
+ long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
+ long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
+ long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
+ long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
+ long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
+ long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
+ long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
+ long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
+ long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
+ long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
+ long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
+ long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
+ long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
+ long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
+ long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
+ long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
+ long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
+ long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
+ long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
+ long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
+ long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
+ long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
+ long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
+ long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
+ long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
+ long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
+ long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
+ long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
+ long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
+ long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
+ long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
+ long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
+ long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
+ long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
+ long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
+ long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
+ long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
+ long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
+ long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
+ long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
+ long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
+ long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
+ long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
+ long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
+ long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
+ long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
+ long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
+ long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
+ long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
+ long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
+ long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
+ long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
+ long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
+ long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
+ long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
+ long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
+ long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
+ long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
+ long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
+ long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
+ long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
+ long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
+
+ set ADJFLAG,L_SCR2
+ set SCALE,FP_SCR0
+ set ADJSCALE,FP_SCR1
+ set SC,FP_SCR0
+ set ONEBYSC,FP_SCR1
+
+ global setox
+setox:
+#--entry point for EXP(X), here X is finite, non-zero, and not NaN's
+
+#--Step 1.
+ mov.l (%a0),%d1 # load part of input X
+ and.l &0x7FFF0000,%d1 # biased expo. of X
+ cmp.l %d1,&0x3FBE0000 # 2^(-65)
+ bge.b EXPC1 # normal case
+ bra EXPSM
+
+EXPC1:
+#--The case |X| >= 2^(-65)
+ mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
+ cmp.l %d1,&0x400CB167 # 16380 log2 trunc. 16 bits
+ blt.b EXPMAIN # normal case
+ bra EEXPBIG
+
+EXPMAIN:
+#--Step 2.
+#--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
+ fmov.x (%a0),%fp0 # load input from (a0)
+
+ fmov.x %fp0,%fp1
+ fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
+ fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
+ mov.l &0,ADJFLAG(%a6)
+ fmov.l %fp0,%d1 # N = int( X * 64/log2 )
+ lea EEXPTBL(%pc),%a1
+ fmov.l %d1,%fp0 # convert to floating-format
+
+ mov.l %d1,L_SCR1(%a6) # save N temporarily
+ and.l &0x3F,%d1 # D0 is J = N mod 64
+ lsl.l &4,%d1
+ add.l %d1,%a1 # address of 2^(J/64)
+ mov.l L_SCR1(%a6),%d1
+ asr.l &6,%d1 # D0 is M
+ add.w &0x3FFF,%d1 # biased expo. of 2^(M)
+ mov.w L2(%pc),L_SCR1(%a6) # prefetch L2, no need in CB
+
+EXPCONT1:
+#--Step 3.
+#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
+#--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
+ fmov.x %fp0,%fp2
+ fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
+ fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
+ fadd.x %fp1,%fp0 # X + N*L1
+ fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
+
+#--Step 4.
+#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
+#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
+#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
+#--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # fp1 IS S = R*R
+
+ fmov.s &0x3AB60B70,%fp2 # fp2 IS A5
+
+ fmul.x %fp1,%fp2 # fp2 IS S*A5
+ fmov.x %fp1,%fp3
+ fmul.s &0x3C088895,%fp3 # fp3 IS S*A4
+
+ fadd.d EEXPA3(%pc),%fp2 # fp2 IS A3+S*A5
+ fadd.d EEXPA2(%pc),%fp3 # fp3 IS A2+S*A4
+
+ fmul.x %fp1,%fp2 # fp2 IS S*(A3+S*A5)
+ mov.w %d1,SCALE(%a6) # SCALE is 2^(M) in extended
+ mov.l &0x80000000,SCALE+4(%a6)
+ clr.l SCALE+8(%a6)
+
+ fmul.x %fp1,%fp3 # fp3 IS S*(A2+S*A4)
+
+ fadd.s &0x3F000000,%fp2 # fp2 IS A1+S*(A3+S*A5)
+ fmul.x %fp0,%fp3 # fp3 IS R*S*(A2+S*A4)
+
+ fmul.x %fp1,%fp2 # fp2 IS S*(A1+S*(A3+S*A5))
+ fadd.x %fp3,%fp0 # fp0 IS R+R*S*(A2+S*A4),
+
+ fmov.x (%a1)+,%fp1 # fp1 is lead. pt. of 2^(J/64)
+ fadd.x %fp2,%fp0 # fp0 is EXP(R) - 1
+
+#--Step 5
+#--final reconstruction process
+#--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
+
+ fmul.x %fp1,%fp0 # 2^(J/64)*(Exp(R)-1)
+ fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
+ fadd.s (%a1),%fp0 # accurate 2^(J/64)
+
+ fadd.x %fp1,%fp0 # 2^(J/64) + 2^(J/64)*...
+ mov.l ADJFLAG(%a6),%d1
+
+#--Step 6
+ tst.l %d1
+ beq.b NORMAL
+ADJUST:
+ fmul.x ADJSCALE(%a6),%fp0
+NORMAL:
+ fmov.l %d0,%fpcr # restore user FPCR
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.x SCALE(%a6),%fp0 # multiply 2^(M)
+ bra t_catch
+
+EXPSM:
+#--Step 7
+ fmovm.x (%a0),&0x80 # load X
+ fmov.l %d0,%fpcr
+ fadd.s &0x3F800000,%fp0 # 1+X in user mode
+ bra t_pinx2
+
+EEXPBIG:
+#--Step 8
+ cmp.l %d1,&0x400CB27C # 16480 log2
+ bgt.b EXP2BIG
+#--Steps 8.2 -- 8.6
+ fmov.x (%a0),%fp0 # load input from (a0)
+
+ fmov.x %fp0,%fp1
+ fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
+ fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
+ mov.l &1,ADJFLAG(%a6)
+ fmov.l %fp0,%d1 # N = int( X * 64/log2 )
+ lea EEXPTBL(%pc),%a1
+ fmov.l %d1,%fp0 # convert to floating-format
+ mov.l %d1,L_SCR1(%a6) # save N temporarily
+ and.l &0x3F,%d1 # D0 is J = N mod 64
+ lsl.l &4,%d1
+ add.l %d1,%a1 # address of 2^(J/64)
+ mov.l L_SCR1(%a6),%d1
+ asr.l &6,%d1 # D0 is K
+ mov.l %d1,L_SCR1(%a6) # save K temporarily
+ asr.l &1,%d1 # D0 is M1
+ sub.l %d1,L_SCR1(%a6) # a1 is M
+ add.w &0x3FFF,%d1 # biased expo. of 2^(M1)
+ mov.w %d1,ADJSCALE(%a6) # ADJSCALE := 2^(M1)
+ mov.l &0x80000000,ADJSCALE+4(%a6)
+ clr.l ADJSCALE+8(%a6)
+ mov.l L_SCR1(%a6),%d1 # D0 is M
+ add.w &0x3FFF,%d1 # biased expo. of 2^(M)
+ bra.w EXPCONT1 # go back to Step 3
+
+EXP2BIG:
+#--Step 9
+ tst.b (%a0) # is X positive or negative?
+ bmi t_unfl2
+ bra t_ovfl2
+
+ global setoxd
+setoxd:
+#--entry point for EXP(X), X is denormalized
+ mov.l (%a0),-(%sp)
+ andi.l &0x80000000,(%sp)
+ ori.l &0x00800000,(%sp) # sign(X)*2^(-126)
+
+ fmov.s &0x3F800000,%fp0
+
+ fmov.l %d0,%fpcr
+ fadd.s (%sp)+,%fp0
+ bra t_pinx2
+
+ global setoxm1
+setoxm1:
+#--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
+
+#--Step 1.
+#--Step 1.1
+ mov.l (%a0),%d1 # load part of input X
+ and.l &0x7FFF0000,%d1 # biased expo. of X
+ cmp.l %d1,&0x3FFD0000 # 1/4
+ bge.b EM1CON1 # |X| >= 1/4
+ bra EM1SM
+
+EM1CON1:
+#--Step 1.3
+#--The case |X| >= 1/4
+ mov.w 4(%a0),%d1 # expo. and partial sig. of |X|
+ cmp.l %d1,&0x4004C215 # 70log2 rounded up to 16 bits
+ ble.b EM1MAIN # 1/4 <= |X| <= 70log2
+ bra EM1BIG
+
+EM1MAIN:
+#--Step 2.
+#--This is the case: 1/4 <= |X| <= 70 log2.
+ fmov.x (%a0),%fp0 # load input from (a0)
+
+ fmov.x %fp0,%fp1
+ fmul.s &0x42B8AA3B,%fp0 # 64/log2 * X
+ fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
+ fmov.l %fp0,%d1 # N = int( X * 64/log2 )
+ lea EEXPTBL(%pc),%a1
+ fmov.l %d1,%fp0 # convert to floating-format
+
+ mov.l %d1,L_SCR1(%a6) # save N temporarily
+ and.l &0x3F,%d1 # D0 is J = N mod 64
+ lsl.l &4,%d1
+ add.l %d1,%a1 # address of 2^(J/64)
+ mov.l L_SCR1(%a6),%d1
+ asr.l &6,%d1 # D0 is M
+ mov.l %d1,L_SCR1(%a6) # save a copy of M
+
+#--Step 3.
+#--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
+#--a0 points to 2^(J/64), D0 and a1 both contain M
+ fmov.x %fp0,%fp2
+ fmul.s &0xBC317218,%fp0 # N * L1, L1 = lead(-log2/64)
+ fmul.x L2(%pc),%fp2 # N * L2, L1+L2 = -log2/64
+ fadd.x %fp1,%fp0 # X + N*L1
+ fadd.x %fp2,%fp0 # fp0 is R, reduced arg.
+ add.w &0x3FFF,%d1 # D0 is biased expo. of 2^M
+
+#--Step 4.
+#--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
+#-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
+#--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
+#--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # fp1 IS S = R*R
+
+ fmov.s &0x3950097B,%fp2 # fp2 IS a6
+
+ fmul.x %fp1,%fp2 # fp2 IS S*A6
+ fmov.x %fp1,%fp3
+ fmul.s &0x3AB60B6A,%fp3 # fp3 IS S*A5
+
+ fadd.d EM1A4(%pc),%fp2 # fp2 IS A4+S*A6
+ fadd.d EM1A3(%pc),%fp3 # fp3 IS A3+S*A5
+ mov.w %d1,SC(%a6) # SC is 2^(M) in extended
+ mov.l &0x80000000,SC+4(%a6)
+ clr.l SC+8(%a6)
+
+ fmul.x %fp1,%fp2 # fp2 IS S*(A4+S*A6)
+ mov.l L_SCR1(%a6),%d1 # D0 is M
+ neg.w %d1 # D0 is -M
+ fmul.x %fp1,%fp3 # fp3 IS S*(A3+S*A5)
+ add.w &0x3FFF,%d1 # biased expo. of 2^(-M)
+ fadd.d EM1A2(%pc),%fp2 # fp2 IS A2+S*(A4+S*A6)
+ fadd.s &0x3F000000,%fp3 # fp3 IS A1+S*(A3+S*A5)
+
+ fmul.x %fp1,%fp2 # fp2 IS S*(A2+S*(A4+S*A6))
+ or.w &0x8000,%d1 # signed/expo. of -2^(-M)
+ mov.w %d1,ONEBYSC(%a6) # OnebySc is -2^(-M)
+ mov.l &0x80000000,ONEBYSC+4(%a6)
+ clr.l ONEBYSC+8(%a6)
+ fmul.x %fp3,%fp1 # fp1 IS S*(A1+S*(A3+S*A5))
+
+ fmul.x %fp0,%fp2 # fp2 IS R*S*(A2+S*(A4+S*A6))
+ fadd.x %fp1,%fp0 # fp0 IS R+S*(A1+S*(A3+S*A5))
+
+ fadd.x %fp2,%fp0 # fp0 IS EXP(R)-1
+
+ fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
+
+#--Step 5
+#--Compute 2^(J/64)*p
+
+ fmul.x (%a1),%fp0 # 2^(J/64)*(Exp(R)-1)
+
+#--Step 6
+#--Step 6.1
+ mov.l L_SCR1(%a6),%d1 # retrieve M
+ cmp.l %d1,&63
+ ble.b MLE63
+#--Step 6.2 M >= 64
+ fmov.s 12(%a1),%fp1 # fp1 is t
+ fadd.x ONEBYSC(%a6),%fp1 # fp1 is t+OnebySc
+ fadd.x %fp1,%fp0 # p+(t+OnebySc), fp1 released
+ fadd.x (%a1),%fp0 # T+(p+(t+OnebySc))
+ bra EM1SCALE
+MLE63:
+#--Step 6.3 M <= 63
+ cmp.l %d1,&-3
+ bge.b MGEN3
+MLTN3:
+#--Step 6.4 M <= -4
+ fadd.s 12(%a1),%fp0 # p+t
+ fadd.x (%a1),%fp0 # T+(p+t)
+ fadd.x ONEBYSC(%a6),%fp0 # OnebySc + (T+(p+t))
+ bra EM1SCALE
+MGEN3:
+#--Step 6.5 -3 <= M <= 63
+ fmov.x (%a1)+,%fp1 # fp1 is T
+ fadd.s (%a1),%fp0 # fp0 is p+t
+ fadd.x ONEBYSC(%a6),%fp1 # fp1 is T+OnebySc
+ fadd.x %fp1,%fp0 # (T+OnebySc)+(p+t)
+
+EM1SCALE:
+#--Step 6.6
+ fmov.l %d0,%fpcr
+ fmul.x SC(%a6),%fp0
+ bra t_inx2
+
+EM1SM:
+#--Step 7 |X| < 1/4.
+ cmp.l %d1,&0x3FBE0000 # 2^(-65)
+ bge.b EM1POLY
+
+EM1TINY:
+#--Step 8 |X| < 2^(-65)
+ cmp.l %d1,&0x00330000 # 2^(-16312)
+ blt.b EM12TINY
+#--Step 8.2
+ mov.l &0x80010000,SC(%a6) # SC is -2^(-16382)
+ mov.l &0x80000000,SC+4(%a6)
+ clr.l SC+8(%a6)
+ fmov.x (%a0),%fp0
+ fmov.l %d0,%fpcr
+ mov.b &FADD_OP,%d1 # last inst is ADD
+ fadd.x SC(%a6),%fp0
+ bra t_catch
+
+EM12TINY:
+#--Step 8.3
+ fmov.x (%a0),%fp0
+ fmul.d TWO140(%pc),%fp0
+ mov.l &0x80010000,SC(%a6)
+ mov.l &0x80000000,SC+4(%a6)
+ clr.l SC+8(%a6)
+ fadd.x SC(%a6),%fp0
+ fmov.l %d0,%fpcr
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.d TWON140(%pc),%fp0
+ bra t_catch
+
+EM1POLY:
+#--Step 9 exp(X)-1 by a simple polynomial
+ fmov.x (%a0),%fp0 # fp0 is X
+ fmul.x %fp0,%fp0 # fp0 is S := X*X
+ fmovm.x &0xc,-(%sp) # save fp2 {%fp2/%fp3}
+ fmov.s &0x2F30CAA8,%fp1 # fp1 is B12
+ fmul.x %fp0,%fp1 # fp1 is S*B12
+ fmov.s &0x310F8290,%fp2 # fp2 is B11
+ fadd.s &0x32D73220,%fp1 # fp1 is B10+S*B12
+
+ fmul.x %fp0,%fp2 # fp2 is S*B11
+ fmul.x %fp0,%fp1 # fp1 is S*(B10 + ...
+
+ fadd.s &0x3493F281,%fp2 # fp2 is B9+S*...
+ fadd.d EM1B8(%pc),%fp1 # fp1 is B8+S*...
+
+ fmul.x %fp0,%fp2 # fp2 is S*(B9+...
+ fmul.x %fp0,%fp1 # fp1 is S*(B8+...
+
+ fadd.d EM1B7(%pc),%fp2 # fp2 is B7+S*...
+ fadd.d EM1B6(%pc),%fp1 # fp1 is B6+S*...
+
+ fmul.x %fp0,%fp2 # fp2 is S*(B7+...
+ fmul.x %fp0,%fp1 # fp1 is S*(B6+...
+
+ fadd.d EM1B5(%pc),%fp2 # fp2 is B5+S*...
+ fadd.d EM1B4(%pc),%fp1 # fp1 is B4+S*...
+
+ fmul.x %fp0,%fp2 # fp2 is S*(B5+...
+ fmul.x %fp0,%fp1 # fp1 is S*(B4+...
+
+ fadd.d EM1B3(%pc),%fp2 # fp2 is B3+S*...
+ fadd.x EM1B2(%pc),%fp1 # fp1 is B2+S*...
+
+ fmul.x %fp0,%fp2 # fp2 is S*(B3+...
+ fmul.x %fp0,%fp1 # fp1 is S*(B2+...
+
+ fmul.x %fp0,%fp2 # fp2 is S*S*(B3+...)
+ fmul.x (%a0),%fp1 # fp1 is X*S*(B2...
+
+ fmul.s &0x3F000000,%fp0 # fp0 is S*B1
+ fadd.x %fp2,%fp1 # fp1 is Q
+
+ fmovm.x (%sp)+,&0x30 # fp2 restored {%fp2/%fp3}
+
+ fadd.x %fp1,%fp0 # fp0 is S*B1+Q
+
+ fmov.l %d0,%fpcr
+ fadd.x (%a0),%fp0
+ bra t_inx2
+
+EM1BIG:
+#--Step 10 |X| > 70 log2
+ mov.l (%a0),%d1
+ cmp.l %d1,&0
+ bgt.w EXPC1
+#--Step 10.2
+ fmov.s &0xBF800000,%fp0 # fp0 is -1
+ fmov.l %d0,%fpcr
+ fadd.s &0x00800000,%fp0 # -1 + 2^(-126)
+ bra t_minx2
+
+ global setoxm1d
+setoxm1d:
+#--entry point for EXPM1(X), here X is denormalized
+#--Step 0.
+ bra t_extdnrm
+
+#########################################################################
+# sgetexp(): returns the exponent portion of the input argument. #
+# The exponent bias is removed and the exponent value is #
+# returned as an extended precision number in fp0. #
+# sgetexpd(): handles denormalized numbers. #
+# #
+# sgetman(): extracts the mantissa of the input argument. The #
+# mantissa is converted to an extended precision number w/ #
+# an exponent of $3fff and is returned in fp0. The range of #
+# the result is [1.0 - 2.0). #
+# sgetmand(): handles denormalized numbers. #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = exponent(X) or mantissa(X) #
+# #
+#########################################################################
+
+ global sgetexp
+sgetexp:
+ mov.w SRC_EX(%a0),%d0 # get the exponent
+ bclr &0xf,%d0 # clear the sign bit
+ subi.w &0x3fff,%d0 # subtract off the bias
+ fmov.w %d0,%fp0 # return exp in fp0
+ blt.b sgetexpn # it's negative
+ rts
+
+sgetexpn:
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+ rts
+
+ global sgetexpd
+sgetexpd:
+ bsr.l norm # normalize
+ neg.w %d0 # new exp = -(shft amt)
+ subi.w &0x3fff,%d0 # subtract off the bias
+ fmov.w %d0,%fp0 # return exp in fp0
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+ rts
+
+ global sgetman
+sgetman:
+ mov.w SRC_EX(%a0),%d0 # get the exp
+ ori.w &0x7fff,%d0 # clear old exp
+ bclr &0xe,%d0 # make it the new exp +-3fff
+
+# here, we build the result in a tmp location so as not to disturb the input
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy to tmp loc
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy to tmp loc
+ mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
+ fmov.x FP_SCR0(%a6),%fp0 # put new value back in fp0
+ bmi.b sgetmann # it's negative
+ rts
+
+sgetmann:
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+ rts
+
+#
+# For denormalized numbers, shift the mantissa until the j-bit = 1,
+# then load the exponent with +/1 $3fff.
+#
+ global sgetmand
+sgetmand:
+ bsr.l norm # normalize exponent
+ bra.b sgetman
+
+#########################################################################
+# scosh(): computes the hyperbolic cosine of a normalized input #
+# scoshd(): computes the hyperbolic cosine of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = cosh(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 3 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# COSH #
+# 1. If |X| > 16380 log2, go to 3. #
+# #
+# 2. (|X| <= 16380 log2) Cosh(X) is obtained by the formulae #
+# y = |X|, z = exp(Y), and #
+# cosh(X) = (1/2)*( z + 1/z ). #
+# Exit. #
+# #
+# 3. (|X| > 16380 log2). If |X| > 16480 log2, go to 5. #
+# #
+# 4. (16380 log2 < |X| <= 16480 log2) #
+# cosh(X) = sign(X) * exp(|X|)/2. #
+# However, invoking exp(|X|) may cause premature #
+# overflow. Thus, we calculate sinh(X) as follows: #
+# Y := |X| #
+# Fact := 2**(16380) #
+# Y' := Y - 16381 log2 #
+# cosh(X) := Fact * exp(Y'). #
+# Exit. #
+# #
+# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
+# Huge*Huge to generate overflow and an infinity with #
+# the appropriate sign. Huge is the largest finite number #
+# in extended format. Exit. #
+# #
+#########################################################################
+
+TWO16380:
+ long 0x7FFB0000,0x80000000,0x00000000,0x00000000
+
+ global scosh
+scosh:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ and.l &0x7FFFFFFF,%d1
+ cmp.l %d1,&0x400CB167
+ bgt.b COSHBIG
+
+#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
+#--COSH(X) = (1/2) * ( EXP(X) + 1/EXP(X) )
+
+ fabs.x %fp0 # |X|
+
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ fmovm.x &0x01,-(%sp) # save |X| to stack
+ lea (%sp),%a0 # pass ptr to |X|
+ bsr setox # FP0 IS EXP(|X|)
+ add.l &0xc,%sp # erase |X| from stack
+ fmul.s &0x3F000000,%fp0 # (1/2)EXP(|X|)
+ mov.l (%sp)+,%d0
+
+ fmov.s &0x3E800000,%fp1 # (1/4)
+ fdiv.x %fp0,%fp1 # 1/(2 EXP(|X|))
+
+ fmov.l %d0,%fpcr
+ mov.b &FADD_OP,%d1 # last inst is ADD
+ fadd.x %fp1,%fp0
+ bra t_catch
+
+COSHBIG:
+ cmp.l %d1,&0x400CB2B3
+ bgt.b COSHHUGE
+
+ fabs.x %fp0
+ fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
+ fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
+
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ fmovm.x &0x01,-(%sp) # save fp0 to stack
+ lea (%sp),%a0 # pass ptr to fp0
+ bsr setox
+ add.l &0xc,%sp # clear fp0 from stack
+ mov.l (%sp)+,%d0
+
+ fmov.l %d0,%fpcr
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.x TWO16380(%pc),%fp0
+ bra t_catch
+
+COSHHUGE:
+ bra t_ovfl2
+
+ global scoshd
+#--COSH(X) = 1 FOR DENORMALIZED X
+scoshd:
+ fmov.s &0x3F800000,%fp0
+
+ fmov.l %d0,%fpcr
+ fadd.s &0x00800000,%fp0
+ bra t_pinx2
+
+#########################################################################
+# ssinh(): computes the hyperbolic sine of a normalized input #
+# ssinhd(): computes the hyperbolic sine of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = sinh(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 3 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# SINH #
+# 1. If |X| > 16380 log2, go to 3. #
+# #
+# 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formula #
+# y = |X|, sgn = sign(X), and z = expm1(Y), #
+# sinh(X) = sgn*(1/2)*( z + z/(1+z) ). #
+# Exit. #
+# #
+# 3. If |X| > 16480 log2, go to 5. #
+# #
+# 4. (16380 log2 < |X| <= 16480 log2) #
+# sinh(X) = sign(X) * exp(|X|)/2. #
+# However, invoking exp(|X|) may cause premature overflow. #
+# Thus, we calculate sinh(X) as follows: #
+# Y := |X| #
+# sgn := sign(X) #
+# sgnFact := sgn * 2**(16380) #
+# Y' := Y - 16381 log2 #
+# sinh(X) := sgnFact * exp(Y'). #
+# Exit. #
+# #
+# 5. (|X| > 16480 log2) sinh(X) must overflow. Return #
+# sign(X)*Huge*Huge to generate overflow and an infinity with #
+# the appropriate sign. Huge is the largest finite number in #
+# extended format. Exit. #
+# #
+#########################################################################
+
+ global ssinh
+ssinh:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ mov.l %d1,%a1 # save (compacted) operand
+ and.l &0x7FFFFFFF,%d1
+ cmp.l %d1,&0x400CB167
+ bgt.b SINHBIG
+
+#--THIS IS THE USUAL CASE, |X| < 16380 LOG2
+#--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )
+
+ fabs.x %fp0 # Y = |X|
+
+ movm.l &0x8040,-(%sp) # {a1/d0}
+ fmovm.x &0x01,-(%sp) # save Y on stack
+ lea (%sp),%a0 # pass ptr to Y
+ clr.l %d0
+ bsr setoxm1 # FP0 IS Z = EXPM1(Y)
+ add.l &0xc,%sp # clear Y from stack
+ fmov.l &0,%fpcr
+ movm.l (%sp)+,&0x0201 # {a1/d0}
+
+ fmov.x %fp0,%fp1
+ fadd.s &0x3F800000,%fp1 # 1+Z
+ fmov.x %fp0,-(%sp)
+ fdiv.x %fp1,%fp0 # Z/(1+Z)
+ mov.l %a1,%d1
+ and.l &0x80000000,%d1
+ or.l &0x3F000000,%d1
+ fadd.x (%sp)+,%fp0
+ mov.l %d1,-(%sp)
+
+ fmov.l %d0,%fpcr
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.s (%sp)+,%fp0 # last fp inst - possible exceptions set
+ bra t_catch
+
+SINHBIG:
+ cmp.l %d1,&0x400CB2B3
+ bgt t_ovfl
+ fabs.x %fp0
+ fsub.d T1(%pc),%fp0 # (|X|-16381LOG2_LEAD)
+ mov.l &0,-(%sp)
+ mov.l &0x80000000,-(%sp)
+ mov.l %a1,%d1
+ and.l &0x80000000,%d1
+ or.l &0x7FFB0000,%d1
+ mov.l %d1,-(%sp) # EXTENDED FMT
+ fsub.d T2(%pc),%fp0 # |X| - 16381 LOG2, ACCURATE
+
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ fmovm.x &0x01,-(%sp) # save fp0 on stack
+ lea (%sp),%a0 # pass ptr to fp0
+ bsr setox
+ add.l &0xc,%sp # clear fp0 from stack
+
+ mov.l (%sp)+,%d0
+ fmov.l %d0,%fpcr
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.x (%sp)+,%fp0 # possible exception
+ bra t_catch
+
+ global ssinhd
+#--SINH(X) = X FOR DENORMALIZED X
+ssinhd:
+ bra t_extdnrm
+
+#########################################################################
+# stanh(): computes the hyperbolic tangent of a normalized input #
+# stanhd(): computes the hyperbolic tangent of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = tanh(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 3 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# TANH #
+# 1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3. #
+# #
+# 2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by #
+# sgn := sign(X), y := 2|X|, z := expm1(Y), and #
+# tanh(X) = sgn*( z/(2+z) ). #
+# Exit. #
+# #
+# 3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1, #
+# go to 7. #
+# #
+# 4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6. #
+# #
+# 5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by #
+# sgn := sign(X), y := 2|X|, z := exp(Y), #
+# tanh(X) = sgn - [ sgn*2/(1+z) ]. #
+# Exit. #
+# #
+# 6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we #
+# calculate Tanh(X) by #
+# sgn := sign(X), Tiny := 2**(-126), #
+# tanh(X) := sgn - sgn*Tiny. #
+# Exit. #
+# #
+# 7. (|X| < 2**(-40)). Tanh(X) = X. Exit. #
+# #
+#########################################################################
+
+ set X,FP_SCR0
+ set XFRAC,X+4
+
+ set SGN,L_SCR3
+
+ set V,FP_SCR0
+
+ global stanh
+stanh:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+
+ fmov.x %fp0,X(%a6)
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ mov.l %d1,X(%a6)
+ and.l &0x7FFFFFFF,%d1
+ cmp.l %d1, &0x3fd78000 # is |X| < 2^(-40)?
+ blt.w TANHBORS # yes
+ cmp.l %d1, &0x3fffddce # is |X| > (5/2)LOG2?
+ bgt.w TANHBORS # yes
+
+#--THIS IS THE USUAL CASE
+#--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
+
+ mov.l X(%a6),%d1
+ mov.l %d1,SGN(%a6)
+ and.l &0x7FFF0000,%d1
+ add.l &0x00010000,%d1 # EXPONENT OF 2|X|
+ mov.l %d1,X(%a6)
+ and.l &0x80000000,SGN(%a6)
+ fmov.x X(%a6),%fp0 # FP0 IS Y = 2|X|
+
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ fmovm.x &0x1,-(%sp) # save Y on stack
+ lea (%sp),%a0 # pass ptr to Y
+ bsr setoxm1 # FP0 IS Z = EXPM1(Y)
+ add.l &0xc,%sp # clear Y from stack
+ mov.l (%sp)+,%d0
+
+ fmov.x %fp0,%fp1
+ fadd.s &0x40000000,%fp1 # Z+2
+ mov.l SGN(%a6),%d1
+ fmov.x %fp1,V(%a6)
+ eor.l %d1,V(%a6)
+
+ fmov.l %d0,%fpcr # restore users round prec,mode
+ fdiv.x V(%a6),%fp0
+ bra t_inx2
+
+TANHBORS:
+ cmp.l %d1,&0x3FFF8000
+ blt.w TANHSM
+
+ cmp.l %d1,&0x40048AA1
+ bgt.w TANHHUGE
+
+#-- (5/2) LOG2 < |X| < 50 LOG2,
+#--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
+#--TANH(X) = SGN - SGN*2/[EXP(Y)+1].
+
+ mov.l X(%a6),%d1
+ mov.l %d1,SGN(%a6)
+ and.l &0x7FFF0000,%d1
+ add.l &0x00010000,%d1 # EXPO OF 2|X|
+ mov.l %d1,X(%a6) # Y = 2|X|
+ and.l &0x80000000,SGN(%a6)
+ mov.l SGN(%a6),%d1
+ fmov.x X(%a6),%fp0 # Y = 2|X|
+
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ fmovm.x &0x01,-(%sp) # save Y on stack
+ lea (%sp),%a0 # pass ptr to Y
+ bsr setox # FP0 IS EXP(Y)
+ add.l &0xc,%sp # clear Y from stack
+ mov.l (%sp)+,%d0
+ mov.l SGN(%a6),%d1
+ fadd.s &0x3F800000,%fp0 # EXP(Y)+1
+
+ eor.l &0xC0000000,%d1 # -SIGN(X)*2
+ fmov.s %d1,%fp1 # -SIGN(X)*2 IN SGL FMT
+ fdiv.x %fp0,%fp1 # -SIGN(X)2 / [EXP(Y)+1 ]
+
+ mov.l SGN(%a6),%d1
+ or.l &0x3F800000,%d1 # SGN
+ fmov.s %d1,%fp0 # SGN IN SGL FMT
+
+ fmov.l %d0,%fpcr # restore users round prec,mode
+ mov.b &FADD_OP,%d1 # last inst is ADD
+ fadd.x %fp1,%fp0
+ bra t_inx2
+
+TANHSM:
+ fmov.l %d0,%fpcr # restore users round prec,mode
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x X(%a6),%fp0 # last inst - possible exception set
+ bra t_catch
+
+#---RETURN SGN(X) - SGN(X)EPS
+TANHHUGE:
+ mov.l X(%a6),%d1
+ and.l &0x80000000,%d1
+ or.l &0x3F800000,%d1
+ fmov.s %d1,%fp0
+ and.l &0x80000000,%d1
+ eor.l &0x80800000,%d1 # -SIGN(X)*EPS
+
+ fmov.l %d0,%fpcr # restore users round prec,mode
+ fadd.s %d1,%fp0
+ bra t_inx2
+
+ global stanhd
+#--TANH(X) = X FOR DENORMALIZED X
+stanhd:
+ bra t_extdnrm
+
+#########################################################################
+# slogn(): computes the natural logarithm of a normalized input #
+# slognd(): computes the natural logarithm of a denormalized input #
+# slognp1(): computes the log(1+X) of a normalized input #
+# slognp1d(): computes the log(1+X) of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = log(X) or log(1+X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 2 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# LOGN: #
+# Step 1. If |X-1| < 1/16, approximate log(X) by an odd #
+# polynomial in u, where u = 2(X-1)/(X+1). Otherwise, #
+# move on to Step 2. #
+# #
+# Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first #
+# seven significant bits of Y plus 2**(-7), i.e. #
+# F = 1.xxxxxx1 in base 2 where the six "x" match those #
+# of Y. Note that |Y-F| <= 2**(-7). #
+# #
+# Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a #
+# polynomial in u, log(1+u) = poly. #
+# #
+# Step 4. Reconstruct #
+# log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) #
+# by k*log(2) + (log(F) + poly). The values of log(F) are #
+# calculated beforehand and stored in the program. #
+# #
+# lognp1: #
+# Step 1: If |X| < 1/16, approximate log(1+X) by an odd #
+# polynomial in u where u = 2X/(2+X). Otherwise, move on #
+# to Step 2. #
+# #
+# Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done #
+# in Step 2 of the algorithm for LOGN and compute #
+# log(1+X) as k*log(2) + log(F) + poly where poly #
+# approximates log(1+u), u = (Y-F)/F. #
+# #
+# Implementation Notes: #
+# Note 1. There are 64 different possible values for F, thus 64 #
+# log(F)'s need to be tabulated. Moreover, the values of #
+# 1/F are also tabulated so that the division in (Y-F)/F #
+# can be performed by a multiplication. #
+# #
+# Note 2. In Step 2 of lognp1, in order to preserved accuracy, #
+# the value Y-F has to be calculated carefully when #
+# 1/2 <= X < 3/2. #
+# #
+# Note 3. To fully exploit the pipeline, polynomials are usually #
+# separated into two parts evaluated independently before #
+# being added up. #
+# #
+#########################################################################
+LOGOF2:
+ long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
+
+one:
+ long 0x3F800000
+zero:
+ long 0x00000000
+infty:
+ long 0x7F800000
+negone:
+ long 0xBF800000
+
+LOGA6:
+ long 0x3FC2499A,0xB5E4040B
+LOGA5:
+ long 0xBFC555B5,0x848CB7DB
+
+LOGA4:
+ long 0x3FC99999,0x987D8730
+LOGA3:
+ long 0xBFCFFFFF,0xFF6F7E97
+
+LOGA2:
+ long 0x3FD55555,0x555555A4
+LOGA1:
+ long 0xBFE00000,0x00000008
+
+LOGB5:
+ long 0x3F175496,0xADD7DAD6
+LOGB4:
+ long 0x3F3C71C2,0xFE80C7E0
+
+LOGB3:
+ long 0x3F624924,0x928BCCFF
+LOGB2:
+ long 0x3F899999,0x999995EC
+
+LOGB1:
+ long 0x3FB55555,0x55555555
+TWO:
+ long 0x40000000,0x00000000
+
+LTHOLD:
+ long 0x3f990000,0x80000000,0x00000000,0x00000000
+
+LOGTBL:
+ long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000
+ long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000
+ long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000
+ long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000
+ long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000
+ long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000
+ long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000
+ long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000
+ long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000
+ long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000
+ long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000
+ long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000
+ long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000
+ long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000
+ long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000
+ long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000
+ long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000
+ long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000
+ long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000
+ long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000
+ long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000
+ long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000
+ long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000
+ long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000
+ long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000
+ long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000
+ long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000
+ long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000
+ long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000
+ long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000
+ long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000
+ long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000
+ long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000
+ long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000
+ long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000
+ long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000
+ long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000
+ long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000
+ long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000
+ long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000
+ long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000
+ long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000
+ long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000
+ long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000
+ long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000
+ long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000
+ long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000
+ long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000
+ long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000
+ long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000
+ long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000
+ long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000
+ long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000
+ long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000
+ long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000
+ long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000
+ long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000
+ long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000
+ long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000
+ long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000
+ long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000
+ long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000
+ long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000
+ long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000
+ long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000
+ long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000
+ long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000
+ long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000
+ long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000
+ long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000
+ long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000
+ long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000
+ long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000
+ long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000
+ long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000
+ long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000
+ long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000
+ long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000
+ long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000
+ long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000
+ long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000
+ long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000
+ long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000
+ long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000
+ long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000
+ long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000
+ long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000
+ long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000
+ long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000
+ long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000
+ long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000
+ long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000
+ long 0x3FFE0000,0x94458094,0x45809446,0x00000000
+ long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000
+ long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000
+ long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000
+ long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000
+ long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000
+ long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000
+ long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000
+ long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000
+ long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000
+ long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000
+ long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000
+ long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000
+ long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000
+ long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000
+ long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000
+ long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000
+ long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000
+ long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000
+ long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000
+ long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000
+ long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000
+ long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000
+ long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000
+ long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000
+ long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000
+ long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000
+ long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000
+ long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000
+ long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000
+ long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000
+ long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000
+ long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000
+ long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000
+ long 0x3FFE0000,0x80808080,0x80808081,0x00000000
+ long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000
+
+ set ADJK,L_SCR1
+
+ set X,FP_SCR0
+ set XDCARE,X+2
+ set XFRAC,X+4
+
+ set F,FP_SCR1
+ set FFRAC,F+4
+
+ set KLOG2,FP_SCR0
+
+ set SAVEU,FP_SCR0
+
+ global slogn
+#--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S
+slogn:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+ mov.l &0x00000000,ADJK(%a6)
+
+LOGBGN:
+#--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS
+#--A FINITE, NON-ZERO, NORMALIZED NUMBER.
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+
+ mov.l (%a0),X(%a6)
+ mov.l 4(%a0),X+4(%a6)
+ mov.l 8(%a0),X+8(%a6)
+
+ cmp.l %d1,&0 # CHECK IF X IS NEGATIVE
+ blt.w LOGNEG # LOG OF NEGATIVE ARGUMENT IS INVALID
+# X IS POSITIVE, CHECK IF X IS NEAR 1
+ cmp.l %d1,&0x3ffef07d # IS X < 15/16?
+ blt.b LOGMAIN # YES
+ cmp.l %d1,&0x3fff8841 # IS X > 17/16?
+ ble.w LOGNEAR1 # NO
+
+LOGMAIN:
+#--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1
+
+#--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY.
+#--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1.
+#--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y)
+#-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F).
+#--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING
+#--LOG(1+U) CAN BE VERY EFFICIENT.
+#--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO
+#--DIVISION IS NEEDED TO CALCULATE (Y-F)/F.
+
+#--GET K, Y, F, AND ADDRESS OF 1/F.
+ asr.l &8,%d1
+ asr.l &8,%d1 # SHIFTED 16 BITS, BIASED EXPO. OF X
+ sub.l &0x3FFF,%d1 # THIS IS K
+ add.l ADJK(%a6),%d1 # ADJUST K, ORIGINAL INPUT MAY BE DENORM.
+ lea LOGTBL(%pc),%a0 # BASE ADDRESS OF 1/F AND LOG(F)
+ fmov.l %d1,%fp1 # CONVERT K TO FLOATING-POINT FORMAT
+
+#--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F
+ mov.l &0x3FFF0000,X(%a6) # X IS NOW Y, I.E. 2^(-K)*X
+ mov.l XFRAC(%a6),FFRAC(%a6)
+ and.l &0xFE000000,FFRAC(%a6) # FIRST 7 BITS OF Y
+ or.l &0x01000000,FFRAC(%a6) # GET F: ATTACH A 1 AT THE EIGHTH BIT
+ mov.l FFRAC(%a6),%d1 # READY TO GET ADDRESS OF 1/F
+ and.l &0x7E000000,%d1
+ asr.l &8,%d1
+ asr.l &8,%d1
+ asr.l &4,%d1 # SHIFTED 20, D0 IS THE DISPLACEMENT
+ add.l %d1,%a0 # A0 IS THE ADDRESS FOR 1/F
+
+ fmov.x X(%a6),%fp0
+ mov.l &0x3fff0000,F(%a6)
+ clr.l F+8(%a6)
+ fsub.x F(%a6),%fp0 # Y-F
+ fmovm.x &0xc,-(%sp) # SAVE FP2-3 WHILE FP0 IS NOT READY
+#--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K
+#--REGISTERS SAVED: FPCR, FP1, FP2
+
+LP1CONT1:
+#--AN RE-ENTRY POINT FOR LOGNP1
+ fmul.x (%a0),%fp0 # FP0 IS U = (Y-F)/F
+ fmul.x LOGOF2(%pc),%fp1 # GET K*LOG2 WHILE FP0 IS NOT READY
+ fmov.x %fp0,%fp2
+ fmul.x %fp2,%fp2 # FP2 IS V=U*U
+ fmov.x %fp1,KLOG2(%a6) # PUT K*LOG2 IN MEMEORY, FREE FP1
+
+#--LOG(1+U) IS APPROXIMATED BY
+#--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
+#--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
+
+ fmov.x %fp2,%fp3
+ fmov.x %fp2,%fp1
+
+ fmul.d LOGA6(%pc),%fp1 # V*A6
+ fmul.d LOGA5(%pc),%fp2 # V*A5
+
+ fadd.d LOGA4(%pc),%fp1 # A4+V*A6
+ fadd.d LOGA3(%pc),%fp2 # A3+V*A5
+
+ fmul.x %fp3,%fp1 # V*(A4+V*A6)
+ fmul.x %fp3,%fp2 # V*(A3+V*A5)
+
+ fadd.d LOGA2(%pc),%fp1 # A2+V*(A4+V*A6)
+ fadd.d LOGA1(%pc),%fp2 # A1+V*(A3+V*A5)
+
+ fmul.x %fp3,%fp1 # V*(A2+V*(A4+V*A6))
+ add.l &16,%a0 # ADDRESS OF LOG(F)
+ fmul.x %fp3,%fp2 # V*(A1+V*(A3+V*A5))
+
+ fmul.x %fp0,%fp1 # U*V*(A2+V*(A4+V*A6))
+ fadd.x %fp2,%fp0 # U+V*(A1+V*(A3+V*A5))
+
+ fadd.x (%a0),%fp1 # LOG(F)+U*V*(A2+V*(A4+V*A6))
+ fmovm.x (%sp)+,&0x30 # RESTORE FP2-3
+ fadd.x %fp1,%fp0 # FP0 IS LOG(F) + LOG(1+U)
+
+ fmov.l %d0,%fpcr
+ fadd.x KLOG2(%a6),%fp0 # FINAL ADD
+ bra t_inx2
+
+
+LOGNEAR1:
+
+# if the input is exactly equal to one, then exit through ld_pzero.
+# if these 2 lines weren't here, the correct answer would be returned
+# but the INEX2 bit would be set.
+ fcmp.b %fp0,&0x1 # is it equal to one?
+ fbeq.l ld_pzero # yes
+
+#--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT.
+ fmov.x %fp0,%fp1
+ fsub.s one(%pc),%fp1 # FP1 IS X-1
+ fadd.s one(%pc),%fp0 # FP0 IS X+1
+ fadd.x %fp1,%fp1 # FP1 IS 2(X-1)
+#--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL
+#--IN U, U = 2(X-1)/(X+1) = FP1/FP0
+
+LP1CONT2:
+#--THIS IS AN RE-ENTRY POINT FOR LOGNP1
+ fdiv.x %fp0,%fp1 # FP1 IS U
+ fmovm.x &0xc,-(%sp) # SAVE FP2-3
+#--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3
+#--LET V=U*U, W=V*V, CALCULATE
+#--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY
+#--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] )
+ fmov.x %fp1,%fp0
+ fmul.x %fp0,%fp0 # FP0 IS V
+ fmov.x %fp1,SAVEU(%a6) # STORE U IN MEMORY, FREE FP1
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # FP1 IS W
+
+ fmov.d LOGB5(%pc),%fp3
+ fmov.d LOGB4(%pc),%fp2
+
+ fmul.x %fp1,%fp3 # W*B5
+ fmul.x %fp1,%fp2 # W*B4
+
+ fadd.d LOGB3(%pc),%fp3 # B3+W*B5
+ fadd.d LOGB2(%pc),%fp2 # B2+W*B4
+
+ fmul.x %fp3,%fp1 # W*(B3+W*B5), FP3 RELEASED
+
+ fmul.x %fp0,%fp2 # V*(B2+W*B4)
+
+ fadd.d LOGB1(%pc),%fp1 # B1+W*(B3+W*B5)
+ fmul.x SAVEU(%a6),%fp0 # FP0 IS U*V
+
+ fadd.x %fp2,%fp1 # B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED
+ fmovm.x (%sp)+,&0x30 # FP2-3 RESTORED
+
+ fmul.x %fp1,%fp0 # U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] )
+
+ fmov.l %d0,%fpcr
+ fadd.x SAVEU(%a6),%fp0
+ bra t_inx2
+
+#--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID
+LOGNEG:
+ bra t_operr
+
+ global slognd
+slognd:
+#--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT
+
+ mov.l &-100,ADJK(%a6) # INPUT = 2^(ADJK) * FP0
+
+#----normalize the input value by left shifting k bits (k to be determined
+#----below), adjusting exponent and storing -k to ADJK
+#----the value TWOTO100 is no longer needed.
+#----Note that this code assumes the denormalized input is NON-ZERO.
+
+ movm.l &0x3f00,-(%sp) # save some registers {d2-d7}
+ mov.l (%a0),%d3 # D3 is exponent of smallest norm. #
+ mov.l 4(%a0),%d4
+ mov.l 8(%a0),%d5 # (D4,D5) is (Hi_X,Lo_X)
+ clr.l %d2 # D2 used for holding K
+
+ tst.l %d4
+ bne.b Hi_not0
+
+Hi_0:
+ mov.l %d5,%d4
+ clr.l %d5
+ mov.l &32,%d2
+ clr.l %d6
+ bfffo %d4{&0:&32},%d6
+ lsl.l %d6,%d4
+ add.l %d6,%d2 # (D3,D4,D5) is normalized
+
+ mov.l %d3,X(%a6)
+ mov.l %d4,XFRAC(%a6)
+ mov.l %d5,XFRAC+4(%a6)
+ neg.l %d2
+ mov.l %d2,ADJK(%a6)
+ fmov.x X(%a6),%fp0
+ movm.l (%sp)+,&0xfc # restore registers {d2-d7}
+ lea X(%a6),%a0
+ bra.w LOGBGN # begin regular log(X)
+
+Hi_not0:
+ clr.l %d6
+ bfffo %d4{&0:&32},%d6 # find first 1
+ mov.l %d6,%d2 # get k
+ lsl.l %d6,%d4
+ mov.l %d5,%d7 # a copy of D5
+ lsl.l %d6,%d5
+ neg.l %d6
+ add.l &32,%d6
+ lsr.l %d6,%d7
+ or.l %d7,%d4 # (D3,D4,D5) normalized
+
+ mov.l %d3,X(%a6)
+ mov.l %d4,XFRAC(%a6)
+ mov.l %d5,XFRAC+4(%a6)
+ neg.l %d2
+ mov.l %d2,ADJK(%a6)
+ fmov.x X(%a6),%fp0
+ movm.l (%sp)+,&0xfc # restore registers {d2-d7}
+ lea X(%a6),%a0
+ bra.w LOGBGN # begin regular log(X)
+
+ global slognp1
+#--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S
+slognp1:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+ fabs.x %fp0 # test magnitude
+ fcmp.x %fp0,LTHOLD(%pc) # compare with min threshold
+ fbgt.w LP1REAL # if greater, continue
+ fmov.l %d0,%fpcr
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x (%a0),%fp0 # return signed argument
+ bra t_catch
+
+LP1REAL:
+ fmov.x (%a0),%fp0 # LOAD INPUT
+ mov.l &0x00000000,ADJK(%a6)
+ fmov.x %fp0,%fp1 # FP1 IS INPUT Z
+ fadd.s one(%pc),%fp0 # X := ROUND(1+Z)
+ fmov.x %fp0,X(%a6)
+ mov.w XFRAC(%a6),XDCARE(%a6)
+ mov.l X(%a6),%d1
+ cmp.l %d1,&0
+ ble.w LP1NEG0 # LOG OF ZERO OR -VE
+ cmp.l %d1,&0x3ffe8000 # IS BOUNDS [1/2,3/2]?
+ blt.w LOGMAIN
+ cmp.l %d1,&0x3fffc000
+ bgt.w LOGMAIN
+#--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z,
+#--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE,
+#--SIMPLY INVOKE LOG(X) FOR LOG(1+Z).
+
+LP1NEAR1:
+#--NEXT SEE IF EXP(-1/16) < X < EXP(1/16)
+ cmp.l %d1,&0x3ffef07d
+ blt.w LP1CARE
+ cmp.l %d1,&0x3fff8841
+ bgt.w LP1CARE
+
+LP1ONE16:
+#--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2)
+#--WHERE U = 2Z/(2+Z) = 2Z/(1+X).
+ fadd.x %fp1,%fp1 # FP1 IS 2Z
+ fadd.s one(%pc),%fp0 # FP0 IS 1+X
+#--U = FP1/FP0
+ bra.w LP1CONT2
+
+LP1CARE:
+#--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE
+#--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST
+#--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2],
+#--THERE ARE ONLY TWO CASES.
+#--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z
+#--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z
+#--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF
+#--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED.
+
+ mov.l XFRAC(%a6),FFRAC(%a6)
+ and.l &0xFE000000,FFRAC(%a6)
+ or.l &0x01000000,FFRAC(%a6) # F OBTAINED
+ cmp.l %d1,&0x3FFF8000 # SEE IF 1+Z > 1
+ bge.b KISZERO
+
+KISNEG1:
+ fmov.s TWO(%pc),%fp0
+ mov.l &0x3fff0000,F(%a6)
+ clr.l F+8(%a6)
+ fsub.x F(%a6),%fp0 # 2-F
+ mov.l FFRAC(%a6),%d1
+ and.l &0x7E000000,%d1
+ asr.l &8,%d1
+ asr.l &8,%d1
+ asr.l &4,%d1 # D0 CONTAINS DISPLACEMENT FOR 1/F
+ fadd.x %fp1,%fp1 # GET 2Z
+ fmovm.x &0xc,-(%sp) # SAVE FP2 {%fp2/%fp3}
+ fadd.x %fp1,%fp0 # FP0 IS Y-F = (2-F)+2Z
+ lea LOGTBL(%pc),%a0 # A0 IS ADDRESS OF 1/F
+ add.l %d1,%a0
+ fmov.s negone(%pc),%fp1 # FP1 IS K = -1
+ bra.w LP1CONT1
+
+KISZERO:
+ fmov.s one(%pc),%fp0
+ mov.l &0x3fff0000,F(%a6)
+ clr.l F+8(%a6)
+ fsub.x F(%a6),%fp0 # 1-F
+ mov.l FFRAC(%a6),%d1
+ and.l &0x7E000000,%d1
+ asr.l &8,%d1
+ asr.l &8,%d1
+ asr.l &4,%d1
+ fadd.x %fp1,%fp0 # FP0 IS Y-F
+ fmovm.x &0xc,-(%sp) # FP2 SAVED {%fp2/%fp3}
+ lea LOGTBL(%pc),%a0
+ add.l %d1,%a0 # A0 IS ADDRESS OF 1/F
+ fmov.s zero(%pc),%fp1 # FP1 IS K = 0
+ bra.w LP1CONT1
+
+LP1NEG0:
+#--FPCR SAVED. D0 IS X IN COMPACT FORM.
+ cmp.l %d1,&0
+ blt.b LP1NEG
+LP1ZERO:
+ fmov.s negone(%pc),%fp0
+
+ fmov.l %d0,%fpcr
+ bra t_dz
+
+LP1NEG:
+ fmov.s zero(%pc),%fp0
+
+ fmov.l %d0,%fpcr
+ bra t_operr
+
+ global slognp1d
+#--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT
+# Simply return the denorm
+slognp1d:
+ bra t_extdnrm
+
+#########################################################################
+# satanh(): computes the inverse hyperbolic tangent of a norm input #
+# satanhd(): computes the inverse hyperbolic tangent of a denorm input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = arctanh(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 3 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# ATANH #
+# 1. If |X| >= 1, go to 3. #
+# #
+# 2. (|X| < 1) Calculate atanh(X) by #
+# sgn := sign(X) #
+# y := |X| #
+# z := 2y/(1-y) #
+# atanh(X) := sgn * (1/2) * logp1(z) #
+# Exit. #
+# #
+# 3. If |X| > 1, go to 5. #
+# #
+# 4. (|X| = 1) Generate infinity with an appropriate sign and #
+# divide-by-zero by #
+# sgn := sign(X) #
+# atan(X) := sgn / (+0). #
+# Exit. #
+# #
+# 5. (|X| > 1) Generate an invalid operation by 0 * infinity. #
+# Exit. #
+# #
+#########################################################################
+
+ global satanh
+satanh:
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ and.l &0x7FFFFFFF,%d1
+ cmp.l %d1,&0x3FFF8000
+ bge.b ATANHBIG
+
+#--THIS IS THE USUAL CASE, |X| < 1
+#--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z).
+
+ fabs.x (%a0),%fp0 # Y = |X|
+ fmov.x %fp0,%fp1
+ fneg.x %fp1 # -Y
+ fadd.x %fp0,%fp0 # 2Y
+ fadd.s &0x3F800000,%fp1 # 1-Y
+ fdiv.x %fp1,%fp0 # 2Y/(1-Y)
+ mov.l (%a0),%d1
+ and.l &0x80000000,%d1
+ or.l &0x3F000000,%d1 # SIGN(X)*HALF
+ mov.l %d1,-(%sp)
+
+ mov.l %d0,-(%sp) # save rnd prec,mode
+ clr.l %d0 # pass ext prec,RN
+ fmovm.x &0x01,-(%sp) # save Z on stack
+ lea (%sp),%a0 # pass ptr to Z
+ bsr slognp1 # LOG1P(Z)
+ add.l &0xc,%sp # clear Z from stack
+
+ mov.l (%sp)+,%d0 # fetch old prec,mode
+ fmov.l %d0,%fpcr # load it
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.s (%sp)+,%fp0
+ bra t_catch
+
+ATANHBIG:
+ fabs.x (%a0),%fp0 # |X|
+ fcmp.s %fp0,&0x3F800000
+ fbgt t_operr
+ bra t_dz
+
+ global satanhd
+#--ATANH(X) = X FOR DENORMALIZED X
+satanhd:
+ bra t_extdnrm
+
+#########################################################################
+# slog10(): computes the base-10 logarithm of a normalized input #
+# slog10d(): computes the base-10 logarithm of a denormalized input #
+# slog2(): computes the base-2 logarithm of a normalized input #
+# slog2d(): computes the base-2 logarithm of a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = log_10(X) or log_2(X) #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 1.7 ulps in 64 significant bit, #
+# i.e. within 0.5003 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# slog10d: #
+# #
+# Step 0. If X < 0, create a NaN and raise the invalid operation #
+# flag. Otherwise, save FPCR in D1; set FpCR to default. #
+# Notes: Default means round-to-nearest mode, no floating-point #
+# traps, and precision control = double extended. #
+# #
+# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
+# Notes: Even if X is denormalized, log(X) is always normalized. #
+# #
+# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
+# 2.1 Restore the user FPCR #
+# 2.2 Return ans := Y * INV_L10. #
+# #
+# slog10: #
+# #
+# Step 0. If X < 0, create a NaN and raise the invalid operation #
+# flag. Otherwise, save FPCR in D1; set FpCR to default. #
+# Notes: Default means round-to-nearest mode, no floating-point #
+# traps, and precision control = double extended. #
+# #
+# Step 1. Call sLogN to obtain Y = log(X), the natural log of X. #
+# #
+# Step 2. Compute log_10(X) = log(X) * (1/log(10)). #
+# 2.1 Restore the user FPCR #
+# 2.2 Return ans := Y * INV_L10. #
+# #
+# sLog2d: #
+# #
+# Step 0. If X < 0, create a NaN and raise the invalid operation #
+# flag. Otherwise, save FPCR in D1; set FpCR to default. #
+# Notes: Default means round-to-nearest mode, no floating-point #
+# traps, and precision control = double extended. #
+# #
+# Step 1. Call slognd to obtain Y = log(X), the natural log of X. #
+# Notes: Even if X is denormalized, log(X) is always normalized. #
+# #
+# Step 2. Compute log_10(X) = log(X) * (1/log(2)). #
+# 2.1 Restore the user FPCR #
+# 2.2 Return ans := Y * INV_L2. #
+# #
+# sLog2: #
+# #
+# Step 0. If X < 0, create a NaN and raise the invalid operation #
+# flag. Otherwise, save FPCR in D1; set FpCR to default. #
+# Notes: Default means round-to-nearest mode, no floating-point #
+# traps, and precision control = double extended. #
+# #
+# Step 1. If X is not an integer power of two, i.e., X != 2^k, #
+# go to Step 3. #
+# #
+# Step 2. Return k. #
+# 2.1 Get integer k, X = 2^k. #
+# 2.2 Restore the user FPCR. #
+# 2.3 Return ans := convert-to-double-extended(k). #
+# #
+# Step 3. Call sLogN to obtain Y = log(X), the natural log of X. #
+# #
+# Step 4. Compute log_2(X) = log(X) * (1/log(2)). #
+# 4.1 Restore the user FPCR #
+# 4.2 Return ans := Y * INV_L2. #
+# #
+#########################################################################
+
+INV_L10:
+ long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
+
+INV_L2:
+ long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
+
+ global slog10
+#--entry point for Log10(X), X is normalized
+slog10:
+ fmov.b &0x1,%fp0
+ fcmp.x %fp0,(%a0) # if operand == 1,
+ fbeq.l ld_pzero # return an EXACT zero
+
+ mov.l (%a0),%d1
+ blt.w invalid
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ bsr slogn # log(X), X normal.
+ fmov.l (%sp)+,%fpcr
+ fmul.x INV_L10(%pc),%fp0
+ bra t_inx2
+
+ global slog10d
+#--entry point for Log10(X), X is denormalized
+slog10d:
+ mov.l (%a0),%d1
+ blt.w invalid
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ bsr slognd # log(X), X denorm.
+ fmov.l (%sp)+,%fpcr
+ fmul.x INV_L10(%pc),%fp0
+ bra t_minx2
+
+ global slog2
+#--entry point for Log2(X), X is normalized
+slog2:
+ mov.l (%a0),%d1
+ blt.w invalid
+
+ mov.l 8(%a0),%d1
+ bne.b continue # X is not 2^k
+
+ mov.l 4(%a0),%d1
+ and.l &0x7FFFFFFF,%d1
+ bne.b continue
+
+#--X = 2^k.
+ mov.w (%a0),%d1
+ and.l &0x00007FFF,%d1
+ sub.l &0x3FFF,%d1
+ beq.l ld_pzero
+ fmov.l %d0,%fpcr
+ fmov.l %d1,%fp0
+ bra t_inx2
+
+continue:
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ bsr slogn # log(X), X normal.
+ fmov.l (%sp)+,%fpcr
+ fmul.x INV_L2(%pc),%fp0
+ bra t_inx2
+
+invalid:
+ bra t_operr
+
+ global slog2d
+#--entry point for Log2(X), X is denormalized
+slog2d:
+ mov.l (%a0),%d1
+ blt.w invalid
+ mov.l %d0,-(%sp)
+ clr.l %d0
+ bsr slognd # log(X), X denorm.
+ fmov.l (%sp)+,%fpcr
+ fmul.x INV_L2(%pc),%fp0
+ bra t_minx2
+
+#########################################################################
+# stwotox(): computes 2**X for a normalized input #
+# stwotoxd(): computes 2**X for a denormalized input #
+# stentox(): computes 10**X for a normalized input #
+# stentoxd(): computes 10**X for a denormalized input #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input #
+# d0 = round precision,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = 2**X or 10**X #
+# #
+# ACCURACY and MONOTONICITY ******************************************* #
+# The returned result is within 2 ulps in 64 significant bit, #
+# i.e. within 0.5001 ulp to 53 bits if the result is subsequently #
+# rounded to double precision. The result is provably monotonic #
+# in double precision. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# twotox #
+# 1. If |X| > 16480, go to ExpBig. #
+# #
+# 2. If |X| < 2**(-70), go to ExpSm. #
+# #
+# 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore #
+# decompose N as #
+# N = 64(M + M') + j, j = 0,1,2,...,63. #
+# #
+# 4. Overwrite r := r * log2. Then #
+# 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
+# Go to expr to compute that expression. #
+# #
+# tentox #
+# 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig. #
+# #
+# 2. If |X| < 2**(-70), go to ExpSm. #
+# #
+# 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set #
+# N := round-to-int(y). Decompose N as #
+# N = 64(M + M') + j, j = 0,1,2,...,63. #
+# #
+# 4. Define r as #
+# r := ((X - N*L1)-N*L2) * L10 #
+# where L1, L2 are the leading and trailing parts of #
+# log_10(2)/64 and L10 is the natural log of 10. Then #
+# 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r). #
+# Go to expr to compute that expression. #
+# #
+# expr #
+# 1. Fetch 2**(j/64) from table as Fact1 and Fact2. #
+# #
+# 2. Overwrite Fact1 and Fact2 by #
+# Fact1 := 2**(M) * Fact1 #
+# Fact2 := 2**(M) * Fact2 #
+# Thus Fact1 + Fact2 = 2**(M) * 2**(j/64). #
+# #
+# 3. Calculate P where 1 + P approximates exp(r): #
+# P = r + r*r*(A1+r*(A2+...+r*A5)). #
+# #
+# 4. Let AdjFact := 2**(M'). Return #
+# AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ). #
+# Exit. #
+# #
+# ExpBig #
+# 1. Generate overflow by Huge * Huge if X > 0; otherwise, #
+# generate underflow by Tiny * Tiny. #
+# #
+# ExpSm #
+# 1. Return 1 + X. #
+# #
+#########################################################################
+
+L2TEN64:
+ long 0x406A934F,0x0979A371 # 64LOG10/LOG2
+L10TWO1:
+ long 0x3F734413,0x509F8000 # LOG2/64LOG10
+
+L10TWO2:
+ long 0xBFCD0000,0xC0219DC1,0xDA994FD2,0x00000000
+
+LOG10: long 0x40000000,0x935D8DDD,0xAAA8AC17,0x00000000
+
+LOG2: long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000
+
+EXPA5: long 0x3F56C16D,0x6F7BD0B2
+EXPA4: long 0x3F811112,0x302C712C
+EXPA3: long 0x3FA55555,0x55554CC1
+EXPA2: long 0x3FC55555,0x55554A54
+EXPA1: long 0x3FE00000,0x00000000,0x00000000,0x00000000
+
+TEXPTBL:
+ long 0x3FFF0000,0x80000000,0x00000000,0x3F738000
+ long 0x3FFF0000,0x8164D1F3,0xBC030773,0x3FBEF7CA
+ long 0x3FFF0000,0x82CD8698,0xAC2BA1D7,0x3FBDF8A9
+ long 0x3FFF0000,0x843A28C3,0xACDE4046,0x3FBCD7C9
+ long 0x3FFF0000,0x85AAC367,0xCC487B15,0xBFBDE8DA
+ long 0x3FFF0000,0x871F6196,0x9E8D1010,0x3FBDE85C
+ long 0x3FFF0000,0x88980E80,0x92DA8527,0x3FBEBBF1
+ long 0x3FFF0000,0x8A14D575,0x496EFD9A,0x3FBB80CA
+ long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E7,0xBFBA8373
+ long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E6,0xBFBE9670
+ long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x3FBDB700
+ long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x3FBEEEB0
+ long 0x3FFF0000,0x91C3D373,0xAB11C336,0x3FBBFD6D
+ long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0xBFBDB319
+ long 0x3FFF0000,0x94F4EFA8,0xFEF70961,0x3FBDBA2B
+ long 0x3FFF0000,0x96942D37,0x20185A00,0x3FBE91D5
+ long 0x3FFF0000,0x9837F051,0x8DB8A96F,0x3FBE8D5A
+ long 0x3FFF0000,0x99E04593,0x20B7FA65,0xBFBCDE7B
+ long 0x3FFF0000,0x9B8D39B9,0xD54E5539,0xBFBEBAAF
+ long 0x3FFF0000,0x9D3ED9A7,0x2CFFB751,0xBFBD86DA
+ long 0x3FFF0000,0x9EF53260,0x91A111AE,0xBFBEBEDD
+ long 0x3FFF0000,0xA0B0510F,0xB9714FC2,0x3FBCC96E
+ long 0x3FFF0000,0xA2704303,0x0C496819,0xBFBEC90B
+ long 0x3FFF0000,0xA43515AE,0x09E6809E,0x3FBBD1DB
+ long 0x3FFF0000,0xA5FED6A9,0xB15138EA,0x3FBCE5EB
+ long 0x3FFF0000,0xA7CD93B4,0xE965356A,0xBFBEC274
+ long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x3FBEA83C
+ long 0x3FFF0000,0xAB7A39B5,0xA93ED337,0x3FBECB00
+ long 0x3FFF0000,0xAD583EEA,0x42A14AC6,0x3FBE9301
+ long 0x3FFF0000,0xAF3B78AD,0x690A4375,0xBFBD8367
+ long 0x3FFF0000,0xB123F581,0xD2AC2590,0xBFBEF05F
+ long 0x3FFF0000,0xB311C412,0xA9112489,0x3FBDFB3C
+ long 0x3FFF0000,0xB504F333,0xF9DE6484,0x3FBEB2FB
+ long 0x3FFF0000,0xB6FD91E3,0x28D17791,0x3FBAE2CB
+ long 0x3FFF0000,0xB8FBAF47,0x62FB9EE9,0x3FBCDC3C
+ long 0x3FFF0000,0xBAFF5AB2,0x133E45FB,0x3FBEE9AA
+ long 0x3FFF0000,0xBD08A39F,0x580C36BF,0xBFBEAEFD
+ long 0x3FFF0000,0xBF1799B6,0x7A731083,0xBFBCBF51
+ long 0x3FFF0000,0xC12C4CCA,0x66709456,0x3FBEF88A
+ long 0x3FFF0000,0xC346CCDA,0x24976407,0x3FBD83B2
+ long 0x3FFF0000,0xC5672A11,0x5506DADD,0x3FBDF8AB
+ long 0x3FFF0000,0xC78D74C8,0xABB9B15D,0xBFBDFB17
+ long 0x3FFF0000,0xC9B9BD86,0x6E2F27A3,0xBFBEFE3C
+ long 0x3FFF0000,0xCBEC14FE,0xF2727C5D,0xBFBBB6F8
+ long 0x3FFF0000,0xCE248C15,0x1F8480E4,0xBFBCEE53
+ long 0x3FFF0000,0xD06333DA,0xEF2B2595,0xBFBDA4AE
+ long 0x3FFF0000,0xD2A81D91,0xF12AE45A,0x3FBC9124
+ long 0x3FFF0000,0xD4F35AAB,0xCFEDFA1F,0x3FBEB243
+ long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x3FBDE69A
+ long 0x3FFF0000,0xD99D15C2,0x78AFD7B6,0xBFB8BC61
+ long 0x3FFF0000,0xDBFBB797,0xDAF23755,0x3FBDF610
+ long 0x3FFF0000,0xDE60F482,0x5E0E9124,0xBFBD8BE1
+ long 0x3FFF0000,0xE0CCDEEC,0x2A94E111,0x3FBACB12
+ long 0x3FFF0000,0xE33F8972,0xBE8A5A51,0x3FBB9BFE
+ long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x3FBCF2F4
+ long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x3FBEF22F
+ long 0x3FFF0000,0xEAC0C6E7,0xDD24392F,0xBFBDBF4A
+ long 0x3FFF0000,0xED4F301E,0xD9942B84,0x3FBEC01A
+ long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CB,0x3FBE8CAC
+ long 0x3FFF0000,0xF281773C,0x59FFB13A,0xBFBCBB3F
+ long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x3FBEF73A
+ long 0x3FFF0000,0xF7D0DF73,0x0AD13BB9,0xBFB8B795
+ long 0x3FFF0000,0xFA83B2DB,0x722A033A,0x3FBEF84B
+ long 0x3FFF0000,0xFD3E0C0C,0xF486C175,0xBFBEF581
+
+ set INT,L_SCR1
+
+ set X,FP_SCR0
+ set XDCARE,X+2
+ set XFRAC,X+4
+
+ set ADJFACT,FP_SCR0
+
+ set FACT1,FP_SCR0
+ set FACT1HI,FACT1+4
+ set FACT1LOW,FACT1+8
+
+ set FACT2,FP_SCR1
+ set FACT2HI,FACT2+4
+ set FACT2LOW,FACT2+8
+
+ global stwotox
+#--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
+stwotox:
+ fmovm.x (%a0),&0x80 # LOAD INPUT
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ fmov.x %fp0,X(%a6)
+ and.l &0x7FFFFFFF,%d1
+
+ cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
+ bge.b TWOOK1
+ bra.w EXPBORS
+
+TWOOK1:
+ cmp.l %d1,&0x400D80C0 # |X| > 16480?
+ ble.b TWOMAIN
+ bra.w EXPBORS
+
+TWOMAIN:
+#--USUAL CASE, 2^(-70) <= |X| <= 16480
+
+ fmov.x %fp0,%fp1
+ fmul.s &0x42800000,%fp1 # 64 * X
+ fmov.l %fp1,INT(%a6) # N = ROUND-TO-INT(64 X)
+ mov.l %d2,-(%sp)
+ lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
+ fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
+ mov.l INT(%a6),%d1
+ mov.l %d1,%d2
+ and.l &0x3F,%d1 # D0 IS J
+ asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
+ add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
+ asr.l &6,%d2 # d2 IS L, N = 64L + J
+ mov.l %d2,%d1
+ asr.l &1,%d1 # D0 IS M
+ sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
+ add.l &0x3FFF,%d2
+
+#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
+#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
+#--ADJFACT = 2^(M').
+#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
+
+ fmovm.x &0x0c,-(%sp) # save fp2/fp3
+
+ fmul.s &0x3C800000,%fp1 # (1/64)*N
+ mov.l (%a1)+,FACT1(%a6)
+ mov.l (%a1)+,FACT1HI(%a6)
+ mov.l (%a1)+,FACT1LOW(%a6)
+ mov.w (%a1)+,FACT2(%a6)
+
+ fsub.x %fp1,%fp0 # X - (1/64)*INT(64 X)
+
+ mov.w (%a1)+,FACT2HI(%a6)
+ clr.w FACT2HI+2(%a6)
+ clr.l FACT2LOW(%a6)
+ add.w %d1,FACT1(%a6)
+ fmul.x LOG2(%pc),%fp0 # FP0 IS R
+ add.w %d1,FACT2(%a6)
+
+ bra.w expr
+
+EXPBORS:
+#--FPCR, D0 SAVED
+ cmp.l %d1,&0x3FFF8000
+ bgt.b TEXPBIG
+
+#--|X| IS SMALL, RETURN 1 + X
+
+ fmov.l %d0,%fpcr # restore users round prec,mode
+ fadd.s &0x3F800000,%fp0 # RETURN 1 + X
+ bra t_pinx2
+
+TEXPBIG:
+#--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
+#--REGISTERS SAVE SO FAR ARE FPCR AND D0
+ mov.l X(%a6),%d1
+ cmp.l %d1,&0
+ blt.b EXPNEG
+
+ bra t_ovfl2 # t_ovfl expects positive value
+
+EXPNEG:
+ bra t_unfl2 # t_unfl expects positive value
+
+ global stwotoxd
+stwotoxd:
+#--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
+
+ fmov.l %d0,%fpcr # set user's rounding mode/precision
+ fmov.s &0x3F800000,%fp0 # RETURN 1 + X
+ mov.l (%a0),%d1
+ or.l &0x00800001,%d1
+ fadd.s %d1,%fp0
+ bra t_pinx2
+
+ global stentox
+#--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
+stentox:
+ fmovm.x (%a0),&0x80 # LOAD INPUT
+
+ mov.l (%a0),%d1
+ mov.w 4(%a0),%d1
+ fmov.x %fp0,X(%a6)
+ and.l &0x7FFFFFFF,%d1
+
+ cmp.l %d1,&0x3FB98000 # |X| >= 2**(-70)?
+ bge.b TENOK1
+ bra.w EXPBORS
+
+TENOK1:
+ cmp.l %d1,&0x400B9B07 # |X| <= 16480*log2/log10 ?
+ ble.b TENMAIN
+ bra.w EXPBORS
+
+TENMAIN:
+#--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
+
+ fmov.x %fp0,%fp1
+ fmul.d L2TEN64(%pc),%fp1 # X*64*LOG10/LOG2
+ fmov.l %fp1,INT(%a6) # N=INT(X*64*LOG10/LOG2)
+ mov.l %d2,-(%sp)
+ lea TEXPTBL(%pc),%a1 # LOAD ADDRESS OF TABLE OF 2^(J/64)
+ fmov.l INT(%a6),%fp1 # N --> FLOATING FMT
+ mov.l INT(%a6),%d1
+ mov.l %d1,%d2
+ and.l &0x3F,%d1 # D0 IS J
+ asl.l &4,%d1 # DISPLACEMENT FOR 2^(J/64)
+ add.l %d1,%a1 # ADDRESS FOR 2^(J/64)
+ asr.l &6,%d2 # d2 IS L, N = 64L + J
+ mov.l %d2,%d1
+ asr.l &1,%d1 # D0 IS M
+ sub.l %d1,%d2 # d2 IS M', N = 64(M+M') + J
+ add.l &0x3FFF,%d2
+
+#--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
+#--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
+#--ADJFACT = 2^(M').
+#--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
+ fmovm.x &0x0c,-(%sp) # save fp2/fp3
+
+ fmov.x %fp1,%fp2
+
+ fmul.d L10TWO1(%pc),%fp1 # N*(LOG2/64LOG10)_LEAD
+ mov.l (%a1)+,FACT1(%a6)
+
+ fmul.x L10TWO2(%pc),%fp2 # N*(LOG2/64LOG10)_TRAIL
+
+ mov.l (%a1)+,FACT1HI(%a6)
+ mov.l (%a1)+,FACT1LOW(%a6)
+ fsub.x %fp1,%fp0 # X - N L_LEAD
+ mov.w (%a1)+,FACT2(%a6)
+
+ fsub.x %fp2,%fp0 # X - N L_TRAIL
+
+ mov.w (%a1)+,FACT2HI(%a6)
+ clr.w FACT2HI+2(%a6)
+ clr.l FACT2LOW(%a6)
+
+ fmul.x LOG10(%pc),%fp0 # FP0 IS R
+ add.w %d1,FACT1(%a6)
+ add.w %d1,FACT2(%a6)
+
+expr:
+#--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
+#--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
+#--FP0 IS R. THE FOLLOWING CODE COMPUTES
+#-- 2**(M'+M) * 2**(J/64) * EXP(R)
+
+ fmov.x %fp0,%fp1
+ fmul.x %fp1,%fp1 # FP1 IS S = R*R
+
+ fmov.d EXPA5(%pc),%fp2 # FP2 IS A5
+ fmov.d EXPA4(%pc),%fp3 # FP3 IS A4
+
+ fmul.x %fp1,%fp2 # FP2 IS S*A5
+ fmul.x %fp1,%fp3 # FP3 IS S*A4
+
+ fadd.d EXPA3(%pc),%fp2 # FP2 IS A3+S*A5
+ fadd.d EXPA2(%pc),%fp3 # FP3 IS A2+S*A4
+
+ fmul.x %fp1,%fp2 # FP2 IS S*(A3+S*A5)
+ fmul.x %fp1,%fp3 # FP3 IS S*(A2+S*A4)
+
+ fadd.d EXPA1(%pc),%fp2 # FP2 IS A1+S*(A3+S*A5)
+ fmul.x %fp0,%fp3 # FP3 IS R*S*(A2+S*A4)
+
+ fmul.x %fp1,%fp2 # FP2 IS S*(A1+S*(A3+S*A5))
+ fadd.x %fp3,%fp0 # FP0 IS R+R*S*(A2+S*A4)
+ fadd.x %fp2,%fp0 # FP0 IS EXP(R) - 1
+
+ fmovm.x (%sp)+,&0x30 # restore fp2/fp3
+
+#--FINAL RECONSTRUCTION PROCESS
+#--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
+
+ fmul.x FACT1(%a6),%fp0
+ fadd.x FACT2(%a6),%fp0
+ fadd.x FACT1(%a6),%fp0
+
+ fmov.l %d0,%fpcr # restore users round prec,mode
+ mov.w %d2,ADJFACT(%a6) # INSERT EXPONENT
+ mov.l (%sp)+,%d2
+ mov.l &0x80000000,ADJFACT+4(%a6)
+ clr.l ADJFACT+8(%a6)
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.x ADJFACT(%a6),%fp0 # FINAL ADJUSTMENT
+ bra t_catch
+
+ global stentoxd
+stentoxd:
+#--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
+
+ fmov.l %d0,%fpcr # set user's rounding mode/precision
+ fmov.s &0x3F800000,%fp0 # RETURN 1 + X
+ mov.l (%a0),%d1
+ or.l &0x00800001,%d1
+ fadd.s %d1,%fp0
+ bra t_pinx2
+
+#########################################################################
+# smovcr(): returns the ROM constant at the offset specified in d1 #
+# rounded to the mode and precision specified in d0. #
+# #
+# INPUT *************************************************************** #
+# d0 = rnd prec,mode #
+# d1 = ROM offset #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = the ROM constant rounded to the user's rounding mode,prec #
+# #
+#########################################################################
+
+ global smovcr
+smovcr:
+ mov.l %d1,-(%sp) # save rom offset for a sec
+
+ lsr.b &0x4,%d0 # shift ctrl bits to lo
+ mov.l %d0,%d1 # make a copy
+ andi.w &0x3,%d1 # extract rnd mode
+ andi.w &0xc,%d0 # extract rnd prec
+ swap %d0 # put rnd prec in hi
+ mov.w %d1,%d0 # put rnd mode in lo
+
+ mov.l (%sp)+,%d1 # get rom offset
+
+#
+# check range of offset
+#
+ tst.b %d1 # if zero, offset is to pi
+ beq.b pi_tbl # it is pi
+ cmpi.b %d1,&0x0a # check range $01 - $0a
+ ble.b z_val # if in this range, return zero
+ cmpi.b %d1,&0x0e # check range $0b - $0e
+ ble.b sm_tbl # valid constants in this range
+ cmpi.b %d1,&0x2f # check range $10 - $2f
+ ble.b z_val # if in this range, return zero
+ cmpi.b %d1,&0x3f # check range $30 - $3f
+ ble.b bg_tbl # valid constants in this range
+
+z_val:
+ bra.l ld_pzero # return a zero
+
+#
+# the answer is PI rounded to the proper precision.
+#
+# fetch a pointer to the answer table relating to the proper rounding
+# precision.
+#
+pi_tbl:
+ tst.b %d0 # is rmode RN?
+ bne.b pi_not_rn # no
+pi_rn:
+ lea.l PIRN(%pc),%a0 # yes; load PI RN table addr
+ bra.w set_finx
+pi_not_rn:
+ cmpi.b %d0,&rp_mode # is rmode RP?
+ beq.b pi_rp # yes
+pi_rzrm:
+ lea.l PIRZRM(%pc),%a0 # no; load PI RZ,RM table addr
+ bra.b set_finx
+pi_rp:
+ lea.l PIRP(%pc),%a0 # load PI RP table addr
+ bra.b set_finx
+
+#
+# the answer is one of:
+# $0B log10(2) (inexact)
+# $0C e (inexact)
+# $0D log2(e) (inexact)
+# $0E log10(e) (exact)
+#
+# fetch a pointer to the answer table relating to the proper rounding
+# precision.
+#
+sm_tbl:
+ subi.b &0xb,%d1 # make offset in 0-4 range
+ tst.b %d0 # is rmode RN?
+ bne.b sm_not_rn # no
+sm_rn:
+ lea.l SMALRN(%pc),%a0 # yes; load RN table addr
+sm_tbl_cont:
+ cmpi.b %d1,&0x2 # is result log10(e)?
+ ble.b set_finx # no; answer is inexact
+ bra.b no_finx # yes; answer is exact
+sm_not_rn:
+ cmpi.b %d0,&rp_mode # is rmode RP?
+ beq.b sm_rp # yes
+sm_rzrm:
+ lea.l SMALRZRM(%pc),%a0 # no; load RZ,RM table addr
+ bra.b sm_tbl_cont
+sm_rp:
+ lea.l SMALRP(%pc),%a0 # load RP table addr
+ bra.b sm_tbl_cont
+
+#
+# the answer is one of:
+# $30 ln(2) (inexact)
+# $31 ln(10) (inexact)
+# $32 10^0 (exact)
+# $33 10^1 (exact)
+# $34 10^2 (exact)
+# $35 10^4 (exact)
+# $36 10^8 (exact)
+# $37 10^16 (exact)
+# $38 10^32 (inexact)
+# $39 10^64 (inexact)
+# $3A 10^128 (inexact)
+# $3B 10^256 (inexact)
+# $3C 10^512 (inexact)
+# $3D 10^1024 (inexact)
+# $3E 10^2048 (inexact)
+# $3F 10^4096 (inexact)
+#
+# fetch a pointer to the answer table relating to the proper rounding
+# precision.
+#
+bg_tbl:
+ subi.b &0x30,%d1 # make offset in 0-f range
+ tst.b %d0 # is rmode RN?
+ bne.b bg_not_rn # no
+bg_rn:
+ lea.l BIGRN(%pc),%a0 # yes; load RN table addr
+bg_tbl_cont:
+ cmpi.b %d1,&0x1 # is offset <= $31?
+ ble.b set_finx # yes; answer is inexact
+ cmpi.b %d1,&0x7 # is $32 <= offset <= $37?
+ ble.b no_finx # yes; answer is exact
+ bra.b set_finx # no; answer is inexact
+bg_not_rn:
+ cmpi.b %d0,&rp_mode # is rmode RP?
+ beq.b bg_rp # yes
+bg_rzrm:
+ lea.l BIGRZRM(%pc),%a0 # no; load RZ,RM table addr
+ bra.b bg_tbl_cont
+bg_rp:
+ lea.l BIGRP(%pc),%a0 # load RP table addr
+ bra.b bg_tbl_cont
+
+# answer is inexact, so set INEX2 and AINEX in the user's FPSR.
+set_finx:
+ ori.l &inx2a_mask,USER_FPSR(%a6) # set INEX2/AINEX
+no_finx:
+ mulu.w &0xc,%d1 # offset points into tables
+ swap %d0 # put rnd prec in lo word
+ tst.b %d0 # is precision extended?
+
+ bne.b not_ext # if xprec, do not call round
+
+# Precision is extended
+ fmovm.x (%a0,%d1.w),&0x80 # return result in fp0
+ rts
+
+# Precision is single or double
+not_ext:
+ swap %d0 # rnd prec in upper word
+
+# call round() to round the answer to the proper precision.
+# exponents out of range for single or double DO NOT cause underflow
+# or overflow.
+ mov.w 0x0(%a0,%d1.w),FP_SCR1_EX(%a6) # load first word
+ mov.l 0x4(%a0,%d1.w),FP_SCR1_HI(%a6) # load second word
+ mov.l 0x8(%a0,%d1.w),FP_SCR1_LO(%a6) # load third word
+ mov.l %d0,%d1
+ clr.l %d0 # clear g,r,s
+ lea FP_SCR1(%a6),%a0 # pass ptr to answer
+ clr.w LOCAL_SGN(%a0) # sign always positive
+ bsr.l _round # round the mantissa
+
+ fmovm.x (%a0),&0x80 # return rounded result in fp0
+ rts
+
+ align 0x4
+
+PIRN: long 0x40000000,0xc90fdaa2,0x2168c235 # pi
+PIRZRM: long 0x40000000,0xc90fdaa2,0x2168c234 # pi
+PIRP: long 0x40000000,0xc90fdaa2,0x2168c235 # pi
+
+SMALRN: long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2)
+ long 0x40000000,0xadf85458,0xa2bb4a9a # e
+ long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e)
+ long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e)
+ long 0x00000000,0x00000000,0x00000000 # 0.0
+
+SMALRZRM:
+ long 0x3ffd0000,0x9a209a84,0xfbcff798 # log10(2)
+ long 0x40000000,0xadf85458,0xa2bb4a9a # e
+ long 0x3fff0000,0xb8aa3b29,0x5c17f0bb # log2(e)
+ long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e)
+ long 0x00000000,0x00000000,0x00000000 # 0.0
+
+SMALRP: long 0x3ffd0000,0x9a209a84,0xfbcff799 # log10(2)
+ long 0x40000000,0xadf85458,0xa2bb4a9b # e
+ long 0x3fff0000,0xb8aa3b29,0x5c17f0bc # log2(e)
+ long 0x3ffd0000,0xde5bd8a9,0x37287195 # log10(e)
+ long 0x00000000,0x00000000,0x00000000 # 0.0
+
+BIGRN: long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2)
+ long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10)
+
+ long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0
+ long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
+ long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
+ long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
+ long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
+ long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
+ long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
+ long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
+ long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
+ long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
+ long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
+ long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
+ long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
+ long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
+
+BIGRZRM:
+ long 0x3ffe0000,0xb17217f7,0xd1cf79ab # ln(2)
+ long 0x40000000,0x935d8ddd,0xaaa8ac16 # ln(10)
+
+ long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0
+ long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
+ long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
+ long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
+ long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
+ long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
+ long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32
+ long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
+ long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128
+ long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256
+ long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512
+ long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
+ long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048
+ long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096
+
+BIGRP:
+ long 0x3ffe0000,0xb17217f7,0xd1cf79ac # ln(2)
+ long 0x40000000,0x935d8ddd,0xaaa8ac17 # ln(10)
+
+ long 0x3fff0000,0x80000000,0x00000000 # 10 ^ 0
+ long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
+ long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
+ long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
+ long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
+ long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
+ long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
+ long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64
+ long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
+ long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
+ long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
+ long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024
+ long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
+ long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
+
+#########################################################################
+# sscale(): computes the destination operand scaled by the source #
+# operand. If the absoulute value of the source operand is #
+# >= 2^14, an overflow or underflow is returned. #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to double-extended source operand X #
+# a1 = pointer to double-extended destination operand Y #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = scale(X,Y) #
+# #
+#########################################################################
+
+set SIGN, L_SCR1
+
+ global sscale
+sscale:
+ mov.l %d0,-(%sp) # store off ctrl bits for now
+
+ mov.w DST_EX(%a1),%d1 # get dst exponent
+ smi.b SIGN(%a6) # use SIGN to hold dst sign
+ andi.l &0x00007fff,%d1 # strip sign from dst exp
+
+ mov.w SRC_EX(%a0),%d0 # check src bounds
+ andi.w &0x7fff,%d0 # clr src sign bit
+ cmpi.w %d0,&0x3fff # is src ~ ZERO?
+ blt.w src_small # yes
+ cmpi.w %d0,&0x400c # no; is src too big?
+ bgt.w src_out # yes
+
+#
+# Source is within 2^14 range.
+#
+src_ok:
+ fintrz.x SRC(%a0),%fp0 # calc int of src
+ fmov.l %fp0,%d0 # int src to d0
+# don't want any accrued bits from the fintrz showing up later since
+# we may need to read the fpsr for the last fp op in t_catch2().
+ fmov.l &0x0,%fpsr
+
+ tst.b DST_HI(%a1) # is dst denormalized?
+ bmi.b sok_norm
+
+# the dst is a DENORM. normalize the DENORM and add the adjustment to
+# the src value. then, jump to the norm part of the routine.
+sok_dnrm:
+ mov.l %d0,-(%sp) # save src for now
+
+ mov.w DST_EX(%a1),FP_SCR0_EX(%a6) # make a copy
+ mov.l DST_HI(%a1),FP_SCR0_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
+
+ lea FP_SCR0(%a6),%a0 # pass ptr to DENORM
+ bsr.l norm # normalize the DENORM
+ neg.l %d0
+ add.l (%sp)+,%d0 # add adjustment to src
+
+ fmovm.x FP_SCR0(%a6),&0x80 # load normalized DENORM
+
+ cmpi.w %d0,&-0x3fff # is the shft amt really low?
+ bge.b sok_norm2 # thank goodness no
+
+# the multiply factor that we're trying to create should be a denorm
+# for the multiply to work. therefore, we're going to actually do a
+# multiply with a denorm which will cause an unimplemented data type
+# exception to be put into the machine which will be caught and corrected
+# later. we don't do this with the DENORMs above because this method
+# is slower. but, don't fret, I don't see it being used much either.
+ fmov.l (%sp)+,%fpcr # restore user fpcr
+ mov.l &0x80000000,%d1 # load normalized mantissa
+ subi.l &-0x3fff,%d0 # how many should we shift?
+ neg.l %d0 # make it positive
+ cmpi.b %d0,&0x20 # is it > 32?
+ bge.b sok_dnrm_32 # yes
+ lsr.l %d0,%d1 # no; bit stays in upper lw
+ clr.l -(%sp) # insert zero low mantissa
+ mov.l %d1,-(%sp) # insert new high mantissa
+ clr.l -(%sp) # make zero exponent
+ bra.b sok_norm_cont
+sok_dnrm_32:
+ subi.b &0x20,%d0 # get shift count
+ lsr.l %d0,%d1 # make low mantissa longword
+ mov.l %d1,-(%sp) # insert new low mantissa
+ clr.l -(%sp) # insert zero high mantissa
+ clr.l -(%sp) # make zero exponent
+ bra.b sok_norm_cont
+
+# the src will force the dst to a DENORM value or worse. so, let's
+# create an fp multiply that will create the result.
+sok_norm:
+ fmovm.x DST(%a1),&0x80 # load fp0 with normalized src
+sok_norm2:
+ fmov.l (%sp)+,%fpcr # restore user fpcr
+
+ addi.w &0x3fff,%d0 # turn src amt into exp value
+ swap %d0 # put exponent in high word
+ clr.l -(%sp) # insert new exponent
+ mov.l &0x80000000,-(%sp) # insert new high mantissa
+ mov.l %d0,-(%sp) # insert new lo mantissa
+
+sok_norm_cont:
+ fmov.l %fpcr,%d0 # d0 needs fpcr for t_catch2
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.x (%sp)+,%fp0 # do the multiply
+ bra t_catch2 # catch any exceptions
+
+#
+# Source is outside of 2^14 range. Test the sign and branch
+# to the appropriate exception handler.
+#
+src_out:
+ mov.l (%sp)+,%d0 # restore ctrl bits
+ exg %a0,%a1 # swap src,dst ptrs
+ tst.b SRC_EX(%a1) # is src negative?
+ bmi t_unfl # yes; underflow
+ bra t_ovfl_sc # no; overflow
+
+#
+# The source input is below 1, so we check for denormalized numbers
+# and set unfl.
+#
+src_small:
+ tst.b DST_HI(%a1) # is dst denormalized?
+ bpl.b ssmall_done # yes
+
+ mov.l (%sp)+,%d0
+ fmov.l %d0,%fpcr # no; load control bits
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x DST(%a1),%fp0 # simply return dest
+ bra t_catch2
+ssmall_done:
+ mov.l (%sp)+,%d0 # load control bits into d1
+ mov.l %a1,%a0 # pass ptr to dst
+ bra t_resdnrm
+
+#########################################################################
+# smod(): computes the fp MOD of the input values X,Y. #
+# srem(): computes the fp (IEEE) REM of the input values X,Y. #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision input X #
+# a1 = pointer to extended precision input Y #
+# d0 = round precision,mode #
+# #
+# The input operands X and Y can be either normalized or #
+# denormalized. #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = FREM(X,Y) or FMOD(X,Y) #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# Step 1. Save and strip signs of X and Y: signX := sign(X), #
+# signY := sign(Y), X := |X|, Y := |Y|, #
+# signQ := signX EOR signY. Record whether MOD or REM #
+# is requested. #
+# #
+# Step 2. Set L := expo(X)-expo(Y), k := 0, Q := 0. #
+# If (L < 0) then #
+# R := X, go to Step 4. #
+# else #
+# R := 2^(-L)X, j := L. #
+# endif #
+# #
+# Step 3. Perform MOD(X,Y) #
+# 3.1 If R = Y, go to Step 9. #
+# 3.2 If R > Y, then { R := R - Y, Q := Q + 1} #
+# 3.3 If j = 0, go to Step 4. #
+# 3.4 k := k + 1, j := j - 1, Q := 2Q, R := 2R. Go to #
+# Step 3.1. #
+# #
+# Step 4. At this point, R = X - QY = MOD(X,Y). Set #
+# Last_Subtract := false (used in Step 7 below). If #
+# MOD is requested, go to Step 6. #
+# #
+# Step 5. R = MOD(X,Y), but REM(X,Y) is requested. #
+# 5.1 If R < Y/2, then R = MOD(X,Y) = REM(X,Y). Go to #
+# Step 6. #
+# 5.2 If R > Y/2, then { set Last_Subtract := true, #
+# Q := Q + 1, Y := signY*Y }. Go to Step 6. #
+# 5.3 This is the tricky case of R = Y/2. If Q is odd, #
+# then { Q := Q + 1, signX := -signX }. #
+# #
+# Step 6. R := signX*R. #
+# #
+# Step 7. If Last_Subtract = true, R := R - Y. #
+# #
+# Step 8. Return signQ, last 7 bits of Q, and R as required. #
+# #
+# Step 9. At this point, R = 2^(-j)*X - Q Y = Y. Thus, #
+# X = 2^(j)*(Q+1)Y. set Q := 2^(j)*(Q+1), #
+# R := 0. Return signQ, last 7 bits of Q, and R. #
+# #
+#########################################################################
+
+ set Mod_Flag,L_SCR3
+ set Sc_Flag,L_SCR3+1
+
+ set SignY,L_SCR2
+ set SignX,L_SCR2+2
+ set SignQ,L_SCR3+2
+
+ set Y,FP_SCR0
+ set Y_Hi,Y+4
+ set Y_Lo,Y+8
+
+ set R,FP_SCR1
+ set R_Hi,R+4
+ set R_Lo,R+8
+
+Scale:
+ long 0x00010000,0x80000000,0x00000000,0x00000000
+
+ global smod
+smod:
+ clr.b FPSR_QBYTE(%a6)
+ mov.l %d0,-(%sp) # save ctrl bits
+ clr.b Mod_Flag(%a6)
+ bra.b Mod_Rem
+
+ global srem
+srem:
+ clr.b FPSR_QBYTE(%a6)
+ mov.l %d0,-(%sp) # save ctrl bits
+ mov.b &0x1,Mod_Flag(%a6)
+
+Mod_Rem:
+#..Save sign of X and Y
+ movm.l &0x3f00,-(%sp) # save data registers
+ mov.w SRC_EX(%a0),%d3
+ mov.w %d3,SignY(%a6)
+ and.l &0x00007FFF,%d3 # Y := |Y|
+
+#
+ mov.l SRC_HI(%a0),%d4
+ mov.l SRC_LO(%a0),%d5 # (D3,D4,D5) is |Y|
+
+ tst.l %d3
+ bne.b Y_Normal
+
+ mov.l &0x00003FFE,%d3 # $3FFD + 1
+ tst.l %d4
+ bne.b HiY_not0
+
+HiY_0:
+ mov.l %d5,%d4
+ clr.l %d5
+ sub.l &32,%d3
+ clr.l %d6
+ bfffo %d4{&0:&32},%d6
+ lsl.l %d6,%d4
+ sub.l %d6,%d3 # (D3,D4,D5) is normalized
+# ...with bias $7FFD
+ bra.b Chk_X
+
+HiY_not0:
+ clr.l %d6
+ bfffo %d4{&0:&32},%d6
+ sub.l %d6,%d3
+ lsl.l %d6,%d4
+ mov.l %d5,%d7 # a copy of D5
+ lsl.l %d6,%d5
+ neg.l %d6
+ add.l &32,%d6
+ lsr.l %d6,%d7
+ or.l %d7,%d4 # (D3,D4,D5) normalized
+# ...with bias $7FFD
+ bra.b Chk_X
+
+Y_Normal:
+ add.l &0x00003FFE,%d3 # (D3,D4,D5) normalized
+# ...with bias $7FFD
+
+Chk_X:
+ mov.w DST_EX(%a1),%d0
+ mov.w %d0,SignX(%a6)
+ mov.w SignY(%a6),%d1
+ eor.l %d0,%d1
+ and.l &0x00008000,%d1
+ mov.w %d1,SignQ(%a6) # sign(Q) obtained
+ and.l &0x00007FFF,%d0
+ mov.l DST_HI(%a1),%d1
+ mov.l DST_LO(%a1),%d2 # (D0,D1,D2) is |X|
+ tst.l %d0
+ bne.b X_Normal
+ mov.l &0x00003FFE,%d0
+ tst.l %d1
+ bne.b HiX_not0
+
+HiX_0:
+ mov.l %d2,%d1
+ clr.l %d2
+ sub.l &32,%d0
+ clr.l %d6
+ bfffo %d1{&0:&32},%d6
+ lsl.l %d6,%d1
+ sub.l %d6,%d0 # (D0,D1,D2) is normalized
+# ...with bias $7FFD
+ bra.b Init
+
+HiX_not0:
+ clr.l %d6
+ bfffo %d1{&0:&32},%d6
+ sub.l %d6,%d0
+ lsl.l %d6,%d1
+ mov.l %d2,%d7 # a copy of D2
+ lsl.l %d6,%d2
+ neg.l %d6
+ add.l &32,%d6
+ lsr.l %d6,%d7
+ or.l %d7,%d1 # (D0,D1,D2) normalized
+# ...with bias $7FFD
+ bra.b Init
+
+X_Normal:
+ add.l &0x00003FFE,%d0 # (D0,D1,D2) normalized
+# ...with bias $7FFD
+
+Init:
+#
+ mov.l %d3,L_SCR1(%a6) # save biased exp(Y)
+ mov.l %d0,-(%sp) # save biased exp(X)
+ sub.l %d3,%d0 # L := expo(X)-expo(Y)
+
+ clr.l %d6 # D6 := carry <- 0
+ clr.l %d3 # D3 is Q
+ mov.l &0,%a1 # A1 is k; j+k=L, Q=0
+
+#..(Carry,D1,D2) is R
+ tst.l %d0
+ bge.b Mod_Loop_pre
+
+#..expo(X) < expo(Y). Thus X = mod(X,Y)
+#
+ mov.l (%sp)+,%d0 # restore d0
+ bra.w Get_Mod
+
+Mod_Loop_pre:
+ addq.l &0x4,%sp # erase exp(X)
+#..At this point R = 2^(-L)X; Q = 0; k = 0; and k+j = L
+Mod_Loop:
+ tst.l %d6 # test carry bit
+ bgt.b R_GT_Y
+
+#..At this point carry = 0, R = (D1,D2), Y = (D4,D5)
+ cmp.l %d1,%d4 # compare hi(R) and hi(Y)
+ bne.b R_NE_Y
+ cmp.l %d2,%d5 # compare lo(R) and lo(Y)
+ bne.b R_NE_Y
+
+#..At this point, R = Y
+ bra.w Rem_is_0
+
+R_NE_Y:
+#..use the borrow of the previous compare
+ bcs.b R_LT_Y # borrow is set iff R < Y
+
+R_GT_Y:
+#..If Carry is set, then Y < (Carry,D1,D2) < 2Y. Otherwise, Carry = 0
+#..and Y < (D1,D2) < 2Y. Either way, perform R - Y
+ sub.l %d5,%d2 # lo(R) - lo(Y)
+ subx.l %d4,%d1 # hi(R) - hi(Y)
+ clr.l %d6 # clear carry
+ addq.l &1,%d3 # Q := Q + 1
+
+R_LT_Y:
+#..At this point, Carry=0, R < Y. R = 2^(k-L)X - QY; k+j = L; j >= 0.
+ tst.l %d0 # see if j = 0.
+ beq.b PostLoop
+
+ add.l %d3,%d3 # Q := 2Q
+ add.l %d2,%d2 # lo(R) = 2lo(R)
+ roxl.l &1,%d1 # hi(R) = 2hi(R) + carry
+ scs %d6 # set Carry if 2(R) overflows
+ addq.l &1,%a1 # k := k+1
+ subq.l &1,%d0 # j := j - 1
+#..At this point, R=(Carry,D1,D2) = 2^(k-L)X - QY, j+k=L, j >= 0, R < 2Y.
+
+ bra.b Mod_Loop
+
+PostLoop:
+#..k = L, j = 0, Carry = 0, R = (D1,D2) = X - QY, R < Y.
+
+#..normalize R.
+ mov.l L_SCR1(%a6),%d0 # new biased expo of R
+ tst.l %d1
+ bne.b HiR_not0
+
+HiR_0:
+ mov.l %d2,%d1
+ clr.l %d2
+ sub.l &32,%d0
+ clr.l %d6
+ bfffo %d1{&0:&32},%d6
+ lsl.l %d6,%d1
+ sub.l %d6,%d0 # (D0,D1,D2) is normalized
+# ...with bias $7FFD
+ bra.b Get_Mod
+
+HiR_not0:
+ clr.l %d6
+ bfffo %d1{&0:&32},%d6
+ bmi.b Get_Mod # already normalized
+ sub.l %d6,%d0
+ lsl.l %d6,%d1
+ mov.l %d2,%d7 # a copy of D2
+ lsl.l %d6,%d2
+ neg.l %d6
+ add.l &32,%d6
+ lsr.l %d6,%d7
+ or.l %d7,%d1 # (D0,D1,D2) normalized
+
+#
+Get_Mod:
+ cmp.l %d0,&0x000041FE
+ bge.b No_Scale
+Do_Scale:
+ mov.w %d0,R(%a6)
+ mov.l %d1,R_Hi(%a6)
+ mov.l %d2,R_Lo(%a6)
+ mov.l L_SCR1(%a6),%d6
+ mov.w %d6,Y(%a6)
+ mov.l %d4,Y_Hi(%a6)
+ mov.l %d5,Y_Lo(%a6)
+ fmov.x R(%a6),%fp0 # no exception
+ mov.b &1,Sc_Flag(%a6)
+ bra.b ModOrRem
+No_Scale:
+ mov.l %d1,R_Hi(%a6)
+ mov.l %d2,R_Lo(%a6)
+ sub.l &0x3FFE,%d0
+ mov.w %d0,R(%a6)
+ mov.l L_SCR1(%a6),%d6
+ sub.l &0x3FFE,%d6
+ mov.l %d6,L_SCR1(%a6)
+ fmov.x R(%a6),%fp0
+ mov.w %d6,Y(%a6)
+ mov.l %d4,Y_Hi(%a6)
+ mov.l %d5,Y_Lo(%a6)
+ clr.b Sc_Flag(%a6)
+
+#
+ModOrRem:
+ tst.b Mod_Flag(%a6)
+ beq.b Fix_Sign
+
+ mov.l L_SCR1(%a6),%d6 # new biased expo(Y)
+ subq.l &1,%d6 # biased expo(Y/2)
+ cmp.l %d0,%d6
+ blt.b Fix_Sign
+ bgt.b Last_Sub
+
+ cmp.l %d1,%d4
+ bne.b Not_EQ
+ cmp.l %d2,%d5
+ bne.b Not_EQ
+ bra.w Tie_Case
+
+Not_EQ:
+ bcs.b Fix_Sign
+
+Last_Sub:
+#
+ fsub.x Y(%a6),%fp0 # no exceptions
+ addq.l &1,%d3 # Q := Q + 1
+
+#
+Fix_Sign:
+#..Get sign of X
+ mov.w SignX(%a6),%d6
+ bge.b Get_Q
+ fneg.x %fp0
+
+#..Get Q
+#
+Get_Q:
+ clr.l %d6
+ mov.w SignQ(%a6),%d6 # D6 is sign(Q)
+ mov.l &8,%d7
+ lsr.l %d7,%d6
+ and.l &0x0000007F,%d3 # 7 bits of Q
+ or.l %d6,%d3 # sign and bits of Q
+# swap %d3
+# fmov.l %fpsr,%d6
+# and.l &0xFF00FFFF,%d6
+# or.l %d3,%d6
+# fmov.l %d6,%fpsr # put Q in fpsr
+ mov.b %d3,FPSR_QBYTE(%a6) # put Q in fpsr
+
+#
+Restore:
+ movm.l (%sp)+,&0xfc # {%d2-%d7}
+ mov.l (%sp)+,%d0
+ fmov.l %d0,%fpcr
+ tst.b Sc_Flag(%a6)
+ beq.b Finish
+ mov.b &FMUL_OP,%d1 # last inst is MUL
+ fmul.x Scale(%pc),%fp0 # may cause underflow
+ bra t_catch2
+# the '040 package did this apparently to see if the dst operand for the
+# preceding fmul was a denorm. but, it better not have been since the
+# algorithm just got done playing with fp0 and expected no exceptions
+# as a result. trust me...
+# bra t_avoid_unsupp # check for denorm as a
+# ;result of the scaling
+
+Finish:
+ mov.b &FMOV_OP,%d1 # last inst is MOVE
+ fmov.x %fp0,%fp0 # capture exceptions & round
+ bra t_catch2
+
+Rem_is_0:
+#..R = 2^(-j)X - Q Y = Y, thus R = 0 and quotient = 2^j (Q+1)
+ addq.l &1,%d3
+ cmp.l %d0,&8 # D0 is j
+ bge.b Q_Big
+
+ lsl.l %d0,%d3
+ bra.b Set_R_0
+
+Q_Big:
+ clr.l %d3
+
+Set_R_0:
+ fmov.s &0x00000000,%fp0
+ clr.b Sc_Flag(%a6)
+ bra.w Fix_Sign
+
+Tie_Case:
+#..Check parity of Q
+ mov.l %d3,%d6
+ and.l &0x00000001,%d6
+ tst.l %d6
+ beq.w Fix_Sign # Q is even
+
+#..Q is odd, Q := Q + 1, signX := -signX
+ addq.l &1,%d3
+ mov.w SignX(%a6),%d6
+ eor.l &0x00008000,%d6
+ mov.w %d6,SignX(%a6)
+ bra.w Fix_Sign
+
+qnan: long 0x7fff0000, 0xffffffff, 0xffffffff
+
+#########################################################################
+# XDEF **************************************************************** #
+# t_dz(): Handle DZ exception during transcendental emulation. #
+# Sets N bit according to sign of source operand. #
+# t_dz2(): Handle DZ exception during transcendental emulation. #
+# Sets N bit always. #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to source operand #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = default result #
+# #
+# ALGORITHM *********************************************************** #
+# - Store properly signed INF into fp0. #
+# - Set FPSR exception status dz bit, ccode inf bit, and #
+# accrued dz bit. #
+# #
+#########################################################################
+
+ global t_dz
+t_dz:
+ tst.b SRC_EX(%a0) # no; is src negative?
+ bmi.b t_dz2 # yes
+
+dz_pinf:
+ fmov.s &0x7f800000,%fp0 # return +INF in fp0
+ ori.l &dzinf_mask,USER_FPSR(%a6) # set I/DZ/ADZ
+ rts
+
+ global t_dz2
+t_dz2:
+ fmov.s &0xff800000,%fp0 # return -INF in fp0
+ ori.l &dzinf_mask+neg_mask,USER_FPSR(%a6) # set N/I/DZ/ADZ
+ rts
+
+#################################################################
+# OPERR exception: #
+# - set FPSR exception status operr bit, condition code #
+# nan bit; Store default NAN into fp0 #
+#################################################################
+ global t_operr
+t_operr:
+ ori.l &opnan_mask,USER_FPSR(%a6) # set NaN/OPERR/AIOP
+ fmovm.x qnan(%pc),&0x80 # return default NAN in fp0
+ rts
+
+#################################################################
+# Extended DENORM: #
+# - For all functions that have a denormalized input and #
+# that f(x)=x, this is the entry point. #
+# - we only return the EXOP here if either underflow or #
+# inexact is enabled. #
+#################################################################
+
+# Entry point for scale w/ extended denorm. The function does
+# NOT set INEX2/AUNFL/AINEX.
+ global t_resdnrm
+t_resdnrm:
+ ori.l &unfl_mask,USER_FPSR(%a6) # set UNFL
+ bra.b xdnrm_con
+
+ global t_extdnrm
+t_extdnrm:
+ ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
+
+xdnrm_con:
+ mov.l %a0,%a1 # make copy of src ptr
+ mov.l %d0,%d1 # make copy of rnd prec,mode
+ andi.b &0xc0,%d1 # extended precision?
+ bne.b xdnrm_sd # no
+
+# result precision is extended.
+ tst.b LOCAL_EX(%a0) # is denorm negative?
+ bpl.b xdnrm_exit # no
+
+ bset &neg_bit,FPSR_CC(%a6) # yes; set 'N' ccode bit
+ bra.b xdnrm_exit
+
+# result precision is single or double
+xdnrm_sd:
+ mov.l %a1,-(%sp)
+ tst.b LOCAL_EX(%a0) # is denorm pos or neg?
+ smi.b %d1 # set d0 accodingly
+ bsr.l unf_sub
+ mov.l (%sp)+,%a1
+xdnrm_exit:
+ fmovm.x (%a0),&0x80 # return default result in fp0
+
+ mov.b FPCR_ENABLE(%a6),%d0
+ andi.b &0x0a,%d0 # is UNFL or INEX enabled?
+ bne.b xdnrm_ena # yes
+ rts
+
+################
+# unfl enabled #
+################
+# we have a DENORM that needs to be converted into an EXOP.
+# so, normalize the mantissa, add 0x6000 to the new exponent,
+# and return the result in fp1.
+xdnrm_ena:
+ mov.w LOCAL_EX(%a1),FP_SCR0_EX(%a6)
+ mov.l LOCAL_HI(%a1),FP_SCR0_HI(%a6)
+ mov.l LOCAL_LO(%a1),FP_SCR0_LO(%a6)
+
+ lea FP_SCR0(%a6),%a0
+ bsr.l norm # normalize mantissa
+ addi.l &0x6000,%d0 # add extra bias
+ andi.w &0x8000,FP_SCR0_EX(%a6) # keep old sign
+ or.w %d0,FP_SCR0_EX(%a6) # insert new exponent
+
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ rts
+
+#################################################################
+# UNFL exception: #
+# - This routine is for cases where even an EXOP isn't #
+# large enough to hold the range of this result. #
+# In such a case, the EXOP equals zero. #
+# - Return the default result to the proper precision #
+# with the sign of this result being the same as that #
+# of the src operand. #
+# - t_unfl2() is provided to force the result sign to #
+# positive which is the desired result for fetox(). #
+#################################################################
+ global t_unfl
+t_unfl:
+ ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
+
+ tst.b (%a0) # is result pos or neg?
+ smi.b %d1 # set d1 accordingly
+ bsr.l unf_sub # calc default unfl result
+ fmovm.x (%a0),&0x80 # return default result in fp0
+
+ fmov.s &0x00000000,%fp1 # return EXOP in fp1
+ rts
+
+# t_unfl2 ALWAYS tells unf_sub to create a positive result
+ global t_unfl2
+t_unfl2:
+ ori.l &unfinx_mask,USER_FPSR(%a6) # set UNFL/INEX2/AUNFL/AINEX
+
+ sf.b %d1 # set d0 to represent positive
+ bsr.l unf_sub # calc default unfl result
+ fmovm.x (%a0),&0x80 # return default result in fp0
+
+ fmov.s &0x0000000,%fp1 # return EXOP in fp1
+ rts
+
+#################################################################
+# OVFL exception: #
+# - This routine is for cases where even an EXOP isn't #
+# large enough to hold the range of this result. #
+# - Return the default result to the proper precision #
+# with the sign of this result being the same as that #
+# of the src operand. #
+# - t_ovfl2() is provided to force the result sign to #
+# positive which is the desired result for fcosh(). #
+# - t_ovfl_sc() is provided for scale() which only sets #
+# the inexact bits if the number is inexact for the #
+# precision indicated. #
+#################################################################
+
+ global t_ovfl_sc
+t_ovfl_sc:
+ ori.l &ovfl_inx_mask,USER_FPSR(%a6) # set OVFL/AOVFL/AINEX
+
+ mov.b %d0,%d1 # fetch rnd mode/prec
+ andi.b &0xc0,%d1 # extract rnd prec
+ beq.b ovfl_work # prec is extended
+
+ tst.b LOCAL_HI(%a0) # is dst a DENORM?
+ bmi.b ovfl_sc_norm # no
+
+# dst op is a DENORM. we have to normalize the mantissa to see if the
+# result would be inexact for the given precision. make a copy of the
+# dst so we don't screw up the version passed to us.
+ mov.w LOCAL_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l LOCAL_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l LOCAL_LO(%a0),FP_SCR0_LO(%a6)
+ lea FP_SCR0(%a6),%a0 # pass ptr to FP_SCR0
+ movm.l &0xc080,-(%sp) # save d0-d1/a0
+ bsr.l norm # normalize mantissa
+ movm.l (%sp)+,&0x0103 # restore d0-d1/a0
+
+ovfl_sc_norm:
+ cmpi.b %d1,&0x40 # is prec dbl?
+ bne.b ovfl_sc_dbl # no; sgl
+ovfl_sc_sgl:
+ tst.l LOCAL_LO(%a0) # is lo lw of sgl set?
+ bne.b ovfl_sc_inx # yes
+ tst.b 3+LOCAL_HI(%a0) # is lo byte of hi lw set?
+ bne.b ovfl_sc_inx # yes
+ bra.b ovfl_work # don't set INEX2
+ovfl_sc_dbl:
+ mov.l LOCAL_LO(%a0),%d1 # are any of lo 11 bits of
+ andi.l &0x7ff,%d1 # dbl mantissa set?
+ beq.b ovfl_work # no; don't set INEX2
+ovfl_sc_inx:
+ ori.l &inex2_mask,USER_FPSR(%a6) # set INEX2
+ bra.b ovfl_work # continue
+
+ global t_ovfl
+t_ovfl:
+ ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX
+
+ovfl_work:
+ tst.b LOCAL_EX(%a0) # what is the sign?
+ smi.b %d1 # set d1 accordingly
+ bsr.l ovf_res # calc default ovfl result
+ mov.b %d0,FPSR_CC(%a6) # insert new ccodes
+ fmovm.x (%a0),&0x80 # return default result in fp0
+
+ fmov.s &0x00000000,%fp1 # return EXOP in fp1
+ rts
+
+# t_ovfl2 ALWAYS tells ovf_res to create a positive result
+ global t_ovfl2
+t_ovfl2:
+ ori.l &ovfinx_mask,USER_FPSR(%a6) # set OVFL/INEX2/AOVFL/AINEX
+
+ sf.b %d1 # clear sign flag for positive
+ bsr.l ovf_res # calc default ovfl result
+ mov.b %d0,FPSR_CC(%a6) # insert new ccodes
+ fmovm.x (%a0),&0x80 # return default result in fp0
+
+ fmov.s &0x00000000,%fp1 # return EXOP in fp1
+ rts
+
+#################################################################
+# t_catch(): #
+# - the last operation of a transcendental emulation #
+# routine may have caused an underflow or overflow. #
+# we find out if this occurred by doing an fsave and #
+# checking the exception bit. if one did occur, then we #
+# jump to fgen_except() which creates the default #
+# result and EXOP for us. #
+#################################################################
+ global t_catch
+t_catch:
+
+ fsave -(%sp)
+ tst.b 0x2(%sp)
+ bmi.b catch
+ add.l &0xc,%sp
+
+#################################################################
+# INEX2 exception: #
+# - The inex2 and ainex bits are set. #
+#################################################################
+ global t_inx2
+t_inx2:
+ fblt.w t_minx2
+ fbeq.w inx2_zero
+
+ global t_pinx2
+t_pinx2:
+ ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX
+ rts
+
+ global t_minx2
+t_minx2:
+ ori.l &inx2a_mask+neg_mask,USER_FPSR(%a6) # set N/INEX2/AINEX
+ rts
+
+inx2_zero:
+ mov.b &z_bmask,FPSR_CC(%a6)
+ ori.w &inx2a_mask,2+USER_FPSR(%a6) # set INEX2/AINEX
+ rts
+
+# an underflow or overflow exception occurred.
+# we must set INEX/AINEX since the fmul/fdiv/fmov emulation may not!
+catch:
+ ori.w &inx2a_mask,FPSR_EXCEPT(%a6)
+catch2:
+ bsr.l fgen_except
+ add.l &0xc,%sp
+ rts
+
+ global t_catch2
+t_catch2:
+
+ fsave -(%sp)
+
+ tst.b 0x2(%sp)
+ bmi.b catch2
+ add.l &0xc,%sp
+
+ fmov.l %fpsr,%d0
+ or.l %d0,USER_FPSR(%a6)
+
+ rts
+
+#########################################################################
+
+#########################################################################
+# unf_res(): underflow default result calculation for transcendentals #
+# #
+# INPUT: #
+# d0 : rnd mode,precision #
+# d1.b : sign bit of result ('11111111 = (-) ; '00000000 = (+)) #
+# OUTPUT: #
+# a0 : points to result (in instruction memory) #
+#########################################################################
+unf_sub:
+ ori.l &unfinx_mask,USER_FPSR(%a6)
+
+ andi.w &0x10,%d1 # keep sign bit in 4th spot
+
+ lsr.b &0x4,%d0 # shift rnd prec,mode to lo bits
+ andi.b &0xf,%d0 # strip hi rnd mode bit
+ or.b %d1,%d0 # concat {sgn,mode,prec}
+
+ mov.l %d0,%d1 # make a copy
+ lsl.b &0x1,%d1 # mult index 2 by 2
+
+ mov.b (tbl_unf_cc.b,%pc,%d0.w*1),FPSR_CC(%a6) # insert ccode bits
+ lea (tbl_unf_result.b,%pc,%d1.w*8),%a0 # grab result ptr
+ rts
+
+tbl_unf_cc:
+ byte 0x4, 0x4, 0x4, 0x0
+ byte 0x4, 0x4, 0x4, 0x0
+ byte 0x4, 0x4, 0x4, 0x0
+ byte 0x0, 0x0, 0x0, 0x0
+ byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
+ byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
+ byte 0x8+0x4, 0x8+0x4, 0x8, 0x8+0x4
+
+tbl_unf_result:
+ long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
+ long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
+ long 0x00000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
+ long 0x00000000, 0x00000000, 0x00000001, 0x0 # MIN; ext
+
+ long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
+ long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
+ long 0x3f810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
+ long 0x3f810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl
+
+ long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
+ long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZER0;dbl
+ long 0x3c010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
+ long 0x3c010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl
+
+ long 0x0,0x0,0x0,0x0
+ long 0x0,0x0,0x0,0x0
+ long 0x0,0x0,0x0,0x0
+ long 0x0,0x0,0x0,0x0
+
+ long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
+ long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
+ long 0x80000000, 0x00000000, 0x00000001, 0x0 # MIN; ext
+ long 0x80000000, 0x00000000, 0x00000000, 0x0 # ZERO;ext
+
+ long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
+ long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
+ long 0xbf810000, 0x00000100, 0x00000000, 0x0 # MIN; sgl
+ long 0xbf810000, 0x00000000, 0x00000000, 0x0 # ZERO;sgl
+
+ long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
+ long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
+ long 0xbc010000, 0x00000000, 0x00000800, 0x0 # MIN; dbl
+ long 0xbc010000, 0x00000000, 0x00000000, 0x0 # ZERO;dbl
+
+############################################################
+
+#########################################################################
+# src_zero(): Return signed zero according to sign of src operand. #
+#########################################################################
+ global src_zero
+src_zero:
+ tst.b SRC_EX(%a0) # get sign of src operand
+ bmi.b ld_mzero # if neg, load neg zero
+
+#
+# ld_pzero(): return a positive zero.
+#
+ global ld_pzero
+ld_pzero:
+ fmov.s &0x00000000,%fp0 # load +0
+ mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
+ rts
+
+# ld_mzero(): return a negative zero.
+ global ld_mzero
+ld_mzero:
+ fmov.s &0x80000000,%fp0 # load -0
+ mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set 'N','Z' ccode bits
+ rts
+
+#########################################################################
+# dst_zero(): Return signed zero according to sign of dst operand. #
+#########################################################################
+ global dst_zero
+dst_zero:
+ tst.b DST_EX(%a1) # get sign of dst operand
+ bmi.b ld_mzero # if neg, load neg zero
+ bra.b ld_pzero # load positive zero
+
+#########################################################################
+# src_inf(): Return signed inf according to sign of src operand. #
+#########################################################################
+ global src_inf
+src_inf:
+ tst.b SRC_EX(%a0) # get sign of src operand
+ bmi.b ld_minf # if negative branch
+
+#
+# ld_pinf(): return a positive infinity.
+#
+ global ld_pinf
+ld_pinf:
+ fmov.s &0x7f800000,%fp0 # load +INF
+ mov.b &inf_bmask,FPSR_CC(%a6) # set 'INF' ccode bit
+ rts
+
+#
+# ld_minf():return a negative infinity.
+#
+ global ld_minf
+ld_minf:
+ fmov.s &0xff800000,%fp0 # load -INF
+ mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
+ rts
+
+#########################################################################
+# dst_inf(): Return signed inf according to sign of dst operand. #
+#########################################################################
+ global dst_inf
+dst_inf:
+ tst.b DST_EX(%a1) # get sign of dst operand
+ bmi.b ld_minf # if negative branch
+ bra.b ld_pinf
+
+ global szr_inf
+#################################################################
+# szr_inf(): Return +ZERO for a negative src operand or #
+# +INF for a positive src operand. #
+# Routine used for fetox, ftwotox, and ftentox. #
+#################################################################
+szr_inf:
+ tst.b SRC_EX(%a0) # check sign of source
+ bmi.b ld_pzero
+ bra.b ld_pinf
+
+#########################################################################
+# sopr_inf(): Return +INF for a positive src operand or #
+# jump to operand error routine for a negative src operand. #
+# Routine used for flogn, flognp1, flog10, and flog2. #
+#########################################################################
+ global sopr_inf
+sopr_inf:
+ tst.b SRC_EX(%a0) # check sign of source
+ bmi.w t_operr
+ bra.b ld_pinf
+
+#################################################################
+# setoxm1i(): Return minus one for a negative src operand or #
+# positive infinity for a positive src operand. #
+# Routine used for fetoxm1. #
+#################################################################
+ global setoxm1i
+setoxm1i:
+ tst.b SRC_EX(%a0) # check sign of source
+ bmi.b ld_mone
+ bra.b ld_pinf
+
+#########################################################################
+# src_one(): Return signed one according to sign of src operand. #
+#########################################################################
+ global src_one
+src_one:
+ tst.b SRC_EX(%a0) # check sign of source
+ bmi.b ld_mone
+
+#
+# ld_pone(): return positive one.
+#
+ global ld_pone
+ld_pone:
+ fmov.s &0x3f800000,%fp0 # load +1
+ clr.b FPSR_CC(%a6)
+ rts
+
+#
+# ld_mone(): return negative one.
+#
+ global ld_mone
+ld_mone:
+ fmov.s &0xbf800000,%fp0 # load -1
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+ rts
+
+ppiby2: long 0x3fff0000, 0xc90fdaa2, 0x2168c235
+mpiby2: long 0xbfff0000, 0xc90fdaa2, 0x2168c235
+
+#################################################################
+# spi_2(): Return signed PI/2 according to sign of src operand. #
+#################################################################
+ global spi_2
+spi_2:
+ tst.b SRC_EX(%a0) # check sign of source
+ bmi.b ld_mpi2
+
+#
+# ld_ppi2(): return positive PI/2.
+#
+ global ld_ppi2
+ld_ppi2:
+ fmov.l %d0,%fpcr
+ fmov.x ppiby2(%pc),%fp0 # load +pi/2
+ bra.w t_pinx2 # set INEX2
+
+#
+# ld_mpi2(): return negative PI/2.
+#
+ global ld_mpi2
+ld_mpi2:
+ fmov.l %d0,%fpcr
+ fmov.x mpiby2(%pc),%fp0 # load -pi/2
+ bra.w t_minx2 # set INEX2
+
+####################################################
+# The following routines give support for fsincos. #
+####################################################
+
+#
+# ssincosz(): When the src operand is ZERO, store a one in the
+# cosine register and return a ZERO in fp0 w/ the same sign
+# as the src operand.
+#
+ global ssincosz
+ssincosz:
+ fmov.s &0x3f800000,%fp1
+ tst.b SRC_EX(%a0) # test sign
+ bpl.b sincoszp
+ fmov.s &0x80000000,%fp0 # return sin result in fp0
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6)
+ bra.b sto_cos # store cosine result
+sincoszp:
+ fmov.s &0x00000000,%fp0 # return sin result in fp0
+ mov.b &z_bmask,FPSR_CC(%a6)
+ bra.b sto_cos # store cosine result
+
+#
+# ssincosi(): When the src operand is INF, store a QNAN in the cosine
+# register and jump to the operand error routine for negative
+# src operands.
+#
+ global ssincosi
+ssincosi:
+ fmov.x qnan(%pc),%fp1 # load NAN
+ bsr.l sto_cos # store cosine result
+ bra.w t_operr
+
+#
+# ssincosqnan(): When the src operand is a QNAN, store the QNAN in the cosine
+# register and branch to the src QNAN routine.
+#
+ global ssincosqnan
+ssincosqnan:
+ fmov.x LOCAL_EX(%a0),%fp1
+ bsr.l sto_cos
+ bra.w src_qnan
+
+#
+# ssincossnan(): When the src operand is an SNAN, store the SNAN w/ the SNAN bit set
+# in the cosine register and branch to the src SNAN routine.
+#
+ global ssincossnan
+ssincossnan:
+ fmov.x LOCAL_EX(%a0),%fp1
+ bsr.l sto_cos
+ bra.w src_snan
+
+########################################################################
+
+#########################################################################
+# sto_cos(): store fp1 to the fpreg designated by the CMDREG dst field. #
+# fp1 holds the result of the cosine portion of ssincos(). #
+# the value in fp1 will not take any exceptions when moved. #
+# INPUT: #
+# fp1 : fp value to store #
+# MODIFIED: #
+# d0 #
+#########################################################################
+ global sto_cos
+sto_cos:
+ mov.b 1+EXC_CMDREG(%a6),%d0
+ andi.w &0x7,%d0
+ mov.w (tbl_sto_cos.b,%pc,%d0.w*2),%d0
+ jmp (tbl_sto_cos.b,%pc,%d0.w*1)
+
+tbl_sto_cos:
+ short sto_cos_0 - tbl_sto_cos
+ short sto_cos_1 - tbl_sto_cos
+ short sto_cos_2 - tbl_sto_cos
+ short sto_cos_3 - tbl_sto_cos
+ short sto_cos_4 - tbl_sto_cos
+ short sto_cos_5 - tbl_sto_cos
+ short sto_cos_6 - tbl_sto_cos
+ short sto_cos_7 - tbl_sto_cos
+
+sto_cos_0:
+ fmovm.x &0x40,EXC_FP0(%a6)
+ rts
+sto_cos_1:
+ fmovm.x &0x40,EXC_FP1(%a6)
+ rts
+sto_cos_2:
+ fmov.x %fp1,%fp2
+ rts
+sto_cos_3:
+ fmov.x %fp1,%fp3
+ rts
+sto_cos_4:
+ fmov.x %fp1,%fp4
+ rts
+sto_cos_5:
+ fmov.x %fp1,%fp5
+ rts
+sto_cos_6:
+ fmov.x %fp1,%fp6
+ rts
+sto_cos_7:
+ fmov.x %fp1,%fp7
+ rts
+
+##################################################################
+ global smod_sdnrm
+ global smod_snorm
+smod_sdnrm:
+smod_snorm:
+ mov.b DTAG(%a6),%d1
+ beq.l smod
+ cmpi.b %d1,&ZERO
+ beq.w smod_zro
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l smod
+ cmpi.b %d1,&SNAN
+ beq.l dst_snan
+ bra.l dst_qnan
+
+ global smod_szero
+smod_szero:
+ mov.b DTAG(%a6),%d1
+ beq.l t_operr
+ cmpi.b %d1,&ZERO
+ beq.l t_operr
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l t_operr
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ bra.l dst_snan
+
+ global smod_sinf
+smod_sinf:
+ mov.b DTAG(%a6),%d1
+ beq.l smod_fpn
+ cmpi.b %d1,&ZERO
+ beq.l smod_zro
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l smod_fpn
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ bra.l dst_snan
+
+smod_zro:
+srem_zro:
+ mov.b SRC_EX(%a0),%d1 # get src sign
+ mov.b DST_EX(%a1),%d0 # get dst sign
+ eor.b %d0,%d1 # get qbyte sign
+ andi.b &0x80,%d1
+ mov.b %d1,FPSR_QBYTE(%a6)
+ tst.b %d0
+ bpl.w ld_pzero
+ bra.w ld_mzero
+
+smod_fpn:
+srem_fpn:
+ clr.b FPSR_QBYTE(%a6)
+ mov.l %d0,-(%sp)
+ mov.b SRC_EX(%a0),%d1 # get src sign
+ mov.b DST_EX(%a1),%d0 # get dst sign
+ eor.b %d0,%d1 # get qbyte sign
+ andi.b &0x80,%d1
+ mov.b %d1,FPSR_QBYTE(%a6)
+ cmpi.b DTAG(%a6),&DENORM
+ bne.b smod_nrm
+ lea DST(%a1),%a0
+ mov.l (%sp)+,%d0
+ bra t_resdnrm
+smod_nrm:
+ fmov.l (%sp)+,%fpcr
+ fmov.x DST(%a1),%fp0
+ tst.b DST_EX(%a1)
+ bmi.b smod_nrm_neg
+ rts
+
+smod_nrm_neg:
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode
+ rts
+
+#########################################################################
+ global srem_snorm
+ global srem_sdnrm
+srem_sdnrm:
+srem_snorm:
+ mov.b DTAG(%a6),%d1
+ beq.l srem
+ cmpi.b %d1,&ZERO
+ beq.w srem_zro
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l srem
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ bra.l dst_snan
+
+ global srem_szero
+srem_szero:
+ mov.b DTAG(%a6),%d1
+ beq.l t_operr
+ cmpi.b %d1,&ZERO
+ beq.l t_operr
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l t_operr
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ bra.l dst_snan
+
+ global srem_sinf
+srem_sinf:
+ mov.b DTAG(%a6),%d1
+ beq.w srem_fpn
+ cmpi.b %d1,&ZERO
+ beq.w srem_zro
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l srem_fpn
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ bra.l dst_snan
+
+#########################################################################
+ global sscale_snorm
+ global sscale_sdnrm
+sscale_snorm:
+sscale_sdnrm:
+ mov.b DTAG(%a6),%d1
+ beq.l sscale
+ cmpi.b %d1,&ZERO
+ beq.l dst_zero
+ cmpi.b %d1,&INF
+ beq.l dst_inf
+ cmpi.b %d1,&DENORM
+ beq.l sscale
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ bra.l dst_snan
+
+ global sscale_szero
+sscale_szero:
+ mov.b DTAG(%a6),%d1
+ beq.l sscale
+ cmpi.b %d1,&ZERO
+ beq.l dst_zero
+ cmpi.b %d1,&INF
+ beq.l dst_inf
+ cmpi.b %d1,&DENORM
+ beq.l sscale
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ bra.l dst_snan
+
+ global sscale_sinf
+sscale_sinf:
+ mov.b DTAG(%a6),%d1
+ beq.l t_operr
+ cmpi.b %d1,&QNAN
+ beq.l dst_qnan
+ cmpi.b %d1,&SNAN
+ beq.l dst_snan
+ bra.l t_operr
+
+########################################################################
+
+#
+# sop_sqnan(): The src op for frem/fmod/fscale was a QNAN.
+#
+ global sop_sqnan
+sop_sqnan:
+ mov.b DTAG(%a6),%d1
+ cmpi.b %d1,&QNAN
+ beq.b dst_qnan
+ cmpi.b %d1,&SNAN
+ beq.b dst_snan
+ bra.b src_qnan
+
+#
+# sop_ssnan(): The src op for frem/fmod/fscale was an SNAN.
+#
+ global sop_ssnan
+sop_ssnan:
+ mov.b DTAG(%a6),%d1
+ cmpi.b %d1,&QNAN
+ beq.b dst_qnan_src_snan
+ cmpi.b %d1,&SNAN
+ beq.b dst_snan
+ bra.b src_snan
+
+dst_qnan_src_snan:
+ ori.l &snaniop_mask,USER_FPSR(%a6) # set NAN/SNAN/AIOP
+ bra.b dst_qnan
+
+#
+# dst_qnan(): Return the dst SNAN w/ the SNAN bit set.
+#
+ global dst_snan
+dst_snan:
+ fmov.x DST(%a1),%fp0 # the fmove sets the SNAN bit
+ fmov.l %fpsr,%d0 # catch resulting status
+ or.l %d0,USER_FPSR(%a6) # store status
+ rts
+
+#
+# dst_qnan(): Return the dst QNAN.
+#
+ global dst_qnan
+dst_qnan:
+ fmov.x DST(%a1),%fp0 # return the non-signalling nan
+ tst.b DST_EX(%a1) # set ccodes according to QNAN sign
+ bmi.b dst_qnan_m
+dst_qnan_p:
+ mov.b &nan_bmask,FPSR_CC(%a6)
+ rts
+dst_qnan_m:
+ mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6)
+ rts
+
+#
+# src_snan(): Return the src SNAN w/ the SNAN bit set.
+#
+ global src_snan
+src_snan:
+ fmov.x SRC(%a0),%fp0 # the fmove sets the SNAN bit
+ fmov.l %fpsr,%d0 # catch resulting status
+ or.l %d0,USER_FPSR(%a6) # store status
+ rts
+
+#
+# src_qnan(): Return the src QNAN.
+#
+ global src_qnan
+src_qnan:
+ fmov.x SRC(%a0),%fp0 # return the non-signalling nan
+ tst.b SRC_EX(%a0) # set ccodes according to QNAN sign
+ bmi.b dst_qnan_m
+src_qnan_p:
+ mov.b &nan_bmask,FPSR_CC(%a6)
+ rts
+src_qnan_m:
+ mov.b &neg_bmask+nan_bmask,FPSR_CC(%a6)
+ rts
+
+#
+# fkern2.s:
+# These entry points are used by the exception handler
+# routines where an instruction is selected by an index into
+# a large jump table corresponding to a given instruction which
+# has been decoded. Flow continues here where we now decode
+# further accoding to the source operand type.
+#
+
+ global fsinh
+fsinh:
+ mov.b STAG(%a6),%d1
+ beq.l ssinh
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l src_inf
+ cmpi.b %d1,&DENORM
+ beq.l ssinhd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global flognp1
+flognp1:
+ mov.b STAG(%a6),%d1
+ beq.l slognp1
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l sopr_inf
+ cmpi.b %d1,&DENORM
+ beq.l slognp1d
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fetoxm1
+fetoxm1:
+ mov.b STAG(%a6),%d1
+ beq.l setoxm1
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l setoxm1i
+ cmpi.b %d1,&DENORM
+ beq.l setoxm1d
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global ftanh
+ftanh:
+ mov.b STAG(%a6),%d1
+ beq.l stanh
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l src_one
+ cmpi.b %d1,&DENORM
+ beq.l stanhd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fatan
+fatan:
+ mov.b STAG(%a6),%d1
+ beq.l satan
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l spi_2
+ cmpi.b %d1,&DENORM
+ beq.l satand
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fasin
+fasin:
+ mov.b STAG(%a6),%d1
+ beq.l sasin
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l sasind
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fatanh
+fatanh:
+ mov.b STAG(%a6),%d1
+ beq.l satanh
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l satanhd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fsine
+fsine:
+ mov.b STAG(%a6),%d1
+ beq.l ssin
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l ssind
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global ftan
+ftan:
+ mov.b STAG(%a6),%d1
+ beq.l stan
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l stand
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fetox
+fetox:
+ mov.b STAG(%a6),%d1
+ beq.l setox
+ cmpi.b %d1,&ZERO
+ beq.l ld_pone
+ cmpi.b %d1,&INF
+ beq.l szr_inf
+ cmpi.b %d1,&DENORM
+ beq.l setoxd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global ftwotox
+ftwotox:
+ mov.b STAG(%a6),%d1
+ beq.l stwotox
+ cmpi.b %d1,&ZERO
+ beq.l ld_pone
+ cmpi.b %d1,&INF
+ beq.l szr_inf
+ cmpi.b %d1,&DENORM
+ beq.l stwotoxd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global ftentox
+ftentox:
+ mov.b STAG(%a6),%d1
+ beq.l stentox
+ cmpi.b %d1,&ZERO
+ beq.l ld_pone
+ cmpi.b %d1,&INF
+ beq.l szr_inf
+ cmpi.b %d1,&DENORM
+ beq.l stentoxd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global flogn
+flogn:
+ mov.b STAG(%a6),%d1
+ beq.l slogn
+ cmpi.b %d1,&ZERO
+ beq.l t_dz2
+ cmpi.b %d1,&INF
+ beq.l sopr_inf
+ cmpi.b %d1,&DENORM
+ beq.l slognd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global flog10
+flog10:
+ mov.b STAG(%a6),%d1
+ beq.l slog10
+ cmpi.b %d1,&ZERO
+ beq.l t_dz2
+ cmpi.b %d1,&INF
+ beq.l sopr_inf
+ cmpi.b %d1,&DENORM
+ beq.l slog10d
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global flog2
+flog2:
+ mov.b STAG(%a6),%d1
+ beq.l slog2
+ cmpi.b %d1,&ZERO
+ beq.l t_dz2
+ cmpi.b %d1,&INF
+ beq.l sopr_inf
+ cmpi.b %d1,&DENORM
+ beq.l slog2d
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fcosh
+fcosh:
+ mov.b STAG(%a6),%d1
+ beq.l scosh
+ cmpi.b %d1,&ZERO
+ beq.l ld_pone
+ cmpi.b %d1,&INF
+ beq.l ld_pinf
+ cmpi.b %d1,&DENORM
+ beq.l scoshd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global facos
+facos:
+ mov.b STAG(%a6),%d1
+ beq.l sacos
+ cmpi.b %d1,&ZERO
+ beq.l ld_ppi2
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l sacosd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fcos
+fcos:
+ mov.b STAG(%a6),%d1
+ beq.l scos
+ cmpi.b %d1,&ZERO
+ beq.l ld_pone
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l scosd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fgetexp
+fgetexp:
+ mov.b STAG(%a6),%d1
+ beq.l sgetexp
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l sgetexpd
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fgetman
+fgetman:
+ mov.b STAG(%a6),%d1
+ beq.l sgetman
+ cmpi.b %d1,&ZERO
+ beq.l src_zero
+ cmpi.b %d1,&INF
+ beq.l t_operr
+ cmpi.b %d1,&DENORM
+ beq.l sgetmand
+ cmpi.b %d1,&QNAN
+ beq.l src_qnan
+ bra.l src_snan
+
+ global fsincos
+fsincos:
+ mov.b STAG(%a6),%d1
+ beq.l ssincos
+ cmpi.b %d1,&ZERO
+ beq.l ssincosz
+ cmpi.b %d1,&INF
+ beq.l ssincosi
+ cmpi.b %d1,&DENORM
+ beq.l ssincosd
+ cmpi.b %d1,&QNAN
+ beq.l ssincosqnan
+ bra.l ssincossnan
+
+ global fmod
+fmod:
+ mov.b STAG(%a6),%d1
+ beq.l smod_snorm
+ cmpi.b %d1,&ZERO
+ beq.l smod_szero
+ cmpi.b %d1,&INF
+ beq.l smod_sinf
+ cmpi.b %d1,&DENORM
+ beq.l smod_sdnrm
+ cmpi.b %d1,&QNAN
+ beq.l sop_sqnan
+ bra.l sop_ssnan
+
+ global frem
+frem:
+ mov.b STAG(%a6),%d1
+ beq.l srem_snorm
+ cmpi.b %d1,&ZERO
+ beq.l srem_szero
+ cmpi.b %d1,&INF
+ beq.l srem_sinf
+ cmpi.b %d1,&DENORM
+ beq.l srem_sdnrm
+ cmpi.b %d1,&QNAN
+ beq.l sop_sqnan
+ bra.l sop_ssnan
+
+ global fscale
+fscale:
+ mov.b STAG(%a6),%d1
+ beq.l sscale_snorm
+ cmpi.b %d1,&ZERO
+ beq.l sscale_szero
+ cmpi.b %d1,&INF
+ beq.l sscale_sinf
+ cmpi.b %d1,&DENORM
+ beq.l sscale_sdnrm
+ cmpi.b %d1,&QNAN
+ beq.l sop_sqnan
+ bra.l sop_ssnan
+
+#########################################################################
+# XDEF **************************************************************** #
+# fgen_except(): catch an exception during transcendental #
+# emulation #
+# #
+# XREF **************************************************************** #
+# fmul() - emulate a multiply instruction #
+# fadd() - emulate an add instruction #
+# fin() - emulate an fmove instruction #
+# #
+# INPUT *************************************************************** #
+# fp0 = destination operand #
+# d0 = type of instruction that took exception #
+# fsave frame = source operand #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP #
+# #
+# ALGORITHM *********************************************************** #
+# An exception occurred on the last instruction of the #
+# transcendental emulation. hopefully, this won't be happening much #
+# because it will be VERY slow. #
+# The only exceptions capable of passing through here are #
+# Overflow, Underflow, and Unsupported Data Type. #
+# #
+#########################################################################
+
+ global fgen_except
+fgen_except:
+ cmpi.b 0x3(%sp),&0x7 # is exception UNSUPP?
+ beq.b fge_unsupp # yes
+
+ mov.b &NORM,STAG(%a6)
+
+fge_cont:
+ mov.b &NORM,DTAG(%a6)
+
+# ok, I have a problem with putting the dst op at FP_DST. the emulation
+# routines aren't supposed to alter the operands but we've just squashed
+# FP_DST here...
+
+# 8/17/93 - this turns out to be more of a "cleanliness" standpoint
+# then a potential bug. to begin with, only the dyadic functions
+# frem,fmod, and fscale would get the dst trashed here. But, for
+# the 060SP, the FP_DST is never used again anyways.
+ fmovm.x &0x80,FP_DST(%a6) # dst op is in fp0
+
+ lea 0x4(%sp),%a0 # pass: ptr to src op
+ lea FP_DST(%a6),%a1 # pass: ptr to dst op
+
+ cmpi.b %d1,&FMOV_OP
+ beq.b fge_fin # it was an "fmov"
+ cmpi.b %d1,&FADD_OP
+ beq.b fge_fadd # it was an "fadd"
+fge_fmul:
+ bsr.l fmul
+ rts
+fge_fadd:
+ bsr.l fadd
+ rts
+fge_fin:
+ bsr.l fin
+ rts
+
+fge_unsupp:
+ mov.b &DENORM,STAG(%a6)
+ bra.b fge_cont
+
+#
+# This table holds the offsets of the emulation routines for each individual
+# math operation relative to the address of this table. Included are
+# routines like fadd/fmul/fabs as well as the transcendentals.
+# The location within the table is determined by the extension bits of the
+# operation longword.
+#
+
+ swbeg &109
+tbl_unsupp:
+ long fin - tbl_unsupp # 00: fmove
+ long fint - tbl_unsupp # 01: fint
+ long fsinh - tbl_unsupp # 02: fsinh
+ long fintrz - tbl_unsupp # 03: fintrz
+ long fsqrt - tbl_unsupp # 04: fsqrt
+ long tbl_unsupp - tbl_unsupp
+ long flognp1 - tbl_unsupp # 06: flognp1
+ long tbl_unsupp - tbl_unsupp
+ long fetoxm1 - tbl_unsupp # 08: fetoxm1
+ long ftanh - tbl_unsupp # 09: ftanh
+ long fatan - tbl_unsupp # 0a: fatan
+ long tbl_unsupp - tbl_unsupp
+ long fasin - tbl_unsupp # 0c: fasin
+ long fatanh - tbl_unsupp # 0d: fatanh
+ long fsine - tbl_unsupp # 0e: fsin
+ long ftan - tbl_unsupp # 0f: ftan
+ long fetox - tbl_unsupp # 10: fetox
+ long ftwotox - tbl_unsupp # 11: ftwotox
+ long ftentox - tbl_unsupp # 12: ftentox
+ long tbl_unsupp - tbl_unsupp
+ long flogn - tbl_unsupp # 14: flogn
+ long flog10 - tbl_unsupp # 15: flog10
+ long flog2 - tbl_unsupp # 16: flog2
+ long tbl_unsupp - tbl_unsupp
+ long fabs - tbl_unsupp # 18: fabs
+ long fcosh - tbl_unsupp # 19: fcosh
+ long fneg - tbl_unsupp # 1a: fneg
+ long tbl_unsupp - tbl_unsupp
+ long facos - tbl_unsupp # 1c: facos
+ long fcos - tbl_unsupp # 1d: fcos
+ long fgetexp - tbl_unsupp # 1e: fgetexp
+ long fgetman - tbl_unsupp # 1f: fgetman
+ long fdiv - tbl_unsupp # 20: fdiv
+ long fmod - tbl_unsupp # 21: fmod
+ long fadd - tbl_unsupp # 22: fadd
+ long fmul - tbl_unsupp # 23: fmul
+ long fsgldiv - tbl_unsupp # 24: fsgldiv
+ long frem - tbl_unsupp # 25: frem
+ long fscale - tbl_unsupp # 26: fscale
+ long fsglmul - tbl_unsupp # 27: fsglmul
+ long fsub - tbl_unsupp # 28: fsub
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long fsincos - tbl_unsupp # 30: fsincos
+ long fsincos - tbl_unsupp # 31: fsincos
+ long fsincos - tbl_unsupp # 32: fsincos
+ long fsincos - tbl_unsupp # 33: fsincos
+ long fsincos - tbl_unsupp # 34: fsincos
+ long fsincos - tbl_unsupp # 35: fsincos
+ long fsincos - tbl_unsupp # 36: fsincos
+ long fsincos - tbl_unsupp # 37: fsincos
+ long fcmp - tbl_unsupp # 38: fcmp
+ long tbl_unsupp - tbl_unsupp
+ long ftst - tbl_unsupp # 3a: ftst
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long fsin - tbl_unsupp # 40: fsmove
+ long fssqrt - tbl_unsupp # 41: fssqrt
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long fdin - tbl_unsupp # 44: fdmove
+ long fdsqrt - tbl_unsupp # 45: fdsqrt
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long fsabs - tbl_unsupp # 58: fsabs
+ long tbl_unsupp - tbl_unsupp
+ long fsneg - tbl_unsupp # 5a: fsneg
+ long tbl_unsupp - tbl_unsupp
+ long fdabs - tbl_unsupp # 5c: fdabs
+ long tbl_unsupp - tbl_unsupp
+ long fdneg - tbl_unsupp # 5e: fdneg
+ long tbl_unsupp - tbl_unsupp
+ long fsdiv - tbl_unsupp # 60: fsdiv
+ long tbl_unsupp - tbl_unsupp
+ long fsadd - tbl_unsupp # 62: fsadd
+ long fsmul - tbl_unsupp # 63: fsmul
+ long fddiv - tbl_unsupp # 64: fddiv
+ long tbl_unsupp - tbl_unsupp
+ long fdadd - tbl_unsupp # 66: fdadd
+ long fdmul - tbl_unsupp # 67: fdmul
+ long fssub - tbl_unsupp # 68: fssub
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long tbl_unsupp - tbl_unsupp
+ long fdsub - tbl_unsupp # 6c: fdsub
+
+#########################################################################
+# XDEF **************************************************************** #
+# fmul(): emulates the fmul instruction #
+# fsmul(): emulates the fsmul instruction #
+# fdmul(): emulates the fdmul instruction #
+# #
+# XREF **************************************************************** #
+# scale_to_zero_src() - scale src exponent to zero #
+# scale_to_zero_dst() - scale dst exponent to zero #
+# unf_res() - return default underflow result #
+# ovf_res() - return default overflow result #
+# res_qnan() - return QNAN result #
+# res_snan() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# a1 = pointer to extended precision destination operand #
+# d0 rnd prec,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms/denorms into ext/sgl/dbl precision. #
+# For norms/denorms, scale the exponents such that a multiply #
+# instruction won't cause an exception. Use the regular fmul to #
+# compute a result. Check if the regular operands would have taken #
+# an exception. If so, return the default overflow/underflow result #
+# and return the EXOP if exceptions are enabled. Else, scale the #
+# result operand to the proper exponent. #
+# #
+#########################################################################
+
+ align 0x10
+tbl_fmul_ovfl:
+ long 0x3fff - 0x7ffe # ext_max
+ long 0x3fff - 0x407e # sgl_max
+ long 0x3fff - 0x43fe # dbl_max
+tbl_fmul_unfl:
+ long 0x3fff + 0x0001 # ext_unfl
+ long 0x3fff - 0x3f80 # sgl_unfl
+ long 0x3fff - 0x3c00 # dbl_unfl
+
+ global fsmul
+fsmul:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl prec
+ bra.b fmul
+
+ global fdmul
+fdmul:
+ andi.b &0x30,%d0
+ ori.b &d_mode*0x10,%d0 # insert dbl prec
+
+ global fmul
+fmul:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+
+ clr.w %d1
+ mov.b DTAG(%a6),%d1
+ lsl.b &0x3,%d1
+ or.b STAG(%a6),%d1 # combine src tags
+ bne.w fmul_not_norm # optimize on non-norm input
+
+fmul_norm:
+ mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
+ mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ bsr.l scale_to_zero_src # scale src exponent
+ mov.l %d0,-(%sp) # save scale factor 1
+
+ bsr.l scale_to_zero_dst # scale dst exponent
+
+ add.l %d0,(%sp) # SCALE_FACTOR = scale1 + scale2
+
+ mov.w 2+L_SCR3(%a6),%d1 # fetch precision
+ lsr.b &0x6,%d1 # shift to lo bits
+ mov.l (%sp)+,%d0 # load S.F.
+ cmp.l %d0,(tbl_fmul_ovfl.w,%pc,%d1.w*4) # would result ovfl?
+ beq.w fmul_may_ovfl # result may rnd to overflow
+ blt.w fmul_ovfl # result will overflow
+
+ cmp.l %d0,(tbl_fmul_unfl.w,%pc,%d1.w*4) # would result unfl?
+ beq.w fmul_may_unfl # result may rnd to no unfl
+ bgt.w fmul_unfl # result will underflow
+
+#
+# NORMAL:
+# - the result of the multiply operation will neither overflow nor underflow.
+# - do the multiply to the proper precision and rounding mode.
+# - scale the result exponent using the scale factor. if both operands were
+# normalized then we really don't need to go through this scaling. but for now,
+# this will do.
+#
+fmul_normal:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmul.x FP_SCR0(%a6),%fp0 # execute multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fmul_normal_exit:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# OVERFLOW:
+# - the result of the multiply operation is an overflow.
+# - do the multiply to the proper precision and rounding mode in order to
+# set the inexact bits.
+# - calculate the default result and return it in fp0.
+# - if overflow or inexact is enabled, we need a multiply result rounded to
+# extended precision. if the original operation was extended, then we have this
+# result. if the original operation was single or double, we have to do another
+# multiply using extended precision and the correct rounding mode. the result
+# of this operation then has its exponent scaled by -0x6000 to create the
+# exceptional operand.
+#
+fmul_ovfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmul.x FP_SCR0(%a6),%fp0 # execute multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+# save setting this until now because this is where fmul_may_ovfl may jump in
+fmul_ovfl_tst:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fmul_ovfl_ena # yes
+
+# calculate the default result
+fmul_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass rnd prec,mode
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+#
+# OVFL is enabled; Create EXOP:
+# - if precision is extended, then we have the EXOP. simply bias the exponent
+# with an extra -0x6000. if the precision is single or double, we need to
+# calculate a result rounded to extended precision.
+#
+fmul_ovfl_ena:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # test the rnd prec
+ bne.b fmul_ovfl_ena_sd # it's sgl or dbl
+
+fmul_ovfl_ena_cont:
+ fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
+
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.w %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ subi.l &0x6000,%d1 # subtract bias
+ andi.w &0x7fff,%d1 # clear sign bit
+ andi.w &0x8000,%d2 # keep old sign
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.b fmul_ovfl_dis
+
+fmul_ovfl_ena_sd:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # keep rnd mode only
+ fmov.l %d1,%fpcr # set FPCR
+
+ fmul.x FP_SCR0(%a6),%fp0 # execute multiply
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ bra.b fmul_ovfl_ena_cont
+
+#
+# may OVERFLOW:
+# - the result of the multiply operation MAY overflow.
+# - do the multiply to the proper precision and rounding mode in order to
+# set the inexact bits.
+# - calculate the default result and return it in fp0.
+#
+fmul_may_ovfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmul.x FP_SCR0(%a6),%fp0 # execute multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x2 # is |result| >= 2.b?
+ fbge.w fmul_ovfl_tst # yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+ bra.w fmul_normal_exit
+
+#
+# UNDERFLOW:
+# - the result of the multiply operation is an underflow.
+# - do the multiply to the proper precision and rounding mode in order to
+# set the inexact bits.
+# - calculate the default result and return it in fp0.
+# - if overflow or inexact is enabled, we need a multiply result rounded to
+# extended precision. if the original operation was extended, then we have this
+# result. if the original operation was single or double, we have to do another
+# multiply using extended precision and the correct rounding mode. the result
+# of this operation then has its exponent scaled by -0x6000 to create the
+# exceptional operand.
+#
+fmul_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+# for fun, let's use only extended precision, round to zero. then, let
+# the unf_res() routine figure out all the rest.
+# will we get the correct answer.
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
+
+ fmov.l &rz_mode*0x10,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmul.x FP_SCR0(%a6),%fp0 # execute multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fmul_unfl_ena # yes
+
+fmul_unfl_dis:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # unf_res2 may have set 'Z'
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# UNFL is enabled.
+#
+fmul_unfl_ena:
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # is precision extended?
+ bne.b fmul_unfl_ena_sd # no, sgl or dbl
+
+# if the rnd mode is anything but RZ, then we have to re-do the above
+# multiplication becuase we used RZ for all.
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+fmul_unfl_ena_cont:
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmul.x FP_SCR0(%a6),%fp1 # execute multiply
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ addi.l &0x6000,%d1 # add bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.w fmul_unfl_dis
+
+fmul_unfl_ena_sd:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # use only rnd mode
+ fmov.l %d1,%fpcr # set FPCR
+
+ bra.b fmul_unfl_ena_cont
+
+# MAY UNDERFLOW:
+# -use the correct rounding mode and precision. this code favors operations
+# that do not underflow.
+fmul_may_unfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmul.x FP_SCR0(%a6),%fp0 # execute multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x2 # is |result| > 2.b?
+ fbgt.w fmul_normal_exit # no; no underflow occurred
+ fblt.w fmul_unfl # yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 2. but,
+# we don't know if the result was an underflow that rounded up to a 2 or
+# a normalized number that rounded down to a 2. so, redo the entire operation
+# using RZ as the rounding mode to see what the pre-rounded result is.
+# this case should be relatively rare.
+#
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst operand
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # keep rnd prec
+ ori.b &rz_mode*0x10,%d1 # insert RZ
+
+ fmov.l %d1,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmul.x FP_SCR0(%a6),%fp1 # execute multiply
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fabs.x %fp1 # make absolute value
+ fcmp.b %fp1,&0x2 # is |result| < 2.b?
+ fbge.w fmul_normal_exit # no; no underflow occurred
+ bra.w fmul_unfl # yes, underflow occurred
+
+################################################################################
+
+#
+# Multiply: inputs are not both normalized; what are they?
+#
+fmul_not_norm:
+ mov.w (tbl_fmul_op.b,%pc,%d1.w*2),%d1
+ jmp (tbl_fmul_op.b,%pc,%d1.w)
+
+ swbeg &48
+tbl_fmul_op:
+ short fmul_norm - tbl_fmul_op # NORM x NORM
+ short fmul_zero - tbl_fmul_op # NORM x ZERO
+ short fmul_inf_src - tbl_fmul_op # NORM x INF
+ short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
+ short fmul_norm - tbl_fmul_op # NORM x DENORM
+ short fmul_res_snan - tbl_fmul_op # NORM x SNAN
+ short tbl_fmul_op - tbl_fmul_op #
+ short tbl_fmul_op - tbl_fmul_op #
+
+ short fmul_zero - tbl_fmul_op # ZERO x NORM
+ short fmul_zero - tbl_fmul_op # ZERO x ZERO
+ short fmul_res_operr - tbl_fmul_op # ZERO x INF
+ short fmul_res_qnan - tbl_fmul_op # ZERO x QNAN
+ short fmul_zero - tbl_fmul_op # ZERO x DENORM
+ short fmul_res_snan - tbl_fmul_op # ZERO x SNAN
+ short tbl_fmul_op - tbl_fmul_op #
+ short tbl_fmul_op - tbl_fmul_op #
+
+ short fmul_inf_dst - tbl_fmul_op # INF x NORM
+ short fmul_res_operr - tbl_fmul_op # INF x ZERO
+ short fmul_inf_dst - tbl_fmul_op # INF x INF
+ short fmul_res_qnan - tbl_fmul_op # INF x QNAN
+ short fmul_inf_dst - tbl_fmul_op # INF x DENORM
+ short fmul_res_snan - tbl_fmul_op # INF x SNAN
+ short tbl_fmul_op - tbl_fmul_op #
+ short tbl_fmul_op - tbl_fmul_op #
+
+ short fmul_res_qnan - tbl_fmul_op # QNAN x NORM
+ short fmul_res_qnan - tbl_fmul_op # QNAN x ZERO
+ short fmul_res_qnan - tbl_fmul_op # QNAN x INF
+ short fmul_res_qnan - tbl_fmul_op # QNAN x QNAN
+ short fmul_res_qnan - tbl_fmul_op # QNAN x DENORM
+ short fmul_res_snan - tbl_fmul_op # QNAN x SNAN
+ short tbl_fmul_op - tbl_fmul_op #
+ short tbl_fmul_op - tbl_fmul_op #
+
+ short fmul_norm - tbl_fmul_op # NORM x NORM
+ short fmul_zero - tbl_fmul_op # NORM x ZERO
+ short fmul_inf_src - tbl_fmul_op # NORM x INF
+ short fmul_res_qnan - tbl_fmul_op # NORM x QNAN
+ short fmul_norm - tbl_fmul_op # NORM x DENORM
+ short fmul_res_snan - tbl_fmul_op # NORM x SNAN
+ short tbl_fmul_op - tbl_fmul_op #
+ short tbl_fmul_op - tbl_fmul_op #
+
+ short fmul_res_snan - tbl_fmul_op # SNAN x NORM
+ short fmul_res_snan - tbl_fmul_op # SNAN x ZERO
+ short fmul_res_snan - tbl_fmul_op # SNAN x INF
+ short fmul_res_snan - tbl_fmul_op # SNAN x QNAN
+ short fmul_res_snan - tbl_fmul_op # SNAN x DENORM
+ short fmul_res_snan - tbl_fmul_op # SNAN x SNAN
+ short tbl_fmul_op - tbl_fmul_op #
+ short tbl_fmul_op - tbl_fmul_op #
+
+fmul_res_operr:
+ bra.l res_operr
+fmul_res_snan:
+ bra.l res_snan
+fmul_res_qnan:
+ bra.l res_qnan
+
+#
+# Multiply: (Zero x Zero) || (Zero x norm) || (Zero x denorm)
+#
+ global fmul_zero # global for fsglmul
+fmul_zero:
+ mov.b SRC_EX(%a0),%d0 # exclusive or the signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d0,%d1
+ bpl.b fmul_zero_p # result ZERO is pos.
+fmul_zero_n:
+ fmov.s &0x80000000,%fp0 # load -ZERO
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
+ rts
+fmul_zero_p:
+ fmov.s &0x00000000,%fp0 # load +ZERO
+ mov.b &z_bmask,FPSR_CC(%a6) # set Z
+ rts
+
+#
+# Multiply: (inf x inf) || (inf x norm) || (inf x denorm)
+#
+# Note: The j-bit for an infinity is a don't-care. However, to be
+# strictly compatible w/ the 68881/882, we make sure to return an
+# INF w/ the j-bit set if the input INF j-bit was set. Destination
+# INFs take priority.
+#
+ global fmul_inf_dst # global for fsglmul
+fmul_inf_dst:
+ fmovm.x DST(%a1),&0x80 # return INF result in fp0
+ mov.b SRC_EX(%a0),%d0 # exclusive or the signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d0,%d1
+ bpl.b fmul_inf_dst_p # result INF is pos.
+fmul_inf_dst_n:
+ fabs.x %fp0 # clear result sign
+ fneg.x %fp0 # set result sign
+ mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
+ rts
+fmul_inf_dst_p:
+ fabs.x %fp0 # clear result sign
+ mov.b &inf_bmask,FPSR_CC(%a6) # set INF
+ rts
+
+ global fmul_inf_src # global for fsglmul
+fmul_inf_src:
+ fmovm.x SRC(%a0),&0x80 # return INF result in fp0
+ mov.b SRC_EX(%a0),%d0 # exclusive or the signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d0,%d1
+ bpl.b fmul_inf_dst_p # result INF is pos.
+ bra.b fmul_inf_dst_n
+
+#########################################################################
+# XDEF **************************************************************** #
+# fin(): emulates the fmove instruction #
+# fsin(): emulates the fsmove instruction #
+# fdin(): emulates the fdmove instruction #
+# #
+# XREF **************************************************************** #
+# norm() - normalize mantissa for EXOP on denorm #
+# scale_to_zero_src() - scale src exponent to zero #
+# ovf_res() - return default overflow result #
+# unf_res() - return default underflow result #
+# res_qnan_1op() - return QNAN result #
+# res_snan_1op() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# d0 = round prec/mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms into extended, single, and double precision. #
+# Norms can be emulated w/ a regular fmove instruction. For #
+# sgl/dbl, must scale exponent and perform an "fmove". Check to see #
+# if the result would have overflowed/underflowed. If so, use unf_res() #
+# or ovf_res() to return the default result. Also return EXOP if #
+# exception is enabled. If no exception, return the default result. #
+# Unnorms don't pass through here. #
+# #
+#########################################################################
+
+ global fsin
+fsin:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl precision
+ bra.b fin
+
+ global fdin
+fdin:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl precision
+
+ global fin
+fin:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+
+ mov.b STAG(%a6),%d1 # fetch src optype tag
+ bne.w fin_not_norm # optimize on non-norm input
+
+#
+# FP MOVE IN: NORMs and DENORMs ONLY!
+#
+fin_norm:
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.w fin_not_ext # no, so go handle dbl or sgl
+
+#
+# precision selected is extended. so...we cannot get an underflow
+# or overflow because of rounding to the correct precision. so...
+# skip the scaling and unscaling...
+#
+ tst.b SRC_EX(%a0) # is the operand negative?
+ bpl.b fin_norm_done # no
+ bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
+fin_norm_done:
+ fmovm.x SRC(%a0),&0x80 # return result in fp0
+ rts
+
+#
+# for an extended precision DENORM, the UNFL exception bit is set
+# the accrued bit is NOT set in this instance(no inexactness!)
+#
+fin_denorm:
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.w fin_not_ext # no, so go handle dbl or sgl
+
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+ tst.b SRC_EX(%a0) # is the operand negative?
+ bpl.b fin_denorm_done # no
+ bset &neg_bit,FPSR_CC(%a6) # yes, so set 'N' ccode bit
+fin_denorm_done:
+ fmovm.x SRC(%a0),&0x80 # return result in fp0
+ btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
+ bne.b fin_denorm_unfl_ena # yes
+ rts
+
+#
+# the input is an extended DENORM and underflow is enabled in the FPCR.
+# normalize the mantissa and add the bias of 0x6000 to the resulting negative
+# exponent and insert back into the operand.
+#
+fin_denorm_unfl_ena:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ lea FP_SCR0(%a6),%a0 # pass: ptr to operand
+ bsr.l norm # normalize result
+ neg.w %d0 # new exponent = -(shft val)
+ addi.w &0x6000,%d0 # add new bias to exponent
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
+ andi.w &0x8000,%d1 # keep old sign
+ andi.w &0x7fff,%d0 # clear sign position
+ or.w %d1,%d0 # concat new exo,old sign
+ mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ rts
+
+#
+# operand is to be rounded to single or double precision
+#
+fin_not_ext:
+ cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
+ bne.b fin_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fin_sgl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
+ bge.w fin_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
+ beq.w fin_sd_may_ovfl # maybe; go check
+ blt.w fin_sd_ovfl # yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved into the fp reg file
+#
+fin_sd_normal:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fmov.x FP_SCR0(%a6),%fp0 # perform move
+
+ fmov.l %fpsr,%d1 # save FPSR
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fin_sd_normal_exit:
+ mov.l %d2,-(%sp) # save d2
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+ mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
+ mov.w %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ andi.w &0x8000,%d2 # keep old sign
+ or.w %d1,%d2 # concat old sign,new exponent
+ mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+#
+# operand is to be rounded to double precision
+#
+fin_dbl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
+ bge.w fin_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
+ beq.w fin_sd_may_ovfl # maybe; go check
+ blt.w fin_sd_ovfl # yes; go handle overflow
+ bra.w fin_sd_normal # no; ho handle normalized op
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fin_sd_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ tst.b FP_SCR0_EX(%a6) # is operand negative?
+ bpl.b fin_sd_unfl_tst
+ bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
+
+# if underflow or inexact is enabled, then go calculate the EXOP first.
+fin_sd_unfl_tst:
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fin_sd_unfl_ena # yes
+
+fin_sd_unfl_dis:
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# operand will underflow AND underflow or inexact is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fin_sd_unfl_ena:
+ mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+ mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+ mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
+
+ mov.l %d2,-(%sp) # save d2
+ mov.w %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # subtract scale factor
+ andi.w &0x8000,%d2 # extract old sign
+ addi.l &0x6000,%d1 # add new bias
+ andi.w &0x7fff,%d1
+ or.w %d1,%d2 # concat old sign,new exp
+ mov.w %d2,FP_SCR1_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
+ mov.l (%sp)+,%d2 # restore d2
+ bra.b fin_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fin_sd_ovfl:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fmov.x FP_SCR0(%a6),%fp0 # perform move
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # save FPSR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fin_sd_ovfl_tst:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fin_sd_ovfl_ena # yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fin_sd_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass: prec,mode
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fin_sd_ovfl_ena:
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ sub.l &0x6000,%d1 # subtract bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.b fin_sd_ovfl_dis
+
+#
+# the move in MAY overflow. so...
+#
+fin_sd_may_ovfl:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fmov.x FP_SCR0(%a6),%fp0 # perform the move
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x2 # is |result| >= 2.b?
+ fbge.w fin_sd_ovfl_tst # yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+ bra.w fin_sd_normal_exit
+
+##########################################################################
+
+#
+# operand is not a NORM: check its optype and branch accordingly
+#
+fin_not_norm:
+ cmpi.b %d1,&DENORM # weed out DENORM
+ beq.w fin_denorm
+ cmpi.b %d1,&SNAN # weed out SNANs
+ beq.l res_snan_1op
+ cmpi.b %d1,&QNAN # weed out QNANs
+ beq.l res_qnan_1op
+
+#
+# do the fmove in; at this point, only possible ops are ZERO and INF.
+# use fmov to determine ccodes.
+# prec:mode should be zero at this point but it won't affect answer anyways.
+#
+ fmov.x SRC(%a0),%fp0 # do fmove in
+ fmov.l %fpsr,%d0 # no exceptions possible
+ rol.l &0x8,%d0 # put ccodes in lo byte
+ mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fdiv(): emulates the fdiv instruction #
+# fsdiv(): emulates the fsdiv instruction #
+# fddiv(): emulates the fddiv instruction #
+# #
+# XREF **************************************************************** #
+# scale_to_zero_src() - scale src exponent to zero #
+# scale_to_zero_dst() - scale dst exponent to zero #
+# unf_res() - return default underflow result #
+# ovf_res() - return default overflow result #
+# res_qnan() - return QNAN result #
+# res_snan() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# a1 = pointer to extended precision destination operand #
+# d0 rnd prec,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms/denorms into ext/sgl/dbl precision. #
+# For norms/denorms, scale the exponents such that a divide #
+# instruction won't cause an exception. Use the regular fdiv to #
+# compute a result. Check if the regular operands would have taken #
+# an exception. If so, return the default overflow/underflow result #
+# and return the EXOP if exceptions are enabled. Else, scale the #
+# result operand to the proper exponent. #
+# #
+#########################################################################
+
+ align 0x10
+tbl_fdiv_unfl:
+ long 0x3fff - 0x0000 # ext_unfl
+ long 0x3fff - 0x3f81 # sgl_unfl
+ long 0x3fff - 0x3c01 # dbl_unfl
+
+tbl_fdiv_ovfl:
+ long 0x3fff - 0x7ffe # ext overflow exponent
+ long 0x3fff - 0x407e # sgl overflow exponent
+ long 0x3fff - 0x43fe # dbl overflow exponent
+
+ global fsdiv
+fsdiv:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl prec
+ bra.b fdiv
+
+ global fddiv
+fddiv:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl prec
+
+ global fdiv
+fdiv:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+
+ clr.w %d1
+ mov.b DTAG(%a6),%d1
+ lsl.b &0x3,%d1
+ or.b STAG(%a6),%d1 # combine src tags
+
+ bne.w fdiv_not_norm # optimize on non-norm input
+
+#
+# DIVIDE: NORMs and DENORMs ONLY!
+#
+fdiv_norm:
+ mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
+ mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ bsr.l scale_to_zero_src # scale src exponent
+ mov.l %d0,-(%sp) # save scale factor 1
+
+ bsr.l scale_to_zero_dst # scale dst exponent
+
+ neg.l (%sp) # SCALE FACTOR = scale1 - scale2
+ add.l %d0,(%sp)
+
+ mov.w 2+L_SCR3(%a6),%d1 # fetch precision
+ lsr.b &0x6,%d1 # shift to lo bits
+ mov.l (%sp)+,%d0 # load S.F.
+ cmp.l %d0,(tbl_fdiv_ovfl.b,%pc,%d1.w*4) # will result overflow?
+ ble.w fdiv_may_ovfl # result will overflow
+
+ cmp.l %d0,(tbl_fdiv_unfl.w,%pc,%d1.w*4) # will result underflow?
+ beq.w fdiv_may_unfl # maybe
+ bgt.w fdiv_unfl # yes; go handle underflow
+
+fdiv_normal:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # save FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fdiv.x FP_SCR0(%a6),%fp0 # perform divide
+
+ fmov.l %fpsr,%d1 # save FPSR
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fdiv_normal_exit:
+ fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
+ mov.l %d2,-(%sp) # store d2
+ mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+tbl_fdiv_ovfl2:
+ long 0x7fff
+ long 0x407f
+ long 0x43ff
+
+fdiv_no_ovfl:
+ mov.l (%sp)+,%d0 # restore scale factor
+ bra.b fdiv_normal_exit
+
+fdiv_may_ovfl:
+ mov.l %d0,-(%sp) # save scale factor
+
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # set FPSR
+
+ fdiv.x FP_SCR0(%a6),%fp0 # execute divide
+
+ fmov.l %fpsr,%d0
+ fmov.l &0x0,%fpcr
+
+ or.l %d0,USER_FPSR(%a6) # save INEX,N
+
+ fmovm.x &0x01,-(%sp) # save result to stack
+ mov.w (%sp),%d0 # fetch new exponent
+ add.l &0xc,%sp # clear result from stack
+ andi.l &0x7fff,%d0 # strip sign
+ sub.l (%sp),%d0 # add scale factor
+ cmp.l %d0,(tbl_fdiv_ovfl2.b,%pc,%d1.w*4)
+ blt.b fdiv_no_ovfl
+ mov.l (%sp)+,%d0
+
+fdiv_ovfl_tst:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fdiv_ovfl_ena # yes
+
+fdiv_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass prec:rnd
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+fdiv_ovfl_ena:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # is precision extended?
+ bne.b fdiv_ovfl_ena_sd # no, do sgl or dbl
+
+fdiv_ovfl_ena_cont:
+ fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
+
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.w %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ subi.l &0x6000,%d1 # subtract bias
+ andi.w &0x7fff,%d1 # clear sign bit
+ andi.w &0x8000,%d2 # keep old sign
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.b fdiv_ovfl_dis
+
+fdiv_ovfl_ena_sd:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst operand
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # keep rnd mode
+ fmov.l %d1,%fpcr # set FPCR
+
+ fdiv.x FP_SCR0(%a6),%fp0 # execute divide
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ bra.b fdiv_ovfl_ena_cont
+
+fdiv_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l &rz_mode*0x10,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fdiv.x FP_SCR0(%a6),%fp0 # execute divide
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fdiv_unfl_ena # yes
+
+fdiv_unfl_dis:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# UNFL is enabled.
+#
+fdiv_unfl_ena:
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # is precision extended?
+ bne.b fdiv_unfl_ena_sd # no, sgl or dbl
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+fdiv_unfl_ena_cont:
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fdiv.x FP_SCR0(%a6),%fp1 # execute divide
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factoer
+ addi.l &0x6000,%d1 # add bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exp
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.w fdiv_unfl_dis
+
+fdiv_unfl_ena_sd:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # use only rnd mode
+ fmov.l %d1,%fpcr # set FPCR
+
+ bra.b fdiv_unfl_ena_cont
+
+#
+# the divide operation MAY underflow:
+#
+fdiv_may_unfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fdiv.x FP_SCR0(%a6),%fp0 # execute divide
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x1 # is |result| > 1.b?
+ fbgt.w fdiv_normal_exit # no; no underflow occurred
+ fblt.w fdiv_unfl # yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 1. but,
+# we don't know if the result was an underflow that rounded up to a 1
+# or a normalized number that rounded down to a 1. so, redo the entire
+# operation using RZ as the rounding mode to see what the pre-rounded
+# result is. this case should be relatively rare.
+#
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # keep rnd prec
+ ori.b &rz_mode*0x10,%d1 # insert RZ
+
+ fmov.l %d1,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fdiv.x FP_SCR0(%a6),%fp1 # execute divide
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fabs.x %fp1 # make absolute value
+ fcmp.b %fp1,&0x1 # is |result| < 1.b?
+ fbge.w fdiv_normal_exit # no; no underflow occurred
+ bra.w fdiv_unfl # yes; underflow occurred
+
+############################################################################
+
+#
+# Divide: inputs are not both normalized; what are they?
+#
+fdiv_not_norm:
+ mov.w (tbl_fdiv_op.b,%pc,%d1.w*2),%d1
+ jmp (tbl_fdiv_op.b,%pc,%d1.w*1)
+
+ swbeg &48
+tbl_fdiv_op:
+ short fdiv_norm - tbl_fdiv_op # NORM / NORM
+ short fdiv_inf_load - tbl_fdiv_op # NORM / ZERO
+ short fdiv_zero_load - tbl_fdiv_op # NORM / INF
+ short fdiv_res_qnan - tbl_fdiv_op # NORM / QNAN
+ short fdiv_norm - tbl_fdiv_op # NORM / DENORM
+ short fdiv_res_snan - tbl_fdiv_op # NORM / SNAN
+ short tbl_fdiv_op - tbl_fdiv_op #
+ short tbl_fdiv_op - tbl_fdiv_op #
+
+ short fdiv_zero_load - tbl_fdiv_op # ZERO / NORM
+ short fdiv_res_operr - tbl_fdiv_op # ZERO / ZERO
+ short fdiv_zero_load - tbl_fdiv_op # ZERO / INF
+ short fdiv_res_qnan - tbl_fdiv_op # ZERO / QNAN
+ short fdiv_zero_load - tbl_fdiv_op # ZERO / DENORM
+ short fdiv_res_snan - tbl_fdiv_op # ZERO / SNAN
+ short tbl_fdiv_op - tbl_fdiv_op #
+ short tbl_fdiv_op - tbl_fdiv_op #
+
+ short fdiv_inf_dst - tbl_fdiv_op # INF / NORM
+ short fdiv_inf_dst - tbl_fdiv_op # INF / ZERO
+ short fdiv_res_operr - tbl_fdiv_op # INF / INF
+ short fdiv_res_qnan - tbl_fdiv_op # INF / QNAN
+ short fdiv_inf_dst - tbl_fdiv_op # INF / DENORM
+ short fdiv_res_snan - tbl_fdiv_op # INF / SNAN
+ short tbl_fdiv_op - tbl_fdiv_op #
+ short tbl_fdiv_op - tbl_fdiv_op #
+
+ short fdiv_res_qnan - tbl_fdiv_op # QNAN / NORM
+ short fdiv_res_qnan - tbl_fdiv_op # QNAN / ZERO
+ short fdiv_res_qnan - tbl_fdiv_op # QNAN / INF
+ short fdiv_res_qnan - tbl_fdiv_op # QNAN / QNAN
+ short fdiv_res_qnan - tbl_fdiv_op # QNAN / DENORM
+ short fdiv_res_snan - tbl_fdiv_op # QNAN / SNAN
+ short tbl_fdiv_op - tbl_fdiv_op #
+ short tbl_fdiv_op - tbl_fdiv_op #
+
+ short fdiv_norm - tbl_fdiv_op # DENORM / NORM
+ short fdiv_inf_load - tbl_fdiv_op # DENORM / ZERO
+ short fdiv_zero_load - tbl_fdiv_op # DENORM / INF
+ short fdiv_res_qnan - tbl_fdiv_op # DENORM / QNAN
+ short fdiv_norm - tbl_fdiv_op # DENORM / DENORM
+ short fdiv_res_snan - tbl_fdiv_op # DENORM / SNAN
+ short tbl_fdiv_op - tbl_fdiv_op #
+ short tbl_fdiv_op - tbl_fdiv_op #
+
+ short fdiv_res_snan - tbl_fdiv_op # SNAN / NORM
+ short fdiv_res_snan - tbl_fdiv_op # SNAN / ZERO
+ short fdiv_res_snan - tbl_fdiv_op # SNAN / INF
+ short fdiv_res_snan - tbl_fdiv_op # SNAN / QNAN
+ short fdiv_res_snan - tbl_fdiv_op # SNAN / DENORM
+ short fdiv_res_snan - tbl_fdiv_op # SNAN / SNAN
+ short tbl_fdiv_op - tbl_fdiv_op #
+ short tbl_fdiv_op - tbl_fdiv_op #
+
+fdiv_res_qnan:
+ bra.l res_qnan
+fdiv_res_snan:
+ bra.l res_snan
+fdiv_res_operr:
+ bra.l res_operr
+
+ global fdiv_zero_load # global for fsgldiv
+fdiv_zero_load:
+ mov.b SRC_EX(%a0),%d0 # result sign is exclusive
+ mov.b DST_EX(%a1),%d1 # or of input signs.
+ eor.b %d0,%d1
+ bpl.b fdiv_zero_load_p # result is positive
+ fmov.s &0x80000000,%fp0 # load a -ZERO
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/N
+ rts
+fdiv_zero_load_p:
+ fmov.s &0x00000000,%fp0 # load a +ZERO
+ mov.b &z_bmask,FPSR_CC(%a6) # set Z
+ rts
+
+#
+# The destination was In Range and the source was a ZERO. The result,
+# therefore, is an INF w/ the proper sign.
+# So, determine the sign and return a new INF (w/ the j-bit cleared).
+#
+ global fdiv_inf_load # global for fsgldiv
+fdiv_inf_load:
+ ori.w &dz_mask+adz_mask,2+USER_FPSR(%a6) # no; set DZ/ADZ
+ mov.b SRC_EX(%a0),%d0 # load both signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d0,%d1
+ bpl.b fdiv_inf_load_p # result is positive
+ fmov.s &0xff800000,%fp0 # make result -INF
+ mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/N
+ rts
+fdiv_inf_load_p:
+ fmov.s &0x7f800000,%fp0 # make result +INF
+ mov.b &inf_bmask,FPSR_CC(%a6) # set INF
+ rts
+
+#
+# The destination was an INF w/ an In Range or ZERO source, the result is
+# an INF w/ the proper sign.
+# The 68881/882 returns the destination INF w/ the new sign(if the j-bit of the
+# dst INF is set, then then j-bit of the result INF is also set).
+#
+ global fdiv_inf_dst # global for fsgldiv
+fdiv_inf_dst:
+ mov.b DST_EX(%a1),%d0 # load both signs
+ mov.b SRC_EX(%a0),%d1
+ eor.b %d0,%d1
+ bpl.b fdiv_inf_dst_p # result is positive
+
+ fmovm.x DST(%a1),&0x80 # return result in fp0
+ fabs.x %fp0 # clear sign bit
+ fneg.x %fp0 # set sign bit
+ mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set INF/NEG
+ rts
+
+fdiv_inf_dst_p:
+ fmovm.x DST(%a1),&0x80 # return result in fp0
+ fabs.x %fp0 # return positive INF
+ mov.b &inf_bmask,FPSR_CC(%a6) # set INF
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fneg(): emulates the fneg instruction #
+# fsneg(): emulates the fsneg instruction #
+# fdneg(): emulates the fdneg instruction #
+# #
+# XREF **************************************************************** #
+# norm() - normalize a denorm to provide EXOP #
+# scale_to_zero_src() - scale sgl/dbl source exponent #
+# ovf_res() - return default overflow result #
+# unf_res() - return default underflow result #
+# res_qnan_1op() - return QNAN result #
+# res_snan_1op() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# d0 = rnd prec,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, zeroes, and infinities as special cases. Separate #
+# norms/denorms into ext/sgl/dbl precisions. Extended precision can be #
+# emulated by simply setting sign bit. Sgl/dbl operands must be scaled #
+# and an actual fneg performed to see if overflow/underflow would have #
+# occurred. If so, return default underflow/overflow result. Else, #
+# scale the result exponent and return result. FPSR gets set based on #
+# the result value. #
+# #
+#########################################################################
+
+ global fsneg
+fsneg:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl precision
+ bra.b fneg
+
+ global fdneg
+fdneg:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl prec
+
+ global fneg
+fneg:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+ mov.b STAG(%a6),%d1
+ bne.w fneg_not_norm # optimize on non-norm input
+
+#
+# NEGATE SIGN : norms and denorms ONLY!
+#
+fneg_norm:
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.w fneg_not_ext # no; go handle sgl or dbl
+
+#
+# precision selected is extended. so...we can not get an underflow
+# or overflow because of rounding to the correct precision. so...
+# skip the scaling and unscaling...
+#
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ mov.w SRC_EX(%a0),%d0
+ eori.w &0x8000,%d0 # negate sign
+ bpl.b fneg_norm_load # sign is positive
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+fneg_norm_load:
+ mov.w %d0,FP_SCR0_EX(%a6)
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+#
+# for an extended precision DENORM, the UNFL exception bit is set
+# the accrued bit is NOT set in this instance(no inexactness!)
+#
+fneg_denorm:
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.b fneg_not_ext # no; go handle sgl or dbl
+
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ mov.w SRC_EX(%a0),%d0
+ eori.w &0x8000,%d0 # negate sign
+ bpl.b fneg_denorm_done # no
+ mov.b &neg_bmask,FPSR_CC(%a6) # yes, set 'N' ccode bit
+fneg_denorm_done:
+ mov.w %d0,FP_SCR0_EX(%a6)
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+
+ btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
+ bne.b fneg_ext_unfl_ena # yes
+ rts
+
+#
+# the input is an extended DENORM and underflow is enabled in the FPCR.
+# normalize the mantissa and add the bias of 0x6000 to the resulting negative
+# exponent and insert back into the operand.
+#
+fneg_ext_unfl_ena:
+ lea FP_SCR0(%a6),%a0 # pass: ptr to operand
+ bsr.l norm # normalize result
+ neg.w %d0 # new exponent = -(shft val)
+ addi.w &0x6000,%d0 # add new bias to exponent
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
+ andi.w &0x8000,%d1 # keep old sign
+ andi.w &0x7fff,%d0 # clear sign position
+ or.w %d1,%d0 # concat old sign, new exponent
+ mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ rts
+
+#
+# operand is either single or double
+#
+fneg_not_ext:
+ cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
+ bne.b fneg_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fneg_sgl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
+ bge.w fneg_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
+ beq.w fneg_sd_may_ovfl # maybe; go check
+ blt.w fneg_sd_ovfl # yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved in to the fp reg file
+#
+fneg_sd_normal:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fneg.x FP_SCR0(%a6),%fp0 # perform negation
+
+ fmov.l %fpsr,%d1 # save FPSR
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fneg_sd_normal_exit:
+ mov.l %d2,-(%sp) # save d2
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+ mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
+ mov.w %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ andi.w &0x8000,%d2 # keep old sign
+ or.w %d1,%d2 # concat old sign,new exp
+ mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+#
+# operand is to be rounded to double precision
+#
+fneg_dbl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
+ bge.b fneg_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
+ beq.w fneg_sd_may_ovfl # maybe; go check
+ blt.w fneg_sd_ovfl # yes; go handle overflow
+ bra.w fneg_sd_normal # no; ho handle normalized op
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fneg_sd_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ eori.b &0x80,FP_SCR0_EX(%a6) # negate sign
+ bpl.b fneg_sd_unfl_tst
+ bset &neg_bit,FPSR_CC(%a6) # set 'N' ccode bit
+
+# if underflow or inexact is enabled, go calculate EXOP first.
+fneg_sd_unfl_tst:
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fneg_sd_unfl_ena # yes
+
+fneg_sd_unfl_dis:
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # unf_res may have set 'Z'
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# operand will underflow AND underflow is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fneg_sd_unfl_ena:
+ mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+ mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+ mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
+
+ mov.l %d2,-(%sp) # save d2
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # subtract scale factor
+ addi.l &0x6000,%d1 # add new bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat new sign,new exp
+ mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
+ fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
+ mov.l (%sp)+,%d2 # restore d2
+ bra.b fneg_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fneg_sd_ovfl:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fneg.x FP_SCR0(%a6),%fp0 # perform negation
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # save FPSR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fneg_sd_ovfl_tst:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fneg_sd_ovfl_ena # yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fneg_sd_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass: prec,mode
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fneg_sd_ovfl_ena:
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ subi.l &0x6000,%d1 # subtract bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat sign,exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ mov.l (%sp)+,%d2 # restore d2
+ bra.b fneg_sd_ovfl_dis
+
+#
+# the move in MAY underflow. so...
+#
+fneg_sd_may_ovfl:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fneg.x FP_SCR0(%a6),%fp0 # perform negation
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x2 # is |result| >= 2.b?
+ fbge.w fneg_sd_ovfl_tst # yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+ bra.w fneg_sd_normal_exit
+
+##########################################################################
+
+#
+# input is not normalized; what is it?
+#
+fneg_not_norm:
+ cmpi.b %d1,&DENORM # weed out DENORM
+ beq.w fneg_denorm
+ cmpi.b %d1,&SNAN # weed out SNAN
+ beq.l res_snan_1op
+ cmpi.b %d1,&QNAN # weed out QNAN
+ beq.l res_qnan_1op
+
+#
+# do the fneg; at this point, only possible ops are ZERO and INF.
+# use fneg to determine ccodes.
+# prec:mode should be zero at this point but it won't affect answer anyways.
+#
+ fneg.x SRC_EX(%a0),%fp0 # do fneg
+ fmov.l %fpsr,%d0
+ rol.l &0x8,%d0 # put ccodes in lo byte
+ mov.b %d0,FPSR_CC(%a6) # insert correct ccodes
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# ftst(): emulates the ftest instruction #
+# #
+# XREF **************************************************************** #
+# res{s,q}nan_1op() - set NAN result for monadic instruction #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# #
+# OUTPUT ************************************************************** #
+# none #
+# #
+# ALGORITHM *********************************************************** #
+# Check the source operand tag (STAG) and set the FPCR according #
+# to the operand type and sign. #
+# #
+#########################################################################
+
+ global ftst
+ftst:
+ mov.b STAG(%a6),%d1
+ bne.b ftst_not_norm # optimize on non-norm input
+
+#
+# Norm:
+#
+ftst_norm:
+ tst.b SRC_EX(%a0) # is operand negative?
+ bmi.b ftst_norm_m # yes
+ rts
+ftst_norm_m:
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+ rts
+
+#
+# input is not normalized; what is it?
+#
+ftst_not_norm:
+ cmpi.b %d1,&ZERO # weed out ZERO
+ beq.b ftst_zero
+ cmpi.b %d1,&INF # weed out INF
+ beq.b ftst_inf
+ cmpi.b %d1,&SNAN # weed out SNAN
+ beq.l res_snan_1op
+ cmpi.b %d1,&QNAN # weed out QNAN
+ beq.l res_qnan_1op
+
+#
+# Denorm:
+#
+ftst_denorm:
+ tst.b SRC_EX(%a0) # is operand negative?
+ bmi.b ftst_denorm_m # yes
+ rts
+ftst_denorm_m:
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+ rts
+
+#
+# Infinity:
+#
+ftst_inf:
+ tst.b SRC_EX(%a0) # is operand negative?
+ bmi.b ftst_inf_m # yes
+ftst_inf_p:
+ mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
+ rts
+ftst_inf_m:
+ mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'I','N' ccode bits
+ rts
+
+#
+# Zero:
+#
+ftst_zero:
+ tst.b SRC_EX(%a0) # is operand negative?
+ bmi.b ftst_zero_m # yes
+ftst_zero_p:
+ mov.b &z_bmask,FPSR_CC(%a6) # set 'N' ccode bit
+ rts
+ftst_zero_m:
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fint(): emulates the fint instruction #
+# #
+# XREF **************************************************************** #
+# res_{s,q}nan_1op() - set NAN result for monadic operation #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# d0 = round precision/mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# #
+# ALGORITHM *********************************************************** #
+# Separate according to operand type. Unnorms don't pass through #
+# here. For norms, load the rounding mode/prec, execute a "fint", then #
+# store the resulting FPSR bits. #
+# For denorms, force the j-bit to a one and do the same as for #
+# norms. Denorms are so low that the answer will either be a zero or a #
+# one. #
+# For zeroes/infs/NANs, return the same while setting the FPSR #
+# as appropriate. #
+# #
+#########################################################################
+
+ global fint
+fint:
+ mov.b STAG(%a6),%d1
+ bne.b fint_not_norm # optimize on non-norm input
+
+#
+# Norm:
+#
+fint_norm:
+ andi.b &0x30,%d0 # set prec = ext
+
+ fmov.l %d0,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fint.x SRC(%a0),%fp0 # execute fint
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d0 # save FPSR
+ or.l %d0,USER_FPSR(%a6) # set exception bits
+
+ rts
+
+#
+# input is not normalized; what is it?
+#
+fint_not_norm:
+ cmpi.b %d1,&ZERO # weed out ZERO
+ beq.b fint_zero
+ cmpi.b %d1,&INF # weed out INF
+ beq.b fint_inf
+ cmpi.b %d1,&DENORM # weed out DENORM
+ beq.b fint_denorm
+ cmpi.b %d1,&SNAN # weed out SNAN
+ beq.l res_snan_1op
+ bra.l res_qnan_1op # weed out QNAN
+
+#
+# Denorm:
+#
+# for DENORMs, the result will be either (+/-)ZERO or (+/-)1.
+# also, the INEX2 and AINEX exception bits will be set.
+# so, we could either set these manually or force the DENORM
+# to a very small NORM and ship it to the NORM routine.
+# I do the latter.
+#
+fint_denorm:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
+ mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
+ lea FP_SCR0(%a6),%a0
+ bra.b fint_norm
+
+#
+# Zero:
+#
+fint_zero:
+ tst.b SRC_EX(%a0) # is ZERO negative?
+ bmi.b fint_zero_m # yes
+fint_zero_p:
+ fmov.s &0x00000000,%fp0 # return +ZERO in fp0
+ mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
+ rts
+fint_zero_m:
+ fmov.s &0x80000000,%fp0 # return -ZERO in fp0
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
+ rts
+
+#
+# Infinity:
+#
+fint_inf:
+ fmovm.x SRC(%a0),&0x80 # return result in fp0
+ tst.b SRC_EX(%a0) # is INF negative?
+ bmi.b fint_inf_m # yes
+fint_inf_p:
+ mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
+ rts
+fint_inf_m:
+ mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fintrz(): emulates the fintrz instruction #
+# #
+# XREF **************************************************************** #
+# res_{s,q}nan_1op() - set NAN result for monadic operation #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# d0 = round precision/mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# #
+# ALGORITHM *********************************************************** #
+# Separate according to operand type. Unnorms don't pass through #
+# here. For norms, load the rounding mode/prec, execute a "fintrz", #
+# then store the resulting FPSR bits. #
+# For denorms, force the j-bit to a one and do the same as for #
+# norms. Denorms are so low that the answer will either be a zero or a #
+# one. #
+# For zeroes/infs/NANs, return the same while setting the FPSR #
+# as appropriate. #
+# #
+#########################################################################
+
+ global fintrz
+fintrz:
+ mov.b STAG(%a6),%d1
+ bne.b fintrz_not_norm # optimize on non-norm input
+
+#
+# Norm:
+#
+fintrz_norm:
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fintrz.x SRC(%a0),%fp0 # execute fintrz
+
+ fmov.l %fpsr,%d0 # save FPSR
+ or.l %d0,USER_FPSR(%a6) # set exception bits
+
+ rts
+
+#
+# input is not normalized; what is it?
+#
+fintrz_not_norm:
+ cmpi.b %d1,&ZERO # weed out ZERO
+ beq.b fintrz_zero
+ cmpi.b %d1,&INF # weed out INF
+ beq.b fintrz_inf
+ cmpi.b %d1,&DENORM # weed out DENORM
+ beq.b fintrz_denorm
+ cmpi.b %d1,&SNAN # weed out SNAN
+ beq.l res_snan_1op
+ bra.l res_qnan_1op # weed out QNAN
+
+#
+# Denorm:
+#
+# for DENORMs, the result will be (+/-)ZERO.
+# also, the INEX2 and AINEX exception bits will be set.
+# so, we could either set these manually or force the DENORM
+# to a very small NORM and ship it to the NORM routine.
+# I do the latter.
+#
+fintrz_denorm:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6) # copy sign, zero exp
+ mov.b &0x80,FP_SCR0_HI(%a6) # force DENORM ==> small NORM
+ lea FP_SCR0(%a6),%a0
+ bra.b fintrz_norm
+
+#
+# Zero:
+#
+fintrz_zero:
+ tst.b SRC_EX(%a0) # is ZERO negative?
+ bmi.b fintrz_zero_m # yes
+fintrz_zero_p:
+ fmov.s &0x00000000,%fp0 # return +ZERO in fp0
+ mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
+ rts
+fintrz_zero_m:
+ fmov.s &0x80000000,%fp0 # return -ZERO in fp0
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
+ rts
+
+#
+# Infinity:
+#
+fintrz_inf:
+ fmovm.x SRC(%a0),&0x80 # return result in fp0
+ tst.b SRC_EX(%a0) # is INF negative?
+ bmi.b fintrz_inf_m # yes
+fintrz_inf_p:
+ mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
+ rts
+fintrz_inf_m:
+ mov.b &inf_bmask+neg_bmask,FPSR_CC(%a6) # set 'N','I' ccode bits
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fabs(): emulates the fabs instruction #
+# fsabs(): emulates the fsabs instruction #
+# fdabs(): emulates the fdabs instruction #
+# #
+# XREF **************************************************************** #
+# norm() - normalize denorm mantissa to provide EXOP #
+# scale_to_zero_src() - make exponent. = 0; get scale factor #
+# unf_res() - calculate underflow result #
+# ovf_res() - calculate overflow result #
+# res_{s,q}nan_1op() - set NAN result for monadic operation #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# d0 = rnd precision/mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms into extended, single, and double precision. #
+# Simply clear sign for extended precision norm. Ext prec denorm #
+# gets an EXOP created for it since it's an underflow. #
+# Double and single precision can overflow and underflow. First, #
+# scale the operand such that the exponent is zero. Perform an "fabs" #
+# using the correct rnd mode/prec. Check to see if the original #
+# exponent would take an exception. If so, use unf_res() or ovf_res() #
+# to calculate the default result. Also, create the EXOP for the #
+# exceptional case. If no exception should occur, insert the correct #
+# result exponent and return. #
+# Unnorms don't pass through here. #
+# #
+#########################################################################
+
+ global fsabs
+fsabs:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl precision
+ bra.b fabs
+
+ global fdabs
+fdabs:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl precision
+
+ global fabs
+fabs:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+ mov.b STAG(%a6),%d1
+ bne.w fabs_not_norm # optimize on non-norm input
+
+#
+# ABSOLUTE VALUE: norms and denorms ONLY!
+#
+fabs_norm:
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.b fabs_not_ext # no; go handle sgl or dbl
+
+#
+# precision selected is extended. so...we can not get an underflow
+# or overflow because of rounding to the correct precision. so...
+# skip the scaling and unscaling...
+#
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ mov.w SRC_EX(%a0),%d1
+ bclr &15,%d1 # force absolute value
+ mov.w %d1,FP_SCR0_EX(%a6) # insert exponent
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+#
+# for an extended precision DENORM, the UNFL exception bit is set
+# the accrued bit is NOT set in this instance(no inexactness!)
+#
+fabs_denorm:
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.b fabs_not_ext # no
+
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ mov.w SRC_EX(%a0),%d0
+ bclr &15,%d0 # clear sign
+ mov.w %d0,FP_SCR0_EX(%a6) # insert exponent
+
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+
+ btst &unfl_bit,FPCR_ENABLE(%a6) # is UNFL enabled?
+ bne.b fabs_ext_unfl_ena
+ rts
+
+#
+# the input is an extended DENORM and underflow is enabled in the FPCR.
+# normalize the mantissa and add the bias of 0x6000 to the resulting negative
+# exponent and insert back into the operand.
+#
+fabs_ext_unfl_ena:
+ lea FP_SCR0(%a6),%a0 # pass: ptr to operand
+ bsr.l norm # normalize result
+ neg.w %d0 # new exponent = -(shft val)
+ addi.w &0x6000,%d0 # add new bias to exponent
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch old sign,exp
+ andi.w &0x8000,%d1 # keep old sign
+ andi.w &0x7fff,%d0 # clear sign position
+ or.w %d1,%d0 # concat old sign, new exponent
+ mov.w %d0,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ rts
+
+#
+# operand is either single or double
+#
+fabs_not_ext:
+ cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
+ bne.b fabs_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fabs_sgl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3f80 # will move in underflow?
+ bge.w fabs_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x407e # will move in overflow?
+ beq.w fabs_sd_may_ovfl # maybe; go check
+ blt.w fabs_sd_ovfl # yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved in to the fp reg file
+#
+fabs_sd_normal:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fabs.x FP_SCR0(%a6),%fp0 # perform absolute
+
+ fmov.l %fpsr,%d1 # save FPSR
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fabs_sd_normal_exit:
+ mov.l %d2,-(%sp) # save d2
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+ mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ andi.w &0x8000,%d2 # keep old sign
+ or.w %d1,%d2 # concat old sign,new exp
+ mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+#
+# operand is to be rounded to double precision
+#
+fabs_dbl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3c00 # will move in underflow?
+ bge.b fabs_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x43fe # will move in overflow?
+ beq.w fabs_sd_may_ovfl # maybe; go check
+ blt.w fabs_sd_ovfl # yes; go handle overflow
+ bra.w fabs_sd_normal # no; ho handle normalized op
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fabs_sd_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ bclr &0x7,FP_SCR0_EX(%a6) # force absolute value
+
+# if underflow or inexact is enabled, go calculate EXOP first.
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fabs_sd_unfl_ena # yes
+
+fabs_sd_unfl_dis:
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# operand will underflow AND underflow is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fabs_sd_unfl_ena:
+ mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+ mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+ mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
+
+ mov.l %d2,-(%sp) # save d2
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # subtract scale factor
+ addi.l &0x6000,%d1 # add new bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat new sign,new exp
+ mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
+ fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
+ mov.l (%sp)+,%d2 # restore d2
+ bra.b fabs_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fabs_sd_ovfl:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fabs.x FP_SCR0(%a6),%fp0 # perform absolute
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # save FPSR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fabs_sd_ovfl_tst:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fabs_sd_ovfl_ena # yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fabs_sd_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass: prec,mode
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fabs_sd_ovfl_ena:
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ subi.l &0x6000,%d1 # subtract bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat sign,exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ mov.l (%sp)+,%d2 # restore d2
+ bra.b fabs_sd_ovfl_dis
+
+#
+# the move in MAY underflow. so...
+#
+fabs_sd_may_ovfl:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fabs.x FP_SCR0(%a6),%fp0 # perform absolute
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x2 # is |result| >= 2.b?
+ fbge.w fabs_sd_ovfl_tst # yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+ bra.w fabs_sd_normal_exit
+
+##########################################################################
+
+#
+# input is not normalized; what is it?
+#
+fabs_not_norm:
+ cmpi.b %d1,&DENORM # weed out DENORM
+ beq.w fabs_denorm
+ cmpi.b %d1,&SNAN # weed out SNAN
+ beq.l res_snan_1op
+ cmpi.b %d1,&QNAN # weed out QNAN
+ beq.l res_qnan_1op
+
+ fabs.x SRC(%a0),%fp0 # force absolute value
+
+ cmpi.b %d1,&INF # weed out INF
+ beq.b fabs_inf
+fabs_zero:
+ mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
+ rts
+fabs_inf:
+ mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fcmp(): fp compare op routine #
+# #
+# XREF **************************************************************** #
+# res_qnan() - return QNAN result #
+# res_snan() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# a1 = pointer to extended precision destination operand #
+# d0 = round prec/mode #
+# #
+# OUTPUT ************************************************************** #
+# None #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs and denorms as special cases. For everything else, #
+# just use the actual fcmp instruction to produce the correct condition #
+# codes. #
+# #
+#########################################################################
+
+ global fcmp
+fcmp:
+ clr.w %d1
+ mov.b DTAG(%a6),%d1
+ lsl.b &0x3,%d1
+ or.b STAG(%a6),%d1
+ bne.b fcmp_not_norm # optimize on non-norm input
+
+#
+# COMPARE FP OPs : NORMs, ZEROs, INFs, and "corrected" DENORMs
+#
+fcmp_norm:
+ fmovm.x DST(%a1),&0x80 # load dst op
+
+ fcmp.x %fp0,SRC(%a0) # do compare
+
+ fmov.l %fpsr,%d0 # save FPSR
+ rol.l &0x8,%d0 # extract ccode bits
+ mov.b %d0,FPSR_CC(%a6) # set ccode bits(no exc bits are set)
+
+ rts
+
+#
+# fcmp: inputs are not both normalized; what are they?
+#
+fcmp_not_norm:
+ mov.w (tbl_fcmp_op.b,%pc,%d1.w*2),%d1
+ jmp (tbl_fcmp_op.b,%pc,%d1.w*1)
+
+ swbeg &48
+tbl_fcmp_op:
+ short fcmp_norm - tbl_fcmp_op # NORM - NORM
+ short fcmp_norm - tbl_fcmp_op # NORM - ZERO
+ short fcmp_norm - tbl_fcmp_op # NORM - INF
+ short fcmp_res_qnan - tbl_fcmp_op # NORM - QNAN
+ short fcmp_nrm_dnrm - tbl_fcmp_op # NORM - DENORM
+ short fcmp_res_snan - tbl_fcmp_op # NORM - SNAN
+ short tbl_fcmp_op - tbl_fcmp_op #
+ short tbl_fcmp_op - tbl_fcmp_op #
+
+ short fcmp_norm - tbl_fcmp_op # ZERO - NORM
+ short fcmp_norm - tbl_fcmp_op # ZERO - ZERO
+ short fcmp_norm - tbl_fcmp_op # ZERO - INF
+ short fcmp_res_qnan - tbl_fcmp_op # ZERO - QNAN
+ short fcmp_dnrm_s - tbl_fcmp_op # ZERO - DENORM
+ short fcmp_res_snan - tbl_fcmp_op # ZERO - SNAN
+ short tbl_fcmp_op - tbl_fcmp_op #
+ short tbl_fcmp_op - tbl_fcmp_op #
+
+ short fcmp_norm - tbl_fcmp_op # INF - NORM
+ short fcmp_norm - tbl_fcmp_op # INF - ZERO
+ short fcmp_norm - tbl_fcmp_op # INF - INF
+ short fcmp_res_qnan - tbl_fcmp_op # INF - QNAN
+ short fcmp_dnrm_s - tbl_fcmp_op # INF - DENORM
+ short fcmp_res_snan - tbl_fcmp_op # INF - SNAN
+ short tbl_fcmp_op - tbl_fcmp_op #
+ short tbl_fcmp_op - tbl_fcmp_op #
+
+ short fcmp_res_qnan - tbl_fcmp_op # QNAN - NORM
+ short fcmp_res_qnan - tbl_fcmp_op # QNAN - ZERO
+ short fcmp_res_qnan - tbl_fcmp_op # QNAN - INF
+ short fcmp_res_qnan - tbl_fcmp_op # QNAN - QNAN
+ short fcmp_res_qnan - tbl_fcmp_op # QNAN - DENORM
+ short fcmp_res_snan - tbl_fcmp_op # QNAN - SNAN
+ short tbl_fcmp_op - tbl_fcmp_op #
+ short tbl_fcmp_op - tbl_fcmp_op #
+
+ short fcmp_dnrm_nrm - tbl_fcmp_op # DENORM - NORM
+ short fcmp_dnrm_d - tbl_fcmp_op # DENORM - ZERO
+ short fcmp_dnrm_d - tbl_fcmp_op # DENORM - INF
+ short fcmp_res_qnan - tbl_fcmp_op # DENORM - QNAN
+ short fcmp_dnrm_sd - tbl_fcmp_op # DENORM - DENORM
+ short fcmp_res_snan - tbl_fcmp_op # DENORM - SNAN
+ short tbl_fcmp_op - tbl_fcmp_op #
+ short tbl_fcmp_op - tbl_fcmp_op #
+
+ short fcmp_res_snan - tbl_fcmp_op # SNAN - NORM
+ short fcmp_res_snan - tbl_fcmp_op # SNAN - ZERO
+ short fcmp_res_snan - tbl_fcmp_op # SNAN - INF
+ short fcmp_res_snan - tbl_fcmp_op # SNAN - QNAN
+ short fcmp_res_snan - tbl_fcmp_op # SNAN - DENORM
+ short fcmp_res_snan - tbl_fcmp_op # SNAN - SNAN
+ short tbl_fcmp_op - tbl_fcmp_op #
+ short tbl_fcmp_op - tbl_fcmp_op #
+
+# unlike all other functions for QNAN and SNAN, fcmp does NOT set the
+# 'N' bit for a negative QNAN or SNAN input so we must squelch it here.
+fcmp_res_qnan:
+ bsr.l res_qnan
+ andi.b &0xf7,FPSR_CC(%a6)
+ rts
+fcmp_res_snan:
+ bsr.l res_snan
+ andi.b &0xf7,FPSR_CC(%a6)
+ rts
+
+#
+# DENORMs are a little more difficult.
+# If you have a 2 DENORMs, then you can just force the j-bit to a one
+# and use the fcmp_norm routine.
+# If you have a DENORM and an INF or ZERO, just force the DENORM's j-bit to a one
+# and use the fcmp_norm routine.
+# If you have a DENORM and a NORM with opposite signs, then use fcmp_norm, also.
+# But with a DENORM and a NORM of the same sign, the neg bit is set if the
+# (1) signs are (+) and the DENORM is the dst or
+# (2) signs are (-) and the DENORM is the src
+#
+
+fcmp_dnrm_s:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),%d0
+ bset &31,%d0 # DENORM src; make into small norm
+ mov.l %d0,FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ lea FP_SCR0(%a6),%a0
+ bra.w fcmp_norm
+
+fcmp_dnrm_d:
+ mov.l DST_EX(%a1),FP_SCR0_EX(%a6)
+ mov.l DST_HI(%a1),%d0
+ bset &31,%d0 # DENORM src; make into small norm
+ mov.l %d0,FP_SCR0_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR0_LO(%a6)
+ lea FP_SCR0(%a6),%a1
+ bra.w fcmp_norm
+
+fcmp_dnrm_sd:
+ mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l DST_HI(%a1),%d0
+ bset &31,%d0 # DENORM dst; make into small norm
+ mov.l %d0,FP_SCR1_HI(%a6)
+ mov.l SRC_HI(%a0),%d0
+ bset &31,%d0 # DENORM dst; make into small norm
+ mov.l %d0,FP_SCR0_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ lea FP_SCR1(%a6),%a1
+ lea FP_SCR0(%a6),%a0
+ bra.w fcmp_norm
+
+fcmp_nrm_dnrm:
+ mov.b SRC_EX(%a0),%d0 # determine if like signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d0,%d1
+ bmi.w fcmp_dnrm_s
+
+# signs are the same, so must determine the answer ourselves.
+ tst.b %d0 # is src op negative?
+ bmi.b fcmp_nrm_dnrm_m # yes
+ rts
+fcmp_nrm_dnrm_m:
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
+ rts
+
+fcmp_dnrm_nrm:
+ mov.b SRC_EX(%a0),%d0 # determine if like signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d0,%d1
+ bmi.w fcmp_dnrm_d
+
+# signs are the same, so must determine the answer ourselves.
+ tst.b %d0 # is src op negative?
+ bpl.b fcmp_dnrm_nrm_m # no
+ rts
+fcmp_dnrm_nrm_m:
+ mov.b &neg_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fsglmul(): emulates the fsglmul instruction #
+# #
+# XREF **************************************************************** #
+# scale_to_zero_src() - scale src exponent to zero #
+# scale_to_zero_dst() - scale dst exponent to zero #
+# unf_res4() - return default underflow result for sglop #
+# ovf_res() - return default overflow result #
+# res_qnan() - return QNAN result #
+# res_snan() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# a1 = pointer to extended precision destination operand #
+# d0 rnd prec,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms/denorms into ext/sgl/dbl precision. #
+# For norms/denorms, scale the exponents such that a multiply #
+# instruction won't cause an exception. Use the regular fsglmul to #
+# compute a result. Check if the regular operands would have taken #
+# an exception. If so, return the default overflow/underflow result #
+# and return the EXOP if exceptions are enabled. Else, scale the #
+# result operand to the proper exponent. #
+# #
+#########################################################################
+
+ global fsglmul
+fsglmul:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+
+ clr.w %d1
+ mov.b DTAG(%a6),%d1
+ lsl.b &0x3,%d1
+ or.b STAG(%a6),%d1
+
+ bne.w fsglmul_not_norm # optimize on non-norm input
+
+fsglmul_norm:
+ mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
+ mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ bsr.l scale_to_zero_src # scale exponent
+ mov.l %d0,-(%sp) # save scale factor 1
+
+ bsr.l scale_to_zero_dst # scale dst exponent
+
+ add.l (%sp)+,%d0 # SCALE_FACTOR = scale1 + scale2
+
+ cmpi.l %d0,&0x3fff-0x7ffe # would result ovfl?
+ beq.w fsglmul_may_ovfl # result may rnd to overflow
+ blt.w fsglmul_ovfl # result will overflow
+
+ cmpi.l %d0,&0x3fff+0x0001 # would result unfl?
+ beq.w fsglmul_may_unfl # result may rnd to no unfl
+ bgt.w fsglmul_unfl # result will underflow
+
+fsglmul_normal:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fsglmul_normal_exit:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+fsglmul_ovfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fsglmul_ovfl_tst:
+
+# save setting this until now because this is where fsglmul_may_ovfl may jump in
+ or.l &ovfl_inx_mask, USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fsglmul_ovfl_ena # yes
+
+fsglmul_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass prec:rnd
+ andi.b &0x30,%d0 # force prec = ext
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+fsglmul_ovfl_ena:
+ fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
+
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ subi.l &0x6000,%d1 # subtract bias
+ andi.w &0x7fff,%d1
+ andi.w &0x8000,%d2 # keep old sign
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.b fsglmul_ovfl_dis
+
+fsglmul_may_ovfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x2 # is |result| >= 2.b?
+ fbge.w fsglmul_ovfl_tst # yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+ bra.w fsglmul_normal_exit
+
+fsglmul_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l &rz_mode*0x10,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fsglmul_unfl_ena # yes
+
+fsglmul_unfl_dis:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res4 # calculate default result
+ or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# UNFL is enabled.
+#
+fsglmul_unfl_ena:
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ addi.l &0x6000,%d1 # add bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.w fsglmul_unfl_dis
+
+fsglmul_may_unfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsglmul.x FP_SCR0(%a6),%fp0 # execute sgl multiply
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x2 # is |result| > 2.b?
+ fbgt.w fsglmul_normal_exit # no; no underflow occurred
+ fblt.w fsglmul_unfl # yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 2. but,
+# we don't know if the result was an underflow that rounded up to a 2 or
+# a normalized number that rounded down to a 2. so, redo the entire operation
+# using RZ as the rounding mode to see what the pre-rounded result is.
+# this case should be relatively rare.
+#
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # keep rnd prec
+ ori.b &rz_mode*0x10,%d1 # insert RZ
+
+ fmov.l %d1,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsglmul.x FP_SCR0(%a6),%fp1 # execute sgl multiply
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fabs.x %fp1 # make absolute value
+ fcmp.b %fp1,&0x2 # is |result| < 2.b?
+ fbge.w fsglmul_normal_exit # no; no underflow occurred
+ bra.w fsglmul_unfl # yes, underflow occurred
+
+##############################################################################
+
+#
+# Single Precision Multiply: inputs are not both normalized; what are they?
+#
+fsglmul_not_norm:
+ mov.w (tbl_fsglmul_op.b,%pc,%d1.w*2),%d1
+ jmp (tbl_fsglmul_op.b,%pc,%d1.w*1)
+
+ swbeg &48
+tbl_fsglmul_op:
+ short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
+ short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
+ short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
+ short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
+ short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
+ short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+
+ short fsglmul_zero - tbl_fsglmul_op # ZERO x NORM
+ short fsglmul_zero - tbl_fsglmul_op # ZERO x ZERO
+ short fsglmul_res_operr - tbl_fsglmul_op # ZERO x INF
+ short fsglmul_res_qnan - tbl_fsglmul_op # ZERO x QNAN
+ short fsglmul_zero - tbl_fsglmul_op # ZERO x DENORM
+ short fsglmul_res_snan - tbl_fsglmul_op # ZERO x SNAN
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+
+ short fsglmul_inf_dst - tbl_fsglmul_op # INF x NORM
+ short fsglmul_res_operr - tbl_fsglmul_op # INF x ZERO
+ short fsglmul_inf_dst - tbl_fsglmul_op # INF x INF
+ short fsglmul_res_qnan - tbl_fsglmul_op # INF x QNAN
+ short fsglmul_inf_dst - tbl_fsglmul_op # INF x DENORM
+ short fsglmul_res_snan - tbl_fsglmul_op # INF x SNAN
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+
+ short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x NORM
+ short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x ZERO
+ short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x INF
+ short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x QNAN
+ short fsglmul_res_qnan - tbl_fsglmul_op # QNAN x DENORM
+ short fsglmul_res_snan - tbl_fsglmul_op # QNAN x SNAN
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+
+ short fsglmul_norm - tbl_fsglmul_op # NORM x NORM
+ short fsglmul_zero - tbl_fsglmul_op # NORM x ZERO
+ short fsglmul_inf_src - tbl_fsglmul_op # NORM x INF
+ short fsglmul_res_qnan - tbl_fsglmul_op # NORM x QNAN
+ short fsglmul_norm - tbl_fsglmul_op # NORM x DENORM
+ short fsglmul_res_snan - tbl_fsglmul_op # NORM x SNAN
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+
+ short fsglmul_res_snan - tbl_fsglmul_op # SNAN x NORM
+ short fsglmul_res_snan - tbl_fsglmul_op # SNAN x ZERO
+ short fsglmul_res_snan - tbl_fsglmul_op # SNAN x INF
+ short fsglmul_res_snan - tbl_fsglmul_op # SNAN x QNAN
+ short fsglmul_res_snan - tbl_fsglmul_op # SNAN x DENORM
+ short fsglmul_res_snan - tbl_fsglmul_op # SNAN x SNAN
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+ short tbl_fsglmul_op - tbl_fsglmul_op #
+
+fsglmul_res_operr:
+ bra.l res_operr
+fsglmul_res_snan:
+ bra.l res_snan
+fsglmul_res_qnan:
+ bra.l res_qnan
+fsglmul_zero:
+ bra.l fmul_zero
+fsglmul_inf_src:
+ bra.l fmul_inf_src
+fsglmul_inf_dst:
+ bra.l fmul_inf_dst
+
+#########################################################################
+# XDEF **************************************************************** #
+# fsgldiv(): emulates the fsgldiv instruction #
+# #
+# XREF **************************************************************** #
+# scale_to_zero_src() - scale src exponent to zero #
+# scale_to_zero_dst() - scale dst exponent to zero #
+# unf_res4() - return default underflow result for sglop #
+# ovf_res() - return default overflow result #
+# res_qnan() - return QNAN result #
+# res_snan() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# a1 = pointer to extended precision destination operand #
+# d0 rnd prec,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms/denorms into ext/sgl/dbl precision. #
+# For norms/denorms, scale the exponents such that a divide #
+# instruction won't cause an exception. Use the regular fsgldiv to #
+# compute a result. Check if the regular operands would have taken #
+# an exception. If so, return the default overflow/underflow result #
+# and return the EXOP if exceptions are enabled. Else, scale the #
+# result operand to the proper exponent. #
+# #
+#########################################################################
+
+ global fsgldiv
+fsgldiv:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+
+ clr.w %d1
+ mov.b DTAG(%a6),%d1
+ lsl.b &0x3,%d1
+ or.b STAG(%a6),%d1 # combine src tags
+
+ bne.w fsgldiv_not_norm # optimize on non-norm input
+
+#
+# DIVIDE: NORMs and DENORMs ONLY!
+#
+fsgldiv_norm:
+ mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
+ mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ bsr.l scale_to_zero_src # calculate scale factor 1
+ mov.l %d0,-(%sp) # save scale factor 1
+
+ bsr.l scale_to_zero_dst # calculate scale factor 2
+
+ neg.l (%sp) # S.F. = scale1 - scale2
+ add.l %d0,(%sp)
+
+ mov.w 2+L_SCR3(%a6),%d1 # fetch precision,mode
+ lsr.b &0x6,%d1
+ mov.l (%sp)+,%d0
+ cmpi.l %d0,&0x3fff-0x7ffe
+ ble.w fsgldiv_may_ovfl
+
+ cmpi.l %d0,&0x3fff-0x0000 # will result underflow?
+ beq.w fsgldiv_may_unfl # maybe
+ bgt.w fsgldiv_unfl # yes; go handle underflow
+
+fsgldiv_normal:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # save FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsgldiv.x FP_SCR0(%a6),%fp0 # perform sgl divide
+
+ fmov.l %fpsr,%d1 # save FPSR
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fsgldiv_normal_exit:
+ fmovm.x &0x80,FP_SCR0(%a6) # store result on stack
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # load {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+fsgldiv_may_ovfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # set FPSR
+
+ fsgldiv.x FP_SCR0(%a6),%fp0 # execute divide
+
+ fmov.l %fpsr,%d1
+ fmov.l &0x0,%fpcr
+
+ or.l %d1,USER_FPSR(%a6) # save INEX,N
+
+ fmovm.x &0x01,-(%sp) # save result to stack
+ mov.w (%sp),%d1 # fetch new exponent
+ add.l &0xc,%sp # clear result
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ cmp.l %d1,&0x7fff # did divide overflow?
+ blt.b fsgldiv_normal_exit
+
+fsgldiv_ovfl_tst:
+ or.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fsgldiv_ovfl_ena # yes
+
+fsgldiv_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass prec:rnd
+ andi.b &0x30,%d0 # kill precision
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+fsgldiv_ovfl_ena:
+ fmovm.x &0x80,FP_SCR0(%a6) # move result to stack
+
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ subi.l &0x6000,%d1 # subtract new bias
+ andi.w &0x7fff,%d1 # clear ms bit
+ or.w %d2,%d1 # concat old sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.b fsgldiv_ovfl_dis
+
+fsgldiv_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l &rz_mode*0x10,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fsgldiv_unfl_ena # yes
+
+fsgldiv_unfl_dis:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res4 # calculate default result
+ or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# UNFL is enabled.
+#
+fsgldiv_unfl_ena:
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ addi.l &0x6000,%d1 # add bias
+ andi.w &0x7fff,%d1 # clear top bit
+ or.w %d2,%d1 # concat old sign, new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.b fsgldiv_unfl_dis
+
+#
+# the divide operation MAY underflow:
+#
+fsgldiv_may_unfl:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsgldiv.x FP_SCR0(%a6),%fp0 # execute sgl divide
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fabs.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x1 # is |result| > 1.b?
+ fbgt.w fsgldiv_normal_exit # no; no underflow occurred
+ fblt.w fsgldiv_unfl # yes; underflow occurred
+
+#
+# we still don't know if underflow occurred. result is ~ equal to 1. but,
+# we don't know if the result was an underflow that rounded up to a 1
+# or a normalized number that rounded down to a 1. so, redo the entire
+# operation using RZ as the rounding mode to see what the pre-rounded
+# result is. this case should be relatively rare.
+#
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op into %fp1
+
+ clr.l %d1 # clear scratch register
+ ori.b &rz_mode*0x10,%d1 # force RZ rnd mode
+
+ fmov.l %d1,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsgldiv.x FP_SCR0(%a6),%fp1 # execute sgl divide
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fabs.x %fp1 # make absolute value
+ fcmp.b %fp1,&0x1 # is |result| < 1.b?
+ fbge.w fsgldiv_normal_exit # no; no underflow occurred
+ bra.w fsgldiv_unfl # yes; underflow occurred
+
+############################################################################
+
+#
+# Divide: inputs are not both normalized; what are they?
+#
+fsgldiv_not_norm:
+ mov.w (tbl_fsgldiv_op.b,%pc,%d1.w*2),%d1
+ jmp (tbl_fsgldiv_op.b,%pc,%d1.w*1)
+
+ swbeg &48
+tbl_fsgldiv_op:
+ short fsgldiv_norm - tbl_fsgldiv_op # NORM / NORM
+ short fsgldiv_inf_load - tbl_fsgldiv_op # NORM / ZERO
+ short fsgldiv_zero_load - tbl_fsgldiv_op # NORM / INF
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # NORM / QNAN
+ short fsgldiv_norm - tbl_fsgldiv_op # NORM / DENORM
+ short fsgldiv_res_snan - tbl_fsgldiv_op # NORM / SNAN
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+
+ short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / NORM
+ short fsgldiv_res_operr - tbl_fsgldiv_op # ZERO / ZERO
+ short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / INF
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # ZERO / QNAN
+ short fsgldiv_zero_load - tbl_fsgldiv_op # ZERO / DENORM
+ short fsgldiv_res_snan - tbl_fsgldiv_op # ZERO / SNAN
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+
+ short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / NORM
+ short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / ZERO
+ short fsgldiv_res_operr - tbl_fsgldiv_op # INF / INF
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # INF / QNAN
+ short fsgldiv_inf_dst - tbl_fsgldiv_op # INF / DENORM
+ short fsgldiv_res_snan - tbl_fsgldiv_op # INF / SNAN
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / NORM
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / ZERO
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / INF
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / QNAN
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # QNAN / DENORM
+ short fsgldiv_res_snan - tbl_fsgldiv_op # QNAN / SNAN
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+
+ short fsgldiv_norm - tbl_fsgldiv_op # DENORM / NORM
+ short fsgldiv_inf_load - tbl_fsgldiv_op # DENORM / ZERO
+ short fsgldiv_zero_load - tbl_fsgldiv_op # DENORM / INF
+ short fsgldiv_res_qnan - tbl_fsgldiv_op # DENORM / QNAN
+ short fsgldiv_norm - tbl_fsgldiv_op # DENORM / DENORM
+ short fsgldiv_res_snan - tbl_fsgldiv_op # DENORM / SNAN
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+
+ short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / NORM
+ short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / ZERO
+ short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / INF
+ short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / QNAN
+ short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / DENORM
+ short fsgldiv_res_snan - tbl_fsgldiv_op # SNAN / SNAN
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+ short tbl_fsgldiv_op - tbl_fsgldiv_op #
+
+fsgldiv_res_qnan:
+ bra.l res_qnan
+fsgldiv_res_snan:
+ bra.l res_snan
+fsgldiv_res_operr:
+ bra.l res_operr
+fsgldiv_inf_load:
+ bra.l fdiv_inf_load
+fsgldiv_zero_load:
+ bra.l fdiv_zero_load
+fsgldiv_inf_dst:
+ bra.l fdiv_inf_dst
+
+#########################################################################
+# XDEF **************************************************************** #
+# fadd(): emulates the fadd instruction #
+# fsadd(): emulates the fadd instruction #
+# fdadd(): emulates the fdadd instruction #
+# #
+# XREF **************************************************************** #
+# addsub_scaler2() - scale the operands so they won't take exc #
+# ovf_res() - return default overflow result #
+# unf_res() - return default underflow result #
+# res_qnan() - set QNAN result #
+# res_snan() - set SNAN result #
+# res_operr() - set OPERR result #
+# scale_to_zero_src() - set src operand exponent equal to zero #
+# scale_to_zero_dst() - set dst operand exponent equal to zero #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# a1 = pointer to extended precision destination operand #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms into extended, single, and double precision. #
+# Do addition after scaling exponents such that exception won't #
+# occur. Then, check result exponent to see if exception would have #
+# occurred. If so, return default result and maybe EXOP. Else, insert #
+# the correct result exponent and return. Set FPSR bits as appropriate. #
+# #
+#########################################################################
+
+ global fsadd
+fsadd:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl prec
+ bra.b fadd
+
+ global fdadd
+fdadd:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl prec
+
+ global fadd
+fadd:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+
+ clr.w %d1
+ mov.b DTAG(%a6),%d1
+ lsl.b &0x3,%d1
+ or.b STAG(%a6),%d1 # combine src tags
+
+ bne.w fadd_not_norm # optimize on non-norm input
+
+#
+# ADD: norms and denorms
+#
+fadd_norm:
+ bsr.l addsub_scaler2 # scale exponents
+
+fadd_zero_entry:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fadd.x FP_SCR0(%a6),%fp0 # execute add
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # fetch INEX2,N,Z
+
+ or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
+
+ fbeq.w fadd_zero_exit # if result is zero, end now
+
+ mov.l %d2,-(%sp) # save d2
+
+ fmovm.x &0x01,-(%sp) # save result to stack
+
+ mov.w 2+L_SCR3(%a6),%d1
+ lsr.b &0x6,%d1
+
+ mov.w (%sp),%d2 # fetch new sign, exp
+ andi.l &0x7fff,%d2 # strip sign
+ sub.l %d0,%d2 # add scale factor
+
+ cmp.l %d2,(tbl_fadd_ovfl.b,%pc,%d1.w*4) # is it an overflow?
+ bge.b fadd_ovfl # yes
+
+ cmp.l %d2,(tbl_fadd_unfl.b,%pc,%d1.w*4) # is it an underflow?
+ blt.w fadd_unfl # yes
+ beq.w fadd_may_unfl # maybe; go find out
+
+fadd_normal:
+ mov.w (%sp),%d1
+ andi.w &0x8000,%d1 # keep sign
+ or.w %d2,%d1 # concat sign,new exp
+ mov.w %d1,(%sp) # insert new exponent
+
+ fmovm.x (%sp)+,&0x80 # return result in fp0
+
+ mov.l (%sp)+,%d2 # restore d2
+ rts
+
+fadd_zero_exit:
+# fmov.s &0x00000000,%fp0 # return zero in fp0
+ rts
+
+tbl_fadd_ovfl:
+ long 0x7fff # ext ovfl
+ long 0x407f # sgl ovfl
+ long 0x43ff # dbl ovfl
+
+tbl_fadd_unfl:
+ long 0x0000 # ext unfl
+ long 0x3f81 # sgl unfl
+ long 0x3c01 # dbl unfl
+
+fadd_ovfl:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fadd_ovfl_ena # yes
+
+ add.l &0xc,%sp
+fadd_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass prec:rnd
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ mov.l (%sp)+,%d2 # restore d2
+ rts
+
+fadd_ovfl_ena:
+ mov.b L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # is precision extended?
+ bne.b fadd_ovfl_ena_sd # no; prec = sgl or dbl
+
+fadd_ovfl_ena_cont:
+ mov.w (%sp),%d1
+ andi.w &0x8000,%d1 # keep sign
+ subi.l &0x6000,%d2 # add extra bias
+ andi.w &0x7fff,%d2
+ or.w %d2,%d1 # concat sign,new exp
+ mov.w %d1,(%sp) # insert new exponent
+
+ fmovm.x (%sp)+,&0x40 # return EXOP in fp1
+ bra.b fadd_ovfl_dis
+
+fadd_ovfl_ena_sd:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # keep rnd mode
+ fmov.l %d1,%fpcr # set FPCR
+
+ fadd.x FP_SCR0(%a6),%fp0 # execute add
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ add.l &0xc,%sp
+ fmovm.x &0x01,-(%sp)
+ bra.b fadd_ovfl_ena_cont
+
+fadd_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ add.l &0xc,%sp
+
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l &rz_mode*0x10,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fadd.x FP_SCR0(%a6),%fp0 # execute add
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # save status
+
+ or.l %d1,USER_FPSR(%a6) # save INEX,N
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fadd_unfl_ena # yes
+
+fadd_unfl_dis:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # 'Z' bit may have been set
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ mov.l (%sp)+,%d2 # restore d2
+ rts
+
+fadd_unfl_ena:
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # is precision extended?
+ bne.b fadd_unfl_ena_sd # no; sgl or dbl
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+fadd_unfl_ena_cont:
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fadd.x FP_SCR0(%a6),%fp1 # execute multiply
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fmovm.x &0x40,FP_SCR0(%a6) # save result to stack
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ addi.l &0x6000,%d1 # add new bias
+ andi.w &0x7fff,%d1 # clear top bit
+ or.w %d2,%d1 # concat sign,new exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.w fadd_unfl_dis
+
+fadd_unfl_ena_sd:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # use only rnd mode
+ fmov.l %d1,%fpcr # set FPCR
+
+ bra.b fadd_unfl_ena_cont
+
+#
+# result is equal to the smallest normalized number in the selected precision
+# if the precision is extended, this result could not have come from an
+# underflow that rounded up.
+#
+fadd_may_unfl:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1
+ beq.w fadd_normal # yes; no underflow occurred
+
+ mov.l 0x4(%sp),%d1 # extract hi(man)
+ cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
+ bne.w fadd_normal # no; no underflow occurred
+
+ tst.l 0x8(%sp) # is lo(man) = 0x0?
+ bne.w fadd_normal # no; no underflow occurred
+
+ btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
+ beq.w fadd_normal # no; no underflow occurred
+
+#
+# ok, so now the result has a exponent equal to the smallest normalized
+# exponent for the selected precision. also, the mantissa is equal to
+# 0x8000000000000000 and this mantissa is the result of rounding non-zero
+# g,r,s.
+# now, we must determine whether the pre-rounded result was an underflow
+# rounded "up" or a normalized number rounded "down".
+# so, we do this be re-executing the add using RZ as the rounding mode and
+# seeing if the new result is smaller or equal to the current result.
+#
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # keep rnd prec
+ ori.b &rz_mode*0x10,%d1 # insert rnd mode
+ fmov.l %d1,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fadd.x FP_SCR0(%a6),%fp1 # execute add
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fabs.x %fp0 # compare absolute values
+ fabs.x %fp1
+ fcmp.x %fp0,%fp1 # is first result > second?
+
+ fbgt.w fadd_unfl # yes; it's an underflow
+ bra.w fadd_normal # no; it's not an underflow
+
+##########################################################################
+
+#
+# Add: inputs are not both normalized; what are they?
+#
+fadd_not_norm:
+ mov.w (tbl_fadd_op.b,%pc,%d1.w*2),%d1
+ jmp (tbl_fadd_op.b,%pc,%d1.w*1)
+
+ swbeg &48
+tbl_fadd_op:
+ short fadd_norm - tbl_fadd_op # NORM + NORM
+ short fadd_zero_src - tbl_fadd_op # NORM + ZERO
+ short fadd_inf_src - tbl_fadd_op # NORM + INF
+ short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
+ short fadd_norm - tbl_fadd_op # NORM + DENORM
+ short fadd_res_snan - tbl_fadd_op # NORM + SNAN
+ short tbl_fadd_op - tbl_fadd_op #
+ short tbl_fadd_op - tbl_fadd_op #
+
+ short fadd_zero_dst - tbl_fadd_op # ZERO + NORM
+ short fadd_zero_2 - tbl_fadd_op # ZERO + ZERO
+ short fadd_inf_src - tbl_fadd_op # ZERO + INF
+ short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
+ short fadd_zero_dst - tbl_fadd_op # ZERO + DENORM
+ short fadd_res_snan - tbl_fadd_op # NORM + SNAN
+ short tbl_fadd_op - tbl_fadd_op #
+ short tbl_fadd_op - tbl_fadd_op #
+
+ short fadd_inf_dst - tbl_fadd_op # INF + NORM
+ short fadd_inf_dst - tbl_fadd_op # INF + ZERO
+ short fadd_inf_2 - tbl_fadd_op # INF + INF
+ short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
+ short fadd_inf_dst - tbl_fadd_op # INF + DENORM
+ short fadd_res_snan - tbl_fadd_op # NORM + SNAN
+ short tbl_fadd_op - tbl_fadd_op #
+ short tbl_fadd_op - tbl_fadd_op #
+
+ short fadd_res_qnan - tbl_fadd_op # QNAN + NORM
+ short fadd_res_qnan - tbl_fadd_op # QNAN + ZERO
+ short fadd_res_qnan - tbl_fadd_op # QNAN + INF
+ short fadd_res_qnan - tbl_fadd_op # QNAN + QNAN
+ short fadd_res_qnan - tbl_fadd_op # QNAN + DENORM
+ short fadd_res_snan - tbl_fadd_op # QNAN + SNAN
+ short tbl_fadd_op - tbl_fadd_op #
+ short tbl_fadd_op - tbl_fadd_op #
+
+ short fadd_norm - tbl_fadd_op # DENORM + NORM
+ short fadd_zero_src - tbl_fadd_op # DENORM + ZERO
+ short fadd_inf_src - tbl_fadd_op # DENORM + INF
+ short fadd_res_qnan - tbl_fadd_op # NORM + QNAN
+ short fadd_norm - tbl_fadd_op # DENORM + DENORM
+ short fadd_res_snan - tbl_fadd_op # NORM + SNAN
+ short tbl_fadd_op - tbl_fadd_op #
+ short tbl_fadd_op - tbl_fadd_op #
+
+ short fadd_res_snan - tbl_fadd_op # SNAN + NORM
+ short fadd_res_snan - tbl_fadd_op # SNAN + ZERO
+ short fadd_res_snan - tbl_fadd_op # SNAN + INF
+ short fadd_res_snan - tbl_fadd_op # SNAN + QNAN
+ short fadd_res_snan - tbl_fadd_op # SNAN + DENORM
+ short fadd_res_snan - tbl_fadd_op # SNAN + SNAN
+ short tbl_fadd_op - tbl_fadd_op #
+ short tbl_fadd_op - tbl_fadd_op #
+
+fadd_res_qnan:
+ bra.l res_qnan
+fadd_res_snan:
+ bra.l res_snan
+
+#
+# both operands are ZEROes
+#
+fadd_zero_2:
+ mov.b SRC_EX(%a0),%d0 # are the signs opposite
+ mov.b DST_EX(%a1),%d1
+ eor.b %d0,%d1
+ bmi.w fadd_zero_2_chk_rm # weed out (-ZERO)+(+ZERO)
+
+# the signs are the same. so determine whether they are positive or negative
+# and return the appropriately signed zero.
+ tst.b %d0 # are ZEROes positive or negative?
+ bmi.b fadd_zero_rm # negative
+ fmov.s &0x00000000,%fp0 # return +ZERO
+ mov.b &z_bmask,FPSR_CC(%a6) # set Z
+ rts
+
+#
+# the ZEROes have opposite signs:
+# - therefore, we return +ZERO if the rounding modes are RN,RZ, or RP.
+# - -ZERO is returned in the case of RM.
+#
+fadd_zero_2_chk_rm:
+ mov.b 3+L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # extract rnd mode
+ cmpi.b %d1,&rm_mode*0x10 # is rnd mode == RM?
+ beq.b fadd_zero_rm # yes
+ fmov.s &0x00000000,%fp0 # return +ZERO
+ mov.b &z_bmask,FPSR_CC(%a6) # set Z
+ rts
+
+fadd_zero_rm:
+ fmov.s &0x80000000,%fp0 # return -ZERO
+ mov.b &neg_bmask+z_bmask,FPSR_CC(%a6) # set NEG/Z
+ rts
+
+#
+# one operand is a ZERO and the other is a DENORM or NORM. scale
+# the DENORM or NORM and jump to the regular fadd routine.
+#
+fadd_zero_dst:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # scale the operand
+ clr.w FP_SCR1_EX(%a6)
+ clr.l FP_SCR1_HI(%a6)
+ clr.l FP_SCR1_LO(%a6)
+ bra.w fadd_zero_entry # go execute fadd
+
+fadd_zero_src:
+ mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
+ mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+ bsr.l scale_to_zero_dst # scale the operand
+ clr.w FP_SCR0_EX(%a6)
+ clr.l FP_SCR0_HI(%a6)
+ clr.l FP_SCR0_LO(%a6)
+ bra.w fadd_zero_entry # go execute fadd
+
+#
+# both operands are INFs. an OPERR will result if the INFs have
+# different signs. else, an INF of the same sign is returned
+#
+fadd_inf_2:
+ mov.b SRC_EX(%a0),%d0 # exclusive or the signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d1,%d0
+ bmi.l res_operr # weed out (-INF)+(+INF)
+
+# ok, so it's not an OPERR. but, we do have to remember to return the
+# src INF since that's where the 881/882 gets the j-bit from...
+
+#
+# operands are INF and one of {ZERO, INF, DENORM, NORM}
+#
+fadd_inf_src:
+ fmovm.x SRC(%a0),&0x80 # return src INF
+ tst.b SRC_EX(%a0) # is INF positive?
+ bpl.b fadd_inf_done # yes; we're done
+ mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+ rts
+
+#
+# operands are INF and one of {ZERO, INF, DENORM, NORM}
+#
+fadd_inf_dst:
+ fmovm.x DST(%a1),&0x80 # return dst INF
+ tst.b DST_EX(%a1) # is INF positive?
+ bpl.b fadd_inf_done # yes; we're done
+ mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+ rts
+
+fadd_inf_done:
+ mov.b &inf_bmask,FPSR_CC(%a6) # set INF
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fsub(): emulates the fsub instruction #
+# fssub(): emulates the fssub instruction #
+# fdsub(): emulates the fdsub instruction #
+# #
+# XREF **************************************************************** #
+# addsub_scaler2() - scale the operands so they won't take exc #
+# ovf_res() - return default overflow result #
+# unf_res() - return default underflow result #
+# res_qnan() - set QNAN result #
+# res_snan() - set SNAN result #
+# res_operr() - set OPERR result #
+# scale_to_zero_src() - set src operand exponent equal to zero #
+# scale_to_zero_dst() - set dst operand exponent equal to zero #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# a1 = pointer to extended precision destination operand #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms into extended, single, and double precision. #
+# Do subtraction after scaling exponents such that exception won't#
+# occur. Then, check result exponent to see if exception would have #
+# occurred. If so, return default result and maybe EXOP. Else, insert #
+# the correct result exponent and return. Set FPSR bits as appropriate. #
+# #
+#########################################################################
+
+ global fssub
+fssub:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl prec
+ bra.b fsub
+
+ global fdsub
+fdsub:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl prec
+
+ global fsub
+fsub:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+
+ clr.w %d1
+ mov.b DTAG(%a6),%d1
+ lsl.b &0x3,%d1
+ or.b STAG(%a6),%d1 # combine src tags
+
+ bne.w fsub_not_norm # optimize on non-norm input
+
+#
+# SUB: norms and denorms
+#
+fsub_norm:
+ bsr.l addsub_scaler2 # scale exponents
+
+fsub_zero_entry:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fsub.x FP_SCR0(%a6),%fp0 # execute subtract
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # fetch INEX2, N, Z
+
+ or.l %d1,USER_FPSR(%a6) # save exc and ccode bits
+
+ fbeq.w fsub_zero_exit # if result zero, end now
+
+ mov.l %d2,-(%sp) # save d2
+
+ fmovm.x &0x01,-(%sp) # save result to stack
+
+ mov.w 2+L_SCR3(%a6),%d1
+ lsr.b &0x6,%d1
+
+ mov.w (%sp),%d2 # fetch new exponent
+ andi.l &0x7fff,%d2 # strip sign
+ sub.l %d0,%d2 # add scale factor
+
+ cmp.l %d2,(tbl_fsub_ovfl.b,%pc,%d1.w*4) # is it an overflow?
+ bge.b fsub_ovfl # yes
+
+ cmp.l %d2,(tbl_fsub_unfl.b,%pc,%d1.w*4) # is it an underflow?
+ blt.w fsub_unfl # yes
+ beq.w fsub_may_unfl # maybe; go find out
+
+fsub_normal:
+ mov.w (%sp),%d1
+ andi.w &0x8000,%d1 # keep sign
+ or.w %d2,%d1 # insert new exponent
+ mov.w %d1,(%sp) # insert new exponent
+
+ fmovm.x (%sp)+,&0x80 # return result in fp0
+
+ mov.l (%sp)+,%d2 # restore d2
+ rts
+
+fsub_zero_exit:
+# fmov.s &0x00000000,%fp0 # return zero in fp0
+ rts
+
+tbl_fsub_ovfl:
+ long 0x7fff # ext ovfl
+ long 0x407f # sgl ovfl
+ long 0x43ff # dbl ovfl
+
+tbl_fsub_unfl:
+ long 0x0000 # ext unfl
+ long 0x3f81 # sgl unfl
+ long 0x3c01 # dbl unfl
+
+fsub_ovfl:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fsub_ovfl_ena # yes
+
+ add.l &0xc,%sp
+fsub_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass prec:rnd
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ mov.l (%sp)+,%d2 # restore d2
+ rts
+
+fsub_ovfl_ena:
+ mov.b L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # is precision extended?
+ bne.b fsub_ovfl_ena_sd # no
+
+fsub_ovfl_ena_cont:
+ mov.w (%sp),%d1 # fetch {sgn,exp}
+ andi.w &0x8000,%d1 # keep sign
+ subi.l &0x6000,%d2 # subtract new bias
+ andi.w &0x7fff,%d2 # clear top bit
+ or.w %d2,%d1 # concat sign,exp
+ mov.w %d1,(%sp) # insert new exponent
+
+ fmovm.x (%sp)+,&0x40 # return EXOP in fp1
+ bra.b fsub_ovfl_dis
+
+fsub_ovfl_ena_sd:
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # clear rnd prec
+ fmov.l %d1,%fpcr # set FPCR
+
+ fsub.x FP_SCR0(%a6),%fp0 # execute subtract
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ add.l &0xc,%sp
+ fmovm.x &0x01,-(%sp)
+ bra.b fsub_ovfl_ena_cont
+
+fsub_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ add.l &0xc,%sp
+
+ fmovm.x FP_SCR1(%a6),&0x80 # load dst op
+
+ fmov.l &rz_mode*0x10,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsub.x FP_SCR0(%a6),%fp0 # execute subtract
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # save status
+
+ or.l %d1,USER_FPSR(%a6)
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fsub_unfl_ena # yes
+
+fsub_unfl_dis:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # 'Z' may have been set
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ mov.l (%sp)+,%d2 # restore d2
+ rts
+
+fsub_unfl_ena:
+ fmovm.x FP_SCR1(%a6),&0x40
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # is precision extended?
+ bne.b fsub_unfl_ena_sd # no
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+fsub_unfl_ena_cont:
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsub.x FP_SCR0(%a6),%fp1 # execute subtract
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fmovm.x &0x40,FP_SCR0(%a6) # store result to stack
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ addi.l &0x6000,%d1 # subtract new bias
+ andi.w &0x7fff,%d1 # clear top bit
+ or.w %d2,%d1 # concat sgn,exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ bra.w fsub_unfl_dis
+
+fsub_unfl_ena_sd:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # clear rnd prec
+ fmov.l %d1,%fpcr # set FPCR
+
+ bra.b fsub_unfl_ena_cont
+
+#
+# result is equal to the smallest normalized number in the selected precision
+# if the precision is extended, this result could not have come from an
+# underflow that rounded up.
+#
+fsub_may_unfl:
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # fetch rnd prec
+ beq.w fsub_normal # yes; no underflow occurred
+
+ mov.l 0x4(%sp),%d1
+ cmpi.l %d1,&0x80000000 # is hi(man) = 0x80000000?
+ bne.w fsub_normal # no; no underflow occurred
+
+ tst.l 0x8(%sp) # is lo(man) = 0x0?
+ bne.w fsub_normal # no; no underflow occurred
+
+ btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
+ beq.w fsub_normal # no; no underflow occurred
+
+#
+# ok, so now the result has a exponent equal to the smallest normalized
+# exponent for the selected precision. also, the mantissa is equal to
+# 0x8000000000000000 and this mantissa is the result of rounding non-zero
+# g,r,s.
+# now, we must determine whether the pre-rounded result was an underflow
+# rounded "up" or a normalized number rounded "down".
+# so, we do this be re-executing the add using RZ as the rounding mode and
+# seeing if the new result is smaller or equal to the current result.
+#
+ fmovm.x FP_SCR1(%a6),&0x40 # load dst op into fp1
+
+ mov.l L_SCR3(%a6),%d1
+ andi.b &0xc0,%d1 # keep rnd prec
+ ori.b &rz_mode*0x10,%d1 # insert rnd mode
+ fmov.l %d1,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsub.x FP_SCR0(%a6),%fp1 # execute subtract
+
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fabs.x %fp0 # compare absolute values
+ fabs.x %fp1
+ fcmp.x %fp0,%fp1 # is first result > second?
+
+ fbgt.w fsub_unfl # yes; it's an underflow
+ bra.w fsub_normal # no; it's not an underflow
+
+##########################################################################
+
+#
+# Sub: inputs are not both normalized; what are they?
+#
+fsub_not_norm:
+ mov.w (tbl_fsub_op.b,%pc,%d1.w*2),%d1
+ jmp (tbl_fsub_op.b,%pc,%d1.w*1)
+
+ swbeg &48
+tbl_fsub_op:
+ short fsub_norm - tbl_fsub_op # NORM - NORM
+ short fsub_zero_src - tbl_fsub_op # NORM - ZERO
+ short fsub_inf_src - tbl_fsub_op # NORM - INF
+ short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
+ short fsub_norm - tbl_fsub_op # NORM - DENORM
+ short fsub_res_snan - tbl_fsub_op # NORM - SNAN
+ short tbl_fsub_op - tbl_fsub_op #
+ short tbl_fsub_op - tbl_fsub_op #
+
+ short fsub_zero_dst - tbl_fsub_op # ZERO - NORM
+ short fsub_zero_2 - tbl_fsub_op # ZERO - ZERO
+ short fsub_inf_src - tbl_fsub_op # ZERO - INF
+ short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
+ short fsub_zero_dst - tbl_fsub_op # ZERO - DENORM
+ short fsub_res_snan - tbl_fsub_op # NORM - SNAN
+ short tbl_fsub_op - tbl_fsub_op #
+ short tbl_fsub_op - tbl_fsub_op #
+
+ short fsub_inf_dst - tbl_fsub_op # INF - NORM
+ short fsub_inf_dst - tbl_fsub_op # INF - ZERO
+ short fsub_inf_2 - tbl_fsub_op # INF - INF
+ short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
+ short fsub_inf_dst - tbl_fsub_op # INF - DENORM
+ short fsub_res_snan - tbl_fsub_op # NORM - SNAN
+ short tbl_fsub_op - tbl_fsub_op #
+ short tbl_fsub_op - tbl_fsub_op #
+
+ short fsub_res_qnan - tbl_fsub_op # QNAN - NORM
+ short fsub_res_qnan - tbl_fsub_op # QNAN - ZERO
+ short fsub_res_qnan - tbl_fsub_op # QNAN - INF
+ short fsub_res_qnan - tbl_fsub_op # QNAN - QNAN
+ short fsub_res_qnan - tbl_fsub_op # QNAN - DENORM
+ short fsub_res_snan - tbl_fsub_op # QNAN - SNAN
+ short tbl_fsub_op - tbl_fsub_op #
+ short tbl_fsub_op - tbl_fsub_op #
+
+ short fsub_norm - tbl_fsub_op # DENORM - NORM
+ short fsub_zero_src - tbl_fsub_op # DENORM - ZERO
+ short fsub_inf_src - tbl_fsub_op # DENORM - INF
+ short fsub_res_qnan - tbl_fsub_op # NORM - QNAN
+ short fsub_norm - tbl_fsub_op # DENORM - DENORM
+ short fsub_res_snan - tbl_fsub_op # NORM - SNAN
+ short tbl_fsub_op - tbl_fsub_op #
+ short tbl_fsub_op - tbl_fsub_op #
+
+ short fsub_res_snan - tbl_fsub_op # SNAN - NORM
+ short fsub_res_snan - tbl_fsub_op # SNAN - ZERO
+ short fsub_res_snan - tbl_fsub_op # SNAN - INF
+ short fsub_res_snan - tbl_fsub_op # SNAN - QNAN
+ short fsub_res_snan - tbl_fsub_op # SNAN - DENORM
+ short fsub_res_snan - tbl_fsub_op # SNAN - SNAN
+ short tbl_fsub_op - tbl_fsub_op #
+ short tbl_fsub_op - tbl_fsub_op #
+
+fsub_res_qnan:
+ bra.l res_qnan
+fsub_res_snan:
+ bra.l res_snan
+
+#
+# both operands are ZEROes
+#
+fsub_zero_2:
+ mov.b SRC_EX(%a0),%d0
+ mov.b DST_EX(%a1),%d1
+ eor.b %d1,%d0
+ bpl.b fsub_zero_2_chk_rm
+
+# the signs are opposite, so, return a ZERO w/ the sign of the dst ZERO
+ tst.b %d0 # is dst negative?
+ bmi.b fsub_zero_2_rm # yes
+ fmov.s &0x00000000,%fp0 # no; return +ZERO
+ mov.b &z_bmask,FPSR_CC(%a6) # set Z
+ rts
+
+#
+# the ZEROes have the same signs:
+# - therefore, we return +ZERO if the rounding mode is RN,RZ, or RP
+# - -ZERO is returned in the case of RM.
+#
+fsub_zero_2_chk_rm:
+ mov.b 3+L_SCR3(%a6),%d1
+ andi.b &0x30,%d1 # extract rnd mode
+ cmpi.b %d1,&rm_mode*0x10 # is rnd mode = RM?
+ beq.b fsub_zero_2_rm # yes
+ fmov.s &0x00000000,%fp0 # no; return +ZERO
+ mov.b &z_bmask,FPSR_CC(%a6) # set Z
+ rts
+
+fsub_zero_2_rm:
+ fmov.s &0x80000000,%fp0 # return -ZERO
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set Z/NEG
+ rts
+
+#
+# one operand is a ZERO and the other is a DENORM or a NORM.
+# scale the DENORM or NORM and jump to the regular fsub routine.
+#
+fsub_zero_dst:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ bsr.l scale_to_zero_src # scale the operand
+ clr.w FP_SCR1_EX(%a6)
+ clr.l FP_SCR1_HI(%a6)
+ clr.l FP_SCR1_LO(%a6)
+ bra.w fsub_zero_entry # go execute fsub
+
+fsub_zero_src:
+ mov.w DST_EX(%a1),FP_SCR1_EX(%a6)
+ mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+ bsr.l scale_to_zero_dst # scale the operand
+ clr.w FP_SCR0_EX(%a6)
+ clr.l FP_SCR0_HI(%a6)
+ clr.l FP_SCR0_LO(%a6)
+ bra.w fsub_zero_entry # go execute fsub
+
+#
+# both operands are INFs. an OPERR will result if the INFs have the
+# same signs. else,
+#
+fsub_inf_2:
+ mov.b SRC_EX(%a0),%d0 # exclusive or the signs
+ mov.b DST_EX(%a1),%d1
+ eor.b %d1,%d0
+ bpl.l res_operr # weed out (-INF)+(+INF)
+
+# ok, so it's not an OPERR. but we do have to remember to return
+# the src INF since that's where the 881/882 gets the j-bit.
+
+fsub_inf_src:
+ fmovm.x SRC(%a0),&0x80 # return src INF
+ fneg.x %fp0 # invert sign
+ fbge.w fsub_inf_done # sign is now positive
+ mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+ rts
+
+fsub_inf_dst:
+ fmovm.x DST(%a1),&0x80 # return dst INF
+ tst.b DST_EX(%a1) # is INF negative?
+ bpl.b fsub_inf_done # no
+ mov.b &neg_bmask+inf_bmask,FPSR_CC(%a6) # set INF/NEG
+ rts
+
+fsub_inf_done:
+ mov.b &inf_bmask,FPSR_CC(%a6) # set INF
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fsqrt(): emulates the fsqrt instruction #
+# fssqrt(): emulates the fssqrt instruction #
+# fdsqrt(): emulates the fdsqrt instruction #
+# #
+# XREF **************************************************************** #
+# scale_sqrt() - scale the source operand #
+# unf_res() - return default underflow result #
+# ovf_res() - return default overflow result #
+# res_qnan_1op() - return QNAN result #
+# res_snan_1op() - return SNAN result #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# d0 rnd prec,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = result #
+# fp1 = EXOP (if exception occurred) #
+# #
+# ALGORITHM *********************************************************** #
+# Handle NANs, infinities, and zeroes as special cases. Divide #
+# norms/denorms into ext/sgl/dbl precision. #
+# For norms/denorms, scale the exponents such that a sqrt #
+# instruction won't cause an exception. Use the regular fsqrt to #
+# compute a result. Check if the regular operands would have taken #
+# an exception. If so, return the default overflow/underflow result #
+# and return the EXOP if exceptions are enabled. Else, scale the #
+# result operand to the proper exponent. #
+# #
+#########################################################################
+
+ global fssqrt
+fssqrt:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl precision
+ bra.b fsqrt
+
+ global fdsqrt
+fdsqrt:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl precision
+
+ global fsqrt
+fsqrt:
+ mov.l %d0,L_SCR3(%a6) # store rnd info
+ clr.w %d1
+ mov.b STAG(%a6),%d1
+ bne.w fsqrt_not_norm # optimize on non-norm input
+
+#
+# SQUARE ROOT: norms and denorms ONLY!
+#
+fsqrt_norm:
+ tst.b SRC_EX(%a0) # is operand negative?
+ bmi.l res_operr # yes
+
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.b fsqrt_not_ext # no; go handle sgl or dbl
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsqrt.x (%a0),%fp0 # execute square root
+
+ fmov.l %fpsr,%d1
+ or.l %d1,USER_FPSR(%a6) # set N,INEX
+
+ rts
+
+fsqrt_denorm:
+ tst.b SRC_EX(%a0) # is operand negative?
+ bmi.l res_operr # yes
+
+ andi.b &0xc0,%d0 # is precision extended?
+ bne.b fsqrt_not_ext # no; go handle sgl or dbl
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ bsr.l scale_sqrt # calculate scale factor
+
+ bra.w fsqrt_sd_normal
+
+#
+# operand is either single or double
+#
+fsqrt_not_ext:
+ cmpi.b %d0,&s_mode*0x10 # separate sgl/dbl prec
+ bne.w fsqrt_dbl
+
+#
+# operand is to be rounded to single precision
+#
+fsqrt_sgl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ bsr.l scale_sqrt # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3f81 # will move in underflow?
+ beq.w fsqrt_sd_may_unfl
+ bgt.w fsqrt_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x407f # will move in overflow?
+ beq.w fsqrt_sd_may_ovfl # maybe; go check
+ blt.w fsqrt_sd_ovfl # yes; go handle overflow
+
+#
+# operand will NOT overflow or underflow when moved in to the fp reg file
+#
+fsqrt_sd_normal:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
+
+ fmov.l %fpsr,%d1 # save FPSR
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fsqrt_sd_normal_exit:
+ mov.l %d2,-(%sp) # save d2
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+ mov.w FP_SCR0_EX(%a6),%d1 # load sgn,exp
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ sub.l %d0,%d1 # add scale factor
+ andi.w &0x8000,%d2 # keep old sign
+ or.w %d1,%d2 # concat old sign,new exp
+ mov.w %d2,FP_SCR0_EX(%a6) # insert new exponent
+ mov.l (%sp)+,%d2 # restore d2
+ fmovm.x FP_SCR0(%a6),&0x80 # return result in fp0
+ rts
+
+#
+# operand is to be rounded to double precision
+#
+fsqrt_dbl:
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ bsr.l scale_sqrt # calculate scale factor
+
+ cmpi.l %d0,&0x3fff-0x3c01 # will move in underflow?
+ beq.w fsqrt_sd_may_unfl
+ bgt.b fsqrt_sd_unfl # yes; go handle underflow
+ cmpi.l %d0,&0x3fff-0x43ff # will move in overflow?
+ beq.w fsqrt_sd_may_ovfl # maybe; go check
+ blt.w fsqrt_sd_ovfl # yes; go handle overflow
+ bra.w fsqrt_sd_normal # no; ho handle normalized op
+
+# we're on the line here and the distinguising characteristic is whether
+# the exponent is 3fff or 3ffe. if it's 3ffe, then it's a safe number
+# elsewise fall through to underflow.
+fsqrt_sd_may_unfl:
+ btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
+ bne.w fsqrt_sd_normal # yes, so no underflow
+
+#
+# operand WILL underflow when moved in to the fp register file
+#
+fsqrt_sd_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set unfl exc bit
+
+ fmov.l &rz_mode*0x10,%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fsqrt.x FP_SCR0(%a6),%fp0 # execute square root
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+# if underflow or inexact is enabled, go calculate EXOP first.
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0b,%d1 # is UNFL or INEX enabled?
+ bne.b fsqrt_sd_unfl_ena # yes
+
+fsqrt_sd_unfl_dis:
+ fmovm.x &0x80,FP_SCR0(%a6) # store out result
+
+ lea FP_SCR0(%a6),%a0 # pass: result addr
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set possible 'Z' ccode
+ fmovm.x FP_SCR0(%a6),&0x80 # return default result in fp0
+ rts
+
+#
+# operand will underflow AND underflow is enabled.
+# therefore, we must return the result rounded to extended precision.
+#
+fsqrt_sd_unfl_ena:
+ mov.l FP_SCR0_HI(%a6),FP_SCR1_HI(%a6)
+ mov.l FP_SCR0_LO(%a6),FP_SCR1_LO(%a6)
+ mov.w FP_SCR0_EX(%a6),%d1 # load current exponent
+
+ mov.l %d2,-(%sp) # save d2
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # subtract scale factor
+ addi.l &0x6000,%d1 # add new bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat new sign,new exp
+ mov.w %d1,FP_SCR1_EX(%a6) # insert new exp
+ fmovm.x FP_SCR1(%a6),&0x40 # return EXOP in fp1
+ mov.l (%sp)+,%d2 # restore d2
+ bra.b fsqrt_sd_unfl_dis
+
+#
+# operand WILL overflow.
+#
+fsqrt_sd_ovfl:
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fsqrt.x FP_SCR0(%a6),%fp0 # perform square root
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # save FPSR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+fsqrt_sd_ovfl_tst:
+ or.l &ovfl_inx_mask,USER_FPSR(%a6) # set ovfl/aovfl/ainex
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x13,%d1 # is OVFL or INEX enabled?
+ bne.b fsqrt_sd_ovfl_ena # yes
+
+#
+# OVFL is not enabled; therefore, we must create the default result by
+# calling ovf_res().
+#
+fsqrt_sd_ovfl_dis:
+ btst &neg_bit,FPSR_CC(%a6) # is result negative?
+ sne %d1 # set sign param accordingly
+ mov.l L_SCR3(%a6),%d0 # pass: prec,mode
+ bsr.l ovf_res # calculate default result
+ or.b %d0,FPSR_CC(%a6) # set INF,N if applicable
+ fmovm.x (%a0),&0x80 # return default result in fp0
+ rts
+
+#
+# OVFL is enabled.
+# the INEX2 bit has already been updated by the round to the correct precision.
+# now, round to extended(and don't alter the FPSR).
+#
+fsqrt_sd_ovfl_ena:
+ mov.l %d2,-(%sp) # save d2
+ mov.w FP_SCR0_EX(%a6),%d1 # fetch {sgn,exp}
+ mov.l %d1,%d2 # make a copy
+ andi.l &0x7fff,%d1 # strip sign
+ andi.w &0x8000,%d2 # keep old sign
+ sub.l %d0,%d1 # add scale factor
+ subi.l &0x6000,%d1 # subtract bias
+ andi.w &0x7fff,%d1
+ or.w %d2,%d1 # concat sign,exp
+ mov.w %d1,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ mov.l (%sp)+,%d2 # restore d2
+ bra.b fsqrt_sd_ovfl_dis
+
+#
+# the move in MAY underflow. so...
+#
+fsqrt_sd_may_ovfl:
+ btst &0x0,1+FP_SCR0_EX(%a6) # is exponent 0x3fff?
+ bne.w fsqrt_sd_ovfl # yes, so overflow
+
+ fmov.l &0x0,%fpsr # clear FPSR
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fsqrt.x FP_SCR0(%a6),%fp0 # perform absolute
+
+ fmov.l %fpsr,%d1 # save status
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ or.l %d1,USER_FPSR(%a6) # save INEX2,N
+
+ fmov.x %fp0,%fp1 # make a copy of result
+ fcmp.b %fp1,&0x1 # is |result| >= 1.b?
+ fbge.w fsqrt_sd_ovfl_tst # yes; overflow has occurred
+
+# no, it didn't overflow; we have correct result
+ bra.w fsqrt_sd_normal_exit
+
+##########################################################################
+
+#
+# input is not normalized; what is it?
+#
+fsqrt_not_norm:
+ cmpi.b %d1,&DENORM # weed out DENORM
+ beq.w fsqrt_denorm
+ cmpi.b %d1,&ZERO # weed out ZERO
+ beq.b fsqrt_zero
+ cmpi.b %d1,&INF # weed out INF
+ beq.b fsqrt_inf
+ cmpi.b %d1,&SNAN # weed out SNAN
+ beq.l res_snan_1op
+ bra.l res_qnan_1op
+
+#
+# fsqrt(+0) = +0
+# fsqrt(-0) = -0
+# fsqrt(+INF) = +INF
+# fsqrt(-INF) = OPERR
+#
+fsqrt_zero:
+ tst.b SRC_EX(%a0) # is ZERO positive or negative?
+ bmi.b fsqrt_zero_m # negative
+fsqrt_zero_p:
+ fmov.s &0x00000000,%fp0 # return +ZERO
+ mov.b &z_bmask,FPSR_CC(%a6) # set 'Z' ccode bit
+ rts
+fsqrt_zero_m:
+ fmov.s &0x80000000,%fp0 # return -ZERO
+ mov.b &z_bmask+neg_bmask,FPSR_CC(%a6) # set 'Z','N' ccode bits
+ rts
+
+fsqrt_inf:
+ tst.b SRC_EX(%a0) # is INF positive or negative?
+ bmi.l res_operr # negative
+fsqrt_inf_p:
+ fmovm.x SRC(%a0),&0x80 # return +INF in fp0
+ mov.b &inf_bmask,FPSR_CC(%a6) # set 'I' ccode bit
+ rts
+
+##########################################################################
+
+#########################################################################
+# XDEF **************************************************************** #
+# addsub_scaler2(): scale inputs to fadd/fsub such that no #
+# OVFL/UNFL exceptions will result #
+# #
+# XREF **************************************************************** #
+# norm() - normalize mantissa after adjusting exponent #
+# #
+# INPUT *************************************************************** #
+# FP_SRC(a6) = fp op1(src) #
+# FP_DST(a6) = fp op2(dst) #
+# #
+# OUTPUT ************************************************************** #
+# FP_SRC(a6) = fp op1 scaled(src) #
+# FP_DST(a6) = fp op2 scaled(dst) #
+# d0 = scale amount #
+# #
+# ALGORITHM *********************************************************** #
+# If the DST exponent is > the SRC exponent, set the DST exponent #
+# equal to 0x3fff and scale the SRC exponent by the value that the #
+# DST exponent was scaled by. If the SRC exponent is greater or equal, #
+# do the opposite. Return this scale factor in d0. #
+# If the two exponents differ by > the number of mantissa bits #
+# plus two, then set the smallest exponent to a very small value as a #
+# quick shortcut. #
+# #
+#########################################################################
+
+ global addsub_scaler2
+addsub_scaler2:
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l DST_HI(%a1),FP_SCR1_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ mov.l DST_LO(%a1),FP_SCR1_LO(%a6)
+ mov.w SRC_EX(%a0),%d0
+ mov.w DST_EX(%a1),%d1
+ mov.w %d0,FP_SCR0_EX(%a6)
+ mov.w %d1,FP_SCR1_EX(%a6)
+
+ andi.w &0x7fff,%d0
+ andi.w &0x7fff,%d1
+ mov.w %d0,L_SCR1(%a6) # store src exponent
+ mov.w %d1,2+L_SCR1(%a6) # store dst exponent
+
+ cmp.w %d0, %d1 # is src exp >= dst exp?
+ bge.l src_exp_ge2
+
+# dst exp is > src exp; scale dst to exp = 0x3fff
+dst_exp_gt2:
+ bsr.l scale_to_zero_dst
+ mov.l %d0,-(%sp) # save scale factor
+
+ cmpi.b STAG(%a6),&DENORM # is dst denormalized?
+ bne.b cmpexp12
+
+ lea FP_SCR0(%a6),%a0
+ bsr.l norm # normalize the denorm; result is new exp
+ neg.w %d0 # new exp = -(shft val)
+ mov.w %d0,L_SCR1(%a6) # inset new exp
+
+cmpexp12:
+ mov.w 2+L_SCR1(%a6),%d0
+ subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
+
+ cmp.w %d0,L_SCR1(%a6) # is difference >= len(mantissa)+2?
+ bge.b quick_scale12
+
+ mov.w L_SCR1(%a6),%d0
+ add.w 0x2(%sp),%d0 # scale src exponent by scale factor
+ mov.w FP_SCR0_EX(%a6),%d1
+ and.w &0x8000,%d1
+ or.w %d1,%d0 # concat {sgn,new exp}
+ mov.w %d0,FP_SCR0_EX(%a6) # insert new dst exponent
+
+ mov.l (%sp)+,%d0 # return SCALE factor
+ rts
+
+quick_scale12:
+ andi.w &0x8000,FP_SCR0_EX(%a6) # zero src exponent
+ bset &0x0,1+FP_SCR0_EX(%a6) # set exp = 1
+
+ mov.l (%sp)+,%d0 # return SCALE factor
+ rts
+
+# src exp is >= dst exp; scale src to exp = 0x3fff
+src_exp_ge2:
+ bsr.l scale_to_zero_src
+ mov.l %d0,-(%sp) # save scale factor
+
+ cmpi.b DTAG(%a6),&DENORM # is dst denormalized?
+ bne.b cmpexp22
+ lea FP_SCR1(%a6),%a0
+ bsr.l norm # normalize the denorm; result is new exp
+ neg.w %d0 # new exp = -(shft val)
+ mov.w %d0,2+L_SCR1(%a6) # inset new exp
+
+cmpexp22:
+ mov.w L_SCR1(%a6),%d0
+ subi.w &mantissalen+2,%d0 # subtract mantissalen+2 from larger exp
+
+ cmp.w %d0,2+L_SCR1(%a6) # is difference >= len(mantissa)+2?
+ bge.b quick_scale22
+
+ mov.w 2+L_SCR1(%a6),%d0
+ add.w 0x2(%sp),%d0 # scale dst exponent by scale factor
+ mov.w FP_SCR1_EX(%a6),%d1
+ andi.w &0x8000,%d1
+ or.w %d1,%d0 # concat {sgn,new exp}
+ mov.w %d0,FP_SCR1_EX(%a6) # insert new dst exponent
+
+ mov.l (%sp)+,%d0 # return SCALE factor
+ rts
+
+quick_scale22:
+ andi.w &0x8000,FP_SCR1_EX(%a6) # zero dst exponent
+ bset &0x0,1+FP_SCR1_EX(%a6) # set exp = 1
+
+ mov.l (%sp)+,%d0 # return SCALE factor
+ rts
+
+##########################################################################
+
+#########################################################################
+# XDEF **************************************************************** #
+# scale_to_zero_src(): scale the exponent of extended precision #
+# value at FP_SCR0(a6). #
+# #
+# XREF **************************************************************** #
+# norm() - normalize the mantissa if the operand was a DENORM #
+# #
+# INPUT *************************************************************** #
+# FP_SCR0(a6) = extended precision operand to be scaled #
+# #
+# OUTPUT ************************************************************** #
+# FP_SCR0(a6) = scaled extended precision operand #
+# d0 = scale value #
+# #
+# ALGORITHM *********************************************************** #
+# Set the exponent of the input operand to 0x3fff. Save the value #
+# of the difference between the original and new exponent. Then, #
+# normalize the operand if it was a DENORM. Add this normalization #
+# value to the previous value. Return the result. #
+# #
+#########################################################################
+
+ global scale_to_zero_src
+scale_to_zero_src:
+ mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
+ mov.w %d1,%d0 # make a copy
+
+ andi.l &0x7fff,%d1 # extract operand's exponent
+
+ andi.w &0x8000,%d0 # extract operand's sgn
+ or.w &0x3fff,%d0 # insert new operand's exponent(=0)
+
+ mov.w %d0,FP_SCR0_EX(%a6) # insert biased exponent
+
+ cmpi.b STAG(%a6),&DENORM # is operand normalized?
+ beq.b stzs_denorm # normalize the DENORM
+
+stzs_norm:
+ mov.l &0x3fff,%d0
+ sub.l %d1,%d0 # scale = BIAS + (-exp)
+
+ rts
+
+stzs_denorm:
+ lea FP_SCR0(%a6),%a0 # pass ptr to src op
+ bsr.l norm # normalize denorm
+ neg.l %d0 # new exponent = -(shft val)
+ mov.l %d0,%d1 # prepare for op_norm call
+ bra.b stzs_norm # finish scaling
+
+###
+
+#########################################################################
+# XDEF **************************************************************** #
+# scale_sqrt(): scale the input operand exponent so a subsequent #
+# fsqrt operation won't take an exception. #
+# #
+# XREF **************************************************************** #
+# norm() - normalize the mantissa if the operand was a DENORM #
+# #
+# INPUT *************************************************************** #
+# FP_SCR0(a6) = extended precision operand to be scaled #
+# #
+# OUTPUT ************************************************************** #
+# FP_SCR0(a6) = scaled extended precision operand #
+# d0 = scale value #
+# #
+# ALGORITHM *********************************************************** #
+# If the input operand is a DENORM, normalize it. #
+# If the exponent of the input operand is even, set the exponent #
+# to 0x3ffe and return a scale factor of "(exp-0x3ffe)/2". If the #
+# exponent of the input operand is off, set the exponent to ox3fff and #
+# return a scale factor of "(exp-0x3fff)/2". #
+# #
+#########################################################################
+
+ global scale_sqrt
+scale_sqrt:
+ cmpi.b STAG(%a6),&DENORM # is operand normalized?
+ beq.b ss_denorm # normalize the DENORM
+
+ mov.w FP_SCR0_EX(%a6),%d1 # extract operand's {sgn,exp}
+ andi.l &0x7fff,%d1 # extract operand's exponent
+
+ andi.w &0x8000,FP_SCR0_EX(%a6) # extract operand's sgn
+
+ btst &0x0,%d1 # is exp even or odd?
+ beq.b ss_norm_even
+
+ ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
+
+ mov.l &0x3fff,%d0
+ sub.l %d1,%d0 # scale = BIAS + (-exp)
+ asr.l &0x1,%d0 # divide scale factor by 2
+ rts
+
+ss_norm_even:
+ ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
+
+ mov.l &0x3ffe,%d0
+ sub.l %d1,%d0 # scale = BIAS + (-exp)
+ asr.l &0x1,%d0 # divide scale factor by 2
+ rts
+
+ss_denorm:
+ lea FP_SCR0(%a6),%a0 # pass ptr to src op
+ bsr.l norm # normalize denorm
+
+ btst &0x0,%d0 # is exp even or odd?
+ beq.b ss_denorm_even
+
+ ori.w &0x3fff,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
+
+ add.l &0x3fff,%d0
+ asr.l &0x1,%d0 # divide scale factor by 2
+ rts
+
+ss_denorm_even:
+ ori.w &0x3ffe,FP_SCR0_EX(%a6) # insert new operand's exponent(=0)
+
+ add.l &0x3ffe,%d0
+ asr.l &0x1,%d0 # divide scale factor by 2
+ rts
+
+###
+
+#########################################################################
+# XDEF **************************************************************** #
+# scale_to_zero_dst(): scale the exponent of extended precision #
+# value at FP_SCR1(a6). #
+# #
+# XREF **************************************************************** #
+# norm() - normalize the mantissa if the operand was a DENORM #
+# #
+# INPUT *************************************************************** #
+# FP_SCR1(a6) = extended precision operand to be scaled #
+# #
+# OUTPUT ************************************************************** #
+# FP_SCR1(a6) = scaled extended precision operand #
+# d0 = scale value #
+# #
+# ALGORITHM *********************************************************** #
+# Set the exponent of the input operand to 0x3fff. Save the value #
+# of the difference between the original and new exponent. Then, #
+# normalize the operand if it was a DENORM. Add this normalization #
+# value to the previous value. Return the result. #
+# #
+#########################################################################
+
+ global scale_to_zero_dst
+scale_to_zero_dst:
+ mov.w FP_SCR1_EX(%a6),%d1 # extract operand's {sgn,exp}
+ mov.w %d1,%d0 # make a copy
+
+ andi.l &0x7fff,%d1 # extract operand's exponent
+
+ andi.w &0x8000,%d0 # extract operand's sgn
+ or.w &0x3fff,%d0 # insert new operand's exponent(=0)
+
+ mov.w %d0,FP_SCR1_EX(%a6) # insert biased exponent
+
+ cmpi.b DTAG(%a6),&DENORM # is operand normalized?
+ beq.b stzd_denorm # normalize the DENORM
+
+stzd_norm:
+ mov.l &0x3fff,%d0
+ sub.l %d1,%d0 # scale = BIAS + (-exp)
+ rts
+
+stzd_denorm:
+ lea FP_SCR1(%a6),%a0 # pass ptr to dst op
+ bsr.l norm # normalize denorm
+ neg.l %d0 # new exponent = -(shft val)
+ mov.l %d0,%d1 # prepare for op_norm call
+ bra.b stzd_norm # finish scaling
+
+##########################################################################
+
+#########################################################################
+# XDEF **************************************************************** #
+# res_qnan(): return default result w/ QNAN operand for dyadic #
+# res_snan(): return default result w/ SNAN operand for dyadic #
+# res_qnan_1op(): return dflt result w/ QNAN operand for monadic #
+# res_snan_1op(): return dflt result w/ SNAN operand for monadic #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# FP_SRC(a6) = pointer to extended precision src operand #
+# FP_DST(a6) = pointer to extended precision dst operand #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = default result #
+# #
+# ALGORITHM *********************************************************** #
+# If either operand (but not both operands) of an operation is a #
+# nonsignalling NAN, then that NAN is returned as the result. If both #
+# operands are nonsignalling NANs, then the destination operand #
+# nonsignalling NAN is returned as the result. #
+# If either operand to an operation is a signalling NAN (SNAN), #
+# then, the SNAN bit is set in the FPSR EXC byte. If the SNAN trap #
+# enable bit is set in the FPCR, then the trap is taken and the #
+# destination is not modified. If the SNAN trap enable bit is not set, #
+# then the SNAN is converted to a nonsignalling NAN (by setting the #
+# SNAN bit in the operand to one), and the operation continues as #
+# described in the preceding paragraph, for nonsignalling NANs. #
+# Make sure the appropriate FPSR bits are set before exiting. #
+# #
+#########################################################################
+
+ global res_qnan
+ global res_snan
+res_qnan:
+res_snan:
+ cmp.b DTAG(%a6), &SNAN # is the dst an SNAN?
+ beq.b dst_snan2
+ cmp.b DTAG(%a6), &QNAN # is the dst a QNAN?
+ beq.b dst_qnan2
+src_nan:
+ cmp.b STAG(%a6), &QNAN
+ beq.b src_qnan2
+ global res_snan_1op
+res_snan_1op:
+src_snan2:
+ bset &0x6, FP_SRC_HI(%a6) # set SNAN bit
+ or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
+ lea FP_SRC(%a6), %a0
+ bra.b nan_comp
+ global res_qnan_1op
+res_qnan_1op:
+src_qnan2:
+ or.l &nan_mask, USER_FPSR(%a6)
+ lea FP_SRC(%a6), %a0
+ bra.b nan_comp
+dst_snan2:
+ or.l &nan_mask+aiop_mask+snan_mask, USER_FPSR(%a6)
+ bset &0x6, FP_DST_HI(%a6) # set SNAN bit
+ lea FP_DST(%a6), %a0
+ bra.b nan_comp
+dst_qnan2:
+ lea FP_DST(%a6), %a0
+ cmp.b STAG(%a6), &SNAN
+ bne nan_done
+ or.l &aiop_mask+snan_mask, USER_FPSR(%a6)
+nan_done:
+ or.l &nan_mask, USER_FPSR(%a6)
+nan_comp:
+ btst &0x7, FTEMP_EX(%a0) # is NAN neg?
+ beq.b nan_not_neg
+ or.l &neg_mask, USER_FPSR(%a6)
+nan_not_neg:
+ fmovm.x (%a0), &0x80
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# res_operr(): return default result during operand error #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# None #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = default operand error result #
+# #
+# ALGORITHM *********************************************************** #
+# An nonsignalling NAN is returned as the default result when #
+# an operand error occurs for the following cases: #
+# #
+# Multiply: (Infinity x Zero) #
+# Divide : (Zero / Zero) || (Infinity / Infinity) #
+# #
+#########################################################################
+
+ global res_operr
+res_operr:
+ or.l &nan_mask+operr_mask+aiop_mask, USER_FPSR(%a6)
+ fmovm.x nan_return(%pc), &0x80
+ rts
+
+nan_return:
+ long 0x7fff0000, 0xffffffff, 0xffffffff
+
+#########################################################################
+# fdbcc(): routine to emulate the fdbcc instruction #
+# #
+# XDEF **************************************************************** #
+# _fdbcc() #
+# #
+# XREF **************************************************************** #
+# fetch_dreg() - fetch Dn value #
+# store_dreg_l() - store updated Dn value #
+# #
+# INPUT *************************************************************** #
+# d0 = displacement #
+# #
+# OUTPUT ************************************************************** #
+# none #
+# #
+# ALGORITHM *********************************************************** #
+# This routine checks which conditional predicate is specified by #
+# the stacked fdbcc instruction opcode and then branches to a routine #
+# for that predicate. The corresponding fbcc instruction is then used #
+# to see whether the condition (specified by the stacked FPSR) is true #
+# or false. #
+# If a BSUN exception should be indicated, the BSUN and ABSUN #
+# bits are set in the stacked FPSR. If the BSUN exception is enabled, #
+# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an #
+# enabled BSUN should not be flagged and the predicate is true, then #
+# Dn is fetched and decremented by one. If Dn is not equal to -1, add #
+# the displacement value to the stacked PC so that when an "rte" is #
+# finally executed, the branch occurs. #
+# #
+#########################################################################
+ global _fdbcc
+_fdbcc:
+ mov.l %d0,L_SCR1(%a6) # save displacement
+
+ mov.w EXC_CMDREG(%a6),%d0 # fetch predicate
+
+ clr.l %d1 # clear scratch reg
+ mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes
+ ror.l &0x8,%d1 # rotate to top byte
+ fmov.l %d1,%fpsr # insert into FPSR
+
+ mov.w (tbl_fdbcc.b,%pc,%d0.w*2),%d1 # load table
+ jmp (tbl_fdbcc.b,%pc,%d1.w) # jump to fdbcc routine
+
+tbl_fdbcc:
+ short fdbcc_f - tbl_fdbcc # 00
+ short fdbcc_eq - tbl_fdbcc # 01
+ short fdbcc_ogt - tbl_fdbcc # 02
+ short fdbcc_oge - tbl_fdbcc # 03
+ short fdbcc_olt - tbl_fdbcc # 04
+ short fdbcc_ole - tbl_fdbcc # 05
+ short fdbcc_ogl - tbl_fdbcc # 06
+ short fdbcc_or - tbl_fdbcc # 07
+ short fdbcc_un - tbl_fdbcc # 08
+ short fdbcc_ueq - tbl_fdbcc # 09
+ short fdbcc_ugt - tbl_fdbcc # 10
+ short fdbcc_uge - tbl_fdbcc # 11
+ short fdbcc_ult - tbl_fdbcc # 12
+ short fdbcc_ule - tbl_fdbcc # 13
+ short fdbcc_neq - tbl_fdbcc # 14
+ short fdbcc_t - tbl_fdbcc # 15
+ short fdbcc_sf - tbl_fdbcc # 16
+ short fdbcc_seq - tbl_fdbcc # 17
+ short fdbcc_gt - tbl_fdbcc # 18
+ short fdbcc_ge - tbl_fdbcc # 19
+ short fdbcc_lt - tbl_fdbcc # 20
+ short fdbcc_le - tbl_fdbcc # 21
+ short fdbcc_gl - tbl_fdbcc # 22
+ short fdbcc_gle - tbl_fdbcc # 23
+ short fdbcc_ngle - tbl_fdbcc # 24
+ short fdbcc_ngl - tbl_fdbcc # 25
+ short fdbcc_nle - tbl_fdbcc # 26
+ short fdbcc_nlt - tbl_fdbcc # 27
+ short fdbcc_nge - tbl_fdbcc # 28
+ short fdbcc_ngt - tbl_fdbcc # 29
+ short fdbcc_sneq - tbl_fdbcc # 30
+ short fdbcc_st - tbl_fdbcc # 31
+
+#########################################################################
+# #
+# IEEE Nonaware tests #
+# #
+# For the IEEE nonaware tests, only the false branch changes the #
+# counter. However, the true branch may set bsun so we check to see #
+# if the NAN bit is set, in which case BSUN and AIOP will be set. #
+# #
+# The cases EQ and NE are shared by the Aware and Nonaware groups #
+# and are incapable of setting the BSUN exception bit. #
+# #
+# Typically, only one of the two possible branch directions could #
+# have the NAN bit set. #
+# (This is assuming the mutual exclusiveness of FPSR cc bit groupings #
+# is preserved.) #
+# #
+#########################################################################
+
+#
+# equal:
+#
+# Z
+#
+fdbcc_eq:
+ fbeq.w fdbcc_eq_yes # equal?
+fdbcc_eq_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_eq_yes:
+ rts
+
+#
+# not equal:
+# _
+# Z
+#
+fdbcc_neq:
+ fbneq.w fdbcc_neq_yes # not equal?
+fdbcc_neq_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_neq_yes:
+ rts
+
+#
+# greater than:
+# _______
+# NANvZvN
+#
+fdbcc_gt:
+ fbgt.w fdbcc_gt_yes # greater than?
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fdbcc_false # no;go handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_gt_yes:
+ rts # do nothing
+
+#
+# not greater than:
+#
+# NANvZvN
+#
+fdbcc_ngt:
+ fbngt.w fdbcc_ngt_yes # not greater than?
+fdbcc_ngt_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ngt_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b fdbcc_ngt_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_ngt_done:
+ rts # no; do nothing
+
+#
+# greater than or equal:
+# _____
+# Zv(NANvN)
+#
+fdbcc_ge:
+ fbge.w fdbcc_ge_yes # greater than or equal?
+fdbcc_ge_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fdbcc_false # no;go handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ge_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b fdbcc_ge_yes_done # no;go do nothing
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_ge_yes_done:
+ rts # do nothing
+
+#
+# not (greater than or equal):
+# _
+# NANv(N^Z)
+#
+fdbcc_nge:
+ fbnge.w fdbcc_nge_yes # not (greater than or equal)?
+fdbcc_nge_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_nge_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b fdbcc_nge_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_nge_done:
+ rts # no; do nothing
+
+#
+# less than:
+# _____
+# N^(NANvZ)
+#
+fdbcc_lt:
+ fblt.w fdbcc_lt_yes # less than?
+fdbcc_lt_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fdbcc_false # no; go handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_lt_yes:
+ rts # do nothing
+
+#
+# not less than:
+# _
+# NANv(ZvN)
+#
+fdbcc_nlt:
+ fbnlt.w fdbcc_nlt_yes # not less than?
+fdbcc_nlt_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_nlt_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b fdbcc_nlt_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_nlt_done:
+ rts # no; do nothing
+
+#
+# less than or equal:
+# ___
+# Zv(N^NAN)
+#
+fdbcc_le:
+ fble.w fdbcc_le_yes # less than or equal?
+fdbcc_le_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fdbcc_false # no; go handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_le_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b fdbcc_le_yes_done # no; go do nothing
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_le_yes_done:
+ rts # do nothing
+
+#
+# not (less than or equal):
+# ___
+# NANv(NvZ)
+#
+fdbcc_nle:
+ fbnle.w fdbcc_nle_yes # not (less than or equal)?
+fdbcc_nle_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_nle_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fdbcc_nle_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_nle_done:
+ rts # no; do nothing
+
+#
+# greater or less than:
+# _____
+# NANvZ
+#
+fdbcc_gl:
+ fbgl.w fdbcc_gl_yes # greater or less than?
+fdbcc_gl_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fdbcc_false # no; handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_gl_yes:
+ rts # do nothing
+
+#
+# not (greater or less than):
+#
+# NANvZ
+#
+fdbcc_ngl:
+ fbngl.w fdbcc_ngl_yes # not (greater or less than)?
+fdbcc_ngl_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ngl_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b fdbcc_ngl_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_ngl_done:
+ rts # no; do nothing
+
+#
+# greater, less, or equal:
+# ___
+# NAN
+#
+fdbcc_gle:
+ fbgle.w fdbcc_gle_yes # greater, less, or equal?
+fdbcc_gle_no:
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_gle_yes:
+ rts # do nothing
+
+#
+# not (greater, less, or equal):
+#
+# NAN
+#
+fdbcc_ngle:
+ fbngle.w fdbcc_ngle_yes # not (greater, less, or equal)?
+fdbcc_ngle_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ngle_yes:
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ rts # no; do nothing
+
+#########################################################################
+# #
+# Miscellaneous tests #
+# #
+# For the IEEE miscellaneous tests, all but fdbf and fdbt can set bsun. #
+# #
+#########################################################################
+
+#
+# false:
+#
+# False
+#
+fdbcc_f: # no bsun possible
+ bra.w fdbcc_false # go handle counter
+
+#
+# true:
+#
+# True
+#
+fdbcc_t: # no bsun possible
+ rts # do nothing
+
+#
+# signalling false:
+#
+# False
+#
+fdbcc_sf:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set?
+ beq.w fdbcc_false # no;go handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # go handle counter
+
+#
+# signalling true:
+#
+# True
+#
+fdbcc_st:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set?
+ beq.b fdbcc_st_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_st_done:
+ rts
+
+#
+# signalling equal:
+#
+# Z
+#
+fdbcc_seq:
+ fbseq.w fdbcc_seq_yes # signalling equal?
+fdbcc_seq_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set?
+ beq.w fdbcc_false # no;go handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # go handle counter
+fdbcc_seq_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set?
+ beq.b fdbcc_seq_yes_done # no;go do nothing
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_seq_yes_done:
+ rts # yes; do nothing
+
+#
+# signalling not equal:
+# _
+# Z
+#
+fdbcc_sneq:
+ fbsneq.w fdbcc_sneq_yes # signalling not equal?
+fdbcc_sneq_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set?
+ beq.w fdbcc_false # no;go handle counter
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+ bra.w fdbcc_false # go handle counter
+fdbcc_sneq_yes:
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w fdbcc_sneq_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # is BSUN enabled?
+ bne.w fdbcc_bsun # yes; we have an exception
+fdbcc_sneq_done:
+ rts
+
+#########################################################################
+# #
+# IEEE Aware tests #
+# #
+# For the IEEE aware tests, action is only taken if the result is false.#
+# Therefore, the opposite branch type is used to jump to the decrement #
+# routine. #
+# The BSUN exception will not be set for any of these tests. #
+# #
+#########################################################################
+
+#
+# ordered greater than:
+# _______
+# NANvZvN
+#
+fdbcc_ogt:
+ fbogt.w fdbcc_ogt_yes # ordered greater than?
+fdbcc_ogt_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ogt_yes:
+ rts # yes; do nothing
+
+#
+# unordered or less or equal:
+# _______
+# NANvZvN
+#
+fdbcc_ule:
+ fbule.w fdbcc_ule_yes # unordered or less or equal?
+fdbcc_ule_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ule_yes:
+ rts # yes; do nothing
+
+#
+# ordered greater than or equal:
+# _____
+# Zv(NANvN)
+#
+fdbcc_oge:
+ fboge.w fdbcc_oge_yes # ordered greater than or equal?
+fdbcc_oge_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_oge_yes:
+ rts # yes; do nothing
+
+#
+# unordered or less than:
+# _
+# NANv(N^Z)
+#
+fdbcc_ult:
+ fbult.w fdbcc_ult_yes # unordered or less than?
+fdbcc_ult_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ult_yes:
+ rts # yes; do nothing
+
+#
+# ordered less than:
+# _____
+# N^(NANvZ)
+#
+fdbcc_olt:
+ fbolt.w fdbcc_olt_yes # ordered less than?
+fdbcc_olt_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_olt_yes:
+ rts # yes; do nothing
+
+#
+# unordered or greater or equal:
+#
+# NANvZvN
+#
+fdbcc_uge:
+ fbuge.w fdbcc_uge_yes # unordered or greater than?
+fdbcc_uge_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_uge_yes:
+ rts # yes; do nothing
+
+#
+# ordered less than or equal:
+# ___
+# Zv(N^NAN)
+#
+fdbcc_ole:
+ fbole.w fdbcc_ole_yes # ordered greater or less than?
+fdbcc_ole_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ole_yes:
+ rts # yes; do nothing
+
+#
+# unordered or greater than:
+# ___
+# NANv(NvZ)
+#
+fdbcc_ugt:
+ fbugt.w fdbcc_ugt_yes # unordered or greater than?
+fdbcc_ugt_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ugt_yes:
+ rts # yes; do nothing
+
+#
+# ordered greater or less than:
+# _____
+# NANvZ
+#
+fdbcc_ogl:
+ fbogl.w fdbcc_ogl_yes # ordered greater or less than?
+fdbcc_ogl_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ogl_yes:
+ rts # yes; do nothing
+
+#
+# unordered or equal:
+#
+# NANvZ
+#
+fdbcc_ueq:
+ fbueq.w fdbcc_ueq_yes # unordered or equal?
+fdbcc_ueq_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_ueq_yes:
+ rts # yes; do nothing
+
+#
+# ordered:
+# ___
+# NAN
+#
+fdbcc_or:
+ fbor.w fdbcc_or_yes # ordered?
+fdbcc_or_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_or_yes:
+ rts # yes; do nothing
+
+#
+# unordered:
+#
+# NAN
+#
+fdbcc_un:
+ fbun.w fdbcc_un_yes # unordered?
+fdbcc_un_no:
+ bra.w fdbcc_false # no; go handle counter
+fdbcc_un_yes:
+ rts # yes; do nothing
+
+#######################################################################
+
+#
+# the bsun exception bit was not set.
+#
+# (1) subtract 1 from the count register
+# (2) if (cr == -1) then
+# pc = pc of next instruction
+# else
+# pc += sign_ext(16-bit displacement)
+#
+fdbcc_false:
+ mov.b 1+EXC_OPWORD(%a6), %d1 # fetch lo opword
+ andi.w &0x7, %d1 # extract count register
+
+ bsr.l fetch_dreg # fetch count value
+# make sure that d0 isn't corrupted between calls...
+
+ subq.w &0x1, %d0 # Dn - 1 -> Dn
+
+ bsr.l store_dreg_l # store new count value
+
+ cmpi.w %d0, &-0x1 # is (Dn == -1)?
+ bne.b fdbcc_false_cont # no;
+ rts
+
+fdbcc_false_cont:
+ mov.l L_SCR1(%a6),%d0 # fetch displacement
+ add.l USER_FPIAR(%a6),%d0 # add instruction PC
+ addq.l &0x4,%d0 # add instruction length
+ mov.l %d0,EXC_PC(%a6) # set new PC
+ rts
+
+# the emulation routine set bsun and BSUN was enabled. have to
+# fix stack and jump to the bsun handler.
+# let the caller of this routine shift the stack frame up to
+# eliminate the effective address field.
+fdbcc_bsun:
+ mov.b &fbsun_flg,SPCOND_FLG(%a6)
+ rts
+
+#########################################################################
+# ftrapcc(): routine to emulate the ftrapcc instruction #
+# #
+# XDEF **************************************************************** #
+# _ftrapcc() #
+# #
+# XREF **************************************************************** #
+# none #
+# #
+# INPUT *************************************************************** #
+# none #
+# #
+# OUTPUT ************************************************************** #
+# none #
+# #
+# ALGORITHM *********************************************************** #
+# This routine checks which conditional predicate is specified by #
+# the stacked ftrapcc instruction opcode and then branches to a routine #
+# for that predicate. The corresponding fbcc instruction is then used #
+# to see whether the condition (specified by the stacked FPSR) is true #
+# or false. #
+# If a BSUN exception should be indicated, the BSUN and ABSUN #
+# bits are set in the stacked FPSR. If the BSUN exception is enabled, #
+# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an #
+# enabled BSUN should not be flagged and the predicate is true, then #
+# the ftrapcc_flg is set in the SPCOND_FLG location. These special #
+# flags indicate to the calling routine to emulate the exceptional #
+# condition. #
+# #
+#########################################################################
+
+ global _ftrapcc
+_ftrapcc:
+ mov.w EXC_CMDREG(%a6),%d0 # fetch predicate
+
+ clr.l %d1 # clear scratch reg
+ mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes
+ ror.l &0x8,%d1 # rotate to top byte
+ fmov.l %d1,%fpsr # insert into FPSR
+
+ mov.w (tbl_ftrapcc.b,%pc,%d0.w*2), %d1 # load table
+ jmp (tbl_ftrapcc.b,%pc,%d1.w) # jump to ftrapcc routine
+
+tbl_ftrapcc:
+ short ftrapcc_f - tbl_ftrapcc # 00
+ short ftrapcc_eq - tbl_ftrapcc # 01
+ short ftrapcc_ogt - tbl_ftrapcc # 02
+ short ftrapcc_oge - tbl_ftrapcc # 03
+ short ftrapcc_olt - tbl_ftrapcc # 04
+ short ftrapcc_ole - tbl_ftrapcc # 05
+ short ftrapcc_ogl - tbl_ftrapcc # 06
+ short ftrapcc_or - tbl_ftrapcc # 07
+ short ftrapcc_un - tbl_ftrapcc # 08
+ short ftrapcc_ueq - tbl_ftrapcc # 09
+ short ftrapcc_ugt - tbl_ftrapcc # 10
+ short ftrapcc_uge - tbl_ftrapcc # 11
+ short ftrapcc_ult - tbl_ftrapcc # 12
+ short ftrapcc_ule - tbl_ftrapcc # 13
+ short ftrapcc_neq - tbl_ftrapcc # 14
+ short ftrapcc_t - tbl_ftrapcc # 15
+ short ftrapcc_sf - tbl_ftrapcc # 16
+ short ftrapcc_seq - tbl_ftrapcc # 17
+ short ftrapcc_gt - tbl_ftrapcc # 18
+ short ftrapcc_ge - tbl_ftrapcc # 19
+ short ftrapcc_lt - tbl_ftrapcc # 20
+ short ftrapcc_le - tbl_ftrapcc # 21
+ short ftrapcc_gl - tbl_ftrapcc # 22
+ short ftrapcc_gle - tbl_ftrapcc # 23
+ short ftrapcc_ngle - tbl_ftrapcc # 24
+ short ftrapcc_ngl - tbl_ftrapcc # 25
+ short ftrapcc_nle - tbl_ftrapcc # 26
+ short ftrapcc_nlt - tbl_ftrapcc # 27
+ short ftrapcc_nge - tbl_ftrapcc # 28
+ short ftrapcc_ngt - tbl_ftrapcc # 29
+ short ftrapcc_sneq - tbl_ftrapcc # 30
+ short ftrapcc_st - tbl_ftrapcc # 31
+
+#########################################################################
+# #
+# IEEE Nonaware tests #
+# #
+# For the IEEE nonaware tests, we set the result based on the #
+# floating point condition codes. In addition, we check to see #
+# if the NAN bit is set, in which case BSUN and AIOP will be set. #
+# #
+# The cases EQ and NE are shared by the Aware and Nonaware groups #
+# and are incapable of setting the BSUN exception bit. #
+# #
+# Typically, only one of the two possible branch directions could #
+# have the NAN bit set. #
+# #
+#########################################################################
+
+#
+# equal:
+#
+# Z
+#
+ftrapcc_eq:
+ fbeq.w ftrapcc_trap # equal?
+ftrapcc_eq_no:
+ rts # do nothing
+
+#
+# not equal:
+# _
+# Z
+#
+ftrapcc_neq:
+ fbneq.w ftrapcc_trap # not equal?
+ftrapcc_neq_no:
+ rts # do nothing
+
+#
+# greater than:
+# _______
+# NANvZvN
+#
+ftrapcc_gt:
+ fbgt.w ftrapcc_trap # greater than?
+ftrapcc_gt_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b ftrapcc_gt_done # no
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_gt_done:
+ rts # no; do nothing
+
+#
+# not greater than:
+#
+# NANvZvN
+#
+ftrapcc_ngt:
+ fbngt.w ftrapcc_ngt_yes # not greater than?
+ftrapcc_ngt_no:
+ rts # do nothing
+ftrapcc_ngt_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# greater than or equal:
+# _____
+# Zv(NANvN)
+#
+ftrapcc_ge:
+ fbge.w ftrapcc_ge_yes # greater than or equal?
+ftrapcc_ge_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b ftrapcc_ge_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_ge_done:
+ rts # no; do nothing
+ftrapcc_ge_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# not (greater than or equal):
+# _
+# NANv(N^Z)
+#
+ftrapcc_nge:
+ fbnge.w ftrapcc_nge_yes # not (greater than or equal)?
+ftrapcc_nge_no:
+ rts # do nothing
+ftrapcc_nge_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# less than:
+# _____
+# N^(NANvZ)
+#
+ftrapcc_lt:
+ fblt.w ftrapcc_trap # less than?
+ftrapcc_lt_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b ftrapcc_lt_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_lt_done:
+ rts # no; do nothing
+
+#
+# not less than:
+# _
+# NANv(ZvN)
+#
+ftrapcc_nlt:
+ fbnlt.w ftrapcc_nlt_yes # not less than?
+ftrapcc_nlt_no:
+ rts # do nothing
+ftrapcc_nlt_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# less than or equal:
+# ___
+# Zv(N^NAN)
+#
+ftrapcc_le:
+ fble.w ftrapcc_le_yes # less than or equal?
+ftrapcc_le_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b ftrapcc_le_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_le_done:
+ rts # no; do nothing
+ftrapcc_le_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# not (less than or equal):
+# ___
+# NANv(NvZ)
+#
+ftrapcc_nle:
+ fbnle.w ftrapcc_nle_yes # not (less than or equal)?
+ftrapcc_nle_no:
+ rts # do nothing
+ftrapcc_nle_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# greater or less than:
+# _____
+# NANvZ
+#
+ftrapcc_gl:
+ fbgl.w ftrapcc_trap # greater or less than?
+ftrapcc_gl_no:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.b ftrapcc_gl_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_gl_done:
+ rts # no; do nothing
+
+#
+# not (greater or less than):
+#
+# NANvZ
+#
+ftrapcc_ngl:
+ fbngl.w ftrapcc_ngl_yes # not (greater or less than)?
+ftrapcc_ngl_no:
+ rts # do nothing
+ftrapcc_ngl_yes:
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# greater, less, or equal:
+# ___
+# NAN
+#
+ftrapcc_gle:
+ fbgle.w ftrapcc_trap # greater, less, or equal?
+ftrapcc_gle_no:
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ rts # no; do nothing
+
+#
+# not (greater, less, or equal):
+#
+# NAN
+#
+ftrapcc_ngle:
+ fbngle.w ftrapcc_ngle_yes # not (greater, less, or equal)?
+ftrapcc_ngle_no:
+ rts # do nothing
+ftrapcc_ngle_yes:
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#########################################################################
+# #
+# Miscellaneous tests #
+# #
+# For the IEEE aware tests, we only have to set the result based on the #
+# floating point condition codes. The BSUN exception will not be #
+# set for any of these tests. #
+# #
+#########################################################################
+
+#
+# false:
+#
+# False
+#
+ftrapcc_f:
+ rts # do nothing
+
+#
+# true:
+#
+# True
+#
+ftrapcc_t:
+ bra.w ftrapcc_trap # go take trap
+
+#
+# signalling false:
+#
+# False
+#
+ftrapcc_sf:
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.b ftrapcc_sf_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_sf_done:
+ rts # no; do nothing
+
+#
+# signalling true:
+#
+# True
+#
+ftrapcc_st:
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# signalling equal:
+#
+# Z
+#
+ftrapcc_seq:
+ fbseq.w ftrapcc_seq_yes # signalling equal?
+ftrapcc_seq_no:
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w ftrapcc_seq_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_seq_done:
+ rts # no; do nothing
+ftrapcc_seq_yes:
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#
+# signalling not equal:
+# _
+# Z
+#
+ftrapcc_sneq:
+ fbsneq.w ftrapcc_sneq_yes # signalling equal?
+ftrapcc_sneq_no:
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w ftrapcc_sneq_no_done # no; go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ftrapcc_sneq_no_done:
+ rts # do nothing
+ftrapcc_sneq_yes:
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w ftrapcc_trap # no; go take trap
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ btst &bsun_bit, FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w ftrapcc_bsun # yes
+ bra.w ftrapcc_trap # no; go take trap
+
+#########################################################################
+# #
+# IEEE Aware tests #
+# #
+# For the IEEE aware tests, we only have to set the result based on the #
+# floating point condition codes. The BSUN exception will not be #
+# set for any of these tests. #
+# #
+#########################################################################
+
+#
+# ordered greater than:
+# _______
+# NANvZvN
+#
+ftrapcc_ogt:
+ fbogt.w ftrapcc_trap # ordered greater than?
+ftrapcc_ogt_no:
+ rts # do nothing
+
+#
+# unordered or less or equal:
+# _______
+# NANvZvN
+#
+ftrapcc_ule:
+ fbule.w ftrapcc_trap # unordered or less or equal?
+ftrapcc_ule_no:
+ rts # do nothing
+
+#
+# ordered greater than or equal:
+# _____
+# Zv(NANvN)
+#
+ftrapcc_oge:
+ fboge.w ftrapcc_trap # ordered greater than or equal?
+ftrapcc_oge_no:
+ rts # do nothing
+
+#
+# unordered or less than:
+# _
+# NANv(N^Z)
+#
+ftrapcc_ult:
+ fbult.w ftrapcc_trap # unordered or less than?
+ftrapcc_ult_no:
+ rts # do nothing
+
+#
+# ordered less than:
+# _____
+# N^(NANvZ)
+#
+ftrapcc_olt:
+ fbolt.w ftrapcc_trap # ordered less than?
+ftrapcc_olt_no:
+ rts # do nothing
+
+#
+# unordered or greater or equal:
+#
+# NANvZvN
+#
+ftrapcc_uge:
+ fbuge.w ftrapcc_trap # unordered or greater than?
+ftrapcc_uge_no:
+ rts # do nothing
+
+#
+# ordered less than or equal:
+# ___
+# Zv(N^NAN)
+#
+ftrapcc_ole:
+ fbole.w ftrapcc_trap # ordered greater or less than?
+ftrapcc_ole_no:
+ rts # do nothing
+
+#
+# unordered or greater than:
+# ___
+# NANv(NvZ)
+#
+ftrapcc_ugt:
+ fbugt.w ftrapcc_trap # unordered or greater than?
+ftrapcc_ugt_no:
+ rts # do nothing
+
+#
+# ordered greater or less than:
+# _____
+# NANvZ
+#
+ftrapcc_ogl:
+ fbogl.w ftrapcc_trap # ordered greater or less than?
+ftrapcc_ogl_no:
+ rts # do nothing
+
+#
+# unordered or equal:
+#
+# NANvZ
+#
+ftrapcc_ueq:
+ fbueq.w ftrapcc_trap # unordered or equal?
+ftrapcc_ueq_no:
+ rts # do nothing
+
+#
+# ordered:
+# ___
+# NAN
+#
+ftrapcc_or:
+ fbor.w ftrapcc_trap # ordered?
+ftrapcc_or_no:
+ rts # do nothing
+
+#
+# unordered:
+#
+# NAN
+#
+ftrapcc_un:
+ fbun.w ftrapcc_trap # unordered?
+ftrapcc_un_no:
+ rts # do nothing
+
+#######################################################################
+
+# the bsun exception bit was not set.
+# we will need to jump to the ftrapcc vector. the stack frame
+# is the same size as that of the fp unimp instruction. the
+# only difference is that the <ea> field should hold the PC
+# of the ftrapcc instruction and the vector offset field
+# should denote the ftrapcc trap.
+ftrapcc_trap:
+ mov.b &ftrapcc_flg,SPCOND_FLG(%a6)
+ rts
+
+# the emulation routine set bsun and BSUN was enabled. have to
+# fix stack and jump to the bsun handler.
+# let the caller of this routine shift the stack frame up to
+# eliminate the effective address field.
+ftrapcc_bsun:
+ mov.b &fbsun_flg,SPCOND_FLG(%a6)
+ rts
+
+#########################################################################
+# fscc(): routine to emulate the fscc instruction #
+# #
+# XDEF **************************************************************** #
+# _fscc() #
+# #
+# XREF **************************************************************** #
+# store_dreg_b() - store result to data register file #
+# dec_areg() - decrement an areg for -(an) mode #
+# inc_areg() - increment an areg for (an)+ mode #
+# _dmem_write_byte() - store result to memory #
+# #
+# INPUT *************************************************************** #
+# none #
+# #
+# OUTPUT ************************************************************** #
+# none #
+# #
+# ALGORITHM *********************************************************** #
+# This routine checks which conditional predicate is specified by #
+# the stacked fscc instruction opcode and then branches to a routine #
+# for that predicate. The corresponding fbcc instruction is then used #
+# to see whether the condition (specified by the stacked FPSR) is true #
+# or false. #
+# If a BSUN exception should be indicated, the BSUN and ABSUN #
+# bits are set in the stacked FPSR. If the BSUN exception is enabled, #
+# the fbsun_flg is set in the SPCOND_FLG location on the stack. If an #
+# enabled BSUN should not be flagged and the predicate is true, then #
+# the result is stored to the data register file or memory #
+# #
+#########################################################################
+
+ global _fscc
+_fscc:
+ mov.w EXC_CMDREG(%a6),%d0 # fetch predicate
+
+ clr.l %d1 # clear scratch reg
+ mov.b FPSR_CC(%a6),%d1 # fetch fp ccodes
+ ror.l &0x8,%d1 # rotate to top byte
+ fmov.l %d1,%fpsr # insert into FPSR
+
+ mov.w (tbl_fscc.b,%pc,%d0.w*2),%d1 # load table
+ jmp (tbl_fscc.b,%pc,%d1.w) # jump to fscc routine
+
+tbl_fscc:
+ short fscc_f - tbl_fscc # 00
+ short fscc_eq - tbl_fscc # 01
+ short fscc_ogt - tbl_fscc # 02
+ short fscc_oge - tbl_fscc # 03
+ short fscc_olt - tbl_fscc # 04
+ short fscc_ole - tbl_fscc # 05
+ short fscc_ogl - tbl_fscc # 06
+ short fscc_or - tbl_fscc # 07
+ short fscc_un - tbl_fscc # 08
+ short fscc_ueq - tbl_fscc # 09
+ short fscc_ugt - tbl_fscc # 10
+ short fscc_uge - tbl_fscc # 11
+ short fscc_ult - tbl_fscc # 12
+ short fscc_ule - tbl_fscc # 13
+ short fscc_neq - tbl_fscc # 14
+ short fscc_t - tbl_fscc # 15
+ short fscc_sf - tbl_fscc # 16
+ short fscc_seq - tbl_fscc # 17
+ short fscc_gt - tbl_fscc # 18
+ short fscc_ge - tbl_fscc # 19
+ short fscc_lt - tbl_fscc # 20
+ short fscc_le - tbl_fscc # 21
+ short fscc_gl - tbl_fscc # 22
+ short fscc_gle - tbl_fscc # 23
+ short fscc_ngle - tbl_fscc # 24
+ short fscc_ngl - tbl_fscc # 25
+ short fscc_nle - tbl_fscc # 26
+ short fscc_nlt - tbl_fscc # 27
+ short fscc_nge - tbl_fscc # 28
+ short fscc_ngt - tbl_fscc # 29
+ short fscc_sneq - tbl_fscc # 30
+ short fscc_st - tbl_fscc # 31
+
+#########################################################################
+# #
+# IEEE Nonaware tests #
+# #
+# For the IEEE nonaware tests, we set the result based on the #
+# floating point condition codes. In addition, we check to see #
+# if the NAN bit is set, in which case BSUN and AIOP will be set. #
+# #
+# The cases EQ and NE are shared by the Aware and Nonaware groups #
+# and are incapable of setting the BSUN exception bit. #
+# #
+# Typically, only one of the two possible branch directions could #
+# have the NAN bit set. #
+# #
+#########################################################################
+
+#
+# equal:
+#
+# Z
+#
+fscc_eq:
+ fbeq.w fscc_eq_yes # equal?
+fscc_eq_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_eq_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# not equal:
+# _
+# Z
+#
+fscc_neq:
+ fbneq.w fscc_neq_yes # not equal?
+fscc_neq_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_neq_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# greater than:
+# _______
+# NANvZvN
+#
+fscc_gt:
+ fbgt.w fscc_gt_yes # greater than?
+fscc_gt_no:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_gt_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# not greater than:
+#
+# NANvZvN
+#
+fscc_ngt:
+ fbngt.w fscc_ngt_yes # not greater than?
+fscc_ngt_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ngt_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# greater than or equal:
+# _____
+# Zv(NANvN)
+#
+fscc_ge:
+ fbge.w fscc_ge_yes # greater than or equal?
+fscc_ge_no:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_ge_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# not (greater than or equal):
+# _
+# NANv(N^Z)
+#
+fscc_nge:
+ fbnge.w fscc_nge_yes # not (greater than or equal)?
+fscc_nge_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_nge_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# less than:
+# _____
+# N^(NANvZ)
+#
+fscc_lt:
+ fblt.w fscc_lt_yes # less than?
+fscc_lt_no:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_lt_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# not less than:
+# _
+# NANv(ZvN)
+#
+fscc_nlt:
+ fbnlt.w fscc_nlt_yes # not less than?
+fscc_nlt_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_nlt_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# less than or equal:
+# ___
+# Zv(N^NAN)
+#
+fscc_le:
+ fble.w fscc_le_yes # less than or equal?
+fscc_le_no:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_le_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# not (less than or equal):
+# ___
+# NANv(NvZ)
+#
+fscc_nle:
+ fbnle.w fscc_nle_yes # not (less than or equal)?
+fscc_nle_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_nle_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# greater or less than:
+# _____
+# NANvZ
+#
+fscc_gl:
+ fbgl.w fscc_gl_yes # greater or less than?
+fscc_gl_no:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_gl_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# not (greater or less than):
+#
+# NANvZ
+#
+fscc_ngl:
+ fbngl.w fscc_ngl_yes # not (greater or less than)?
+fscc_ngl_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ngl_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # is NAN set in cc?
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# greater, less, or equal:
+# ___
+# NAN
+#
+fscc_gle:
+ fbgle.w fscc_gle_yes # greater, less, or equal?
+fscc_gle_no:
+ clr.b %d0 # set false
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_gle_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# not (greater, less, or equal):
+#
+# NAN
+#
+fscc_ngle:
+ fbngle.w fscc_ngle_yes # not (greater, less, or equal)?
+fscc_ngle_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ngle_yes:
+ st %d0 # set true
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#########################################################################
+# #
+# Miscellaneous tests #
+# #
+# For the IEEE aware tests, we only have to set the result based on the #
+# floating point condition codes. The BSUN exception will not be #
+# set for any of these tests. #
+# #
+#########################################################################
+
+#
+# false:
+#
+# False
+#
+fscc_f:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+
+#
+# true:
+#
+# True
+#
+fscc_t:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# signalling false:
+#
+# False
+#
+fscc_sf:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# signalling true:
+#
+# True
+#
+fscc_st:
+ st %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# signalling equal:
+#
+# Z
+#
+fscc_seq:
+ fbseq.w fscc_seq_yes # signalling equal?
+fscc_seq_no:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_seq_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#
+# signalling not equal:
+# _
+# Z
+#
+fscc_sneq:
+ fbsneq.w fscc_sneq_yes # signalling equal?
+fscc_sneq_no:
+ clr.b %d0 # set false
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+fscc_sneq_yes:
+ st %d0 # set true
+ btst &nan_bit, FPSR_CC(%a6) # set BSUN exc bit
+ beq.w fscc_done # no;go finish
+ ori.l &bsun_mask+aiop_mask, USER_FPSR(%a6) # set BSUN exc bit
+ bra.w fscc_chk_bsun # go finish
+
+#########################################################################
+# #
+# IEEE Aware tests #
+# #
+# For the IEEE aware tests, we only have to set the result based on the #
+# floating point condition codes. The BSUN exception will not be #
+# set for any of these tests. #
+# #
+#########################################################################
+
+#
+# ordered greater than:
+# _______
+# NANvZvN
+#
+fscc_ogt:
+ fbogt.w fscc_ogt_yes # ordered greater than?
+fscc_ogt_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ogt_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# unordered or less or equal:
+# _______
+# NANvZvN
+#
+fscc_ule:
+ fbule.w fscc_ule_yes # unordered or less or equal?
+fscc_ule_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ule_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# ordered greater than or equal:
+# _____
+# Zv(NANvN)
+#
+fscc_oge:
+ fboge.w fscc_oge_yes # ordered greater than or equal?
+fscc_oge_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_oge_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# unordered or less than:
+# _
+# NANv(N^Z)
+#
+fscc_ult:
+ fbult.w fscc_ult_yes # unordered or less than?
+fscc_ult_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ult_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# ordered less than:
+# _____
+# N^(NANvZ)
+#
+fscc_olt:
+ fbolt.w fscc_olt_yes # ordered less than?
+fscc_olt_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_olt_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# unordered or greater or equal:
+#
+# NANvZvN
+#
+fscc_uge:
+ fbuge.w fscc_uge_yes # unordered or greater than?
+fscc_uge_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_uge_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# ordered less than or equal:
+# ___
+# Zv(N^NAN)
+#
+fscc_ole:
+ fbole.w fscc_ole_yes # ordered greater or less than?
+fscc_ole_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ole_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# unordered or greater than:
+# ___
+# NANv(NvZ)
+#
+fscc_ugt:
+ fbugt.w fscc_ugt_yes # unordered or greater than?
+fscc_ugt_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ugt_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# ordered greater or less than:
+# _____
+# NANvZ
+#
+fscc_ogl:
+ fbogl.w fscc_ogl_yes # ordered greater or less than?
+fscc_ogl_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ogl_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# unordered or equal:
+#
+# NANvZ
+#
+fscc_ueq:
+ fbueq.w fscc_ueq_yes # unordered or equal?
+fscc_ueq_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_ueq_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# ordered:
+# ___
+# NAN
+#
+fscc_or:
+ fbor.w fscc_or_yes # ordered?
+fscc_or_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_or_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#
+# unordered:
+#
+# NAN
+#
+fscc_un:
+ fbun.w fscc_un_yes # unordered?
+fscc_un_no:
+ clr.b %d0 # set false
+ bra.w fscc_done # go finish
+fscc_un_yes:
+ st %d0 # set true
+ bra.w fscc_done # go finish
+
+#######################################################################
+
+#
+# the bsun exception bit was set. now, check to see is BSUN
+# is enabled. if so, don't store result and correct stack frame
+# for a bsun exception.
+#
+fscc_chk_bsun:
+ btst &bsun_bit,FPCR_ENABLE(%a6) # was BSUN set?
+ bne.w fscc_bsun
+
+#
+# the bsun exception bit was not set.
+# the result has been selected.
+# now, check to see if the result is to be stored in the data register
+# file or in memory.
+#
+fscc_done:
+ mov.l %d0,%a0 # save result for a moment
+
+ mov.b 1+EXC_OPWORD(%a6),%d1 # fetch lo opword
+ mov.l %d1,%d0 # make a copy
+ andi.b &0x38,%d1 # extract src mode
+
+ bne.b fscc_mem_op # it's a memory operation
+
+ mov.l %d0,%d1
+ andi.w &0x7,%d1 # pass index in d1
+ mov.l %a0,%d0 # pass result in d0
+ bsr.l store_dreg_b # save result in regfile
+ rts
+
+#
+# the stacked <ea> is correct with the exception of:
+# -> Dn : <ea> is garbage
+#
+# if the addressing mode is post-increment or pre-decrement,
+# then the address registers have not been updated.
+#
+fscc_mem_op:
+ cmpi.b %d1,&0x18 # is <ea> (An)+ ?
+ beq.b fscc_mem_inc # yes
+ cmpi.b %d1,&0x20 # is <ea> -(An) ?
+ beq.b fscc_mem_dec # yes
+
+ mov.l %a0,%d0 # pass result in d0
+ mov.l EXC_EA(%a6),%a0 # fetch <ea>
+ bsr.l _dmem_write_byte # write result byte
+
+ tst.l %d1 # did dstore fail?
+ bne.w fscc_err # yes
+
+ rts
+
+# addresing mode is post-increment. write the result byte. if the write
+# fails then don't update the address register. if write passes then
+# call inc_areg() to update the address register.
+fscc_mem_inc:
+ mov.l %a0,%d0 # pass result in d0
+ mov.l EXC_EA(%a6),%a0 # fetch <ea>
+ bsr.l _dmem_write_byte # write result byte
+
+ tst.l %d1 # did dstore fail?
+ bne.w fscc_err # yes
+
+ mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword
+ andi.w &0x7,%d1 # pass index in d1
+ movq.l &0x1,%d0 # pass amt to inc by
+ bsr.l inc_areg # increment address register
+
+ rts
+
+# addressing mode is pre-decrement. write the result byte. if the write
+# fails then don't update the address register. if the write passes then
+# call dec_areg() to update the address register.
+fscc_mem_dec:
+ mov.l %a0,%d0 # pass result in d0
+ mov.l EXC_EA(%a6),%a0 # fetch <ea>
+ bsr.l _dmem_write_byte # write result byte
+
+ tst.l %d1 # did dstore fail?
+ bne.w fscc_err # yes
+
+ mov.b 0x1+EXC_OPWORD(%a6),%d1 # fetch opword
+ andi.w &0x7,%d1 # pass index in d1
+ movq.l &0x1,%d0 # pass amt to dec by
+ bsr.l dec_areg # decrement address register
+
+ rts
+
+# the emulation routine set bsun and BSUN was enabled. have to
+# fix stack and jump to the bsun handler.
+# let the caller of this routine shift the stack frame up to
+# eliminate the effective address field.
+fscc_bsun:
+ mov.b &fbsun_flg,SPCOND_FLG(%a6)
+ rts
+
+# the byte write to memory has failed. pass the failing effective address
+# and a FSLW to funimp_dacc().
+fscc_err:
+ mov.w &0x00a1,EXC_VOFF(%a6)
+ bra.l facc_finish
+
+#########################################################################
+# XDEF **************************************************************** #
+# fmovm_dynamic(): emulate "fmovm" dynamic instruction #
+# #
+# XREF **************************************************************** #
+# fetch_dreg() - fetch data register #
+# {i,d,}mem_read() - fetch data from memory #
+# _mem_write() - write data to memory #
+# iea_iacc() - instruction memory access error occurred #
+# iea_dacc() - data memory access error occurred #
+# restore() - restore An index regs if access error occurred #
+# #
+# INPUT *************************************************************** #
+# None #
+# #
+# OUTPUT ************************************************************** #
+# If instr is "fmovm Dn,-(A7)" from supervisor mode, #
+# d0 = size of dump #
+# d1 = Dn #
+# Else if instruction access error, #
+# d0 = FSLW #
+# Else if data access error, #
+# d0 = FSLW #
+# a0 = address of fault #
+# Else #
+# none. #
+# #
+# ALGORITHM *********************************************************** #
+# The effective address must be calculated since this is entered #
+# from an "Unimplemented Effective Address" exception handler. So, we #
+# have our own fcalc_ea() routine here. If an access error is flagged #
+# by a _{i,d,}mem_read() call, we must exit through the special #
+# handler. #
+# The data register is determined and its value loaded to get the #
+# string of FP registers affected. This value is used as an index into #
+# a lookup table such that we can determine the number of bytes #
+# involved. #
+# If the instruction is "fmovm.x <ea>,Dn", a _mem_read() is used #
+# to read in all FP values. Again, _mem_read() may fail and require a #
+# special exit. #
+# If the instruction is "fmovm.x DN,<ea>", a _mem_write() is used #
+# to write all FP values. _mem_write() may also fail. #
+# If the instruction is "fmovm.x DN,-(a7)" from supervisor mode, #
+# then we return the size of the dump and the string to the caller #
+# so that the move can occur outside of this routine. This special #
+# case is required so that moves to the system stack are handled #
+# correctly. #
+# #
+# DYNAMIC: #
+# fmovm.x dn, <ea> #
+# fmovm.x <ea>, dn #
+# #
+# <WORD 1> <WORD2> #
+# 1111 0010 00 |<ea>| 11@& 1000 0$$$ 0000 #
+# #
+# & = (0): predecrement addressing mode #
+# (1): postincrement or control addressing mode #
+# @ = (0): move listed regs from memory to the FPU #
+# (1): move listed regs from the FPU to memory #
+# $$$ : index of data register holding reg select mask #
+# #
+# NOTES: #
+# If the data register holds a zero, then the #
+# instruction is a nop. #
+# #
+#########################################################################
+
+ global fmovm_dynamic
+fmovm_dynamic:
+
+# extract the data register in which the bit string resides...
+ mov.b 1+EXC_EXTWORD(%a6),%d1 # fetch extword
+ andi.w &0x70,%d1 # extract reg bits
+ lsr.b &0x4,%d1 # shift into lo bits
+
+# fetch the bit string into d0...
+ bsr.l fetch_dreg # fetch reg string
+
+ andi.l &0x000000ff,%d0 # keep only lo byte
+
+ mov.l %d0,-(%sp) # save strg
+ mov.b (tbl_fmovm_size.w,%pc,%d0),%d0
+ mov.l %d0,-(%sp) # save size
+ bsr.l fmovm_calc_ea # calculate <ea>
+ mov.l (%sp)+,%d0 # restore size
+ mov.l (%sp)+,%d1 # restore strg
+
+# if the bit string is a zero, then the operation is a no-op
+# but, make sure that we've calculated ea and advanced the opword pointer
+ beq.w fmovm_data_done
+
+# separate move ins from move outs...
+ btst &0x5,EXC_EXTWORD(%a6) # is it a move in or out?
+ beq.w fmovm_data_in # it's a move out
+
+#############
+# MOVE OUT: #
+#############
+fmovm_data_out:
+ btst &0x4,EXC_EXTWORD(%a6) # control or predecrement?
+ bne.w fmovm_out_ctrl # control
+
+############################
+fmovm_out_predec:
+# for predecrement mode, the bit string is the opposite of both control
+# operations and postincrement mode. (bit7 = FP7 ... bit0 = FP0)
+# here, we convert it to be just like the others...
+ mov.b (tbl_fmovm_convert.w,%pc,%d1.w*1),%d1
+
+ btst &0x5,EXC_SR(%a6) # user or supervisor mode?
+ beq.b fmovm_out_ctrl # user
+
+fmovm_out_predec_s:
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg # is <ea> mode -(a7)?
+ bne.b fmovm_out_ctrl
+
+# the operation was unfortunately an: fmovm.x dn,-(sp)
+# called from supervisor mode.
+# we're also passing "size" and "strg" back to the calling routine
+ rts
+
+############################
+fmovm_out_ctrl:
+ mov.l %a0,%a1 # move <ea> to a1
+
+ sub.l %d0,%sp # subtract size of dump
+ lea (%sp),%a0
+
+ tst.b %d1 # should FP0 be moved?
+ bpl.b fmovm_out_ctrl_fp1 # no
+
+ mov.l 0x0+EXC_FP0(%a6),(%a0)+ # yes
+ mov.l 0x4+EXC_FP0(%a6),(%a0)+
+ mov.l 0x8+EXC_FP0(%a6),(%a0)+
+
+fmovm_out_ctrl_fp1:
+ lsl.b &0x1,%d1 # should FP1 be moved?
+ bpl.b fmovm_out_ctrl_fp2 # no
+
+ mov.l 0x0+EXC_FP1(%a6),(%a0)+ # yes
+ mov.l 0x4+EXC_FP1(%a6),(%a0)+
+ mov.l 0x8+EXC_FP1(%a6),(%a0)+
+
+fmovm_out_ctrl_fp2:
+ lsl.b &0x1,%d1 # should FP2 be moved?
+ bpl.b fmovm_out_ctrl_fp3 # no
+
+ fmovm.x &0x20,(%a0) # yes
+ add.l &0xc,%a0
+
+fmovm_out_ctrl_fp3:
+ lsl.b &0x1,%d1 # should FP3 be moved?
+ bpl.b fmovm_out_ctrl_fp4 # no
+
+ fmovm.x &0x10,(%a0) # yes
+ add.l &0xc,%a0
+
+fmovm_out_ctrl_fp4:
+ lsl.b &0x1,%d1 # should FP4 be moved?
+ bpl.b fmovm_out_ctrl_fp5 # no
+
+ fmovm.x &0x08,(%a0) # yes
+ add.l &0xc,%a0
+
+fmovm_out_ctrl_fp5:
+ lsl.b &0x1,%d1 # should FP5 be moved?
+ bpl.b fmovm_out_ctrl_fp6 # no
+
+ fmovm.x &0x04,(%a0) # yes
+ add.l &0xc,%a0
+
+fmovm_out_ctrl_fp6:
+ lsl.b &0x1,%d1 # should FP6 be moved?
+ bpl.b fmovm_out_ctrl_fp7 # no
+
+ fmovm.x &0x02,(%a0) # yes
+ add.l &0xc,%a0
+
+fmovm_out_ctrl_fp7:
+ lsl.b &0x1,%d1 # should FP7 be moved?
+ bpl.b fmovm_out_ctrl_done # no
+
+ fmovm.x &0x01,(%a0) # yes
+ add.l &0xc,%a0
+
+fmovm_out_ctrl_done:
+ mov.l %a1,L_SCR1(%a6)
+
+ lea (%sp),%a0 # pass: supervisor src
+ mov.l %d0,-(%sp) # save size
+ bsr.l _dmem_write # copy data to user mem
+
+ mov.l (%sp)+,%d0
+ add.l %d0,%sp # clear fpreg data from stack
+
+ tst.l %d1 # did dstore err?
+ bne.w fmovm_out_err # yes
+
+ rts
+
+############
+# MOVE IN: #
+############
+fmovm_data_in:
+ mov.l %a0,L_SCR1(%a6)
+
+ sub.l %d0,%sp # make room for fpregs
+ lea (%sp),%a1
+
+ mov.l %d1,-(%sp) # save bit string for later
+ mov.l %d0,-(%sp) # save # of bytes
+
+ bsr.l _dmem_read # copy data from user mem
+
+ mov.l (%sp)+,%d0 # retrieve # of bytes
+
+ tst.l %d1 # did dfetch fail?
+ bne.w fmovm_in_err # yes
+
+ mov.l (%sp)+,%d1 # load bit string
+
+ lea (%sp),%a0 # addr of stack
+
+ tst.b %d1 # should FP0 be moved?
+ bpl.b fmovm_data_in_fp1 # no
+
+ mov.l (%a0)+,0x0+EXC_FP0(%a6) # yes
+ mov.l (%a0)+,0x4+EXC_FP0(%a6)
+ mov.l (%a0)+,0x8+EXC_FP0(%a6)
+
+fmovm_data_in_fp1:
+ lsl.b &0x1,%d1 # should FP1 be moved?
+ bpl.b fmovm_data_in_fp2 # no
+
+ mov.l (%a0)+,0x0+EXC_FP1(%a6) # yes
+ mov.l (%a0)+,0x4+EXC_FP1(%a6)
+ mov.l (%a0)+,0x8+EXC_FP1(%a6)
+
+fmovm_data_in_fp2:
+ lsl.b &0x1,%d1 # should FP2 be moved?
+ bpl.b fmovm_data_in_fp3 # no
+
+ fmovm.x (%a0)+,&0x20 # yes
+
+fmovm_data_in_fp3:
+ lsl.b &0x1,%d1 # should FP3 be moved?
+ bpl.b fmovm_data_in_fp4 # no
+
+ fmovm.x (%a0)+,&0x10 # yes
+
+fmovm_data_in_fp4:
+ lsl.b &0x1,%d1 # should FP4 be moved?
+ bpl.b fmovm_data_in_fp5 # no
+
+ fmovm.x (%a0)+,&0x08 # yes
+
+fmovm_data_in_fp5:
+ lsl.b &0x1,%d1 # should FP5 be moved?
+ bpl.b fmovm_data_in_fp6 # no
+
+ fmovm.x (%a0)+,&0x04 # yes
+
+fmovm_data_in_fp6:
+ lsl.b &0x1,%d1 # should FP6 be moved?
+ bpl.b fmovm_data_in_fp7 # no
+
+ fmovm.x (%a0)+,&0x02 # yes
+
+fmovm_data_in_fp7:
+ lsl.b &0x1,%d1 # should FP7 be moved?
+ bpl.b fmovm_data_in_done # no
+
+ fmovm.x (%a0)+,&0x01 # yes
+
+fmovm_data_in_done:
+ add.l %d0,%sp # remove fpregs from stack
+ rts
+
+#####################################
+
+fmovm_data_done:
+ rts
+
+##############################################################################
+
+#
+# table indexed by the operation's bit string that gives the number
+# of bytes that will be moved.
+#
+# number of bytes = (# of 1's in bit string) * 12(bytes/fpreg)
+#
+tbl_fmovm_size:
+ byte 0x00,0x0c,0x0c,0x18,0x0c,0x18,0x18,0x24
+ byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+ byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+ byte 0x0c,0x18,0x18,0x24,0x18,0x24,0x24,0x30
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+ byte 0x18,0x24,0x24,0x30,0x24,0x30,0x30,0x3c
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+ byte 0x24,0x30,0x30,0x3c,0x30,0x3c,0x3c,0x48
+ byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+ byte 0x30,0x3c,0x3c,0x48,0x3c,0x48,0x48,0x54
+ byte 0x3c,0x48,0x48,0x54,0x48,0x54,0x54,0x60
+
+#
+# table to convert a pre-decrement bit string into a post-increment
+# or control bit string.
+# ex: 0x00 ==> 0x00
+# 0x01 ==> 0x80
+# 0x02 ==> 0x40
+# .
+# .
+# 0xfd ==> 0xbf
+# 0xfe ==> 0x7f
+# 0xff ==> 0xff
+#
+tbl_fmovm_convert:
+ byte 0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0
+ byte 0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0
+ byte 0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8
+ byte 0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8
+ byte 0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4
+ byte 0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4
+ byte 0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec
+ byte 0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc
+ byte 0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2
+ byte 0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2
+ byte 0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea
+ byte 0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa
+ byte 0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6
+ byte 0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6
+ byte 0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee
+ byte 0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe
+ byte 0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1
+ byte 0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1
+ byte 0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9
+ byte 0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9
+ byte 0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5
+ byte 0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5
+ byte 0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed
+ byte 0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd
+ byte 0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3
+ byte 0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3
+ byte 0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb
+ byte 0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb
+ byte 0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7
+ byte 0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7
+ byte 0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef
+ byte 0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
+
+ global fmovm_calc_ea
+###############################################
+# _fmovm_calc_ea: calculate effective address #
+###############################################
+fmovm_calc_ea:
+ mov.l %d0,%a0 # move # bytes to a0
+
+# currently, MODE and REG are taken from the EXC_OPWORD. this could be
+# easily changed if they were inputs passed in registers.
+ mov.w EXC_OPWORD(%a6),%d0 # fetch opcode word
+ mov.w %d0,%d1 # make a copy
+
+ andi.w &0x3f,%d0 # extract mode field
+ andi.l &0x7,%d1 # extract reg field
+
+# jump to the corresponding function for each {MODE,REG} pair.
+ mov.w (tbl_fea_mode.b,%pc,%d0.w*2),%d0 # fetch jmp distance
+ jmp (tbl_fea_mode.b,%pc,%d0.w*1) # jmp to correct ea mode
+
+ swbeg &64
+tbl_fea_mode:
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+
+ short faddr_ind_a0 - tbl_fea_mode
+ short faddr_ind_a1 - tbl_fea_mode
+ short faddr_ind_a2 - tbl_fea_mode
+ short faddr_ind_a3 - tbl_fea_mode
+ short faddr_ind_a4 - tbl_fea_mode
+ short faddr_ind_a5 - tbl_fea_mode
+ short faddr_ind_a6 - tbl_fea_mode
+ short faddr_ind_a7 - tbl_fea_mode
+
+ short faddr_ind_p_a0 - tbl_fea_mode
+ short faddr_ind_p_a1 - tbl_fea_mode
+ short faddr_ind_p_a2 - tbl_fea_mode
+ short faddr_ind_p_a3 - tbl_fea_mode
+ short faddr_ind_p_a4 - tbl_fea_mode
+ short faddr_ind_p_a5 - tbl_fea_mode
+ short faddr_ind_p_a6 - tbl_fea_mode
+ short faddr_ind_p_a7 - tbl_fea_mode
+
+ short faddr_ind_m_a0 - tbl_fea_mode
+ short faddr_ind_m_a1 - tbl_fea_mode
+ short faddr_ind_m_a2 - tbl_fea_mode
+ short faddr_ind_m_a3 - tbl_fea_mode
+ short faddr_ind_m_a4 - tbl_fea_mode
+ short faddr_ind_m_a5 - tbl_fea_mode
+ short faddr_ind_m_a6 - tbl_fea_mode
+ short faddr_ind_m_a7 - tbl_fea_mode
+
+ short faddr_ind_disp_a0 - tbl_fea_mode
+ short faddr_ind_disp_a1 - tbl_fea_mode
+ short faddr_ind_disp_a2 - tbl_fea_mode
+ short faddr_ind_disp_a3 - tbl_fea_mode
+ short faddr_ind_disp_a4 - tbl_fea_mode
+ short faddr_ind_disp_a5 - tbl_fea_mode
+ short faddr_ind_disp_a6 - tbl_fea_mode
+ short faddr_ind_disp_a7 - tbl_fea_mode
+
+ short faddr_ind_ext - tbl_fea_mode
+ short faddr_ind_ext - tbl_fea_mode
+ short faddr_ind_ext - tbl_fea_mode
+ short faddr_ind_ext - tbl_fea_mode
+ short faddr_ind_ext - tbl_fea_mode
+ short faddr_ind_ext - tbl_fea_mode
+ short faddr_ind_ext - tbl_fea_mode
+ short faddr_ind_ext - tbl_fea_mode
+
+ short fabs_short - tbl_fea_mode
+ short fabs_long - tbl_fea_mode
+ short fpc_ind - tbl_fea_mode
+ short fpc_ind_ext - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+ short tbl_fea_mode - tbl_fea_mode
+
+###################################
+# Address register indirect: (An) #
+###################################
+faddr_ind_a0:
+ mov.l EXC_DREGS+0x8(%a6),%a0 # Get current a0
+ rts
+
+faddr_ind_a1:
+ mov.l EXC_DREGS+0xc(%a6),%a0 # Get current a1
+ rts
+
+faddr_ind_a2:
+ mov.l %a2,%a0 # Get current a2
+ rts
+
+faddr_ind_a3:
+ mov.l %a3,%a0 # Get current a3
+ rts
+
+faddr_ind_a4:
+ mov.l %a4,%a0 # Get current a4
+ rts
+
+faddr_ind_a5:
+ mov.l %a5,%a0 # Get current a5
+ rts
+
+faddr_ind_a6:
+ mov.l (%a6),%a0 # Get current a6
+ rts
+
+faddr_ind_a7:
+ mov.l EXC_A7(%a6),%a0 # Get current a7
+ rts
+
+#####################################################
+# Address register indirect w/ postincrement: (An)+ #
+#####################################################
+faddr_ind_p_a0:
+ mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,EXC_DREGS+0x8(%a6) # Save incr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_p_a1:
+ mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,EXC_DREGS+0xc(%a6) # Save incr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_p_a2:
+ mov.l %a2,%d0 # Get current a2
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,%a2 # Save incr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_p_a3:
+ mov.l %a3,%d0 # Get current a3
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,%a3 # Save incr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_p_a4:
+ mov.l %a4,%d0 # Get current a4
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,%a4 # Save incr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_p_a5:
+ mov.l %a5,%d0 # Get current a5
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,%a5 # Save incr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_p_a6:
+ mov.l (%a6),%d0 # Get current a6
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,(%a6) # Save incr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_p_a7:
+ mov.b &mia7_flg,SPCOND_FLG(%a6) # set "special case" flag
+
+ mov.l EXC_A7(%a6),%d0 # Get current a7
+ mov.l %d0,%d1
+ add.l %a0,%d1 # Increment
+ mov.l %d1,EXC_A7(%a6) # Save incr value
+ mov.l %d0,%a0
+ rts
+
+####################################################
+# Address register indirect w/ predecrement: -(An) #
+####################################################
+faddr_ind_m_a0:
+ mov.l EXC_DREGS+0x8(%a6),%d0 # Get current a0
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,EXC_DREGS+0x8(%a6) # Save decr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_m_a1:
+ mov.l EXC_DREGS+0xc(%a6),%d0 # Get current a1
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,EXC_DREGS+0xc(%a6) # Save decr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_m_a2:
+ mov.l %a2,%d0 # Get current a2
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,%a2 # Save decr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_m_a3:
+ mov.l %a3,%d0 # Get current a3
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,%a3 # Save decr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_m_a4:
+ mov.l %a4,%d0 # Get current a4
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,%a4 # Save decr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_m_a5:
+ mov.l %a5,%d0 # Get current a5
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,%a5 # Save decr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_m_a6:
+ mov.l (%a6),%d0 # Get current a6
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,(%a6) # Save decr value
+ mov.l %d0,%a0
+ rts
+
+faddr_ind_m_a7:
+ mov.b &mda7_flg,SPCOND_FLG(%a6) # set "special case" flag
+
+ mov.l EXC_A7(%a6),%d0 # Get current a7
+ sub.l %a0,%d0 # Decrement
+ mov.l %d0,EXC_A7(%a6) # Save decr value
+ mov.l %d0,%a0
+ rts
+
+########################################################
+# Address register indirect w/ displacement: (d16, An) #
+########################################################
+faddr_ind_disp_a0:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l EXC_DREGS+0x8(%a6),%a0 # a0 + d16
+ rts
+
+faddr_ind_disp_a1:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l EXC_DREGS+0xc(%a6),%a0 # a1 + d16
+ rts
+
+faddr_ind_disp_a2:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l %a2,%a0 # a2 + d16
+ rts
+
+faddr_ind_disp_a3:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l %a3,%a0 # a3 + d16
+ rts
+
+faddr_ind_disp_a4:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l %a4,%a0 # a4 + d16
+ rts
+
+faddr_ind_disp_a5:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l %a5,%a0 # a5 + d16
+ rts
+
+faddr_ind_disp_a6:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l (%a6),%a0 # a6 + d16
+ rts
+
+faddr_ind_disp_a7:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l EXC_A7(%a6),%a0 # a7 + d16
+ rts
+
+########################################################################
+# Address register indirect w/ index(8-bit displacement): (d8, An, Xn) #
+# " " " w/ " (base displacement): (bd, An, Xn) #
+# Memory indirect postindexed: ([bd, An], Xn, od) #
+# Memory indirect preindexed: ([bd, An, Xn], od) #
+########################################################################
+faddr_ind_ext:
+ addq.l &0x8,%d1
+ bsr.l fetch_dreg # fetch base areg
+ mov.l %d0,-(%sp)
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word # fetch extword in d0
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l (%sp)+,%a0
+
+ btst &0x8,%d0
+ bne.w fcalc_mem_ind
+
+ mov.l %d0,L_SCR1(%a6) # hold opword
+
+ mov.l %d0,%d1
+ rol.w &0x4,%d1
+ andi.w &0xf,%d1 # extract index regno
+
+# count on fetch_dreg() not to alter a0...
+ bsr.l fetch_dreg # fetch index
+
+ mov.l %d2,-(%sp) # save d2
+ mov.l L_SCR1(%a6),%d2 # fetch opword
+
+ btst &0xb,%d2 # is it word or long?
+ bne.b faii8_long
+ ext.l %d0 # sign extend word index
+faii8_long:
+ mov.l %d2,%d1
+ rol.w &0x7,%d1
+ andi.l &0x3,%d1 # extract scale value
+
+ lsl.l %d1,%d0 # shift index by scale
+
+ extb.l %d2 # sign extend displacement
+ add.l %d2,%d0 # index + disp
+ add.l %d0,%a0 # An + (index + disp)
+
+ mov.l (%sp)+,%d2 # restore old d2
+ rts
+
+###########################
+# Absolute short: (XXX).W #
+###########################
+fabs_short:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word # fetch short address
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # return <ea> in a0
+ rts
+
+##########################
+# Absolute long: (XXX).L #
+##########################
+fabs_long:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch long address
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,%a0 # return <ea> in a0
+ rts
+
+#######################################################
+# Program counter indirect w/ displacement: (d16, PC) #
+#######################################################
+fpc_ind:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word # fetch word displacement
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.w %d0,%a0 # sign extend displacement
+
+ add.l EXC_EXTWPTR(%a6),%a0 # pc + d16
+
+# _imem_read_word() increased the extwptr by 2. need to adjust here.
+ subq.l &0x2,%a0 # adjust <ea>
+ rts
+
+##########################################################
+# PC indirect w/ index(8-bit displacement): (d8, PC, An) #
+# " " w/ " (base displacement): (bd, PC, An) #
+# PC memory indirect postindexed: ([bd, PC], Xn, od) #
+# PC memory indirect preindexed: ([bd, PC, Xn], od) #
+##########################################################
+fpc_ind_ext:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word # fetch ext word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # put base in a0
+ subq.l &0x2,%a0 # adjust base
+
+ btst &0x8,%d0 # is disp only 8 bits?
+ bne.w fcalc_mem_ind # calc memory indirect
+
+ mov.l %d0,L_SCR1(%a6) # store opword
+
+ mov.l %d0,%d1 # make extword copy
+ rol.w &0x4,%d1 # rotate reg num into place
+ andi.w &0xf,%d1 # extract register number
+
+# count on fetch_dreg() not to alter a0...
+ bsr.l fetch_dreg # fetch index
+
+ mov.l %d2,-(%sp) # save d2
+ mov.l L_SCR1(%a6),%d2 # fetch opword
+
+ btst &0xb,%d2 # is index word or long?
+ bne.b fpii8_long # long
+ ext.l %d0 # sign extend word index
+fpii8_long:
+ mov.l %d2,%d1
+ rol.w &0x7,%d1 # rotate scale value into place
+ andi.l &0x3,%d1 # extract scale value
+
+ lsl.l %d1,%d0 # shift index by scale
+
+ extb.l %d2 # sign extend displacement
+ add.l %d2,%d0 # disp + index
+ add.l %d0,%a0 # An + (index + disp)
+
+ mov.l (%sp)+,%d2 # restore temp register
+ rts
+
+# d2 = index
+# d3 = base
+# d4 = od
+# d5 = extword
+fcalc_mem_ind:
+ btst &0x6,%d0 # is the index suppressed?
+ beq.b fcalc_index
+
+ movm.l &0x3c00,-(%sp) # save d2-d5
+
+ mov.l %d0,%d5 # put extword in d5
+ mov.l %a0,%d3 # put base in d3
+
+ clr.l %d2 # yes, so index = 0
+ bra.b fbase_supp_ck
+
+# index:
+fcalc_index:
+ mov.l %d0,L_SCR1(%a6) # save d0 (opword)
+ bfextu %d0{&16:&4},%d1 # fetch dreg index
+ bsr.l fetch_dreg
+
+ movm.l &0x3c00,-(%sp) # save d2-d5
+ mov.l %d0,%d2 # put index in d2
+ mov.l L_SCR1(%a6),%d5
+ mov.l %a0,%d3
+
+ btst &0xb,%d5 # is index word or long?
+ bne.b fno_ext
+ ext.l %d2
+
+fno_ext:
+ bfextu %d5{&21:&2},%d0
+ lsl.l %d0,%d2
+
+# base address (passed as parameter in d3):
+# we clear the value here if it should actually be suppressed.
+fbase_supp_ck:
+ btst &0x7,%d5 # is the bd suppressed?
+ beq.b fno_base_sup
+ clr.l %d3
+
+# base displacement:
+fno_base_sup:
+ bfextu %d5{&26:&2},%d0 # get bd size
+# beq.l fmovm_error # if (size == 0) it's reserved
+
+ cmpi.b %d0,&0x2
+ blt.b fno_bd
+ beq.b fget_word_bd
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long
+
+ tst.l %d1 # did ifetch fail?
+ bne.l fcea_iacc # yes
+
+ bra.b fchk_ind
+
+fget_word_bd:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l fcea_iacc # yes
+
+ ext.l %d0 # sign extend bd
+
+fchk_ind:
+ add.l %d0,%d3 # base += bd
+
+# outer displacement:
+fno_bd:
+ bfextu %d5{&30:&2},%d0 # is od suppressed?
+ beq.w faii_bd
+
+ cmpi.b %d0,&0x2
+ blt.b fnull_od
+ beq.b fword_od
+
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long
+
+ tst.l %d1 # did ifetch fail?
+ bne.l fcea_iacc # yes
+
+ bra.b fadd_them
+
+fword_od:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x2,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_word
+
+ tst.l %d1 # did ifetch fail?
+ bne.l fcea_iacc # yes
+
+ ext.l %d0 # sign extend od
+ bra.b fadd_them
+
+fnull_od:
+ clr.l %d0
+
+fadd_them:
+ mov.l %d0,%d4
+
+ btst &0x2,%d5 # pre or post indexing?
+ beq.b fpre_indexed
+
+ mov.l %d3,%a0
+ bsr.l _dmem_read_long
+
+ tst.l %d1 # did dfetch fail?
+ bne.w fcea_err # yes
+
+ add.l %d2,%d0 # <ea> += index
+ add.l %d4,%d0 # <ea> += od
+ bra.b fdone_ea
+
+fpre_indexed:
+ add.l %d2,%d3 # preindexing
+ mov.l %d3,%a0
+ bsr.l _dmem_read_long
+
+ tst.l %d1 # did dfetch fail?
+ bne.w fcea_err # yes
+
+ add.l %d4,%d0 # ea += od
+ bra.b fdone_ea
+
+faii_bd:
+ add.l %d2,%d3 # ea = (base + bd) + index
+ mov.l %d3,%d0
+fdone_ea:
+ mov.l %d0,%a0
+
+ movm.l (%sp)+,&0x003c # restore d2-d5
+ rts
+
+#########################################################
+fcea_err:
+ mov.l %d3,%a0
+
+ movm.l (%sp)+,&0x003c # restore d2-d5
+ mov.w &0x0101,%d0
+ bra.l iea_dacc
+
+fcea_iacc:
+ movm.l (%sp)+,&0x003c # restore d2-d5
+ bra.l iea_iacc
+
+fmovm_out_err:
+ bsr.l restore
+ mov.w &0x00e1,%d0
+ bra.b fmovm_err
+
+fmovm_in_err:
+ bsr.l restore
+ mov.w &0x0161,%d0
+
+fmovm_err:
+ mov.l L_SCR1(%a6),%a0
+ bra.l iea_dacc
+
+#########################################################################
+# XDEF **************************************************************** #
+# fmovm_ctrl(): emulate fmovm.l of control registers instr #
+# #
+# XREF **************************************************************** #
+# _imem_read_long() - read longword from memory #
+# iea_iacc() - _imem_read_long() failed; error recovery #
+# #
+# INPUT *************************************************************** #
+# None #
+# #
+# OUTPUT ************************************************************** #
+# If _imem_read_long() doesn't fail: #
+# USER_FPCR(a6) = new FPCR value #
+# USER_FPSR(a6) = new FPSR value #
+# USER_FPIAR(a6) = new FPIAR value #
+# #
+# ALGORITHM *********************************************************** #
+# Decode the instruction type by looking at the extension word #
+# in order to see how many control registers to fetch from memory. #
+# Fetch them using _imem_read_long(). If this fetch fails, exit through #
+# the special access error exit handler iea_iacc(). #
+# #
+# Instruction word decoding: #
+# #
+# fmovem.l #<data>, {FPIAR&|FPCR&|FPSR} #
+# #
+# WORD1 WORD2 #
+# 1111 0010 00 111100 100$ $$00 0000 0000 #
+# #
+# $$$ (100): FPCR #
+# (010): FPSR #
+# (001): FPIAR #
+# (000): FPIAR #
+# #
+#########################################################################
+
+ global fmovm_ctrl
+fmovm_ctrl:
+ mov.b EXC_EXTWORD(%a6),%d0 # fetch reg select bits
+ cmpi.b %d0,&0x9c # fpcr & fpsr & fpiar ?
+ beq.w fctrl_in_7 # yes
+ cmpi.b %d0,&0x98 # fpcr & fpsr ?
+ beq.w fctrl_in_6 # yes
+ cmpi.b %d0,&0x94 # fpcr & fpiar ?
+ beq.b fctrl_in_5 # yes
+
+# fmovem.l #<data>, fpsr/fpiar
+fctrl_in_3:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPSR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPSR(%a6) # store new FPSR to stack
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPIAR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
+ rts
+
+# fmovem.l #<data>, fpcr/fpiar
+fctrl_in_5:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPCR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPCR(%a6) # store new FPCR to stack
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPIAR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to stack
+ rts
+
+# fmovem.l #<data>, fpcr/fpsr
+fctrl_in_6:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPCR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPSR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
+ rts
+
+# fmovem.l #<data>, fpcr/fpsr/fpiar
+fctrl_in_7:
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPCR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPCR(%a6) # store new FPCR to mem
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPSR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPSR(%a6) # store new FPSR to mem
+ mov.l EXC_EXTWPTR(%a6),%a0 # fetch instruction addr
+ addq.l &0x4,EXC_EXTWPTR(%a6) # incr instruction ptr
+ bsr.l _imem_read_long # fetch FPIAR from mem
+
+ tst.l %d1 # did ifetch fail?
+ bne.l iea_iacc # yes
+
+ mov.l %d0,USER_FPIAR(%a6) # store new FPIAR to mem
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# _dcalc_ea(): calc correct <ea> from <ea> stacked on exception #
+# #
+# XREF **************************************************************** #
+# inc_areg() - increment an address register #
+# dec_areg() - decrement an address register #
+# #
+# INPUT *************************************************************** #
+# d0 = number of bytes to adjust <ea> by #
+# #
+# OUTPUT ************************************************************** #
+# None #
+# #
+# ALGORITHM *********************************************************** #
+# "Dummy" CALCulate Effective Address: #
+# The stacked <ea> for FP unimplemented instructions and opclass #
+# two packed instructions is correct with the exception of... #
+# #
+# 1) -(An) : The register is not updated regardless of size. #
+# Also, for extended precision and packed, the #
+# stacked <ea> value is 8 bytes too big #
+# 2) (An)+ : The register is not updated. #
+# 3) #<data> : The upper longword of the immediate operand is #
+# stacked b,w,l and s sizes are completely stacked. #
+# d,x, and p are not. #
+# #
+#########################################################################
+
+ global _dcalc_ea
+_dcalc_ea:
+ mov.l %d0, %a0 # move # bytes to %a0
+
+ mov.b 1+EXC_OPWORD(%a6), %d0 # fetch opcode word
+ mov.l %d0, %d1 # make a copy
+
+ andi.w &0x38, %d0 # extract mode field
+ andi.l &0x7, %d1 # extract reg field
+
+ cmpi.b %d0,&0x18 # is mode (An)+ ?
+ beq.b dcea_pi # yes
+
+ cmpi.b %d0,&0x20 # is mode -(An) ?
+ beq.b dcea_pd # yes
+
+ or.w %d1,%d0 # concat mode,reg
+ cmpi.b %d0,&0x3c # is mode #<data>?
+
+ beq.b dcea_imm # yes
+
+ mov.l EXC_EA(%a6),%a0 # return <ea>
+ rts
+
+# need to set immediate data flag here since we'll need to do
+# an imem_read to fetch this later.
+dcea_imm:
+ mov.b &immed_flg,SPCOND_FLG(%a6)
+ lea ([USER_FPIAR,%a6],0x4),%a0 # no; return <ea>
+ rts
+
+# here, the <ea> is stacked correctly. however, we must update the
+# address register...
+dcea_pi:
+ mov.l %a0,%d0 # pass amt to inc by
+ bsr.l inc_areg # inc addr register
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ rts
+
+# the <ea> is stacked correctly for all but extended and packed which
+# the <ea>s are 8 bytes too large.
+# it would make no sense to have a pre-decrement to a7 in supervisor
+# mode so we don't even worry about this tricky case here : )
+dcea_pd:
+ mov.l %a0,%d0 # pass amt to dec by
+ bsr.l dec_areg # dec addr register
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+
+ cmpi.b %d0,&0xc # is opsize ext or packed?
+ beq.b dcea_pd2 # yes
+ rts
+dcea_pd2:
+ sub.l &0x8,%a0 # correct <ea>
+ mov.l %a0,EXC_EA(%a6) # put correct <ea> on stack
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# _calc_ea_fout(): calculate correct stacked <ea> for extended #
+# and packed data opclass 3 operations. #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# None #
+# #
+# OUTPUT ************************************************************** #
+# a0 = return correct effective address #
+# #
+# ALGORITHM *********************************************************** #
+# For opclass 3 extended and packed data operations, the <ea> #
+# stacked for the exception is incorrect for -(an) and (an)+ addressing #
+# modes. Also, while we're at it, the index register itself must get #
+# updated. #
+# So, for -(an), we must subtract 8 off of the stacked <ea> value #
+# and return that value as the correct <ea> and store that value in An. #
+# For (an)+, the stacked <ea> is correct but we must adjust An by +12. #
+# #
+#########################################################################
+
+# This calc_ea is currently used to retrieve the correct <ea>
+# for fmove outs of type extended and packed.
+ global _calc_ea_fout
+_calc_ea_fout:
+ mov.b 1+EXC_OPWORD(%a6),%d0 # fetch opcode word
+ mov.l %d0,%d1 # make a copy
+
+ andi.w &0x38,%d0 # extract mode field
+ andi.l &0x7,%d1 # extract reg field
+
+ cmpi.b %d0,&0x18 # is mode (An)+ ?
+ beq.b ceaf_pi # yes
+
+ cmpi.b %d0,&0x20 # is mode -(An) ?
+ beq.w ceaf_pd # yes
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ rts
+
+# (An)+ : extended and packed fmove out
+# : stacked <ea> is correct
+# : "An" not updated
+ceaf_pi:
+ mov.w (tbl_ceaf_pi.b,%pc,%d1.w*2),%d1
+ mov.l EXC_EA(%a6),%a0
+ jmp (tbl_ceaf_pi.b,%pc,%d1.w*1)
+
+ swbeg &0x8
+tbl_ceaf_pi:
+ short ceaf_pi0 - tbl_ceaf_pi
+ short ceaf_pi1 - tbl_ceaf_pi
+ short ceaf_pi2 - tbl_ceaf_pi
+ short ceaf_pi3 - tbl_ceaf_pi
+ short ceaf_pi4 - tbl_ceaf_pi
+ short ceaf_pi5 - tbl_ceaf_pi
+ short ceaf_pi6 - tbl_ceaf_pi
+ short ceaf_pi7 - tbl_ceaf_pi
+
+ceaf_pi0:
+ addi.l &0xc,EXC_DREGS+0x8(%a6)
+ rts
+ceaf_pi1:
+ addi.l &0xc,EXC_DREGS+0xc(%a6)
+ rts
+ceaf_pi2:
+ add.l &0xc,%a2
+ rts
+ceaf_pi3:
+ add.l &0xc,%a3
+ rts
+ceaf_pi4:
+ add.l &0xc,%a4
+ rts
+ceaf_pi5:
+ add.l &0xc,%a5
+ rts
+ceaf_pi6:
+ addi.l &0xc,EXC_A6(%a6)
+ rts
+ceaf_pi7:
+ mov.b &mia7_flg,SPCOND_FLG(%a6)
+ addi.l &0xc,EXC_A7(%a6)
+ rts
+
+# -(An) : extended and packed fmove out
+# : stacked <ea> = actual <ea> + 8
+# : "An" not updated
+ceaf_pd:
+ mov.w (tbl_ceaf_pd.b,%pc,%d1.w*2),%d1
+ mov.l EXC_EA(%a6),%a0
+ sub.l &0x8,%a0
+ sub.l &0x8,EXC_EA(%a6)
+ jmp (tbl_ceaf_pd.b,%pc,%d1.w*1)
+
+ swbeg &0x8
+tbl_ceaf_pd:
+ short ceaf_pd0 - tbl_ceaf_pd
+ short ceaf_pd1 - tbl_ceaf_pd
+ short ceaf_pd2 - tbl_ceaf_pd
+ short ceaf_pd3 - tbl_ceaf_pd
+ short ceaf_pd4 - tbl_ceaf_pd
+ short ceaf_pd5 - tbl_ceaf_pd
+ short ceaf_pd6 - tbl_ceaf_pd
+ short ceaf_pd7 - tbl_ceaf_pd
+
+ceaf_pd0:
+ mov.l %a0,EXC_DREGS+0x8(%a6)
+ rts
+ceaf_pd1:
+ mov.l %a0,EXC_DREGS+0xc(%a6)
+ rts
+ceaf_pd2:
+ mov.l %a0,%a2
+ rts
+ceaf_pd3:
+ mov.l %a0,%a3
+ rts
+ceaf_pd4:
+ mov.l %a0,%a4
+ rts
+ceaf_pd5:
+ mov.l %a0,%a5
+ rts
+ceaf_pd6:
+ mov.l %a0,EXC_A6(%a6)
+ rts
+ceaf_pd7:
+ mov.l %a0,EXC_A7(%a6)
+ mov.b &mda7_flg,SPCOND_FLG(%a6)
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# _load_fop(): load operand for unimplemented FP exception #
+# #
+# XREF **************************************************************** #
+# set_tag_x() - determine ext prec optype tag #
+# set_tag_s() - determine sgl prec optype tag #
+# set_tag_d() - determine dbl prec optype tag #
+# unnorm_fix() - convert normalized number to denorm or zero #
+# norm() - normalize a denormalized number #
+# get_packed() - fetch a packed operand from memory #
+# _dcalc_ea() - calculate <ea>, fixing An in process #
+# #
+# _imem_read_{word,long}() - read from instruction memory #
+# _dmem_read() - read from data memory #
+# _dmem_read_{byte,word,long}() - read from data memory #
+# #
+# facc_in_{b,w,l,d,x}() - mem read failed; special exit point #
+# #
+# INPUT *************************************************************** #
+# None #
+# #
+# OUTPUT ************************************************************** #
+# If memory access doesn't fail: #
+# FP_SRC(a6) = source operand in extended precision #
+# FP_DST(a6) = destination operand in extended precision #
+# #
+# ALGORITHM *********************************************************** #
+# This is called from the Unimplemented FP exception handler in #
+# order to load the source and maybe destination operand into #
+# FP_SRC(a6) and FP_DST(a6). If the instruction was opclass zero, load #
+# the source and destination from the FP register file. Set the optype #
+# tags for both if dyadic, one for monadic. If a number is an UNNORM, #
+# convert it to a DENORM or a ZERO. #
+# If the instruction is opclass two (memory->reg), then fetch #
+# the destination from the register file and the source operand from #
+# memory. Tag and fix both as above w/ opclass zero instructions. #
+# If the source operand is byte,word,long, or single, it may be #
+# in the data register file. If it's actually out in memory, use one of #
+# the mem_read() routines to fetch it. If the mem_read() access returns #
+# a failing value, exit through the special facc_in() routine which #
+# will create an access error exception frame from the current exception #
+# frame. #
+# Immediate data and regular data accesses are separated because #
+# if an immediate data access fails, the resulting fault status #
+# longword stacked for the access error exception must have the #
+# instruction bit set. #
+# #
+#########################################################################
+
+ global _load_fop
+_load_fop:
+
+# 15 13 12 10 9 7 6 0
+# / \ / \ / \ / \
+# ---------------------------------
+# | opclass | RX | RY | EXTENSION | (2nd word of general FP instruction)
+# ---------------------------------
+#
+
+# bfextu EXC_CMDREG(%a6){&0:&3}, %d0 # extract opclass
+# cmpi.b %d0, &0x2 # which class is it? ('000,'010,'011)
+# beq.w op010 # handle <ea> -> fpn
+# bgt.w op011 # handle fpn -> <ea>
+
+# we're not using op011 for now...
+ btst &0x6,EXC_CMDREG(%a6)
+ bne.b op010
+
+############################
+# OPCLASS '000: reg -> reg #
+############################
+op000:
+ mov.b 1+EXC_CMDREG(%a6),%d0 # fetch extension word lo
+ btst &0x5,%d0 # testing extension bits
+ beq.b op000_src # (bit 5 == 0) => monadic
+ btst &0x4,%d0 # (bit 5 == 1)
+ beq.b op000_dst # (bit 4 == 0) => dyadic
+ and.w &0x007f,%d0 # extract extension bits {6:0}
+ cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ?
+ bne.b op000_src # it's an fcmp
+
+op000_dst:
+ bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field
+ bsr.l load_fpn2 # fetch dst fpreg into FP_DST
+
+ bsr.l set_tag_x # get dst optype tag
+
+ cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM?
+ beq.b op000_dst_unnorm # yes
+op000_dst_cont:
+ mov.b %d0, DTAG(%a6) # store the dst optype tag
+
+op000_src:
+ bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src field
+ bsr.l load_fpn1 # fetch src fpreg into FP_SRC
+
+ bsr.l set_tag_x # get src optype tag
+
+ cmpi.b %d0, &UNNORM # is src fpreg an UNNORM?
+ beq.b op000_src_unnorm # yes
+op000_src_cont:
+ mov.b %d0, STAG(%a6) # store the src optype tag
+ rts
+
+op000_dst_unnorm:
+ bsr.l unnorm_fix # fix the dst UNNORM
+ bra.b op000_dst_cont
+op000_src_unnorm:
+ bsr.l unnorm_fix # fix the src UNNORM
+ bra.b op000_src_cont
+
+#############################
+# OPCLASS '010: <ea> -> reg #
+#############################
+op010:
+ mov.w EXC_CMDREG(%a6),%d0 # fetch extension word
+ btst &0x5,%d0 # testing extension bits
+ beq.b op010_src # (bit 5 == 0) => monadic
+ btst &0x4,%d0 # (bit 5 == 1)
+ beq.b op010_dst # (bit 4 == 0) => dyadic
+ and.w &0x007f,%d0 # extract extension bits {6:0}
+ cmpi.w %d0,&0x0038 # is it an fcmp (dyadic) ?
+ bne.b op010_src # it's an fcmp
+
+op010_dst:
+ bfextu EXC_CMDREG(%a6){&6:&3}, %d0 # extract dst field
+ bsr.l load_fpn2 # fetch dst fpreg ptr
+
+ bsr.l set_tag_x # get dst type tag
+
+ cmpi.b %d0, &UNNORM # is dst fpreg an UNNORM?
+ beq.b op010_dst_unnorm # yes
+op010_dst_cont:
+ mov.b %d0, DTAG(%a6) # store the dst optype tag
+
+op010_src:
+ bfextu EXC_CMDREG(%a6){&3:&3}, %d0 # extract src type field
+
+ bfextu EXC_OPWORD(%a6){&10:&3}, %d1 # extract <ea> mode field
+ bne.w fetch_from_mem # src op is in memory
+
+op010_dreg:
+ clr.b STAG(%a6) # either NORM or ZERO
+ bfextu EXC_OPWORD(%a6){&13:&3}, %d1 # extract src reg field
+
+ mov.w (tbl_op010_dreg.b,%pc,%d0.w*2), %d0 # jmp based on optype
+ jmp (tbl_op010_dreg.b,%pc,%d0.w*1) # fetch src from dreg
+
+op010_dst_unnorm:
+ bsr.l unnorm_fix # fix the dst UNNORM
+ bra.b op010_dst_cont
+
+ swbeg &0x8
+tbl_op010_dreg:
+ short opd_long - tbl_op010_dreg
+ short opd_sgl - tbl_op010_dreg
+ short tbl_op010_dreg - tbl_op010_dreg
+ short tbl_op010_dreg - tbl_op010_dreg
+ short opd_word - tbl_op010_dreg
+ short tbl_op010_dreg - tbl_op010_dreg
+ short opd_byte - tbl_op010_dreg
+ short tbl_op010_dreg - tbl_op010_dreg
+
+#
+# LONG: can be either NORM or ZERO...
+#
+opd_long:
+ bsr.l fetch_dreg # fetch long in d0
+ fmov.l %d0, %fp0 # load a long
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+ fbeq.w opd_long_zero # long is a ZERO
+ rts
+opd_long_zero:
+ mov.b &ZERO, STAG(%a6) # set ZERO optype flag
+ rts
+
+#
+# WORD: can be either NORM or ZERO...
+#
+opd_word:
+ bsr.l fetch_dreg # fetch word in d0
+ fmov.w %d0, %fp0 # load a word
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+ fbeq.w opd_word_zero # WORD is a ZERO
+ rts
+opd_word_zero:
+ mov.b &ZERO, STAG(%a6) # set ZERO optype flag
+ rts
+
+#
+# BYTE: can be either NORM or ZERO...
+#
+opd_byte:
+ bsr.l fetch_dreg # fetch word in d0
+ fmov.b %d0, %fp0 # load a byte
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+ fbeq.w opd_byte_zero # byte is a ZERO
+ rts
+opd_byte_zero:
+ mov.b &ZERO, STAG(%a6) # set ZERO optype flag
+ rts
+
+#
+# SGL: can be either NORM, DENORM, ZERO, INF, QNAN or SNAN but not UNNORM
+#
+# separate SNANs and DENORMs so they can be loaded w/ special care.
+# all others can simply be moved "in" using fmove.
+#
+opd_sgl:
+ bsr.l fetch_dreg # fetch sgl in d0
+ mov.l %d0,L_SCR1(%a6)
+
+ lea L_SCR1(%a6), %a0 # pass: ptr to the sgl
+ bsr.l set_tag_s # determine sgl type
+ mov.b %d0, STAG(%a6) # save the src tag
+
+ cmpi.b %d0, &SNAN # is it an SNAN?
+ beq.w get_sgl_snan # yes
+
+ cmpi.b %d0, &DENORM # is it a DENORM?
+ beq.w get_sgl_denorm # yes
+
+ fmov.s (%a0), %fp0 # no, so can load it regular
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+ rts
+
+##############################################################################
+
+#########################################################################
+# fetch_from_mem(): #
+# - src is out in memory. must: #
+# (1) calc ea - must read AFTER you know the src type since #
+# if the ea is -() or ()+, need to know # of bytes. #
+# (2) read it in from either user or supervisor space #
+# (3) if (b || w || l) then simply read in #
+# if (s || d || x) then check for SNAN,UNNORM,DENORM #
+# if (packed) then punt for now #
+# INPUT: #
+# %d0 : src type field #
+#########################################################################
+fetch_from_mem:
+ clr.b STAG(%a6) # either NORM or ZERO
+
+ mov.w (tbl_fp_type.b,%pc,%d0.w*2), %d0 # index by src type field
+ jmp (tbl_fp_type.b,%pc,%d0.w*1)
+
+ swbeg &0x8
+tbl_fp_type:
+ short load_long - tbl_fp_type
+ short load_sgl - tbl_fp_type
+ short load_ext - tbl_fp_type
+ short load_packed - tbl_fp_type
+ short load_word - tbl_fp_type
+ short load_dbl - tbl_fp_type
+ short load_byte - tbl_fp_type
+ short tbl_fp_type - tbl_fp_type
+
+#########################################
+# load a LONG into %fp0: #
+# -number can't fault #
+# (1) calc ea #
+# (2) read 4 bytes into L_SCR1 #
+# (3) fmov.l into %fp0 #
+#########################################
+load_long:
+ movq.l &0x4, %d0 # pass: 4 (bytes)
+ bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
+
+ cmpi.b SPCOND_FLG(%a6),&immed_flg
+ beq.b load_long_immed
+
+ bsr.l _dmem_read_long # fetch src operand from memory
+
+ tst.l %d1 # did dfetch fail?
+ bne.l facc_in_l # yes
+
+load_long_cont:
+ fmov.l %d0, %fp0 # read into %fp0;convert to xprec
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+
+ fbeq.w load_long_zero # src op is a ZERO
+ rts
+load_long_zero:
+ mov.b &ZERO, STAG(%a6) # set optype tag to ZERO
+ rts
+
+load_long_immed:
+ bsr.l _imem_read_long # fetch src operand immed data
+
+ tst.l %d1 # did ifetch fail?
+ bne.l funimp_iacc # yes
+ bra.b load_long_cont
+
+#########################################
+# load a WORD into %fp0: #
+# -number can't fault #
+# (1) calc ea #
+# (2) read 2 bytes into L_SCR1 #
+# (3) fmov.w into %fp0 #
+#########################################
+load_word:
+ movq.l &0x2, %d0 # pass: 2 (bytes)
+ bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
+
+ cmpi.b SPCOND_FLG(%a6),&immed_flg
+ beq.b load_word_immed
+
+ bsr.l _dmem_read_word # fetch src operand from memory
+
+ tst.l %d1 # did dfetch fail?
+ bne.l facc_in_w # yes
+
+load_word_cont:
+ fmov.w %d0, %fp0 # read into %fp0;convert to xprec
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+
+ fbeq.w load_word_zero # src op is a ZERO
+ rts
+load_word_zero:
+ mov.b &ZERO, STAG(%a6) # set optype tag to ZERO
+ rts
+
+load_word_immed:
+ bsr.l _imem_read_word # fetch src operand immed data
+
+ tst.l %d1 # did ifetch fail?
+ bne.l funimp_iacc # yes
+ bra.b load_word_cont
+
+#########################################
+# load a BYTE into %fp0: #
+# -number can't fault #
+# (1) calc ea #
+# (2) read 1 byte into L_SCR1 #
+# (3) fmov.b into %fp0 #
+#########################################
+load_byte:
+ movq.l &0x1, %d0 # pass: 1 (byte)
+ bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
+
+ cmpi.b SPCOND_FLG(%a6),&immed_flg
+ beq.b load_byte_immed
+
+ bsr.l _dmem_read_byte # fetch src operand from memory
+
+ tst.l %d1 # did dfetch fail?
+ bne.l facc_in_b # yes
+
+load_byte_cont:
+ fmov.b %d0, %fp0 # read into %fp0;convert to xprec
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+
+ fbeq.w load_byte_zero # src op is a ZERO
+ rts
+load_byte_zero:
+ mov.b &ZERO, STAG(%a6) # set optype tag to ZERO
+ rts
+
+load_byte_immed:
+ bsr.l _imem_read_word # fetch src operand immed data
+
+ tst.l %d1 # did ifetch fail?
+ bne.l funimp_iacc # yes
+ bra.b load_byte_cont
+
+#########################################
+# load a SGL into %fp0: #
+# -number can't fault #
+# (1) calc ea #
+# (2) read 4 bytes into L_SCR1 #
+# (3) fmov.s into %fp0 #
+#########################################
+load_sgl:
+ movq.l &0x4, %d0 # pass: 4 (bytes)
+ bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
+
+ cmpi.b SPCOND_FLG(%a6),&immed_flg
+ beq.b load_sgl_immed
+
+ bsr.l _dmem_read_long # fetch src operand from memory
+ mov.l %d0, L_SCR1(%a6) # store src op on stack
+
+ tst.l %d1 # did dfetch fail?
+ bne.l facc_in_l # yes
+
+load_sgl_cont:
+ lea L_SCR1(%a6), %a0 # pass: ptr to sgl src op
+ bsr.l set_tag_s # determine src type tag
+ mov.b %d0, STAG(%a6) # save src optype tag on stack
+
+ cmpi.b %d0, &DENORM # is it a sgl DENORM?
+ beq.w get_sgl_denorm # yes
+
+ cmpi.b %d0, &SNAN # is it a sgl SNAN?
+ beq.w get_sgl_snan # yes
+
+ fmov.s L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+ rts
+
+load_sgl_immed:
+ bsr.l _imem_read_long # fetch src operand immed data
+
+ tst.l %d1 # did ifetch fail?
+ bne.l funimp_iacc # yes
+ bra.b load_sgl_cont
+
+# must convert sgl denorm format to an Xprec denorm fmt suitable for
+# normalization...
+# %a0 : points to sgl denorm
+get_sgl_denorm:
+ clr.w FP_SRC_EX(%a6)
+ bfextu (%a0){&9:&23}, %d0 # fetch sgl hi(_mantissa)
+ lsl.l &0x8, %d0
+ mov.l %d0, FP_SRC_HI(%a6) # set ext hi(_mantissa)
+ clr.l FP_SRC_LO(%a6) # set ext lo(_mantissa)
+
+ clr.w FP_SRC_EX(%a6)
+ btst &0x7, (%a0) # is sgn bit set?
+ beq.b sgl_dnrm_norm
+ bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value
+
+sgl_dnrm_norm:
+ lea FP_SRC(%a6), %a0
+ bsr.l norm # normalize number
+ mov.w &0x3f81, %d1 # xprec exp = 0x3f81
+ sub.w %d0, %d1 # exp = 0x3f81 - shft amt.
+ or.w %d1, FP_SRC_EX(%a6) # {sgn,exp}
+
+ mov.b &NORM, STAG(%a6) # fix src type tag
+ rts
+
+# convert sgl to ext SNAN
+# %a0 : points to sgl SNAN
+get_sgl_snan:
+ mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN
+ bfextu (%a0){&9:&23}, %d0
+ lsl.l &0x8, %d0 # extract and insert hi(man)
+ mov.l %d0, FP_SRC_HI(%a6)
+ clr.l FP_SRC_LO(%a6)
+
+ btst &0x7, (%a0) # see if sign of SNAN is set
+ beq.b no_sgl_snan_sgn
+ bset &0x7, FP_SRC_EX(%a6)
+no_sgl_snan_sgn:
+ rts
+
+#########################################
+# load a DBL into %fp0: #
+# -number can't fault #
+# (1) calc ea #
+# (2) read 8 bytes into L_SCR(1,2)#
+# (3) fmov.d into %fp0 #
+#########################################
+load_dbl:
+ movq.l &0x8, %d0 # pass: 8 (bytes)
+ bsr.l _dcalc_ea # calc <ea>; <ea> in %a0
+
+ cmpi.b SPCOND_FLG(%a6),&immed_flg
+ beq.b load_dbl_immed
+
+ lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space
+ movq.l &0x8, %d0 # pass: # bytes to read
+ bsr.l _dmem_read # fetch src operand from memory
+
+ tst.l %d1 # did dfetch fail?
+ bne.l facc_in_d # yes
+
+load_dbl_cont:
+ lea L_SCR1(%a6), %a0 # pass: ptr to input dbl
+ bsr.l set_tag_d # determine src type tag
+ mov.b %d0, STAG(%a6) # set src optype tag
+
+ cmpi.b %d0, &DENORM # is it a dbl DENORM?
+ beq.w get_dbl_denorm # yes
+
+ cmpi.b %d0, &SNAN # is it a dbl SNAN?
+ beq.w get_dbl_snan # yes
+
+ fmov.d L_SCR1(%a6), %fp0 # read into %fp0;convert to xprec
+ fmovm.x &0x80, FP_SRC(%a6) # return src op in FP_SRC
+ rts
+
+load_dbl_immed:
+ lea L_SCR1(%a6), %a1 # pass: ptr to input dbl tmp space
+ movq.l &0x8, %d0 # pass: # bytes to read
+ bsr.l _imem_read # fetch src operand from memory
+
+ tst.l %d1 # did ifetch fail?
+ bne.l funimp_iacc # yes
+ bra.b load_dbl_cont
+
+# must convert dbl denorm format to an Xprec denorm fmt suitable for
+# normalization...
+# %a0 : loc. of dbl denorm
+get_dbl_denorm:
+ clr.w FP_SRC_EX(%a6)
+ bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa)
+ mov.l %d0, FP_SRC_HI(%a6)
+ bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa)
+ mov.l &0xb, %d1
+ lsl.l %d1, %d0
+ mov.l %d0, FP_SRC_LO(%a6)
+
+ btst &0x7, (%a0) # is sgn bit set?
+ beq.b dbl_dnrm_norm
+ bset &0x7, FP_SRC_EX(%a6) # set sgn of xprec value
+
+dbl_dnrm_norm:
+ lea FP_SRC(%a6), %a0
+ bsr.l norm # normalize number
+ mov.w &0x3c01, %d1 # xprec exp = 0x3c01
+ sub.w %d0, %d1 # exp = 0x3c01 - shft amt.
+ or.w %d1, FP_SRC_EX(%a6) # {sgn,exp}
+
+ mov.b &NORM, STAG(%a6) # fix src type tag
+ rts
+
+# convert dbl to ext SNAN
+# %a0 : points to dbl SNAN
+get_dbl_snan:
+ mov.w &0x7fff, FP_SRC_EX(%a6) # set exp of SNAN
+
+ bfextu (%a0){&12:&31}, %d0 # fetch hi(_mantissa)
+ mov.l %d0, FP_SRC_HI(%a6)
+ bfextu 4(%a0){&11:&21}, %d0 # fetch lo(_mantissa)
+ mov.l &0xb, %d1
+ lsl.l %d1, %d0
+ mov.l %d0, FP_SRC_LO(%a6)
+
+ btst &0x7, (%a0) # see if sign of SNAN is set
+ beq.b no_dbl_snan_sgn
+ bset &0x7, FP_SRC_EX(%a6)
+no_dbl_snan_sgn:
+ rts
+
+#################################################
+# load a Xprec into %fp0: #
+# -number can't fault #
+# (1) calc ea #
+# (2) read 12 bytes into L_SCR(1,2) #
+# (3) fmov.x into %fp0 #
+#################################################
+load_ext:
+ mov.l &0xc, %d0 # pass: 12 (bytes)
+ bsr.l _dcalc_ea # calc <ea>
+
+ lea FP_SRC(%a6), %a1 # pass: ptr to input ext tmp space
+ mov.l &0xc, %d0 # pass: # of bytes to read
+ bsr.l _dmem_read # fetch src operand from memory
+
+ tst.l %d1 # did dfetch fail?
+ bne.l facc_in_x # yes
+
+ lea FP_SRC(%a6), %a0 # pass: ptr to src op
+ bsr.l set_tag_x # determine src type tag
+
+ cmpi.b %d0, &UNNORM # is the src op an UNNORM?
+ beq.b load_ext_unnorm # yes
+
+ mov.b %d0, STAG(%a6) # store the src optype tag
+ rts
+
+load_ext_unnorm:
+ bsr.l unnorm_fix # fix the src UNNORM
+ mov.b %d0, STAG(%a6) # store the src optype tag
+ rts
+
+#################################################
+# load a packed into %fp0: #
+# -number can't fault #
+# (1) calc ea #
+# (2) read 12 bytes into L_SCR(1,2,3) #
+# (3) fmov.x into %fp0 #
+#################################################
+load_packed:
+ bsr.l get_packed
+
+ lea FP_SRC(%a6),%a0 # pass ptr to src op
+ bsr.l set_tag_x # determine src type tag
+ cmpi.b %d0,&UNNORM # is the src op an UNNORM ZERO?
+ beq.b load_packed_unnorm # yes
+
+ mov.b %d0,STAG(%a6) # store the src optype tag
+ rts
+
+load_packed_unnorm:
+ bsr.l unnorm_fix # fix the UNNORM ZERO
+ mov.b %d0,STAG(%a6) # store the src optype tag
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# fout(): move from fp register to memory or data register #
+# #
+# XREF **************************************************************** #
+# _round() - needed to create EXOP for sgl/dbl precision #
+# norm() - needed to create EXOP for extended precision #
+# ovf_res() - create default overflow result for sgl/dbl precision#
+# unf_res() - create default underflow result for sgl/dbl prec. #
+# dst_dbl() - create rounded dbl precision result. #
+# dst_sgl() - create rounded sgl precision result. #
+# fetch_dreg() - fetch dynamic k-factor reg for packed. #
+# bindec() - convert FP binary number to packed number. #
+# _mem_write() - write data to memory. #
+# _mem_write2() - write data to memory unless supv mode -(a7) exc.#
+# _dmem_write_{byte,word,long}() - write data to memory. #
+# store_dreg_{b,w,l}() - store data to data register file. #
+# facc_out_{b,w,l,d,x}() - data access error occurred. #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision source operand #
+# d0 = round prec,mode #
+# #
+# OUTPUT ************************************************************** #
+# fp0 : intermediate underflow or overflow result if #
+# OVFL/UNFL occurred for a sgl or dbl operand #
+# #
+# ALGORITHM *********************************************************** #
+# This routine is accessed by many handlers that need to do an #
+# opclass three move of an operand out to memory. #
+# Decode an fmove out (opclass 3) instruction to determine if #
+# it's b,w,l,s,d,x, or p in size. b,w,l can be stored to either a data #
+# register or memory. The algorithm uses a standard "fmove" to create #
+# the rounded result. Also, since exceptions are disabled, this also #
+# create the correct OPERR default result if appropriate. #
+# For sgl or dbl precision, overflow or underflow can occur. If #
+# either occurs and is enabled, the EXOP. #
+# For extended precision, the stacked <ea> must be fixed along #
+# w/ the address index register as appropriate w/ _calc_ea_fout(). If #
+# the source is a denorm and if underflow is enabled, an EXOP must be #
+# created. #
+# For packed, the k-factor must be fetched from the instruction #
+# word or a data register. The <ea> must be fixed as w/ extended #
+# precision. Then, bindec() is called to create the appropriate #
+# packed result. #
+# If at any time an access error is flagged by one of the move- #
+# to-memory routines, then a special exit must be made so that the #
+# access error can be handled properly. #
+# #
+#########################################################################
+
+ global fout
+fout:
+ bfextu EXC_CMDREG(%a6){&3:&3},%d1 # extract dst fmt
+ mov.w (tbl_fout.b,%pc,%d1.w*2),%a1 # use as index
+ jmp (tbl_fout.b,%pc,%a1) # jump to routine
+
+ swbeg &0x8
+tbl_fout:
+ short fout_long - tbl_fout
+ short fout_sgl - tbl_fout
+ short fout_ext - tbl_fout
+ short fout_pack - tbl_fout
+ short fout_word - tbl_fout
+ short fout_dbl - tbl_fout
+ short fout_byte - tbl_fout
+ short fout_pack - tbl_fout
+
+#################################################################
+# fmove.b out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+fout_byte:
+ tst.b STAG(%a6) # is operand normalized?
+ bne.b fout_byte_denorm # no
+
+ fmovm.x SRC(%a0),&0x80 # load value
+
+fout_byte_norm:
+ fmov.l %d0,%fpcr # insert rnd prec,mode
+
+ fmov.b %fp0,%d0 # exec move out w/ correct rnd mode
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # fetch FPSR
+ or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
+
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
+ andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
+ beq.b fout_byte_dn # must save to integer regfile
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ bsr.l _dmem_write_byte # write byte
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_b # yes
+
+ rts
+
+fout_byte_dn:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
+ andi.w &0x7,%d1
+ bsr.l store_dreg_b
+ rts
+
+fout_byte_denorm:
+ mov.l SRC_EX(%a0),%d1
+ andi.l &0x80000000,%d1 # keep DENORM sign
+ ori.l &0x00800000,%d1 # make smallest sgl
+ fmov.s %d1,%fp0
+ bra.b fout_byte_norm
+
+#################################################################
+# fmove.w out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+fout_word:
+ tst.b STAG(%a6) # is operand normalized?
+ bne.b fout_word_denorm # no
+
+ fmovm.x SRC(%a0),&0x80 # load value
+
+fout_word_norm:
+ fmov.l %d0,%fpcr # insert rnd prec:mode
+
+ fmov.w %fp0,%d0 # exec move out w/ correct rnd mode
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # fetch FPSR
+ or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
+
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
+ andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
+ beq.b fout_word_dn # must save to integer regfile
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ bsr.l _dmem_write_word # write word
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_w # yes
+
+ rts
+
+fout_word_dn:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
+ andi.w &0x7,%d1
+ bsr.l store_dreg_w
+ rts
+
+fout_word_denorm:
+ mov.l SRC_EX(%a0),%d1
+ andi.l &0x80000000,%d1 # keep DENORM sign
+ ori.l &0x00800000,%d1 # make smallest sgl
+ fmov.s %d1,%fp0
+ bra.b fout_word_norm
+
+#################################################################
+# fmove.l out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+fout_long:
+ tst.b STAG(%a6) # is operand normalized?
+ bne.b fout_long_denorm # no
+
+ fmovm.x SRC(%a0),&0x80 # load value
+
+fout_long_norm:
+ fmov.l %d0,%fpcr # insert rnd prec:mode
+
+ fmov.l %fp0,%d0 # exec move out w/ correct rnd mode
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # fetch FPSR
+ or.w %d1,2+USER_FPSR(%a6) # save new exc,accrued bits
+
+fout_long_write:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
+ andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
+ beq.b fout_long_dn # must save to integer regfile
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ bsr.l _dmem_write_long # write long
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_l # yes
+
+ rts
+
+fout_long_dn:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
+ andi.w &0x7,%d1
+ bsr.l store_dreg_l
+ rts
+
+fout_long_denorm:
+ mov.l SRC_EX(%a0),%d1
+ andi.l &0x80000000,%d1 # keep DENORM sign
+ ori.l &0x00800000,%d1 # make smallest sgl
+ fmov.s %d1,%fp0
+ bra.b fout_long_norm
+
+#################################################################
+# fmove.x out ###################################################
+#################################################################
+
+# Only "Unimplemented Data Type" exceptions enter here. The operand
+# is either a DENORM or a NORM.
+# The DENORM causes an Underflow exception.
+fout_ext:
+
+# we copy the extended precision result to FP_SCR0 so that the reserved
+# 16-bit field gets zeroed. we do this since we promise not to disturb
+# what's at SRC(a0).
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ clr.w 2+FP_SCR0_EX(%a6) # clear reserved field
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ fmovm.x SRC(%a0),&0x80 # return result
+
+ bsr.l _calc_ea_fout # fix stacked <ea>
+
+ mov.l %a0,%a1 # pass: dst addr
+ lea FP_SCR0(%a6),%a0 # pass: src addr
+ mov.l &0xc,%d0 # pass: opsize is 12 bytes
+
+# we must not yet write the extended precision data to the stack
+# in the pre-decrement case from supervisor mode or else we'll corrupt
+# the stack frame. so, leave it in FP_SRC for now and deal with it later...
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg
+ beq.b fout_ext_a7
+
+ bsr.l _dmem_write # write ext prec number to memory
+
+ tst.l %d1 # did dstore fail?
+ bne.w fout_ext_err # yes
+
+ tst.b STAG(%a6) # is operand normalized?
+ bne.b fout_ext_denorm # no
+ rts
+
+# the number is a DENORM. must set the underflow exception bit
+fout_ext_denorm:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set underflow exc bit
+
+ mov.b FPCR_ENABLE(%a6),%d0
+ andi.b &0x0a,%d0 # is UNFL or INEX enabled?
+ bne.b fout_ext_exc # yes
+ rts
+
+# we don't want to do the write if the exception occurred in supervisor mode
+# so _mem_write2() handles this for us.
+fout_ext_a7:
+ bsr.l _mem_write2 # write ext prec number to memory
+
+ tst.l %d1 # did dstore fail?
+ bne.w fout_ext_err # yes
+
+ tst.b STAG(%a6) # is operand normalized?
+ bne.b fout_ext_denorm # no
+ rts
+
+fout_ext_exc:
+ lea FP_SCR0(%a6),%a0
+ bsr.l norm # normalize the mantissa
+ neg.w %d0 # new exp = -(shft amt)
+ andi.w &0x7fff,%d0
+ andi.w &0x8000,FP_SCR0_EX(%a6) # keep only old sign
+ or.w %d0,FP_SCR0_EX(%a6) # insert new exponent
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ rts
+
+fout_ext_err:
+ mov.l EXC_A6(%a6),(%a6) # fix stacked a6
+ bra.l facc_out_x
+
+#########################################################################
+# fmove.s out ###########################################################
+#########################################################################
+fout_sgl:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &s_mode*0x10,%d0 # insert sgl prec
+ mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
+
+#
+# operand is a normalized number. first, we check to see if the move out
+# would cause either an underflow or overflow. these cases are handled
+# separately. otherwise, set the FPCR to the proper rounding mode and
+# execute the move.
+#
+ mov.w SRC_EX(%a0),%d0 # extract exponent
+ andi.w &0x7fff,%d0 # strip sign
+
+ cmpi.w %d0,&SGL_HI # will operand overflow?
+ bgt.w fout_sgl_ovfl # yes; go handle OVFL
+ beq.w fout_sgl_may_ovfl # maybe; go handle possible OVFL
+ cmpi.w %d0,&SGL_LO # will operand underflow?
+ blt.w fout_sgl_unfl # yes; go handle underflow
+
+#
+# NORMs(in range) can be stored out by a simple "fmov.s"
+# Unnormalized inputs can come through this point.
+#
+fout_sgl_exg:
+ fmovm.x SRC(%a0),&0x80 # fetch fop from stack
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmov.s %fp0,%d0 # store does convert and round
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d1 # save FPSR
+
+ or.w %d1,2+USER_FPSR(%a6) # set possible inex2/ainex
+
+fout_sgl_exg_write:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
+ andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
+ beq.b fout_sgl_exg_write_dn # must save to integer regfile
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ bsr.l _dmem_write_long # write long
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_l # yes
+
+ rts
+
+fout_sgl_exg_write_dn:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
+ andi.w &0x7,%d1
+ bsr.l store_dreg_l
+ rts
+
+#
+# here, we know that the operand would UNFL if moved out to single prec,
+# so, denorm and round and then use generic store single routine to
+# write the value to memory.
+#
+fout_sgl_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ mov.l %a0,-(%sp)
+
+ clr.l %d0 # pass: S.F. = 0
+
+ cmpi.b STAG(%a6),&DENORM # fetch src optype tag
+ bne.b fout_sgl_unfl_cont # let DENORMs fall through
+
+ lea FP_SCR0(%a6),%a0
+ bsr.l norm # normalize the DENORM
+
+fout_sgl_unfl_cont:
+ lea FP_SCR0(%a6),%a0 # pass: ptr to operand
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calc default underflow result
+
+ lea FP_SCR0(%a6),%a0 # pass: ptr to fop
+ bsr.l dst_sgl # convert to single prec
+
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
+ andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
+ beq.b fout_sgl_unfl_dn # must save to integer regfile
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ bsr.l _dmem_write_long # write long
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_l # yes
+
+ bra.b fout_sgl_unfl_chkexc
+
+fout_sgl_unfl_dn:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
+ andi.w &0x7,%d1
+ bsr.l store_dreg_l
+
+fout_sgl_unfl_chkexc:
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0a,%d1 # is UNFL or INEX enabled?
+ bne.w fout_sd_exc_unfl # yes
+ addq.l &0x4,%sp
+ rts
+
+#
+# it's definitely an overflow so call ovf_res to get the correct answer
+#
+fout_sgl_ovfl:
+ tst.b 3+SRC_HI(%a0) # is result inexact?
+ bne.b fout_sgl_ovfl_inex2
+ tst.l SRC_LO(%a0) # is result inexact?
+ bne.b fout_sgl_ovfl_inex2
+ ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
+ bra.b fout_sgl_ovfl_cont
+fout_sgl_ovfl_inex2:
+ ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
+
+fout_sgl_ovfl_cont:
+ mov.l %a0,-(%sp)
+
+# call ovf_res() w/ sgl prec and the correct rnd mode to create the default
+# overflow result. DON'T save the returned ccodes from ovf_res() since
+# fmove out doesn't alter them.
+ tst.b SRC_EX(%a0) # is operand negative?
+ smi %d1 # set if so
+ mov.l L_SCR3(%a6),%d0 # pass: sgl prec,rnd mode
+ bsr.l ovf_res # calc OVFL result
+ fmovm.x (%a0),&0x80 # load default overflow result
+ fmov.s %fp0,%d0 # store to single
+
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract dst mode
+ andi.b &0x38,%d1 # is mode == 0? (Dreg dst)
+ beq.b fout_sgl_ovfl_dn # must save to integer regfile
+
+ mov.l EXC_EA(%a6),%a0 # stacked <ea> is correct
+ bsr.l _dmem_write_long # write long
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_l # yes
+
+ bra.b fout_sgl_ovfl_chkexc
+
+fout_sgl_ovfl_dn:
+ mov.b 1+EXC_OPWORD(%a6),%d1 # extract Dn
+ andi.w &0x7,%d1
+ bsr.l store_dreg_l
+
+fout_sgl_ovfl_chkexc:
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0a,%d1 # is UNFL or INEX enabled?
+ bne.w fout_sd_exc_ovfl # yes
+ addq.l &0x4,%sp
+ rts
+
+#
+# move out MAY overflow:
+# (1) force the exp to 0x3fff
+# (2) do a move w/ appropriate rnd mode
+# (3) if exp still equals zero, then insert original exponent
+# for the correct result.
+# if exp now equals one, then it overflowed so call ovf_res.
+#
+fout_sgl_may_ovfl:
+ mov.w SRC_EX(%a0),%d1 # fetch current sign
+ andi.w &0x8000,%d1 # keep it,clear exp
+ ori.w &0x3fff,%d1 # insert exp = 0
+ mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fabs.x %fp0 # need absolute value
+ fcmp.b %fp0,&0x2 # did exponent increase?
+ fblt.w fout_sgl_exg # no; go finish NORM
+ bra.w fout_sgl_ovfl # yes; go handle overflow
+
+################
+
+fout_sd_exc_unfl:
+ mov.l (%sp)+,%a0
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+ cmpi.b STAG(%a6),&DENORM # was src a DENORM?
+ bne.b fout_sd_exc_cont # no
+
+ lea FP_SCR0(%a6),%a0
+ bsr.l norm
+ neg.l %d0
+ andi.w &0x7fff,%d0
+ bfins %d0,FP_SCR0_EX(%a6){&1:&15}
+ bra.b fout_sd_exc_cont
+
+fout_sd_exc:
+fout_sd_exc_ovfl:
+ mov.l (%sp)+,%a0 # restore a0
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+
+fout_sd_exc_cont:
+ bclr &0x7,FP_SCR0_EX(%a6) # clear sign bit
+ sne.b 2+FP_SCR0_EX(%a6) # set internal sign bit
+ lea FP_SCR0(%a6),%a0 # pass: ptr to DENORM
+
+ mov.b 3+L_SCR3(%a6),%d1
+ lsr.b &0x4,%d1
+ andi.w &0x0c,%d1
+ swap %d1
+ mov.b 3+L_SCR3(%a6),%d1
+ lsr.b &0x4,%d1
+ andi.w &0x03,%d1
+ clr.l %d0 # pass: zero g,r,s
+ bsr.l _round # round the DENORM
+
+ tst.b 2+FP_SCR0_EX(%a6) # is EXOP negative?
+ beq.b fout_sd_exc_done # no
+ bset &0x7,FP_SCR0_EX(%a6) # yes
+
+fout_sd_exc_done:
+ fmovm.x FP_SCR0(%a6),&0x40 # return EXOP in fp1
+ rts
+
+#################################################################
+# fmove.d out ###################################################
+#################################################################
+fout_dbl:
+ andi.b &0x30,%d0 # clear rnd prec
+ ori.b &d_mode*0x10,%d0 # insert dbl prec
+ mov.l %d0,L_SCR3(%a6) # save rnd prec,mode on stack
+
+#
+# operand is a normalized number. first, we check to see if the move out
+# would cause either an underflow or overflow. these cases are handled
+# separately. otherwise, set the FPCR to the proper rounding mode and
+# execute the move.
+#
+ mov.w SRC_EX(%a0),%d0 # extract exponent
+ andi.w &0x7fff,%d0 # strip sign
+
+ cmpi.w %d0,&DBL_HI # will operand overflow?
+ bgt.w fout_dbl_ovfl # yes; go handle OVFL
+ beq.w fout_dbl_may_ovfl # maybe; go handle possible OVFL
+ cmpi.w %d0,&DBL_LO # will operand underflow?
+ blt.w fout_dbl_unfl # yes; go handle underflow
+
+#
+# NORMs(in range) can be stored out by a simple "fmov.d"
+# Unnormalized inputs can come through this point.
+#
+fout_dbl_exg:
+ fmovm.x SRC(%a0),&0x80 # fetch fop from stack
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+ fmov.l &0x0,%fpsr # clear FPSR
+
+ fmov.d %fp0,L_SCR1(%a6) # store does convert and round
+
+ fmov.l &0x0,%fpcr # clear FPCR
+ fmov.l %fpsr,%d0 # save FPSR
+
+ or.w %d0,2+USER_FPSR(%a6) # set possible inex2/ainex
+
+ mov.l EXC_EA(%a6),%a1 # pass: dst addr
+ lea L_SCR1(%a6),%a0 # pass: src addr
+ movq.l &0x8,%d0 # pass: opsize is 8 bytes
+ bsr.l _dmem_write # store dbl fop to memory
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_d # yes
+
+ rts # no; so we're finished
+
+#
+# here, we know that the operand would UNFL if moved out to double prec,
+# so, denorm and round and then use generic store double routine to
+# write the value to memory.
+#
+fout_dbl_unfl:
+ bset &unfl_bit,FPSR_EXCEPT(%a6) # set UNFL
+
+ mov.w SRC_EX(%a0),FP_SCR0_EX(%a6)
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6)
+ mov.l %a0,-(%sp)
+
+ clr.l %d0 # pass: S.F. = 0
+
+ cmpi.b STAG(%a6),&DENORM # fetch src optype tag
+ bne.b fout_dbl_unfl_cont # let DENORMs fall through
+
+ lea FP_SCR0(%a6),%a0
+ bsr.l norm # normalize the DENORM
+
+fout_dbl_unfl_cont:
+ lea FP_SCR0(%a6),%a0 # pass: ptr to operand
+ mov.l L_SCR3(%a6),%d1 # pass: rnd prec,mode
+ bsr.l unf_res # calc default underflow result
+
+ lea FP_SCR0(%a6),%a0 # pass: ptr to fop
+ bsr.l dst_dbl # convert to single prec
+ mov.l %d0,L_SCR1(%a6)
+ mov.l %d1,L_SCR2(%a6)
+
+ mov.l EXC_EA(%a6),%a1 # pass: dst addr
+ lea L_SCR1(%a6),%a0 # pass: src addr
+ movq.l &0x8,%d0 # pass: opsize is 8 bytes
+ bsr.l _dmem_write # store dbl fop to memory
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_d # yes
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0a,%d1 # is UNFL or INEX enabled?
+ bne.w fout_sd_exc_unfl # yes
+ addq.l &0x4,%sp
+ rts
+
+#
+# it's definitely an overflow so call ovf_res to get the correct answer
+#
+fout_dbl_ovfl:
+ mov.w 2+SRC_LO(%a0),%d0
+ andi.w &0x7ff,%d0
+ bne.b fout_dbl_ovfl_inex2
+
+ ori.w &ovfl_inx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex
+ bra.b fout_dbl_ovfl_cont
+fout_dbl_ovfl_inex2:
+ ori.w &ovfinx_mask,2+USER_FPSR(%a6) # set ovfl/aovfl/ainex/inex2
+
+fout_dbl_ovfl_cont:
+ mov.l %a0,-(%sp)
+
+# call ovf_res() w/ dbl prec and the correct rnd mode to create the default
+# overflow result. DON'T save the returned ccodes from ovf_res() since
+# fmove out doesn't alter them.
+ tst.b SRC_EX(%a0) # is operand negative?
+ smi %d1 # set if so
+ mov.l L_SCR3(%a6),%d0 # pass: dbl prec,rnd mode
+ bsr.l ovf_res # calc OVFL result
+ fmovm.x (%a0),&0x80 # load default overflow result
+ fmov.d %fp0,L_SCR1(%a6) # store to double
+
+ mov.l EXC_EA(%a6),%a1 # pass: dst addr
+ lea L_SCR1(%a6),%a0 # pass: src addr
+ movq.l &0x8,%d0 # pass: opsize is 8 bytes
+ bsr.l _dmem_write # store dbl fop to memory
+
+ tst.l %d1 # did dstore fail?
+ bne.l facc_out_d # yes
+
+ mov.b FPCR_ENABLE(%a6),%d1
+ andi.b &0x0a,%d1 # is UNFL or INEX enabled?
+ bne.w fout_sd_exc_ovfl # yes
+ addq.l &0x4,%sp
+ rts
+
+#
+# move out MAY overflow:
+# (1) force the exp to 0x3fff
+# (2) do a move w/ appropriate rnd mode
+# (3) if exp still equals zero, then insert original exponent
+# for the correct result.
+# if exp now equals one, then it overflowed so call ovf_res.
+#
+fout_dbl_may_ovfl:
+ mov.w SRC_EX(%a0),%d1 # fetch current sign
+ andi.w &0x8000,%d1 # keep it,clear exp
+ ori.w &0x3fff,%d1 # insert exp = 0
+ mov.w %d1,FP_SCR0_EX(%a6) # insert scaled exp
+ mov.l SRC_HI(%a0),FP_SCR0_HI(%a6) # copy hi(man)
+ mov.l SRC_LO(%a0),FP_SCR0_LO(%a6) # copy lo(man)
+
+ fmov.l L_SCR3(%a6),%fpcr # set FPCR
+
+ fmov.x FP_SCR0(%a6),%fp0 # force fop to be rounded
+ fmov.l &0x0,%fpcr # clear FPCR
+
+ fabs.x %fp0 # need absolute value
+ fcmp.b %fp0,&0x2 # did exponent increase?
+ fblt.w fout_dbl_exg # no; go finish NORM
+ bra.w fout_dbl_ovfl # yes; go handle overflow
+
+#########################################################################
+# XDEF **************************************************************** #
+# dst_dbl(): create double precision value from extended prec. #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to source operand in extended precision #
+# #
+# OUTPUT ************************************************************** #
+# d0 = hi(double precision result) #
+# d1 = lo(double precision result) #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# Changes extended precision to double precision. #
+# Note: no attempt is made to round the extended value to double. #
+# dbl_sign = ext_sign #
+# dbl_exp = ext_exp - $3fff(ext bias) + $7ff(dbl bias) #
+# get rid of ext integer bit #
+# dbl_mant = ext_mant{62:12} #
+# #
+# --------------- --------------- --------------- #
+# extended -> |s| exp | |1| ms mant | | ls mant | #
+# --------------- --------------- --------------- #
+# 95 64 63 62 32 31 11 0 #
+# | | #
+# | | #
+# | | #
+# v v #
+# --------------- --------------- #
+# double -> |s|exp| mant | | mant | #
+# --------------- --------------- #
+# 63 51 32 31 0 #
+# #
+#########################################################################
+
+dst_dbl:
+ clr.l %d0 # clear d0
+ mov.w FTEMP_EX(%a0),%d0 # get exponent
+ subi.w &EXT_BIAS,%d0 # subtract extended precision bias
+ addi.w &DBL_BIAS,%d0 # add double precision bias
+ tst.b FTEMP_HI(%a0) # is number a denorm?
+ bmi.b dst_get_dupper # no
+ subq.w &0x1,%d0 # yes; denorm bias = DBL_BIAS - 1
+dst_get_dupper:
+ swap %d0 # d0 now in upper word
+ lsl.l &0x4,%d0 # d0 in proper place for dbl prec exp
+ tst.b FTEMP_EX(%a0) # test sign
+ bpl.b dst_get_dman # if postive, go process mantissa
+ bset &0x1f,%d0 # if negative, set sign
+dst_get_dman:
+ mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
+ bfextu %d1{&1:&20},%d1 # get upper 20 bits of ms
+ or.l %d1,%d0 # put these bits in ms word of double
+ mov.l %d0,L_SCR1(%a6) # put the new exp back on the stack
+ mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
+ mov.l &21,%d0 # load shift count
+ lsl.l %d0,%d1 # put lower 11 bits in upper bits
+ mov.l %d1,L_SCR2(%a6) # build lower lword in memory
+ mov.l FTEMP_LO(%a0),%d1 # get ls mantissa
+ bfextu %d1{&0:&21},%d0 # get ls 21 bits of double
+ mov.l L_SCR2(%a6),%d1
+ or.l %d0,%d1 # put them in double result
+ mov.l L_SCR1(%a6),%d0
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# dst_sgl(): create single precision value from extended prec #
+# #
+# XREF **************************************************************** #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to source operand in extended precision #
+# #
+# OUTPUT ************************************************************** #
+# d0 = single precision result #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# Changes extended precision to single precision. #
+# sgl_sign = ext_sign #
+# sgl_exp = ext_exp - $3fff(ext bias) + $7f(sgl bias) #
+# get rid of ext integer bit #
+# sgl_mant = ext_mant{62:12} #
+# #
+# --------------- --------------- --------------- #
+# extended -> |s| exp | |1| ms mant | | ls mant | #
+# --------------- --------------- --------------- #
+# 95 64 63 62 40 32 31 12 0 #
+# | | #
+# | | #
+# | | #
+# v v #
+# --------------- #
+# single -> |s|exp| mant | #
+# --------------- #
+# 31 22 0 #
+# #
+#########################################################################
+
+dst_sgl:
+ clr.l %d0
+ mov.w FTEMP_EX(%a0),%d0 # get exponent
+ subi.w &EXT_BIAS,%d0 # subtract extended precision bias
+ addi.w &SGL_BIAS,%d0 # add single precision bias
+ tst.b FTEMP_HI(%a0) # is number a denorm?
+ bmi.b dst_get_supper # no
+ subq.w &0x1,%d0 # yes; denorm bias = SGL_BIAS - 1
+dst_get_supper:
+ swap %d0 # put exp in upper word of d0
+ lsl.l &0x7,%d0 # shift it into single exp bits
+ tst.b FTEMP_EX(%a0) # test sign
+ bpl.b dst_get_sman # if positive, continue
+ bset &0x1f,%d0 # if negative, put in sign first
+dst_get_sman:
+ mov.l FTEMP_HI(%a0),%d1 # get ms mantissa
+ andi.l &0x7fffff00,%d1 # get upper 23 bits of ms
+ lsr.l &0x8,%d1 # and put them flush right
+ or.l %d1,%d0 # put these bits in ms word of single
+ rts
+
+##############################################################################
+fout_pack:
+ bsr.l _calc_ea_fout # fetch the <ea>
+ mov.l %a0,-(%sp)
+
+ mov.b STAG(%a6),%d0 # fetch input type
+ bne.w fout_pack_not_norm # input is not NORM
+
+fout_pack_norm:
+ btst &0x4,EXC_CMDREG(%a6) # static or dynamic?
+ beq.b fout_pack_s # static
+
+fout_pack_d:
+ mov.b 1+EXC_CMDREG(%a6),%d1 # fetch dynamic reg
+ lsr.b &0x4,%d1
+ andi.w &0x7,%d1
+
+ bsr.l fetch_dreg # fetch Dn w/ k-factor
+
+ bra.b fout_pack_type
+fout_pack_s:
+ mov.b 1+EXC_CMDREG(%a6),%d0 # fetch static field
+
+fout_pack_type:
+ bfexts %d0{&25:&7},%d0 # extract k-factor
+ mov.l %d0,-(%sp)
+
+ lea FP_SRC(%a6),%a0 # pass: ptr to input
+
+# bindec is currently scrambling FP_SRC for denorm inputs.
+# we'll have to change this, but for now, tough luck!!!
+ bsr.l bindec # convert xprec to packed
+
+# andi.l &0xcfff000f,FP_SCR0(%a6) # clear unused fields
+ andi.l &0xcffff00f,FP_SCR0(%a6) # clear unused fields
+
+ mov.l (%sp)+,%d0
+
+ tst.b 3+FP_SCR0_EX(%a6)
+ bne.b fout_pack_set
+ tst.l FP_SCR0_HI(%a6)
+ bne.b fout_pack_set
+ tst.l FP_SCR0_LO(%a6)
+ bne.b fout_pack_set
+
+# add the extra condition that only if the k-factor was zero, too, should
+# we zero the exponent
+ tst.l %d0
+ bne.b fout_pack_set
+# "mantissa" is all zero which means that the answer is zero. but, the '040
+# algorithm allows the exponent to be non-zero. the 881/2 do not. therefore,
+# if the mantissa is zero, I will zero the exponent, too.
+# the question now is whether the exponents sign bit is allowed to be non-zero
+# for a zero, also...
+ andi.w &0xf000,FP_SCR0(%a6)
+
+fout_pack_set:
+
+ lea FP_SCR0(%a6),%a0 # pass: src addr
+
+fout_pack_write:
+ mov.l (%sp)+,%a1 # pass: dst addr
+ mov.l &0xc,%d0 # pass: opsize is 12 bytes
+
+ cmpi.b SPCOND_FLG(%a6),&mda7_flg
+ beq.b fout_pack_a7
+
+ bsr.l _dmem_write # write ext prec number to memory
+
+ tst.l %d1 # did dstore fail?
+ bne.w fout_ext_err # yes
+
+ rts
+
+# we don't want to do the write if the exception occurred in supervisor mode
+# so _mem_write2() handles this for us.
+fout_pack_a7:
+ bsr.l _mem_write2 # write ext prec number to memory
+
+ tst.l %d1 # did dstore fail?
+ bne.w fout_ext_err # yes
+
+ rts
+
+fout_pack_not_norm:
+ cmpi.b %d0,&DENORM # is it a DENORM?
+ beq.w fout_pack_norm # yes
+ lea FP_SRC(%a6),%a0
+ clr.w 2+FP_SRC_EX(%a6)
+ cmpi.b %d0,&SNAN # is it an SNAN?
+ beq.b fout_pack_snan # yes
+ bra.b fout_pack_write # no
+
+fout_pack_snan:
+ ori.w &snaniop2_mask,FPSR_EXCEPT(%a6) # set SNAN/AIOP
+ bset &0x6,FP_SRC_HI(%a6) # set snan bit
+ bra.b fout_pack_write
+
+#########################################################################
+# XDEF **************************************************************** #
+# fetch_dreg(): fetch register according to index in d1 #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d1 = index of register to fetch from #
+# #
+# OUTPUT ************************************************************** #
+# d0 = value of register fetched #
+# #
+# ALGORITHM *********************************************************** #
+# According to the index value in d1 which can range from zero #
+# to fifteen, load the corresponding register file value (where #
+# address register indexes start at 8). D0/D1/A0/A1/A6/A7 are on the #
+# stack. The rest should still be in their original places. #
+# #
+#########################################################################
+
+# this routine leaves d1 intact for subsequent store_dreg calls.
+ global fetch_dreg
+fetch_dreg:
+ mov.w (tbl_fdreg.b,%pc,%d1.w*2),%d0
+ jmp (tbl_fdreg.b,%pc,%d0.w*1)
+
+tbl_fdreg:
+ short fdreg0 - tbl_fdreg
+ short fdreg1 - tbl_fdreg
+ short fdreg2 - tbl_fdreg
+ short fdreg3 - tbl_fdreg
+ short fdreg4 - tbl_fdreg
+ short fdreg5 - tbl_fdreg
+ short fdreg6 - tbl_fdreg
+ short fdreg7 - tbl_fdreg
+ short fdreg8 - tbl_fdreg
+ short fdreg9 - tbl_fdreg
+ short fdrega - tbl_fdreg
+ short fdregb - tbl_fdreg
+ short fdregc - tbl_fdreg
+ short fdregd - tbl_fdreg
+ short fdrege - tbl_fdreg
+ short fdregf - tbl_fdreg
+
+fdreg0:
+ mov.l EXC_DREGS+0x0(%a6),%d0
+ rts
+fdreg1:
+ mov.l EXC_DREGS+0x4(%a6),%d0
+ rts
+fdreg2:
+ mov.l %d2,%d0
+ rts
+fdreg3:
+ mov.l %d3,%d0
+ rts
+fdreg4:
+ mov.l %d4,%d0
+ rts
+fdreg5:
+ mov.l %d5,%d0
+ rts
+fdreg6:
+ mov.l %d6,%d0
+ rts
+fdreg7:
+ mov.l %d7,%d0
+ rts
+fdreg8:
+ mov.l EXC_DREGS+0x8(%a6),%d0
+ rts
+fdreg9:
+ mov.l EXC_DREGS+0xc(%a6),%d0
+ rts
+fdrega:
+ mov.l %a2,%d0
+ rts
+fdregb:
+ mov.l %a3,%d0
+ rts
+fdregc:
+ mov.l %a4,%d0
+ rts
+fdregd:
+ mov.l %a5,%d0
+ rts
+fdrege:
+ mov.l (%a6),%d0
+ rts
+fdregf:
+ mov.l EXC_A7(%a6),%d0
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# store_dreg_l(): store longword to data register specified by d1 #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d0 = longowrd value to store #
+# d1 = index of register to fetch from #
+# #
+# OUTPUT ************************************************************** #
+# (data register is updated) #
+# #
+# ALGORITHM *********************************************************** #
+# According to the index value in d1, store the longword value #
+# in d0 to the corresponding data register. D0/D1 are on the stack #
+# while the rest are in their initial places. #
+# #
+#########################################################################
+
+ global store_dreg_l
+store_dreg_l:
+ mov.w (tbl_sdregl.b,%pc,%d1.w*2),%d1
+ jmp (tbl_sdregl.b,%pc,%d1.w*1)
+
+tbl_sdregl:
+ short sdregl0 - tbl_sdregl
+ short sdregl1 - tbl_sdregl
+ short sdregl2 - tbl_sdregl
+ short sdregl3 - tbl_sdregl
+ short sdregl4 - tbl_sdregl
+ short sdregl5 - tbl_sdregl
+ short sdregl6 - tbl_sdregl
+ short sdregl7 - tbl_sdregl
+
+sdregl0:
+ mov.l %d0,EXC_DREGS+0x0(%a6)
+ rts
+sdregl1:
+ mov.l %d0,EXC_DREGS+0x4(%a6)
+ rts
+sdregl2:
+ mov.l %d0,%d2
+ rts
+sdregl3:
+ mov.l %d0,%d3
+ rts
+sdregl4:
+ mov.l %d0,%d4
+ rts
+sdregl5:
+ mov.l %d0,%d5
+ rts
+sdregl6:
+ mov.l %d0,%d6
+ rts
+sdregl7:
+ mov.l %d0,%d7
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# store_dreg_w(): store word to data register specified by d1 #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d0 = word value to store #
+# d1 = index of register to fetch from #
+# #
+# OUTPUT ************************************************************** #
+# (data register is updated) #
+# #
+# ALGORITHM *********************************************************** #
+# According to the index value in d1, store the word value #
+# in d0 to the corresponding data register. D0/D1 are on the stack #
+# while the rest are in their initial places. #
+# #
+#########################################################################
+
+ global store_dreg_w
+store_dreg_w:
+ mov.w (tbl_sdregw.b,%pc,%d1.w*2),%d1
+ jmp (tbl_sdregw.b,%pc,%d1.w*1)
+
+tbl_sdregw:
+ short sdregw0 - tbl_sdregw
+ short sdregw1 - tbl_sdregw
+ short sdregw2 - tbl_sdregw
+ short sdregw3 - tbl_sdregw
+ short sdregw4 - tbl_sdregw
+ short sdregw5 - tbl_sdregw
+ short sdregw6 - tbl_sdregw
+ short sdregw7 - tbl_sdregw
+
+sdregw0:
+ mov.w %d0,2+EXC_DREGS+0x0(%a6)
+ rts
+sdregw1:
+ mov.w %d0,2+EXC_DREGS+0x4(%a6)
+ rts
+sdregw2:
+ mov.w %d0,%d2
+ rts
+sdregw3:
+ mov.w %d0,%d3
+ rts
+sdregw4:
+ mov.w %d0,%d4
+ rts
+sdregw5:
+ mov.w %d0,%d5
+ rts
+sdregw6:
+ mov.w %d0,%d6
+ rts
+sdregw7:
+ mov.w %d0,%d7
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# store_dreg_b(): store byte to data register specified by d1 #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d0 = byte value to store #
+# d1 = index of register to fetch from #
+# #
+# OUTPUT ************************************************************** #
+# (data register is updated) #
+# #
+# ALGORITHM *********************************************************** #
+# According to the index value in d1, store the byte value #
+# in d0 to the corresponding data register. D0/D1 are on the stack #
+# while the rest are in their initial places. #
+# #
+#########################################################################
+
+ global store_dreg_b
+store_dreg_b:
+ mov.w (tbl_sdregb.b,%pc,%d1.w*2),%d1
+ jmp (tbl_sdregb.b,%pc,%d1.w*1)
+
+tbl_sdregb:
+ short sdregb0 - tbl_sdregb
+ short sdregb1 - tbl_sdregb
+ short sdregb2 - tbl_sdregb
+ short sdregb3 - tbl_sdregb
+ short sdregb4 - tbl_sdregb
+ short sdregb5 - tbl_sdregb
+ short sdregb6 - tbl_sdregb
+ short sdregb7 - tbl_sdregb
+
+sdregb0:
+ mov.b %d0,3+EXC_DREGS+0x0(%a6)
+ rts
+sdregb1:
+ mov.b %d0,3+EXC_DREGS+0x4(%a6)
+ rts
+sdregb2:
+ mov.b %d0,%d2
+ rts
+sdregb3:
+ mov.b %d0,%d3
+ rts
+sdregb4:
+ mov.b %d0,%d4
+ rts
+sdregb5:
+ mov.b %d0,%d5
+ rts
+sdregb6:
+ mov.b %d0,%d6
+ rts
+sdregb7:
+ mov.b %d0,%d7
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# inc_areg(): increment an address register by the value in d0 #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d0 = amount to increment by #
+# d1 = index of address register to increment #
+# #
+# OUTPUT ************************************************************** #
+# (address register is updated) #
+# #
+# ALGORITHM *********************************************************** #
+# Typically used for an instruction w/ a post-increment <ea>, #
+# this routine adds the increment value in d0 to the address register #
+# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
+# in their original places. #
+# For a7, if the increment amount is one, then we have to #
+# increment by two. For any a7 update, set the mia7_flag so that if #
+# an access error exception occurs later in emulation, this address #
+# register update can be undone. #
+# #
+#########################################################################
+
+ global inc_areg
+inc_areg:
+ mov.w (tbl_iareg.b,%pc,%d1.w*2),%d1
+ jmp (tbl_iareg.b,%pc,%d1.w*1)
+
+tbl_iareg:
+ short iareg0 - tbl_iareg
+ short iareg1 - tbl_iareg
+ short iareg2 - tbl_iareg
+ short iareg3 - tbl_iareg
+ short iareg4 - tbl_iareg
+ short iareg5 - tbl_iareg
+ short iareg6 - tbl_iareg
+ short iareg7 - tbl_iareg
+
+iareg0: add.l %d0,EXC_DREGS+0x8(%a6)
+ rts
+iareg1: add.l %d0,EXC_DREGS+0xc(%a6)
+ rts
+iareg2: add.l %d0,%a2
+ rts
+iareg3: add.l %d0,%a3
+ rts
+iareg4: add.l %d0,%a4
+ rts
+iareg5: add.l %d0,%a5
+ rts
+iareg6: add.l %d0,(%a6)
+ rts
+iareg7: mov.b &mia7_flg,SPCOND_FLG(%a6)
+ cmpi.b %d0,&0x1
+ beq.b iareg7b
+ add.l %d0,EXC_A7(%a6)
+ rts
+iareg7b:
+ addq.l &0x2,EXC_A7(%a6)
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# dec_areg(): decrement an address register by the value in d0 #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d0 = amount to decrement by #
+# d1 = index of address register to decrement #
+# #
+# OUTPUT ************************************************************** #
+# (address register is updated) #
+# #
+# ALGORITHM *********************************************************** #
+# Typically used for an instruction w/ a pre-decrement <ea>, #
+# this routine adds the decrement value in d0 to the address register #
+# specified by d1. A0/A1/A6/A7 reside on the stack. The rest reside #
+# in their original places. #
+# For a7, if the decrement amount is one, then we have to #
+# decrement by two. For any a7 update, set the mda7_flag so that if #
+# an access error exception occurs later in emulation, this address #
+# register update can be undone. #
+# #
+#########################################################################
+
+ global dec_areg
+dec_areg:
+ mov.w (tbl_dareg.b,%pc,%d1.w*2),%d1
+ jmp (tbl_dareg.b,%pc,%d1.w*1)
+
+tbl_dareg:
+ short dareg0 - tbl_dareg
+ short dareg1 - tbl_dareg
+ short dareg2 - tbl_dareg
+ short dareg3 - tbl_dareg
+ short dareg4 - tbl_dareg
+ short dareg5 - tbl_dareg
+ short dareg6 - tbl_dareg
+ short dareg7 - tbl_dareg
+
+dareg0: sub.l %d0,EXC_DREGS+0x8(%a6)
+ rts
+dareg1: sub.l %d0,EXC_DREGS+0xc(%a6)
+ rts
+dareg2: sub.l %d0,%a2
+ rts
+dareg3: sub.l %d0,%a3
+ rts
+dareg4: sub.l %d0,%a4
+ rts
+dareg5: sub.l %d0,%a5
+ rts
+dareg6: sub.l %d0,(%a6)
+ rts
+dareg7: mov.b &mda7_flg,SPCOND_FLG(%a6)
+ cmpi.b %d0,&0x1
+ beq.b dareg7b
+ sub.l %d0,EXC_A7(%a6)
+ rts
+dareg7b:
+ subq.l &0x2,EXC_A7(%a6)
+ rts
+
+##############################################################################
+
+#########################################################################
+# XDEF **************************************************************** #
+# load_fpn1(): load FP register value into FP_SRC(a6). #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d0 = index of FP register to load #
+# #
+# OUTPUT ************************************************************** #
+# FP_SRC(a6) = value loaded from FP register file #
+# #
+# ALGORITHM *********************************************************** #
+# Using the index in d0, load FP_SRC(a6) with a number from the #
+# FP register file. #
+# #
+#########################################################################
+
+ global load_fpn1
+load_fpn1:
+ mov.w (tbl_load_fpn1.b,%pc,%d0.w*2), %d0
+ jmp (tbl_load_fpn1.b,%pc,%d0.w*1)
+
+tbl_load_fpn1:
+ short load_fpn1_0 - tbl_load_fpn1
+ short load_fpn1_1 - tbl_load_fpn1
+ short load_fpn1_2 - tbl_load_fpn1
+ short load_fpn1_3 - tbl_load_fpn1
+ short load_fpn1_4 - tbl_load_fpn1
+ short load_fpn1_5 - tbl_load_fpn1
+ short load_fpn1_6 - tbl_load_fpn1
+ short load_fpn1_7 - tbl_load_fpn1
+
+load_fpn1_0:
+ mov.l 0+EXC_FP0(%a6), 0+FP_SRC(%a6)
+ mov.l 4+EXC_FP0(%a6), 4+FP_SRC(%a6)
+ mov.l 8+EXC_FP0(%a6), 8+FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+load_fpn1_1:
+ mov.l 0+EXC_FP1(%a6), 0+FP_SRC(%a6)
+ mov.l 4+EXC_FP1(%a6), 4+FP_SRC(%a6)
+ mov.l 8+EXC_FP1(%a6), 8+FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+load_fpn1_2:
+ fmovm.x &0x20, FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+load_fpn1_3:
+ fmovm.x &0x10, FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+load_fpn1_4:
+ fmovm.x &0x08, FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+load_fpn1_5:
+ fmovm.x &0x04, FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+load_fpn1_6:
+ fmovm.x &0x02, FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+load_fpn1_7:
+ fmovm.x &0x01, FP_SRC(%a6)
+ lea FP_SRC(%a6), %a0
+ rts
+
+#############################################################################
+
+#########################################################################
+# XDEF **************************************************************** #
+# load_fpn2(): load FP register value into FP_DST(a6). #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# d0 = index of FP register to load #
+# #
+# OUTPUT ************************************************************** #
+# FP_DST(a6) = value loaded from FP register file #
+# #
+# ALGORITHM *********************************************************** #
+# Using the index in d0, load FP_DST(a6) with a number from the #
+# FP register file. #
+# #
+#########################################################################
+
+ global load_fpn2
+load_fpn2:
+ mov.w (tbl_load_fpn2.b,%pc,%d0.w*2), %d0
+ jmp (tbl_load_fpn2.b,%pc,%d0.w*1)
+
+tbl_load_fpn2:
+ short load_fpn2_0 - tbl_load_fpn2
+ short load_fpn2_1 - tbl_load_fpn2
+ short load_fpn2_2 - tbl_load_fpn2
+ short load_fpn2_3 - tbl_load_fpn2
+ short load_fpn2_4 - tbl_load_fpn2
+ short load_fpn2_5 - tbl_load_fpn2
+ short load_fpn2_6 - tbl_load_fpn2
+ short load_fpn2_7 - tbl_load_fpn2
+
+load_fpn2_0:
+ mov.l 0+EXC_FP0(%a6), 0+FP_DST(%a6)
+ mov.l 4+EXC_FP0(%a6), 4+FP_DST(%a6)
+ mov.l 8+EXC_FP0(%a6), 8+FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+load_fpn2_1:
+ mov.l 0+EXC_FP1(%a6), 0+FP_DST(%a6)
+ mov.l 4+EXC_FP1(%a6), 4+FP_DST(%a6)
+ mov.l 8+EXC_FP1(%a6), 8+FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+load_fpn2_2:
+ fmovm.x &0x20, FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+load_fpn2_3:
+ fmovm.x &0x10, FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+load_fpn2_4:
+ fmovm.x &0x08, FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+load_fpn2_5:
+ fmovm.x &0x04, FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+load_fpn2_6:
+ fmovm.x &0x02, FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+load_fpn2_7:
+ fmovm.x &0x01, FP_DST(%a6)
+ lea FP_DST(%a6), %a0
+ rts
+
+#############################################################################
+
+#########################################################################
+# XDEF **************************************************************** #
+# store_fpreg(): store an fp value to the fpreg designated d0. #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# fp0 = extended precision value to store #
+# d0 = index of floating-point register #
+# #
+# OUTPUT ************************************************************** #
+# None #
+# #
+# ALGORITHM *********************************************************** #
+# Store the value in fp0 to the FP register designated by the #
+# value in d0. The FP number can be DENORM or SNAN so we have to be #
+# careful that we don't take an exception here. #
+# #
+#########################################################################
+
+ global store_fpreg
+store_fpreg:
+ mov.w (tbl_store_fpreg.b,%pc,%d0.w*2), %d0
+ jmp (tbl_store_fpreg.b,%pc,%d0.w*1)
+
+tbl_store_fpreg:
+ short store_fpreg_0 - tbl_store_fpreg
+ short store_fpreg_1 - tbl_store_fpreg
+ short store_fpreg_2 - tbl_store_fpreg
+ short store_fpreg_3 - tbl_store_fpreg
+ short store_fpreg_4 - tbl_store_fpreg
+ short store_fpreg_5 - tbl_store_fpreg
+ short store_fpreg_6 - tbl_store_fpreg
+ short store_fpreg_7 - tbl_store_fpreg
+
+store_fpreg_0:
+ fmovm.x &0x80, EXC_FP0(%a6)
+ rts
+store_fpreg_1:
+ fmovm.x &0x80, EXC_FP1(%a6)
+ rts
+store_fpreg_2:
+ fmovm.x &0x01, -(%sp)
+ fmovm.x (%sp)+, &0x20
+ rts
+store_fpreg_3:
+ fmovm.x &0x01, -(%sp)
+ fmovm.x (%sp)+, &0x10
+ rts
+store_fpreg_4:
+ fmovm.x &0x01, -(%sp)
+ fmovm.x (%sp)+, &0x08
+ rts
+store_fpreg_5:
+ fmovm.x &0x01, -(%sp)
+ fmovm.x (%sp)+, &0x04
+ rts
+store_fpreg_6:
+ fmovm.x &0x01, -(%sp)
+ fmovm.x (%sp)+, &0x02
+ rts
+store_fpreg_7:
+ fmovm.x &0x01, -(%sp)
+ fmovm.x (%sp)+, &0x01
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# _denorm(): denormalize an intermediate result #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# a0 = points to the operand to be denormalized #
+# (in the internal extended format) #
+# #
+# d0 = rounding precision #
+# #
+# OUTPUT ************************************************************** #
+# a0 = pointer to the denormalized result #
+# (in the internal extended format) #
+# #
+# d0 = guard,round,sticky #
+# #
+# ALGORITHM *********************************************************** #
+# According to the exponent underflow threshold for the given #
+# precision, shift the mantissa bits to the right in order raise the #
+# exponent of the operand to the threshold value. While shifting the #
+# mantissa bits right, maintain the value of the guard, round, and #
+# sticky bits. #
+# other notes: #
+# (1) _denorm() is called by the underflow routines #
+# (2) _denorm() does NOT affect the status register #
+# #
+#########################################################################
+
+#
+# table of exponent threshold values for each precision
+#
+tbl_thresh:
+ short 0x0
+ short sgl_thresh
+ short dbl_thresh
+
+ global _denorm
+_denorm:
+#
+# Load the exponent threshold for the precision selected and check
+# to see if (threshold - exponent) is > 65 in which case we can
+# simply calculate the sticky bit and zero the mantissa. otherwise
+# we have to call the denormalization routine.
+#
+ lsr.b &0x2, %d0 # shift prec to lo bits
+ mov.w (tbl_thresh.b,%pc,%d0.w*2), %d1 # load prec threshold
+ mov.w %d1, %d0 # copy d1 into d0
+ sub.w FTEMP_EX(%a0), %d0 # diff = threshold - exp
+ cmpi.w %d0, &66 # is diff > 65? (mant + g,r bits)
+ bpl.b denorm_set_stky # yes; just calc sticky
+
+ clr.l %d0 # clear g,r,s
+ btst &inex2_bit, FPSR_EXCEPT(%a6) # yes; was INEX2 set?
+ beq.b denorm_call # no; don't change anything
+ bset &29, %d0 # yes; set sticky bit
+
+denorm_call:
+ bsr.l dnrm_lp # denormalize the number
+ rts
+
+#
+# all bit would have been shifted off during the denorm so simply
+# calculate if the sticky should be set and clear the entire mantissa.
+#
+denorm_set_stky:
+ mov.l &0x20000000, %d0 # set sticky bit in return value
+ mov.w %d1, FTEMP_EX(%a0) # load exp with threshold
+ clr.l FTEMP_HI(%a0) # set d1 = 0 (ms mantissa)
+ clr.l FTEMP_LO(%a0) # set d2 = 0 (ms mantissa)
+ rts
+
+# #
+# dnrm_lp(): normalize exponent/mantissa to specified threshhold #
+# #
+# INPUT: #
+# %a0 : points to the operand to be denormalized #
+# %d0{31:29} : initial guard,round,sticky #
+# %d1{15:0} : denormalization threshold #
+# OUTPUT: #
+# %a0 : points to the denormalized operand #
+# %d0{31:29} : final guard,round,sticky #
+# #
+
+# *** Local Equates *** #
+set GRS, L_SCR2 # g,r,s temp storage
+set FTEMP_LO2, L_SCR1 # FTEMP_LO copy
+
+ global dnrm_lp
+dnrm_lp:
+
+#
+# make a copy of FTEMP_LO and place the g,r,s bits directly after it
+# in memory so as to make the bitfield extraction for denormalization easier.
+#
+ mov.l FTEMP_LO(%a0), FTEMP_LO2(%a6) # make FTEMP_LO copy
+ mov.l %d0, GRS(%a6) # place g,r,s after it
+
+#
+# check to see how much less than the underflow threshold the operand
+# exponent is.
+#
+ mov.l %d1, %d0 # copy the denorm threshold
+ sub.w FTEMP_EX(%a0), %d1 # d1 = threshold - uns exponent
+ ble.b dnrm_no_lp # d1 <= 0
+ cmpi.w %d1, &0x20 # is ( 0 <= d1 < 32) ?
+ blt.b case_1 # yes
+ cmpi.w %d1, &0x40 # is (32 <= d1 < 64) ?
+ blt.b case_2 # yes
+ bra.w case_3 # (d1 >= 64)
+
+#
+# No normalization necessary
+#
+dnrm_no_lp:
+ mov.l GRS(%a6), %d0 # restore original g,r,s
+ rts
+
+#
+# case (0<d1<32)
+#
+# %d0 = denorm threshold
+# %d1 = "n" = amt to shift
+#
+# ---------------------------------------------------------
+# | FTEMP_HI | FTEMP_LO |grs000.........000|
+# ---------------------------------------------------------
+# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
+# \ \ \ \
+# \ \ \ \
+# \ \ \ \
+# \ \ \ \
+# \ \ \ \
+# \ \ \ \
+# \ \ \ \
+# \ \ \ \
+# <-(n)-><-(32 - n)-><------(32)-------><------(32)------->
+# ---------------------------------------------------------
+# |0.....0| NEW_HI | NEW_FTEMP_LO |grs |
+# ---------------------------------------------------------
+#
+case_1:
+ mov.l %d2, -(%sp) # create temp storage
+
+ mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
+ mov.l &32, %d0
+ sub.w %d1, %d0 # %d0 = 32 - %d1
+
+ cmpi.w %d1, &29 # is shft amt >= 29
+ blt.b case1_extract # no; no fix needed
+ mov.b GRS(%a6), %d2
+ or.b %d2, 3+FTEMP_LO2(%a6)
+
+case1_extract:
+ bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_HI
+ bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new FTEMP_LO
+ bfextu FTEMP_LO2(%a6){%d0:&32}, %d0 # %d0 = new G,R,S
+
+ mov.l %d2, FTEMP_HI(%a0) # store new FTEMP_HI
+ mov.l %d1, FTEMP_LO(%a0) # store new FTEMP_LO
+
+ bftst %d0{&2:&30} # were bits shifted off?
+ beq.b case1_sticky_clear # no; go finish
+ bset &rnd_stky_bit, %d0 # yes; set sticky bit
+
+case1_sticky_clear:
+ and.l &0xe0000000, %d0 # clear all but G,R,S
+ mov.l (%sp)+, %d2 # restore temp register
+ rts
+
+#
+# case (32<=d1<64)
+#
+# %d0 = denorm threshold
+# %d1 = "n" = amt to shift
+#
+# ---------------------------------------------------------
+# | FTEMP_HI | FTEMP_LO |grs000.........000|
+# ---------------------------------------------------------
+# <-(32 - n)-><-(n)-><-(32 - n)-><-(n)-><-(32 - n)-><-(n)->
+# \ \ \
+# \ \ \
+# \ \ -------------------
+# \ -------------------- \
+# ------------------- \ \
+# \ \ \
+# \ \ \
+# \ \ \
+# <-------(32)------><-(n)-><-(32 - n)-><------(32)------->
+# ---------------------------------------------------------
+# |0...............0|0....0| NEW_LO |grs |
+# ---------------------------------------------------------
+#
+case_2:
+ mov.l %d2, -(%sp) # create temp storage
+
+ mov.w %d0, FTEMP_EX(%a0) # exponent = denorm threshold
+ subi.w &0x20, %d1 # %d1 now between 0 and 32
+ mov.l &0x20, %d0
+ sub.w %d1, %d0 # %d0 = 32 - %d1
+
+# subtle step here; or in the g,r,s at the bottom of FTEMP_LO to minimize
+# the number of bits to check for the sticky detect.
+# it only plays a role in shift amounts of 61-63.
+ mov.b GRS(%a6), %d2
+ or.b %d2, 3+FTEMP_LO2(%a6)
+
+ bfextu FTEMP_HI(%a0){&0:%d0}, %d2 # %d2 = new FTEMP_LO
+ bfextu FTEMP_HI(%a0){%d0:&32}, %d1 # %d1 = new G,R,S
+
+ bftst %d1{&2:&30} # were any bits shifted off?
+ bne.b case2_set_sticky # yes; set sticky bit
+ bftst FTEMP_LO2(%a6){%d0:&31} # were any bits shifted off?
+ bne.b case2_set_sticky # yes; set sticky bit
+
+ mov.l %d1, %d0 # move new G,R,S to %d0
+ bra.b case2_end
+
+case2_set_sticky:
+ mov.l %d1, %d0 # move new G,R,S to %d0
+ bset &rnd_stky_bit, %d0 # set sticky bit
+
+case2_end:
+ clr.l FTEMP_HI(%a0) # store FTEMP_HI = 0
+ mov.l %d2, FTEMP_LO(%a0) # store FTEMP_LO
+ and.l &0xe0000000, %d0 # clear all but G,R,S
+
+ mov.l (%sp)+,%d2 # restore temp register
+ rts
+
+#
+# case (d1>=64)
+#
+# %d0 = denorm threshold
+# %d1 = amt to shift
+#
+case_3:
+ mov.w %d0, FTEMP_EX(%a0) # insert denorm threshold
+
+ cmpi.w %d1, &65 # is shift amt > 65?
+ blt.b case3_64 # no; it's == 64
+ beq.b case3_65 # no; it's == 65
+
+#
+# case (d1>65)
+#
+# Shift value is > 65 and out of range. All bits are shifted off.
+# Return a zero mantissa with the sticky bit set
+#
+ clr.l FTEMP_HI(%a0) # clear hi(mantissa)
+ clr.l FTEMP_LO(%a0) # clear lo(mantissa)
+ mov.l &0x20000000, %d0 # set sticky bit
+ rts
+
+#
+# case (d1 == 64)
+#
+# ---------------------------------------------------------
+# | FTEMP_HI | FTEMP_LO |grs000.........000|
+# ---------------------------------------------------------
+# <-------(32)------>
+# \ \
+# \ \
+# \ \
+# \ ------------------------------
+# ------------------------------- \
+# \ \
+# \ \
+# \ \
+# <-------(32)------>
+# ---------------------------------------------------------
+# |0...............0|0................0|grs |
+# ---------------------------------------------------------
+#
+case3_64:
+ mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
+ mov.l %d0, %d1 # make a copy
+ and.l &0xc0000000, %d0 # extract G,R
+ and.l &0x3fffffff, %d1 # extract other bits
+
+ bra.b case3_complete
+
+#
+# case (d1 == 65)
+#
+# ---------------------------------------------------------
+# | FTEMP_HI | FTEMP_LO |grs000.........000|
+# ---------------------------------------------------------
+# <-------(32)------>
+# \ \
+# \ \
+# \ \
+# \ ------------------------------
+# -------------------------------- \
+# \ \
+# \ \
+# \ \
+# <-------(31)----->
+# ---------------------------------------------------------
+# |0...............0|0................0|0rs |
+# ---------------------------------------------------------
+#
+case3_65:
+ mov.l FTEMP_HI(%a0), %d0 # fetch hi(mantissa)
+ and.l &0x80000000, %d0 # extract R bit
+ lsr.l &0x1, %d0 # shift high bit into R bit
+ and.l &0x7fffffff, %d1 # extract other bits
+
+case3_complete:
+# last operation done was an "and" of the bits shifted off so the condition
+# codes are already set so branch accordingly.
+ bne.b case3_set_sticky # yes; go set new sticky
+ tst.l FTEMP_LO(%a0) # were any bits shifted off?
+ bne.b case3_set_sticky # yes; go set new sticky
+ tst.b GRS(%a6) # were any bits shifted off?
+ bne.b case3_set_sticky # yes; go set new sticky
+
+#
+# no bits were shifted off so don't set the sticky bit.
+# the guard and
+# the entire mantissa is zero.
+#
+ clr.l FTEMP_HI(%a0) # clear hi(mantissa)
+ clr.l FTEMP_LO(%a0) # clear lo(mantissa)
+ rts
+
+#
+# some bits were shifted off so set the sticky bit.
+# the entire mantissa is zero.
+#
+case3_set_sticky:
+ bset &rnd_stky_bit,%d0 # set new sticky bit
+ clr.l FTEMP_HI(%a0) # clear hi(mantissa)
+ clr.l FTEMP_LO(%a0) # clear lo(mantissa)
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# _round(): round result according to precision/mode #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# a0 = ptr to input operand in internal extended format #
+# d1(hi) = contains rounding precision: #
+# ext = $0000xxxx #
+# sgl = $0004xxxx #
+# dbl = $0008xxxx #
+# d1(lo) = contains rounding mode: #
+# RN = $xxxx0000 #
+# RZ = $xxxx0001 #
+# RM = $xxxx0002 #
+# RP = $xxxx0003 #
+# d0{31:29} = contains the g,r,s bits (extended) #
+# #
+# OUTPUT ************************************************************** #
+# a0 = pointer to rounded result #
+# #
+# ALGORITHM *********************************************************** #
+# On return the value pointed to by a0 is correctly rounded, #
+# a0 is preserved and the g-r-s bits in d0 are cleared. #
+# The result is not typed - the tag field is invalid. The #
+# result is still in the internal extended format. #
+# #
+# The INEX bit of USER_FPSR will be set if the rounded result was #
+# inexact (i.e. if any of the g-r-s bits were set). #
+# #
+#########################################################################
+
+ global _round
+_round:
+#
+# ext_grs() looks at the rounding precision and sets the appropriate
+# G,R,S bits.
+# If (G,R,S == 0) then result is exact and round is done, else set
+# the inex flag in status reg and continue.
+#
+ bsr.l ext_grs # extract G,R,S
+
+ tst.l %d0 # are G,R,S zero?
+ beq.w truncate # yes; round is complete
+
+ or.w &inx2a_mask, 2+USER_FPSR(%a6) # set inex2/ainex
+
+#
+# Use rounding mode as an index into a jump table for these modes.
+# All of the following assumes grs != 0.
+#
+ mov.w (tbl_mode.b,%pc,%d1.w*2), %a1 # load jump offset
+ jmp (tbl_mode.b,%pc,%a1) # jmp to rnd mode handler
+
+tbl_mode:
+ short rnd_near - tbl_mode
+ short truncate - tbl_mode # RZ always truncates
+ short rnd_mnus - tbl_mode
+ short rnd_plus - tbl_mode
+
+#################################################################
+# ROUND PLUS INFINITY #
+# #
+# If sign of fp number = 0 (positive), then add 1 to l. #
+#################################################################
+rnd_plus:
+ tst.b FTEMP_SGN(%a0) # check for sign
+ bmi.w truncate # if positive then truncate
+
+ mov.l &0xffffffff, %d0 # force g,r,s to be all f's
+ swap %d1 # set up d1 for round prec.
+
+ cmpi.b %d1, &s_mode # is prec = sgl?
+ beq.w add_sgl # yes
+ bgt.w add_dbl # no; it's dbl
+ bra.w add_ext # no; it's ext
+
+#################################################################
+# ROUND MINUS INFINITY #
+# #
+# If sign of fp number = 1 (negative), then add 1 to l. #
+#################################################################
+rnd_mnus:
+ tst.b FTEMP_SGN(%a0) # check for sign
+ bpl.w truncate # if negative then truncate
+
+ mov.l &0xffffffff, %d0 # force g,r,s to be all f's
+ swap %d1 # set up d1 for round prec.
+
+ cmpi.b %d1, &s_mode # is prec = sgl?
+ beq.w add_sgl # yes
+ bgt.w add_dbl # no; it's dbl
+ bra.w add_ext # no; it's ext
+
+#################################################################
+# ROUND NEAREST #
+# #
+# If (g=1), then add 1 to l and if (r=s=0), then clear l #
+# Note that this will round to even in case of a tie. #
+#################################################################
+rnd_near:
+ asl.l &0x1, %d0 # shift g-bit to c-bit
+ bcc.w truncate # if (g=1) then
+
+ swap %d1 # set up d1 for round prec.
+
+ cmpi.b %d1, &s_mode # is prec = sgl?
+ beq.w add_sgl # yes
+ bgt.w add_dbl # no; it's dbl
+ bra.w add_ext # no; it's ext
+
+# *** LOCAL EQUATES ***
+set ad_1_sgl, 0x00000100 # constant to add 1 to l-bit in sgl prec
+set ad_1_dbl, 0x00000800 # constant to add 1 to l-bit in dbl prec
+
+#########################
+# ADD SINGLE #
+#########################
+add_sgl:
+ add.l &ad_1_sgl, FTEMP_HI(%a0)
+ bcc.b scc_clr # no mantissa overflow
+ roxr.w FTEMP_HI(%a0) # shift v-bit back in
+ roxr.w FTEMP_HI+2(%a0) # shift v-bit back in
+ add.w &0x1, FTEMP_EX(%a0) # and incr exponent
+scc_clr:
+ tst.l %d0 # test for rs = 0
+ bne.b sgl_done
+ and.w &0xfe00, FTEMP_HI+2(%a0) # clear the l-bit
+sgl_done:
+ and.l &0xffffff00, FTEMP_HI(%a0) # truncate bits beyond sgl limit
+ clr.l FTEMP_LO(%a0) # clear d2
+ rts
+
+#########################
+# ADD EXTENDED #
+#########################
+add_ext:
+ addq.l &1,FTEMP_LO(%a0) # add 1 to l-bit
+ bcc.b xcc_clr # test for carry out
+ addq.l &1,FTEMP_HI(%a0) # propagate carry
+ bcc.b xcc_clr
+ roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
+ roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
+ roxr.w FTEMP_LO(%a0)
+ roxr.w FTEMP_LO+2(%a0)
+ add.w &0x1,FTEMP_EX(%a0) # and inc exp
+xcc_clr:
+ tst.l %d0 # test rs = 0
+ bne.b add_ext_done
+ and.b &0xfe,FTEMP_LO+3(%a0) # clear the l bit
+add_ext_done:
+ rts
+
+#########################
+# ADD DOUBLE #
+#########################
+add_dbl:
+ add.l &ad_1_dbl, FTEMP_LO(%a0) # add 1 to lsb
+ bcc.b dcc_clr # no carry
+ addq.l &0x1, FTEMP_HI(%a0) # propagate carry
+ bcc.b dcc_clr # no carry
+
+ roxr.w FTEMP_HI(%a0) # mant is 0 so restore v-bit
+ roxr.w FTEMP_HI+2(%a0) # mant is 0 so restore v-bit
+ roxr.w FTEMP_LO(%a0)
+ roxr.w FTEMP_LO+2(%a0)
+ addq.w &0x1, FTEMP_EX(%a0) # incr exponent
+dcc_clr:
+ tst.l %d0 # test for rs = 0
+ bne.b dbl_done
+ and.w &0xf000, FTEMP_LO+2(%a0) # clear the l-bit
+
+dbl_done:
+ and.l &0xfffff800,FTEMP_LO(%a0) # truncate bits beyond dbl limit
+ rts
+
+###########################
+# Truncate all other bits #
+###########################
+truncate:
+ swap %d1 # select rnd prec
+
+ cmpi.b %d1, &s_mode # is prec sgl?
+ beq.w sgl_done # yes
+ bgt.b dbl_done # no; it's dbl
+ rts # no; it's ext
+
+
+#
+# ext_grs(): extract guard, round and sticky bits according to
+# rounding precision.
+#
+# INPUT
+# d0 = extended precision g,r,s (in d0{31:29})
+# d1 = {PREC,ROUND}
+# OUTPUT
+# d0{31:29} = guard, round, sticky
+#
+# The ext_grs extract the guard/round/sticky bits according to the
+# selected rounding precision. It is called by the round subroutine
+# only. All registers except d0 are kept intact. d0 becomes an
+# updated guard,round,sticky in d0{31:29}
+#
+# Notes: the ext_grs uses the round PREC, and therefore has to swap d1
+# prior to usage, and needs to restore d1 to original. this
+# routine is tightly tied to the round routine and not meant to
+# uphold standard subroutine calling practices.
+#
+
+ext_grs:
+ swap %d1 # have d1.w point to round precision
+ tst.b %d1 # is rnd prec = extended?
+ bne.b ext_grs_not_ext # no; go handle sgl or dbl
+
+#
+# %d0 actually already hold g,r,s since _round() had it before calling
+# this function. so, as long as we don't disturb it, we are "returning" it.
+#
+ext_grs_ext:
+ swap %d1 # yes; return to correct positions
+ rts
+
+ext_grs_not_ext:
+ movm.l &0x3000, -(%sp) # make some temp registers {d2/d3}
+
+ cmpi.b %d1, &s_mode # is rnd prec = sgl?
+ bne.b ext_grs_dbl # no; go handle dbl
+
+#
+# sgl:
+# 96 64 40 32 0
+# -----------------------------------------------------
+# | EXP |XXXXXXX| |xx | |grs|
+# -----------------------------------------------------
+# <--(24)--->nn\ /
+# ee ---------------------
+# ww |
+# v
+# gr new sticky
+#
+ext_grs_sgl:
+ bfextu FTEMP_HI(%a0){&24:&2}, %d3 # sgl prec. g-r are 2 bits right
+ mov.l &30, %d2 # of the sgl prec. limits
+ lsl.l %d2, %d3 # shift g-r bits to MSB of d3
+ mov.l FTEMP_HI(%a0), %d2 # get word 2 for s-bit test
+ and.l &0x0000003f, %d2 # s bit is the or of all other
+ bne.b ext_grs_st_stky # bits to the right of g-r
+ tst.l FTEMP_LO(%a0) # test lower mantissa
+ bne.b ext_grs_st_stky # if any are set, set sticky
+ tst.l %d0 # test original g,r,s
+ bne.b ext_grs_st_stky # if any are set, set sticky
+ bra.b ext_grs_end_sd # if words 3 and 4 are clr, exit
+
+#
+# dbl:
+# 96 64 32 11 0
+# -----------------------------------------------------
+# | EXP |XXXXXXX| | |xx |grs|
+# -----------------------------------------------------
+# nn\ /
+# ee -------
+# ww |
+# v
+# gr new sticky
+#
+ext_grs_dbl:
+ bfextu FTEMP_LO(%a0){&21:&2}, %d3 # dbl-prec. g-r are 2 bits right
+ mov.l &30, %d2 # of the dbl prec. limits
+ lsl.l %d2, %d3 # shift g-r bits to the MSB of d3
+ mov.l FTEMP_LO(%a0), %d2 # get lower mantissa for s-bit test
+ and.l &0x000001ff, %d2 # s bit is the or-ing of all
+ bne.b ext_grs_st_stky # other bits to the right of g-r
+ tst.l %d0 # test word original g,r,s
+ bne.b ext_grs_st_stky # if any are set, set sticky
+ bra.b ext_grs_end_sd # if clear, exit
+
+ext_grs_st_stky:
+ bset &rnd_stky_bit, %d3 # set sticky bit
+ext_grs_end_sd:
+ mov.l %d3, %d0 # return grs to d0
+
+ movm.l (%sp)+, &0xc # restore scratch registers {d2/d3}
+
+ swap %d1 # restore d1 to original
+ rts
+
+#########################################################################
+# norm(): normalize the mantissa of an extended precision input. the #
+# input operand should not be normalized already. #
+# #
+# XDEF **************************************************************** #
+# norm() #
+# #
+# XREF **************************************************************** #
+# none #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer fp extended precision operand to normalize #
+# #
+# OUTPUT ************************************************************** #
+# d0 = number of bit positions the mantissa was shifted #
+# a0 = the input operand's mantissa is normalized; the exponent #
+# is unchanged. #
+# #
+#########################################################################
+ global norm
+norm:
+ mov.l %d2, -(%sp) # create some temp regs
+ mov.l %d3, -(%sp)
+
+ mov.l FTEMP_HI(%a0), %d0 # load hi(mantissa)
+ mov.l FTEMP_LO(%a0), %d1 # load lo(mantissa)
+
+ bfffo %d0{&0:&32}, %d2 # how many places to shift?
+ beq.b norm_lo # hi(man) is all zeroes!
+
+norm_hi:
+ lsl.l %d2, %d0 # left shift hi(man)
+ bfextu %d1{&0:%d2}, %d3 # extract lo bits
+
+ or.l %d3, %d0 # create hi(man)
+ lsl.l %d2, %d1 # create lo(man)
+
+ mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
+ mov.l %d1, FTEMP_LO(%a0) # store new lo(man)
+
+ mov.l %d2, %d0 # return shift amount
+
+ mov.l (%sp)+, %d3 # restore temp regs
+ mov.l (%sp)+, %d2
+
+ rts
+
+norm_lo:
+ bfffo %d1{&0:&32}, %d2 # how many places to shift?
+ lsl.l %d2, %d1 # shift lo(man)
+ add.l &32, %d2 # add 32 to shft amount
+
+ mov.l %d1, FTEMP_HI(%a0) # store hi(man)
+ clr.l FTEMP_LO(%a0) # lo(man) is now zero
+
+ mov.l %d2, %d0 # return shift amount
+
+ mov.l (%sp)+, %d3 # restore temp regs
+ mov.l (%sp)+, %d2
+
+ rts
+
+#########################################################################
+# unnorm_fix(): - changes an UNNORM to one of NORM, DENORM, or ZERO #
+# - returns corresponding optype tag #
+# #
+# XDEF **************************************************************** #
+# unnorm_fix() #
+# #
+# XREF **************************************************************** #
+# norm() - normalize the mantissa #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to unnormalized extended precision number #
+# #
+# OUTPUT ************************************************************** #
+# d0 = optype tag - is corrected to one of NORM, DENORM, or ZERO #
+# a0 = input operand has been converted to a norm, denorm, or #
+# zero; both the exponent and mantissa are changed. #
+# #
+#########################################################################
+
+ global unnorm_fix
+unnorm_fix:
+ bfffo FTEMP_HI(%a0){&0:&32}, %d0 # how many shifts are needed?
+ bne.b unnorm_shift # hi(man) is not all zeroes
+
+#
+# hi(man) is all zeroes so see if any bits in lo(man) are set
+#
+unnorm_chk_lo:
+ bfffo FTEMP_LO(%a0){&0:&32}, %d0 # is operand really a zero?
+ beq.w unnorm_zero # yes
+
+ add.w &32, %d0 # no; fix shift distance
+
+#
+# d0 = # shifts needed for complete normalization
+#
+unnorm_shift:
+ clr.l %d1 # clear top word
+ mov.w FTEMP_EX(%a0), %d1 # extract exponent
+ and.w &0x7fff, %d1 # strip off sgn
+
+ cmp.w %d0, %d1 # will denorm push exp < 0?
+ bgt.b unnorm_nrm_zero # yes; denorm only until exp = 0
+
+#
+# exponent would not go < 0. therefore, number stays normalized
+#
+ sub.w %d0, %d1 # shift exponent value
+ mov.w FTEMP_EX(%a0), %d0 # load old exponent
+ and.w &0x8000, %d0 # save old sign
+ or.w %d0, %d1 # {sgn,new exp}
+ mov.w %d1, FTEMP_EX(%a0) # insert new exponent
+
+ bsr.l norm # normalize UNNORM
+
+ mov.b &NORM, %d0 # return new optype tag
+ rts
+
+#
+# exponent would go < 0, so only denormalize until exp = 0
+#
+unnorm_nrm_zero:
+ cmp.b %d1, &32 # is exp <= 32?
+ bgt.b unnorm_nrm_zero_lrg # no; go handle large exponent
+
+ bfextu FTEMP_HI(%a0){%d1:&32}, %d0 # extract new hi(man)
+ mov.l %d0, FTEMP_HI(%a0) # save new hi(man)
+
+ mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
+ lsl.l %d1, %d0 # extract new lo(man)
+ mov.l %d0, FTEMP_LO(%a0) # save new lo(man)
+
+ and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
+
+ mov.b &DENORM, %d0 # return new optype tag
+ rts
+
+#
+# only mantissa bits set are in lo(man)
+#
+unnorm_nrm_zero_lrg:
+ sub.w &32, %d1 # adjust shft amt by 32
+
+ mov.l FTEMP_LO(%a0), %d0 # fetch old lo(man)
+ lsl.l %d1, %d0 # left shift lo(man)
+
+ mov.l %d0, FTEMP_HI(%a0) # store new hi(man)
+ clr.l FTEMP_LO(%a0) # lo(man) = 0
+
+ and.w &0x8000, FTEMP_EX(%a0) # set exp = 0
+
+ mov.b &DENORM, %d0 # return new optype tag
+ rts
+
+#
+# whole mantissa is zero so this UNNORM is actually a zero
+#
+unnorm_zero:
+ and.w &0x8000, FTEMP_EX(%a0) # force exponent to zero
+
+ mov.b &ZERO, %d0 # fix optype tag
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# set_tag_x(): return the optype of the input ext fp number #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precision operand #
+# #
+# OUTPUT ************************************************************** #
+# d0 = value of type tag #
+# one of: NORM, INF, QNAN, SNAN, DENORM, UNNORM, ZERO #
+# #
+# ALGORITHM *********************************************************** #
+# Simply test the exponent, j-bit, and mantissa values to #
+# determine the type of operand. #
+# If it's an unnormalized zero, alter the operand and force it #
+# to be a normal zero. #
+# #
+#########################################################################
+
+ global set_tag_x
+set_tag_x:
+ mov.w FTEMP_EX(%a0), %d0 # extract exponent
+ andi.w &0x7fff, %d0 # strip off sign
+ cmpi.w %d0, &0x7fff # is (EXP == MAX)?
+ beq.b inf_or_nan_x
+not_inf_or_nan_x:
+ btst &0x7,FTEMP_HI(%a0)
+ beq.b not_norm_x
+is_norm_x:
+ mov.b &NORM, %d0
+ rts
+not_norm_x:
+ tst.w %d0 # is exponent = 0?
+ bne.b is_unnorm_x
+not_unnorm_x:
+ tst.l FTEMP_HI(%a0)
+ bne.b is_denorm_x
+ tst.l FTEMP_LO(%a0)
+ bne.b is_denorm_x
+is_zero_x:
+ mov.b &ZERO, %d0
+ rts
+is_denorm_x:
+ mov.b &DENORM, %d0
+ rts
+# must distinguish now "Unnormalized zeroes" which we
+# must convert to zero.
+is_unnorm_x:
+ tst.l FTEMP_HI(%a0)
+ bne.b is_unnorm_reg_x
+ tst.l FTEMP_LO(%a0)
+ bne.b is_unnorm_reg_x
+# it's an "unnormalized zero". let's convert it to an actual zero...
+ andi.w &0x8000,FTEMP_EX(%a0) # clear exponent
+ mov.b &ZERO, %d0
+ rts
+is_unnorm_reg_x:
+ mov.b &UNNORM, %d0
+ rts
+inf_or_nan_x:
+ tst.l FTEMP_LO(%a0)
+ bne.b is_nan_x
+ mov.l FTEMP_HI(%a0), %d0
+ and.l &0x7fffffff, %d0 # msb is a don't care!
+ bne.b is_nan_x
+is_inf_x:
+ mov.b &INF, %d0
+ rts
+is_nan_x:
+ btst &0x6, FTEMP_HI(%a0)
+ beq.b is_snan_x
+ mov.b &QNAN, %d0
+ rts
+is_snan_x:
+ mov.b &SNAN, %d0
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# set_tag_d(): return the optype of the input dbl fp number #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# a0 = points to double precision operand #
+# #
+# OUTPUT ************************************************************** #
+# d0 = value of type tag #
+# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
+# #
+# ALGORITHM *********************************************************** #
+# Simply test the exponent, j-bit, and mantissa values to #
+# determine the type of operand. #
+# #
+#########################################################################
+
+ global set_tag_d
+set_tag_d:
+ mov.l FTEMP(%a0), %d0
+ mov.l %d0, %d1
+
+ andi.l &0x7ff00000, %d0
+ beq.b zero_or_denorm_d
+
+ cmpi.l %d0, &0x7ff00000
+ beq.b inf_or_nan_d
+
+is_norm_d:
+ mov.b &NORM, %d0
+ rts
+zero_or_denorm_d:
+ and.l &0x000fffff, %d1
+ bne is_denorm_d
+ tst.l 4+FTEMP(%a0)
+ bne is_denorm_d
+is_zero_d:
+ mov.b &ZERO, %d0
+ rts
+is_denorm_d:
+ mov.b &DENORM, %d0
+ rts
+inf_or_nan_d:
+ and.l &0x000fffff, %d1
+ bne is_nan_d
+ tst.l 4+FTEMP(%a0)
+ bne is_nan_d
+is_inf_d:
+ mov.b &INF, %d0
+ rts
+is_nan_d:
+ btst &19, %d1
+ bne is_qnan_d
+is_snan_d:
+ mov.b &SNAN, %d0
+ rts
+is_qnan_d:
+ mov.b &QNAN, %d0
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# set_tag_s(): return the optype of the input sgl fp number #
+# #
+# XREF **************************************************************** #
+# None #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to single precision operand #
+# #
+# OUTPUT ************************************************************** #
+# d0 = value of type tag #
+# one of: NORM, INF, QNAN, SNAN, DENORM, ZERO #
+# #
+# ALGORITHM *********************************************************** #
+# Simply test the exponent, j-bit, and mantissa values to #
+# determine the type of operand. #
+# #
+#########################################################################
+
+ global set_tag_s
+set_tag_s:
+ mov.l FTEMP(%a0), %d0
+ mov.l %d0, %d1
+
+ andi.l &0x7f800000, %d0
+ beq.b zero_or_denorm_s
+
+ cmpi.l %d0, &0x7f800000
+ beq.b inf_or_nan_s
+
+is_norm_s:
+ mov.b &NORM, %d0
+ rts
+zero_or_denorm_s:
+ and.l &0x007fffff, %d1
+ bne is_denorm_s
+is_zero_s:
+ mov.b &ZERO, %d0
+ rts
+is_denorm_s:
+ mov.b &DENORM, %d0
+ rts
+inf_or_nan_s:
+ and.l &0x007fffff, %d1
+ bne is_nan_s
+is_inf_s:
+ mov.b &INF, %d0
+ rts
+is_nan_s:
+ btst &22, %d1
+ bne is_qnan_s
+is_snan_s:
+ mov.b &SNAN, %d0
+ rts
+is_qnan_s:
+ mov.b &QNAN, %d0
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# unf_res(): routine to produce default underflow result of a #
+# scaled extended precision number; this is used by #
+# fadd/fdiv/fmul/etc. emulation routines. #
+# unf_res4(): same as above but for fsglmul/fsgldiv which use #
+# single round prec and extended prec mode. #
+# #
+# XREF **************************************************************** #
+# _denorm() - denormalize according to scale factor #
+# _round() - round denormalized number according to rnd prec #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to extended precison operand #
+# d0 = scale factor #
+# d1 = rounding precision/mode #
+# #
+# OUTPUT ************************************************************** #
+# a0 = pointer to default underflow result in extended precision #
+# d0.b = result FPSR_cc which caller may or may not want to save #
+# #
+# ALGORITHM *********************************************************** #
+# Convert the input operand to "internal format" which means the #
+# exponent is extended to 16 bits and the sign is stored in the unused #
+# portion of the extended precison operand. Denormalize the number #
+# according to the scale factor passed in d0. Then, round the #
+# denormalized result. #
+# Set the FPSR_exc bits as appropriate but return the cc bits in #
+# d0 in case the caller doesn't want to save them (as is the case for #
+# fmove out). #
+# unf_res4() for fsglmul/fsgldiv forces the denorm to extended #
+# precision and the rounding mode to single. #
+# #
+#########################################################################
+ global unf_res
+unf_res:
+ mov.l %d1, -(%sp) # save rnd prec,mode on stack
+
+ btst &0x7, FTEMP_EX(%a0) # make "internal" format
+ sne FTEMP_SGN(%a0)
+
+ mov.w FTEMP_EX(%a0), %d1 # extract exponent
+ and.w &0x7fff, %d1
+ sub.w %d0, %d1
+ mov.w %d1, FTEMP_EX(%a0) # insert 16 bit exponent
+
+ mov.l %a0, -(%sp) # save operand ptr during calls
+
+ mov.l 0x4(%sp),%d0 # pass rnd prec.
+ andi.w &0x00c0,%d0
+ lsr.w &0x4,%d0
+ bsr.l _denorm # denorm result
+
+ mov.l (%sp),%a0
+ mov.w 0x6(%sp),%d1 # load prec:mode into %d1
+ andi.w &0xc0,%d1 # extract rnd prec
+ lsr.w &0x4,%d1
+ swap %d1
+ mov.w 0x6(%sp),%d1
+ andi.w &0x30,%d1
+ lsr.w &0x4,%d1
+ bsr.l _round # round the denorm
+
+ mov.l (%sp)+, %a0
+
+# result is now rounded properly. convert back to normal format
+ bclr &0x7, FTEMP_EX(%a0) # clear sgn first; may have residue
+ tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
+ beq.b unf_res_chkifzero # no; result is positive
+ bset &0x7, FTEMP_EX(%a0) # set result sgn
+ clr.b FTEMP_SGN(%a0) # clear temp sign
+
+# the number may have become zero after rounding. set ccodes accordingly.
+unf_res_chkifzero:
+ clr.l %d0
+ tst.l FTEMP_HI(%a0) # is value now a zero?
+ bne.b unf_res_cont # no
+ tst.l FTEMP_LO(%a0)
+ bne.b unf_res_cont # no
+# bset &z_bit, FPSR_CC(%a6) # yes; set zero ccode bit
+ bset &z_bit, %d0 # yes; set zero ccode bit
+
+unf_res_cont:
+
+#
+# can inex1 also be set along with unfl and inex2???
+#
+# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
+#
+ btst &inex2_bit, FPSR_EXCEPT(%a6) # is INEX2 set?
+ beq.b unf_res_end # no
+ bset &aunfl_bit, FPSR_AEXCEPT(%a6) # yes; set aunfl
+
+unf_res_end:
+ add.l &0x4, %sp # clear stack
+ rts
+
+# unf_res() for fsglmul() and fsgldiv().
+ global unf_res4
+unf_res4:
+ mov.l %d1,-(%sp) # save rnd prec,mode on stack
+
+ btst &0x7,FTEMP_EX(%a0) # make "internal" format
+ sne FTEMP_SGN(%a0)
+
+ mov.w FTEMP_EX(%a0),%d1 # extract exponent
+ and.w &0x7fff,%d1
+ sub.w %d0,%d1
+ mov.w %d1,FTEMP_EX(%a0) # insert 16 bit exponent
+
+ mov.l %a0,-(%sp) # save operand ptr during calls
+
+ clr.l %d0 # force rnd prec = ext
+ bsr.l _denorm # denorm result
+
+ mov.l (%sp),%a0
+ mov.w &s_mode,%d1 # force rnd prec = sgl
+ swap %d1
+ mov.w 0x6(%sp),%d1 # load rnd mode
+ andi.w &0x30,%d1 # extract rnd prec
+ lsr.w &0x4,%d1
+ bsr.l _round # round the denorm
+
+ mov.l (%sp)+,%a0
+
+# result is now rounded properly. convert back to normal format
+ bclr &0x7,FTEMP_EX(%a0) # clear sgn first; may have residue
+ tst.b FTEMP_SGN(%a0) # is "internal result" sign set?
+ beq.b unf_res4_chkifzero # no; result is positive
+ bset &0x7,FTEMP_EX(%a0) # set result sgn
+ clr.b FTEMP_SGN(%a0) # clear temp sign
+
+# the number may have become zero after rounding. set ccodes accordingly.
+unf_res4_chkifzero:
+ clr.l %d0
+ tst.l FTEMP_HI(%a0) # is value now a zero?
+ bne.b unf_res4_cont # no
+ tst.l FTEMP_LO(%a0)
+ bne.b unf_res4_cont # no
+# bset &z_bit,FPSR_CC(%a6) # yes; set zero ccode bit
+ bset &z_bit,%d0 # yes; set zero ccode bit
+
+unf_res4_cont:
+
+#
+# can inex1 also be set along with unfl and inex2???
+#
+# we know that underflow has occurred. aunfl should be set if INEX2 is also set.
+#
+ btst &inex2_bit,FPSR_EXCEPT(%a6) # is INEX2 set?
+ beq.b unf_res4_end # no
+ bset &aunfl_bit,FPSR_AEXCEPT(%a6) # yes; set aunfl
+
+unf_res4_end:
+ add.l &0x4,%sp # clear stack
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# ovf_res(): routine to produce the default overflow result of #
+# an overflowing number. #
+# ovf_res2(): same as above but the rnd mode/prec are passed #
+# differently. #
+# #
+# XREF **************************************************************** #
+# none #
+# #
+# INPUT *************************************************************** #
+# d1.b = '-1' => (-); '0' => (+) #
+# ovf_res(): #
+# d0 = rnd mode/prec #
+# ovf_res2(): #
+# hi(d0) = rnd prec #
+# lo(d0) = rnd mode #
+# #
+# OUTPUT ************************************************************** #
+# a0 = points to extended precision result #
+# d0.b = condition code bits #
+# #
+# ALGORITHM *********************************************************** #
+# The default overflow result can be determined by the sign of #
+# the result and the rounding mode/prec in effect. These bits are #
+# concatenated together to create an index into the default result #
+# table. A pointer to the correct result is returned in a0. The #
+# resulting condition codes are returned in d0 in case the caller #
+# doesn't want FPSR_cc altered (as is the case for fmove out). #
+# #
+#########################################################################
+
+ global ovf_res
+ovf_res:
+ andi.w &0x10,%d1 # keep result sign
+ lsr.b &0x4,%d0 # shift prec/mode
+ or.b %d0,%d1 # concat the two
+ mov.w %d1,%d0 # make a copy
+ lsl.b &0x1,%d1 # multiply d1 by 2
+ bra.b ovf_res_load
+
+ global ovf_res2
+ovf_res2:
+ and.w &0x10, %d1 # keep result sign
+ or.b %d0, %d1 # insert rnd mode
+ swap %d0
+ or.b %d0, %d1 # insert rnd prec
+ mov.w %d1, %d0 # make a copy
+ lsl.b &0x1, %d1 # shift left by 1
+
+#
+# use the rounding mode, precision, and result sign as in index into the
+# two tables below to fetch the default result and the result ccodes.
+#
+ovf_res_load:
+ mov.b (tbl_ovfl_cc.b,%pc,%d0.w*1), %d0 # fetch result ccodes
+ lea (tbl_ovfl_result.b,%pc,%d1.w*8), %a0 # return result ptr
+
+ rts
+
+tbl_ovfl_cc:
+ byte 0x2, 0x0, 0x0, 0x2
+ byte 0x2, 0x0, 0x0, 0x2
+ byte 0x2, 0x0, 0x0, 0x2
+ byte 0x0, 0x0, 0x0, 0x0
+ byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
+ byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
+ byte 0x2+0x8, 0x8, 0x2+0x8, 0x8
+
+tbl_ovfl_result:
+ long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
+ long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RZ
+ long 0x7ffe0000,0xffffffff,0xffffffff,0x00000000 # +EXT; RM
+ long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
+
+ long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
+ long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RZ
+ long 0x407e0000,0xffffff00,0x00000000,0x00000000 # +SGL; RM
+ long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
+
+ long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RN
+ long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RZ
+ long 0x43fe0000,0xffffffff,0xfffff800,0x00000000 # +DBL; RM
+ long 0x7fff0000,0x00000000,0x00000000,0x00000000 # +INF; RP
+
+ long 0x00000000,0x00000000,0x00000000,0x00000000
+ long 0x00000000,0x00000000,0x00000000,0x00000000
+ long 0x00000000,0x00000000,0x00000000,0x00000000
+ long 0x00000000,0x00000000,0x00000000,0x00000000
+
+ long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
+ long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RZ
+ long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
+ long 0xfffe0000,0xffffffff,0xffffffff,0x00000000 # -EXT; RP
+
+ long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
+ long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RZ
+ long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
+ long 0xc07e0000,0xffffff00,0x00000000,0x00000000 # -SGL; RP
+
+ long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RN
+ long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RZ
+ long 0xffff0000,0x00000000,0x00000000,0x00000000 # -INF; RM
+ long 0xc3fe0000,0xffffffff,0xfffff800,0x00000000 # -DBL; RP
+
+#########################################################################
+# XDEF **************************************************************** #
+# get_packed(): fetch a packed operand from memory and then #
+# convert it to a floating-point binary number. #
+# #
+# XREF **************************************************************** #
+# _dcalc_ea() - calculate the correct <ea> #
+# _mem_read() - fetch the packed operand from memory #
+# facc_in_x() - the fetch failed so jump to special exit code #
+# decbin() - convert packed to binary extended precision #
+# #
+# INPUT *************************************************************** #
+# None #
+# #
+# OUTPUT ************************************************************** #
+# If no failure on _mem_read(): #
+# FP_SRC(a6) = packed operand now as a binary FP number #
+# #
+# ALGORITHM *********************************************************** #
+# Get the correct <ea> whihc is the value on the exception stack #
+# frame w/ maybe a correction factor if the <ea> is -(an) or (an)+. #
+# Then, fetch the operand from memory. If the fetch fails, exit #
+# through facc_in_x(). #
+# If the packed operand is a ZERO,NAN, or INF, convert it to #
+# its binary representation here. Else, call decbin() which will #
+# convert the packed value to an extended precision binary value. #
+# #
+#########################################################################
+
+# the stacked <ea> for packed is correct except for -(An).
+# the base reg must be updated for both -(An) and (An)+.
+ global get_packed
+get_packed:
+ mov.l &0xc,%d0 # packed is 12 bytes
+ bsr.l _dcalc_ea # fetch <ea>; correct An
+
+ lea FP_SRC(%a6),%a1 # pass: ptr to super dst
+ mov.l &0xc,%d0 # pass: 12 bytes
+ bsr.l _dmem_read # read packed operand
+
+ tst.l %d1 # did dfetch fail?
+ bne.l facc_in_x # yes
+
+# The packed operand is an INF or a NAN if the exponent field is all ones.
+ bfextu FP_SRC(%a6){&1:&15},%d0 # get exp
+ cmpi.w %d0,&0x7fff # INF or NAN?
+ bne.b gp_try_zero # no
+ rts # operand is an INF or NAN
+
+# The packed operand is a zero if the mantissa is all zero, else it's
+# a normal packed op.
+gp_try_zero:
+ mov.b 3+FP_SRC(%a6),%d0 # get byte 4
+ andi.b &0x0f,%d0 # clear all but last nybble
+ bne.b gp_not_spec # not a zero
+ tst.l FP_SRC_HI(%a6) # is lw 2 zero?
+ bne.b gp_not_spec # not a zero
+ tst.l FP_SRC_LO(%a6) # is lw 3 zero?
+ bne.b gp_not_spec # not a zero
+ rts # operand is a ZERO
+gp_not_spec:
+ lea FP_SRC(%a6),%a0 # pass: ptr to packed op
+ bsr.l decbin # convert to extended
+ fmovm.x &0x80,FP_SRC(%a6) # make this the srcop
+ rts
+
+#########################################################################
+# decbin(): Converts normalized packed bcd value pointed to by register #
+# a0 to extended-precision value in fp0. #
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to normalized packed bcd value #
+# #
+# OUTPUT ************************************************************** #
+# fp0 = exact fp representation of the packed bcd value. #
+# #
+# ALGORITHM *********************************************************** #
+# Expected is a normal bcd (i.e. non-exceptional; all inf, zero, #
+# and NaN operands are dispatched without entering this routine) #
+# value in 68881/882 format at location (a0). #
+# #
+# A1. Convert the bcd exponent to binary by successive adds and #
+# muls. Set the sign according to SE. Subtract 16 to compensate #
+# for the mantissa which is to be interpreted as 17 integer #
+# digits, rather than 1 integer and 16 fraction digits. #
+# Note: this operation can never overflow. #
+# #
+# A2. Convert the bcd mantissa to binary by successive #
+# adds and muls in FP0. Set the sign according to SM. #
+# The mantissa digits will be converted with the decimal point #
+# assumed following the least-significant digit. #
+# Note: this operation can never overflow. #
+# #
+# A3. Count the number of leading/trailing zeros in the #
+# bcd string. If SE is positive, count the leading zeros; #
+# if negative, count the trailing zeros. Set the adjusted #
+# exponent equal to the exponent from A1 and the zero count #
+# added if SM = 1 and subtracted if SM = 0. Scale the #
+# mantissa the equivalent of forcing in the bcd value: #
+# #
+# SM = 0 a non-zero digit in the integer position #
+# SM = 1 a non-zero digit in Mant0, lsd of the fraction #
+# #
+# this will insure that any value, regardless of its #
+# representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted #
+# consistently. #
+# #
+# A4. Calculate the factor 10^exp in FP1 using a table of #
+# 10^(2^n) values. To reduce the error in forming factors #
+# greater than 10^27, a directed rounding scheme is used with #
+# tables rounded to RN, RM, and RP, according to the table #
+# in the comments of the pwrten section. #
+# #
+# A5. Form the final binary number by scaling the mantissa by #
+# the exponent factor. This is done by multiplying the #
+# mantissa in FP0 by the factor in FP1 if the adjusted #
+# exponent sign is positive, and dividing FP0 by FP1 if #
+# it is negative. #
+# #
+# Clean up and return. Check if the final mul or div was inexact. #
+# If so, set INEX1 in USER_FPSR. #
+# #
+#########################################################################
+
+#
+# PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
+# to nearest, minus, and plus, respectively. The tables include
+# 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
+# is required until the power is greater than 27, however, all
+# tables include the first 5 for ease of indexing.
+#
+RTABLE:
+ byte 0,0,0,0
+ byte 2,3,2,3
+ byte 2,3,3,2
+ byte 3,2,2,3
+
+ set FNIBS,7
+ set FSTRT,0
+
+ set ESTRT,4
+ set EDIGITS,2
+
+ global decbin
+decbin:
+ mov.l 0x0(%a0),FP_SCR0_EX(%a6) # make a copy of input
+ mov.l 0x4(%a0),FP_SCR0_HI(%a6) # so we don't alter it
+ mov.l 0x8(%a0),FP_SCR0_LO(%a6)
+
+ lea FP_SCR0(%a6),%a0
+
+ movm.l &0x3c00,-(%sp) # save d2-d5
+ fmovm.x &0x1,-(%sp) # save fp1
+#
+# Calculate exponent:
+# 1. Copy bcd value in memory for use as a working copy.
+# 2. Calculate absolute value of exponent in d1 by mul and add.
+# 3. Correct for exponent sign.
+# 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
+# (i.e., all digits assumed left of the decimal point.)
+#
+# Register usage:
+#
+# calc_e:
+# (*) d0: temp digit storage
+# (*) d1: accumulator for binary exponent
+# (*) d2: digit count
+# (*) d3: offset pointer
+# ( ) d4: first word of bcd
+# ( ) a0: pointer to working bcd value
+# ( ) a6: pointer to original bcd value
+# (*) FP_SCR1: working copy of original bcd value
+# (*) L_SCR1: copy of original exponent word
+#
+calc_e:
+ mov.l &EDIGITS,%d2 # # of nibbles (digits) in fraction part
+ mov.l &ESTRT,%d3 # counter to pick up digits
+ mov.l (%a0),%d4 # get first word of bcd
+ clr.l %d1 # zero d1 for accumulator
+e_gd:
+ mulu.l &0xa,%d1 # mul partial product by one digit place
+ bfextu %d4{%d3:&4},%d0 # get the digit and zero extend into d0
+ add.l %d0,%d1 # d1 = d1 + d0
+ addq.b &4,%d3 # advance d3 to the next digit
+ dbf.w %d2,e_gd # if we have used all 3 digits, exit loop
+ btst &30,%d4 # get SE
+ beq.b e_pos # don't negate if pos
+ neg.l %d1 # negate before subtracting
+e_pos:
+ sub.l &16,%d1 # sub to compensate for shift of mant
+ bge.b e_save # if still pos, do not neg
+ neg.l %d1 # now negative, make pos and set SE
+ or.l &0x40000000,%d4 # set SE in d4,
+ or.l &0x40000000,(%a0) # and in working bcd
+e_save:
+ mov.l %d1,-(%sp) # save exp on stack
+#
+#
+# Calculate mantissa:
+# 1. Calculate absolute value of mantissa in fp0 by mul and add.
+# 2. Correct for mantissa sign.
+# (i.e., all digits assumed left of the decimal point.)
+#
+# Register usage:
+#
+# calc_m:
+# (*) d0: temp digit storage
+# (*) d1: lword counter
+# (*) d2: digit count
+# (*) d3: offset pointer
+# ( ) d4: words 2 and 3 of bcd
+# ( ) a0: pointer to working bcd value
+# ( ) a6: pointer to original bcd value
+# (*) fp0: mantissa accumulator
+# ( ) FP_SCR1: working copy of original bcd value
+# ( ) L_SCR1: copy of original exponent word
+#
+calc_m:
+ mov.l &1,%d1 # word counter, init to 1
+ fmov.s &0x00000000,%fp0 # accumulator
+#
+#
+# Since the packed number has a long word between the first & second parts,
+# get the integer digit then skip down & get the rest of the
+# mantissa. We will unroll the loop once.
+#
+ bfextu (%a0){&28:&4},%d0 # integer part is ls digit in long word
+ fadd.b %d0,%fp0 # add digit to sum in fp0
+#
+#
+# Get the rest of the mantissa.
+#
+loadlw:
+ mov.l (%a0,%d1.L*4),%d4 # load mantissa lonqword into d4
+ mov.l &FSTRT,%d3 # counter to pick up digits
+ mov.l &FNIBS,%d2 # reset number of digits per a0 ptr
+md2b:
+ fmul.s &0x41200000,%fp0 # fp0 = fp0 * 10
+ bfextu %d4{%d3:&4},%d0 # get the digit and zero extend
+ fadd.b %d0,%fp0 # fp0 = fp0 + digit
+#
+#
+# If all the digits (8) in that long word have been converted (d2=0),
+# then inc d1 (=2) to point to the next long word and reset d3 to 0
+# to initialize the digit offset, and set d2 to 7 for the digit count;
+# else continue with this long word.
+#
+ addq.b &4,%d3 # advance d3 to the next digit
+ dbf.w %d2,md2b # check for last digit in this lw
+nextlw:
+ addq.l &1,%d1 # inc lw pointer in mantissa
+ cmp.l %d1,&2 # test for last lw
+ ble.b loadlw # if not, get last one
+#
+# Check the sign of the mant and make the value in fp0 the same sign.
+#
+m_sign:
+ btst &31,(%a0) # test sign of the mantissa
+ beq.b ap_st_z # if clear, go to append/strip zeros
+ fneg.x %fp0 # if set, negate fp0
+#
+# Append/strip zeros:
+#
+# For adjusted exponents which have an absolute value greater than 27*,
+# this routine calculates the amount needed to normalize the mantissa
+# for the adjusted exponent. That number is subtracted from the exp
+# if the exp was positive, and added if it was negative. The purpose
+# of this is to reduce the value of the exponent and the possibility
+# of error in calculation of pwrten.
+#
+# 1. Branch on the sign of the adjusted exponent.
+# 2p.(positive exp)
+# 2. Check M16 and the digits in lwords 2 and 3 in decending order.
+# 3. Add one for each zero encountered until a non-zero digit.
+# 4. Subtract the count from the exp.
+# 5. Check if the exp has crossed zero in #3 above; make the exp abs
+# and set SE.
+# 6. Multiply the mantissa by 10**count.
+# 2n.(negative exp)
+# 2. Check the digits in lwords 3 and 2 in decending order.
+# 3. Add one for each zero encountered until a non-zero digit.
+# 4. Add the count to the exp.
+# 5. Check if the exp has crossed zero in #3 above; clear SE.
+# 6. Divide the mantissa by 10**count.
+#
+# *Why 27? If the adjusted exponent is within -28 < expA < 28, than
+# any adjustment due to append/strip zeros will drive the resultane
+# exponent towards zero. Since all pwrten constants with a power
+# of 27 or less are exact, there is no need to use this routine to
+# attempt to lessen the resultant exponent.
+#
+# Register usage:
+#
+# ap_st_z:
+# (*) d0: temp digit storage
+# (*) d1: zero count
+# (*) d2: digit count
+# (*) d3: offset pointer
+# ( ) d4: first word of bcd
+# (*) d5: lword counter
+# ( ) a0: pointer to working bcd value
+# ( ) FP_SCR1: working copy of original bcd value
+# ( ) L_SCR1: copy of original exponent word
+#
+#
+# First check the absolute value of the exponent to see if this
+# routine is necessary. If so, then check the sign of the exponent
+# and do append (+) or strip (-) zeros accordingly.
+# This section handles a positive adjusted exponent.
+#
+ap_st_z:
+ mov.l (%sp),%d1 # load expA for range test
+ cmp.l %d1,&27 # test is with 27
+ ble.w pwrten # if abs(expA) <28, skip ap/st zeros
+ btst &30,(%a0) # check sign of exp
+ bne.b ap_st_n # if neg, go to neg side
+ clr.l %d1 # zero count reg
+ mov.l (%a0),%d4 # load lword 1 to d4
+ bfextu %d4{&28:&4},%d0 # get M16 in d0
+ bne.b ap_p_fx # if M16 is non-zero, go fix exp
+ addq.l &1,%d1 # inc zero count
+ mov.l &1,%d5 # init lword counter
+ mov.l (%a0,%d5.L*4),%d4 # get lword 2 to d4
+ bne.b ap_p_cl # if lw 2 is zero, skip it
+ addq.l &8,%d1 # and inc count by 8
+ addq.l &1,%d5 # inc lword counter
+ mov.l (%a0,%d5.L*4),%d4 # get lword 3 to d4
+ap_p_cl:
+ clr.l %d3 # init offset reg
+ mov.l &7,%d2 # init digit counter
+ap_p_gd:
+ bfextu %d4{%d3:&4},%d0 # get digit
+ bne.b ap_p_fx # if non-zero, go to fix exp
+ addq.l &4,%d3 # point to next digit
+ addq.l &1,%d1 # inc digit counter
+ dbf.w %d2,ap_p_gd # get next digit
+ap_p_fx:
+ mov.l %d1,%d0 # copy counter to d2
+ mov.l (%sp),%d1 # get adjusted exp from memory
+ sub.l %d0,%d1 # subtract count from exp
+ bge.b ap_p_fm # if still pos, go to pwrten
+ neg.l %d1 # now its neg; get abs
+ mov.l (%a0),%d4 # load lword 1 to d4
+ or.l &0x40000000,%d4 # and set SE in d4
+ or.l &0x40000000,(%a0) # and in memory
+#
+# Calculate the mantissa multiplier to compensate for the striping of
+# zeros from the mantissa.
+#
+ap_p_fm:
+ lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
+ clr.l %d3 # init table index
+ fmov.s &0x3f800000,%fp1 # init fp1 to 1
+ mov.l &3,%d2 # init d2 to count bits in counter
+ap_p_el:
+ asr.l &1,%d0 # shift lsb into carry
+ bcc.b ap_p_en # if 1, mul fp1 by pwrten factor
+ fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
+ap_p_en:
+ add.l &12,%d3 # inc d3 to next rtable entry
+ tst.l %d0 # check if d0 is zero
+ bne.b ap_p_el # if not, get next bit
+ fmul.x %fp1,%fp0 # mul mantissa by 10**(no_bits_shifted)
+ bra.b pwrten # go calc pwrten
+#
+# This section handles a negative adjusted exponent.
+#
+ap_st_n:
+ clr.l %d1 # clr counter
+ mov.l &2,%d5 # set up d5 to point to lword 3
+ mov.l (%a0,%d5.L*4),%d4 # get lword 3
+ bne.b ap_n_cl # if not zero, check digits
+ sub.l &1,%d5 # dec d5 to point to lword 2
+ addq.l &8,%d1 # inc counter by 8
+ mov.l (%a0,%d5.L*4),%d4 # get lword 2
+ap_n_cl:
+ mov.l &28,%d3 # point to last digit
+ mov.l &7,%d2 # init digit counter
+ap_n_gd:
+ bfextu %d4{%d3:&4},%d0 # get digit
+ bne.b ap_n_fx # if non-zero, go to exp fix
+ subq.l &4,%d3 # point to previous digit
+ addq.l &1,%d1 # inc digit counter
+ dbf.w %d2,ap_n_gd # get next digit
+ap_n_fx:
+ mov.l %d1,%d0 # copy counter to d0
+ mov.l (%sp),%d1 # get adjusted exp from memory
+ sub.l %d0,%d1 # subtract count from exp
+ bgt.b ap_n_fm # if still pos, go fix mantissa
+ neg.l %d1 # take abs of exp and clr SE
+ mov.l (%a0),%d4 # load lword 1 to d4
+ and.l &0xbfffffff,%d4 # and clr SE in d4
+ and.l &0xbfffffff,(%a0) # and in memory
+#
+# Calculate the mantissa multiplier to compensate for the appending of
+# zeros to the mantissa.
+#
+ap_n_fm:
+ lea.l PTENRN(%pc),%a1 # get address of power-of-ten table
+ clr.l %d3 # init table index
+ fmov.s &0x3f800000,%fp1 # init fp1 to 1
+ mov.l &3,%d2 # init d2 to count bits in counter
+ap_n_el:
+ asr.l &1,%d0 # shift lsb into carry
+ bcc.b ap_n_en # if 1, mul fp1 by pwrten factor
+ fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
+ap_n_en:
+ add.l &12,%d3 # inc d3 to next rtable entry
+ tst.l %d0 # check if d0 is zero
+ bne.b ap_n_el # if not, get next bit
+ fdiv.x %fp1,%fp0 # div mantissa by 10**(no_bits_shifted)
+#
+#
+# Calculate power-of-ten factor from adjusted and shifted exponent.
+#
+# Register usage:
+#
+# pwrten:
+# (*) d0: temp
+# ( ) d1: exponent
+# (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
+# (*) d3: FPCR work copy
+# ( ) d4: first word of bcd
+# (*) a1: RTABLE pointer
+# calc_p:
+# (*) d0: temp
+# ( ) d1: exponent
+# (*) d3: PWRTxx table index
+# ( ) a0: pointer to working copy of bcd
+# (*) a1: PWRTxx pointer
+# (*) fp1: power-of-ten accumulator
+#
+# Pwrten calculates the exponent factor in the selected rounding mode
+# according to the following table:
+#
+# Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
+#
+# ANY ANY RN RN
+#
+# + + RP RP
+# - + RP RM
+# + - RP RM
+# - - RP RP
+#
+# + + RM RM
+# - + RM RP
+# + - RM RP
+# - - RM RM
+#
+# + + RZ RM
+# - + RZ RM
+# + - RZ RP
+# - - RZ RP
+#
+#
+pwrten:
+ mov.l USER_FPCR(%a6),%d3 # get user's FPCR
+ bfextu %d3{&26:&2},%d2 # isolate rounding mode bits
+ mov.l (%a0),%d4 # reload 1st bcd word to d4
+ asl.l &2,%d2 # format d2 to be
+ bfextu %d4{&0:&2},%d0 # {FPCR[6],FPCR[5],SM,SE}
+ add.l %d0,%d2 # in d2 as index into RTABLE
+ lea.l RTABLE(%pc),%a1 # load rtable base
+ mov.b (%a1,%d2),%d0 # load new rounding bits from table
+ clr.l %d3 # clear d3 to force no exc and extended
+ bfins %d0,%d3{&26:&2} # stuff new rounding bits in FPCR
+ fmov.l %d3,%fpcr # write new FPCR
+ asr.l &1,%d0 # write correct PTENxx table
+ bcc.b not_rp # to a1
+ lea.l PTENRP(%pc),%a1 # it is RP
+ bra.b calc_p # go to init section
+not_rp:
+ asr.l &1,%d0 # keep checking
+ bcc.b not_rm
+ lea.l PTENRM(%pc),%a1 # it is RM
+ bra.b calc_p # go to init section
+not_rm:
+ lea.l PTENRN(%pc),%a1 # it is RN
+calc_p:
+ mov.l %d1,%d0 # copy exp to d0;use d0
+ bpl.b no_neg # if exp is negative,
+ neg.l %d0 # invert it
+ or.l &0x40000000,(%a0) # and set SE bit
+no_neg:
+ clr.l %d3 # table index
+ fmov.s &0x3f800000,%fp1 # init fp1 to 1
+e_loop:
+ asr.l &1,%d0 # shift next bit into carry
+ bcc.b e_next # if zero, skip the mul
+ fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
+e_next:
+ add.l &12,%d3 # inc d3 to next rtable entry
+ tst.l %d0 # check if d0 is zero
+ bne.b e_loop # not zero, continue shifting
+#
+#
+# Check the sign of the adjusted exp and make the value in fp0 the
+# same sign. If the exp was pos then multiply fp1*fp0;
+# else divide fp0/fp1.
+#
+# Register Usage:
+# norm:
+# ( ) a0: pointer to working bcd value
+# (*) fp0: mantissa accumulator
+# ( ) fp1: scaling factor - 10**(abs(exp))
+#
+pnorm:
+ btst &30,(%a0) # test the sign of the exponent
+ beq.b mul # if clear, go to multiply
+div:
+ fdiv.x %fp1,%fp0 # exp is negative, so divide mant by exp
+ bra.b end_dec
+mul:
+ fmul.x %fp1,%fp0 # exp is positive, so multiply by exp
+#
+#
+# Clean up and return with result in fp0.
+#
+# If the final mul/div in decbin incurred an inex exception,
+# it will be inex2, but will be reported as inex1 by get_op.
+#
+end_dec:
+ fmov.l %fpsr,%d0 # get status register
+ bclr &inex2_bit+8,%d0 # test for inex2 and clear it
+ beq.b no_exc # skip this if no exc
+ ori.w &inx1a_mask,2+USER_FPSR(%a6) # set INEX1/AINEX
+no_exc:
+ add.l &0x4,%sp # clear 1 lw param
+ fmovm.x (%sp)+,&0x40 # restore fp1
+ movm.l (%sp)+,&0x3c # restore d2-d5
+ fmov.l &0x0,%fpcr
+ fmov.l &0x0,%fpsr
+ rts
+
+#########################################################################
+# bindec(): Converts an input in extended precision format to bcd format#
+# #
+# INPUT *************************************************************** #
+# a0 = pointer to the input extended precision value in memory. #
+# the input may be either normalized, unnormalized, or #
+# denormalized. #
+# d0 = contains the k-factor sign-extended to 32-bits. #
+# #
+# OUTPUT ************************************************************** #
+# FP_SCR0(a6) = bcd format result on the stack. #
+# #
+# ALGORITHM *********************************************************** #
+# #
+# A1. Set RM and size ext; Set SIGMA = sign of input. #
+# The k-factor is saved for use in d7. Clear the #
+# BINDEC_FLG for separating normalized/denormalized #
+# input. If input is unnormalized or denormalized, #
+# normalize it. #
+# #
+# A2. Set X = abs(input). #
+# #
+# A3. Compute ILOG. #
+# ILOG is the log base 10 of the input value. It is #
+# approximated by adding e + 0.f when the original #
+# value is viewed as 2^^e * 1.f in extended precision. #
+# This value is stored in d6. #
+# #
+# A4. Clr INEX bit. #
+# The operation in A3 above may have set INEX2. #
+# #
+# A5. Set ICTR = 0; #
+# ICTR is a flag used in A13. It must be set before the #
+# loop entry A6. #
+# #
+# A6. Calculate LEN. #
+# LEN is the number of digits to be displayed. The #
+# k-factor can dictate either the total number of digits, #
+# if it is a positive number, or the number of digits #
+# after the decimal point which are to be included as #
+# significant. See the 68882 manual for examples. #
+# If LEN is computed to be greater than 17, set OPERR in #
+# USER_FPSR. LEN is stored in d4. #
+# #
+# A7. Calculate SCALE. #
+# SCALE is equal to 10^ISCALE, where ISCALE is the number #
+# of decimal places needed to insure LEN integer digits #
+# in the output before conversion to bcd. LAMBDA is the #
+# sign of ISCALE, used in A9. Fp1 contains #
+# 10^^(abs(ISCALE)) using a rounding mode which is a #
+# function of the original rounding mode and the signs #
+# of ISCALE and X. A table is given in the code. #
+# #
+# A8. Clr INEX; Force RZ. #
+# The operation in A3 above may have set INEX2. #
+# RZ mode is forced for the scaling operation to insure #
+# only one rounding error. The grs bits are collected in #
+# the INEX flag for use in A10. #
+# #
+# A9. Scale X -> Y. #
+# The mantissa is scaled to the desired number of #
+# significant digits. The excess digits are collected #
+# in INEX2. #
+# #
+# A10. Or in INEX. #
+# If INEX is set, round error occurred. This is #
+# compensated for by 'or-ing' in the INEX2 flag to #
+# the lsb of Y. #
+# #
+# A11. Restore original FPCR; set size ext. #
+# Perform FINT operation in the user's rounding mode. #
+# Keep the size to extended. #
+# #
+# A12. Calculate YINT = FINT(Y) according to user's rounding #
+# mode. The FPSP routine sintd0 is used. The output #
+# is in fp0. #
+# #
+# A13. Check for LEN digits. #
+# If the int operation results in more than LEN digits, #
+# or less than LEN -1 digits, adjust ILOG and repeat from #
+# A6. This test occurs only on the first pass. If the #
+# result is exactly 10^LEN, decrement ILOG and divide #
+# the mantissa by 10. #
+# #
+# A14. Convert the mantissa to bcd. #
+# The binstr routine is used to convert the LEN digit #
+# mantissa to bcd in memory. The input to binstr is #
+# to be a fraction; i.e. (mantissa)/10^LEN and adjusted #
+# such that the decimal point is to the left of bit 63. #
+# The bcd digits are stored in the correct position in #
+# the final string area in memory. #
+# #
+# A15. Convert the exponent to bcd. #
+# As in A14 above, the exp is converted to bcd and the #
+# digits are stored in the final string. #
+# Test the length of the final exponent string. If the #
+# length is 4, set operr. #
+# #
+# A16. Write sign bits to final string. #
+# #
+#########################################################################
+
+set BINDEC_FLG, EXC_TEMP # DENORM flag
+
+# Constants in extended precision
+PLOG2:
+ long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
+PLOG2UP1:
+ long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
+
+# Constants in single precision
+FONE:
+ long 0x3F800000,0x00000000,0x00000000,0x00000000
+FTWO:
+ long 0x40000000,0x00000000,0x00000000,0x00000000
+FTEN:
+ long 0x41200000,0x00000000,0x00000000,0x00000000
+F4933:
+ long 0x459A2800,0x00000000,0x00000000,0x00000000
+
+RBDTBL:
+ byte 0,0,0,0
+ byte 3,3,2,2
+ byte 3,2,2,3
+ byte 2,3,3,2
+
+# Implementation Notes:
+#
+# The registers are used as follows:
+#
+# d0: scratch; LEN input to binstr
+# d1: scratch
+# d2: upper 32-bits of mantissa for binstr
+# d3: scratch;lower 32-bits of mantissa for binstr
+# d4: LEN
+# d5: LAMBDA/ICTR
+# d6: ILOG
+# d7: k-factor
+# a0: ptr for original operand/final result
+# a1: scratch pointer
+# a2: pointer to FP_X; abs(original value) in ext
+# fp0: scratch
+# fp1: scratch
+# fp2: scratch
+# F_SCR1:
+# F_SCR2:
+# L_SCR1:
+# L_SCR2:
+
+ global bindec
+bindec:
+ movm.l &0x3f20,-(%sp) # {%d2-%d7/%a2}
+ fmovm.x &0x7,-(%sp) # {%fp0-%fp2}
+
+# A1. Set RM and size ext. Set SIGMA = sign input;
+# The k-factor is saved for use in d7. Clear BINDEC_FLG for
+# separating normalized/denormalized input. If the input
+# is a denormalized number, set the BINDEC_FLG memory word
+# to signal denorm. If the input is unnormalized, normalize
+# the input and test for denormalized result.
+#
+ fmov.l &rm_mode*0x10,%fpcr # set RM and ext
+ mov.l (%a0),L_SCR2(%a6) # save exponent for sign check
+ mov.l %d0,%d7 # move k-factor to d7
+
+ clr.b BINDEC_FLG(%a6) # clr norm/denorm flag
+ cmpi.b STAG(%a6),&DENORM # is input a DENORM?
+ bne.w A2_str # no; input is a NORM
+
+#
+# Normalize the denorm
+#
+un_de_norm:
+ mov.w (%a0),%d0
+ and.w &0x7fff,%d0 # strip sign of normalized exp
+ mov.l 4(%a0),%d1
+ mov.l 8(%a0),%d2
+norm_loop:
+ sub.w &1,%d0
+ lsl.l &1,%d2
+ roxl.l &1,%d1
+ tst.l %d1
+ bge.b norm_loop
+#
+# Test if the normalized input is denormalized
+#
+ tst.w %d0
+ bgt.b pos_exp # if greater than zero, it is a norm
+ st BINDEC_FLG(%a6) # set flag for denorm
+pos_exp:
+ and.w &0x7fff,%d0 # strip sign of normalized exp
+ mov.w %d0,(%a0)
+ mov.l %d1,4(%a0)
+ mov.l %d2,8(%a0)
+
+# A2. Set X = abs(input).
+#
+A2_str:
+ mov.l (%a0),FP_SCR1(%a6) # move input to work space
+ mov.l 4(%a0),FP_SCR1+4(%a6) # move input to work space
+ mov.l 8(%a0),FP_SCR1+8(%a6) # move input to work space
+ and.l &0x7fffffff,FP_SCR1(%a6) # create abs(X)
+
+# A3. Compute ILOG.
+# ILOG is the log base 10 of the input value. It is approx-
+# imated by adding e + 0.f when the original value is viewed
+# as 2^^e * 1.f in extended precision. This value is stored
+# in d6.
+#
+# Register usage:
+# Input/Output
+# d0: k-factor/exponent
+# d2: x/x
+# d3: x/x
+# d4: x/x
+# d5: x/x
+# d6: x/ILOG
+# d7: k-factor/Unchanged
+# a0: ptr for original operand/final result
+# a1: x/x
+# a2: x/x
+# fp0: x/float(ILOG)
+# fp1: x/x
+# fp2: x/x
+# F_SCR1:x/x
+# F_SCR2:Abs(X)/Abs(X) with $3fff exponent
+# L_SCR1:x/x
+# L_SCR2:first word of X packed/Unchanged
+
+ tst.b BINDEC_FLG(%a6) # check for denorm
+ beq.b A3_cont # if clr, continue with norm
+ mov.l &-4933,%d6 # force ILOG = -4933
+ bra.b A4_str
+A3_cont:
+ mov.w FP_SCR1(%a6),%d0 # move exp to d0
+ mov.w &0x3fff,FP_SCR1(%a6) # replace exponent with 0x3fff
+ fmov.x FP_SCR1(%a6),%fp0 # now fp0 has 1.f
+ sub.w &0x3fff,%d0 # strip off bias
+ fadd.w %d0,%fp0 # add in exp
+ fsub.s FONE(%pc),%fp0 # subtract off 1.0
+ fbge.w pos_res # if pos, branch
+ fmul.x PLOG2UP1(%pc),%fp0 # if neg, mul by LOG2UP1
+ fmov.l %fp0,%d6 # put ILOG in d6 as a lword
+ bra.b A4_str # go move out ILOG
+pos_res:
+ fmul.x PLOG2(%pc),%fp0 # if pos, mul by LOG2
+ fmov.l %fp0,%d6 # put ILOG in d6 as a lword
+
+
+# A4. Clr INEX bit.
+# The operation in A3 above may have set INEX2.
+
+A4_str:
+ fmov.l &0,%fpsr # zero all of fpsr - nothing needed
+
+
+# A5. Set ICTR = 0;
+# ICTR is a flag used in A13. It must be set before the
+# loop entry A6. The lower word of d5 is used for ICTR.
+
+ clr.w %d5 # clear ICTR
+
+# A6. Calculate LEN.
+# LEN is the number of digits to be displayed. The k-factor
+# can dictate either the total number of digits, if it is
+# a positive number, or the number of digits after the
+# original decimal point which are to be included as
+# significant. See the 68882 manual for examples.
+# If LEN is computed to be greater than 17, set OPERR in
+# USER_FPSR. LEN is stored in d4.
+#
+# Register usage:
+# Input/Output
+# d0: exponent/Unchanged
+# d2: x/x/scratch
+# d3: x/x
+# d4: exc picture/LEN
+# d5: ICTR/Unchanged
+# d6: ILOG/Unchanged
+# d7: k-factor/Unchanged
+# a0: ptr for original operand/final result
+# a1: x/x
+# a2: x/x
+# fp0: float(ILOG)/Unchanged
+# fp1: x/x
+# fp2: x/x
+# F_SCR1:x/x
+# F_SCR2:Abs(X) with $3fff exponent/Unchanged
+# L_SCR1:x/x
+# L_SCR2:first word of X packed/Unchanged
+
+A6_str:
+ tst.l %d7 # branch on sign of k
+ ble.b k_neg # if k <= 0, LEN = ILOG + 1 - k
+ mov.l %d7,%d4 # if k > 0, LEN = k
+ bra.b len_ck # skip to LEN check
+k_neg:
+ mov.l %d6,%d4 # first load ILOG to d4
+ sub.l %d7,%d4 # subtract off k
+ addq.l &1,%d4 # add in the 1
+len_ck:
+ tst.l %d4 # LEN check: branch on sign of LEN
+ ble.b LEN_ng # if neg, set LEN = 1
+ cmp.l %d4,&17 # test if LEN > 17
+ ble.b A7_str # if not, forget it
+ mov.l &17,%d4 # set max LEN = 17
+ tst.l %d7 # if negative, never set OPERR
+ ble.b A7_str # if positive, continue
+ or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
+ bra.b A7_str # finished here
+LEN_ng:
+ mov.l &1,%d4 # min LEN is 1
+
+
+# A7. Calculate SCALE.
+# SCALE is equal to 10^ISCALE, where ISCALE is the number
+# of decimal places needed to insure LEN integer digits
+# in the output before conversion to bcd. LAMBDA is the sign
+# of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using
+# the rounding mode as given in the following table (see
+# Coonen, p. 7.23 as ref.; however, the SCALE variable is
+# of opposite sign in bindec.sa from Coonen).
+#
+# Initial USE
+# FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5]
+# ----------------------------------------------
+# RN 00 0 0 00/0 RN
+# RN 00 0 1 00/0 RN
+# RN 00 1 0 00/0 RN
+# RN 00 1 1 00/0 RN
+# RZ 01 0 0 11/3 RP
+# RZ 01 0 1 11/3 RP
+# RZ 01 1 0 10/2 RM
+# RZ 01 1 1 10/2 RM
+# RM 10 0 0 11/3 RP
+# RM 10 0 1 10/2 RM
+# RM 10 1 0 10/2 RM
+# RM 10 1 1 11/3 RP
+# RP 11 0 0 10/2 RM
+# RP 11 0 1 11/3 RP
+# RP 11 1 0 11/3 RP
+# RP 11 1 1 10/2 RM
+#
+# Register usage:
+# Input/Output
+# d0: exponent/scratch - final is 0
+# d2: x/0 or 24 for A9
+# d3: x/scratch - offset ptr into PTENRM array
+# d4: LEN/Unchanged
+# d5: 0/ICTR:LAMBDA
+# d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
+# d7: k-factor/Unchanged
+# a0: ptr for original operand/final result
+# a1: x/ptr to PTENRM array
+# a2: x/x
+# fp0: float(ILOG)/Unchanged
+# fp1: x/10^ISCALE
+# fp2: x/x
+# F_SCR1:x/x
+# F_SCR2:Abs(X) with $3fff exponent/Unchanged
+# L_SCR1:x/x
+# L_SCR2:first word of X packed/Unchanged
+
+A7_str:
+ tst.l %d7 # test sign of k
+ bgt.b k_pos # if pos and > 0, skip this
+ cmp.l %d7,%d6 # test k - ILOG
+ blt.b k_pos # if ILOG >= k, skip this
+ mov.l %d7,%d6 # if ((k<0) & (ILOG < k)) ILOG = k
+k_pos:
+ mov.l %d6,%d0 # calc ILOG + 1 - LEN in d0
+ addq.l &1,%d0 # add the 1
+ sub.l %d4,%d0 # sub off LEN
+ swap %d5 # use upper word of d5 for LAMBDA
+ clr.w %d5 # set it zero initially
+ clr.w %d2 # set up d2 for very small case
+ tst.l %d0 # test sign of ISCALE
+ bge.b iscale # if pos, skip next inst
+ addq.w &1,%d5 # if neg, set LAMBDA true
+ cmp.l %d0,&0xffffecd4 # test iscale <= -4908
+ bgt.b no_inf # if false, skip rest
+ add.l &24,%d0 # add in 24 to iscale
+ mov.l &24,%d2 # put 24 in d2 for A9
+no_inf:
+ neg.l %d0 # and take abs of ISCALE
+iscale:
+ fmov.s FONE(%pc),%fp1 # init fp1 to 1
+ bfextu USER_FPCR(%a6){&26:&2},%d1 # get initial rmode bits
+ lsl.w &1,%d1 # put them in bits 2:1
+ add.w %d5,%d1 # add in LAMBDA
+ lsl.w &1,%d1 # put them in bits 3:1
+ tst.l L_SCR2(%a6) # test sign of original x
+ bge.b x_pos # if pos, don't set bit 0
+ addq.l &1,%d1 # if neg, set bit 0
+x_pos:
+ lea.l RBDTBL(%pc),%a2 # load rbdtbl base
+ mov.b (%a2,%d1),%d3 # load d3 with new rmode
+ lsl.l &4,%d3 # put bits in proper position
+ fmov.l %d3,%fpcr # load bits into fpu
+ lsr.l &4,%d3 # put bits in proper position
+ tst.b %d3 # decode new rmode for pten table
+ bne.b not_rn # if zero, it is RN
+ lea.l PTENRN(%pc),%a1 # load a1 with RN table base
+ bra.b rmode # exit decode
+not_rn:
+ lsr.b &1,%d3 # get lsb in carry
+ bcc.b not_rp2 # if carry clear, it is RM
+ lea.l PTENRP(%pc),%a1 # load a1 with RP table base
+ bra.b rmode # exit decode
+not_rp2:
+ lea.l PTENRM(%pc),%a1 # load a1 with RM table base
+rmode:
+ clr.l %d3 # clr table index
+e_loop2:
+ lsr.l &1,%d0 # shift next bit into carry
+ bcc.b e_next2 # if zero, skip the mul
+ fmul.x (%a1,%d3),%fp1 # mul by 10**(d3_bit_no)
+e_next2:
+ add.l &12,%d3 # inc d3 to next pwrten table entry
+ tst.l %d0 # test if ISCALE is zero
+ bne.b e_loop2 # if not, loop
+
+# A8. Clr INEX; Force RZ.
+# The operation in A3 above may have set INEX2.
+# RZ mode is forced for the scaling operation to insure
+# only one rounding error. The grs bits are collected in
+# the INEX flag for use in A10.
+#
+# Register usage:
+# Input/Output
+
+ fmov.l &0,%fpsr # clr INEX
+ fmov.l &rz_mode*0x10,%fpcr # set RZ rounding mode
+
+# A9. Scale X -> Y.
+# The mantissa is scaled to the desired number of significant
+# digits. The excess digits are collected in INEX2. If mul,
+# Check d2 for excess 10 exponential value. If not zero,
+# the iscale value would have caused the pwrten calculation
+# to overflow. Only a negative iscale can cause this, so
+# multiply by 10^(d2), which is now only allowed to be 24,
+# with a multiply by 10^8 and 10^16, which is exact since
+# 10^24 is exact. If the input was denormalized, we must
+# create a busy stack frame with the mul command and the
+# two operands, and allow the fpu to complete the multiply.
+#
+# Register usage:
+# Input/Output
+# d0: FPCR with RZ mode/Unchanged
+# d2: 0 or 24/unchanged
+# d3: x/x
+# d4: LEN/Unchanged
+# d5: ICTR:LAMBDA
+# d6: ILOG/Unchanged
+# d7: k-factor/Unchanged
+# a0: ptr for original operand/final result
+# a1: ptr to PTENRM array/Unchanged
+# a2: x/x
+# fp0: float(ILOG)/X adjusted for SCALE (Y)
+# fp1: 10^ISCALE/Unchanged
+# fp2: x/x
+# F_SCR1:x/x
+# F_SCR2:Abs(X) with $3fff exponent/Unchanged
+# L_SCR1:x/x
+# L_SCR2:first word of X packed/Unchanged
+
+A9_str:
+ fmov.x (%a0),%fp0 # load X from memory
+ fabs.x %fp0 # use abs(X)
+ tst.w %d5 # LAMBDA is in lower word of d5
+ bne.b sc_mul # if neg (LAMBDA = 1), scale by mul
+ fdiv.x %fp1,%fp0 # calculate X / SCALE -> Y to fp0
+ bra.w A10_st # branch to A10
+
+sc_mul:
+ tst.b BINDEC_FLG(%a6) # check for denorm
+ beq.w A9_norm # if norm, continue with mul
+
+# for DENORM, we must calculate:
+# fp0 = input_op * 10^ISCALE * 10^24
+# since the input operand is a DENORM, we can't multiply it directly.
+# so, we do the multiplication of the exponents and mantissas separately.
+# in this way, we avoid underflow on intermediate stages of the
+# multiplication and guarantee a result without exception.
+ fmovm.x &0x2,-(%sp) # save 10^ISCALE to stack
+
+ mov.w (%sp),%d3 # grab exponent
+ andi.w &0x7fff,%d3 # clear sign
+ ori.w &0x8000,(%a0) # make DENORM exp negative
+ add.w (%a0),%d3 # add DENORM exp to 10^ISCALE exp
+ subi.w &0x3fff,%d3 # subtract BIAS
+ add.w 36(%a1),%d3
+ subi.w &0x3fff,%d3 # subtract BIAS
+ add.w 48(%a1),%d3
+ subi.w &0x3fff,%d3 # subtract BIAS
+
+ bmi.w sc_mul_err # is result is DENORM, punt!!!
+
+ andi.w &0x8000,(%sp) # keep sign
+ or.w %d3,(%sp) # insert new exponent
+ andi.w &0x7fff,(%a0) # clear sign bit on DENORM again
+ mov.l 0x8(%a0),-(%sp) # put input op mantissa on stk
+ mov.l 0x4(%a0),-(%sp)
+ mov.l &0x3fff0000,-(%sp) # force exp to zero
+ fmovm.x (%sp)+,&0x80 # load normalized DENORM into fp0
+ fmul.x (%sp)+,%fp0
+
+# fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
+# fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
+ mov.l 36+8(%a1),-(%sp) # get 10^8 mantissa
+ mov.l 36+4(%a1),-(%sp)
+ mov.l &0x3fff0000,-(%sp) # force exp to zero
+ mov.l 48+8(%a1),-(%sp) # get 10^16 mantissa
+ mov.l 48+4(%a1),-(%sp)
+ mov.l &0x3fff0000,-(%sp)# force exp to zero
+ fmul.x (%sp)+,%fp0 # multiply fp0 by 10^8
+ fmul.x (%sp)+,%fp0 # multiply fp0 by 10^16
+ bra.b A10_st
+
+sc_mul_err:
+ bra.b sc_mul_err
+
+A9_norm:
+ tst.w %d2 # test for small exp case
+ beq.b A9_con # if zero, continue as normal
+ fmul.x 36(%a1),%fp0 # multiply fp0 by 10^8
+ fmul.x 48(%a1),%fp0 # multiply fp0 by 10^16
+A9_con:
+ fmul.x %fp1,%fp0 # calculate X * SCALE -> Y to fp0
+
+# A10. Or in INEX.
+# If INEX is set, round error occurred. This is compensated
+# for by 'or-ing' in the INEX2 flag to the lsb of Y.
+#
+# Register usage:
+# Input/Output
+# d0: FPCR with RZ mode/FPSR with INEX2 isolated
+# d2: x/x
+# d3: x/x
+# d4: LEN/Unchanged
+# d5: ICTR:LAMBDA
+# d6: ILOG/Unchanged
+# d7: k-factor/Unchanged
+# a0: ptr for original operand/final result
+# a1: ptr to PTENxx array/Unchanged
+# a2: x/ptr to FP_SCR1(a6)
+# fp0: Y/Y with lsb adjusted
+# fp1: 10^ISCALE/Unchanged
+# fp2: x/x
+
+A10_st:
+ fmov.l %fpsr,%d0 # get FPSR
+ fmov.x %fp0,FP_SCR1(%a6) # move Y to memory
+ lea.l FP_SCR1(%a6),%a2 # load a2 with ptr to FP_SCR1
+ btst &9,%d0 # check if INEX2 set
+ beq.b A11_st # if clear, skip rest
+ or.l &1,8(%a2) # or in 1 to lsb of mantissa
+ fmov.x FP_SCR1(%a6),%fp0 # write adjusted Y back to fpu
+
+
+# A11. Restore original FPCR; set size ext.
+# Perform FINT operation in the user's rounding mode. Keep
+# the size to extended. The sintdo entry point in the sint
+# routine expects the FPCR value to be in USER_FPCR for
+# mode and precision. The original FPCR is saved in L_SCR1.
+
+A11_st:
+ mov.l USER_FPCR(%a6),L_SCR1(%a6) # save it for later
+ and.l &0x00000030,USER_FPCR(%a6) # set size to ext,
+# ;block exceptions
+
+
+# A12. Calculate YINT = FINT(Y) according to user's rounding mode.
+# The FPSP routine sintd0 is used. The output is in fp0.
+#
+# Register usage:
+# Input/Output
+# d0: FPSR with AINEX cleared/FPCR with size set to ext
+# d2: x/x/scratch
+# d3: x/x
+# d4: LEN/Unchanged
+# d5: ICTR:LAMBDA/Unchanged
+# d6: ILOG/Unchanged
+# d7: k-factor/Unchanged
+# a0: ptr for original operand/src ptr for sintdo
+# a1: ptr to PTENxx array/Unchanged
+# a2: ptr to FP_SCR1(a6)/Unchanged
+# a6: temp pointer to FP_SCR1(a6) - orig value saved and restored
+# fp0: Y/YINT
+# fp1: 10^ISCALE/Unchanged
+# fp2: x/x
+# F_SCR1:x/x
+# F_SCR2:Y adjusted for inex/Y with original exponent
+# L_SCR1:x/original USER_FPCR
+# L_SCR2:first word of X packed/Unchanged
+
+A12_st:
+ movm.l &0xc0c0,-(%sp) # save regs used by sintd0 {%d0-%d1/%a0-%a1}
+ mov.l L_SCR1(%a6),-(%sp)
+ mov.l L_SCR2(%a6),-(%sp)
+
+ lea.l FP_SCR1(%a6),%a0 # a0 is ptr to FP_SCR1(a6)
+ fmov.x %fp0,(%a0) # move Y to memory at FP_SCR1(a6)
+ tst.l L_SCR2(%a6) # test sign of original operand
+ bge.b do_fint12 # if pos, use Y
+ or.l &0x80000000,(%a0) # if neg, use -Y
+do_fint12:
+ mov.l USER_FPSR(%a6),-(%sp)
+# bsr sintdo # sint routine returns int in fp0
+
+ fmov.l USER_FPCR(%a6),%fpcr
+ fmov.l &0x0,%fpsr # clear the AEXC bits!!!
+## mov.l USER_FPCR(%a6),%d0 # ext prec/keep rnd mode
+## andi.l &0x00000030,%d0
+## fmov.l %d0,%fpcr
+ fint.x FP_SCR1(%a6),%fp0 # do fint()
+ fmov.l %fpsr,%d0
+ or.w %d0,FPSR_EXCEPT(%a6)
+## fmov.l &0x0,%fpcr
+## fmov.l %fpsr,%d0 # don't keep ccodes
+## or.w %d0,FPSR_EXCEPT(%a6)
+
+ mov.b (%sp),USER_FPSR(%a6)
+ add.l &4,%sp
+
+ mov.l (%sp)+,L_SCR2(%a6)
+ mov.l (%sp)+,L_SCR1(%a6)
+ movm.l (%sp)+,&0x303 # restore regs used by sint {%d0-%d1/%a0-%a1}
+
+ mov.l L_SCR2(%a6),FP_SCR1(%a6) # restore original exponent
+ mov.l L_SCR1(%a6),USER_FPCR(%a6) # restore user's FPCR
+
+# A13. Check for LEN digits.
+# If the int operation results in more than LEN digits,
+# or less than LEN -1 digits, adjust ILOG and repeat from
+# A6. This test occurs only on the first pass. If the
+# result is exactly 10^LEN, decrement ILOG and divide
+# the mantissa by 10. The calculation of 10^LEN cannot
+# be inexact, since all powers of ten upto 10^27 are exact
+# in extended precision, so the use of a previous power-of-ten
+# table will introduce no error.
+#
+#
+# Register usage:
+# Input/Output
+# d0: FPCR with size set to ext/scratch final = 0
+# d2: x/x
+# d3: x/scratch final = x
+# d4: LEN/LEN adjusted
+# d5: ICTR:LAMBDA/LAMBDA:ICTR
+# d6: ILOG/ILOG adjusted
+# d7: k-factor/Unchanged
+# a0: pointer into memory for packed bcd string formation
+# a1: ptr to PTENxx array/Unchanged
+# a2: ptr to FP_SCR1(a6)/Unchanged
+# fp0: int portion of Y/abs(YINT) adjusted
+# fp1: 10^ISCALE/Unchanged
+# fp2: x/10^LEN
+# F_SCR1:x/x
+# F_SCR2:Y with original exponent/Unchanged
+# L_SCR1:original USER_FPCR/Unchanged
+# L_SCR2:first word of X packed/Unchanged
+
+A13_st:
+ swap %d5 # put ICTR in lower word of d5
+ tst.w %d5 # check if ICTR = 0
+ bne not_zr # if non-zero, go to second test
+#
+# Compute 10^(LEN-1)
+#
+ fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
+ mov.l %d4,%d0 # put LEN in d0
+ subq.l &1,%d0 # d0 = LEN -1
+ clr.l %d3 # clr table index
+l_loop:
+ lsr.l &1,%d0 # shift next bit into carry
+ bcc.b l_next # if zero, skip the mul
+ fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
+l_next:
+ add.l &12,%d3 # inc d3 to next pwrten table entry
+ tst.l %d0 # test if LEN is zero
+ bne.b l_loop # if not, loop
+#
+# 10^LEN-1 is computed for this test and A14. If the input was
+# denormalized, check only the case in which YINT > 10^LEN.
+#
+ tst.b BINDEC_FLG(%a6) # check if input was norm
+ beq.b A13_con # if norm, continue with checking
+ fabs.x %fp0 # take abs of YINT
+ bra test_2
+#
+# Compare abs(YINT) to 10^(LEN-1) and 10^LEN
+#
+A13_con:
+ fabs.x %fp0 # take abs of YINT
+ fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^(LEN-1)
+ fbge.w test_2 # if greater, do next test
+ subq.l &1,%d6 # subtract 1 from ILOG
+ mov.w &1,%d5 # set ICTR
+ fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
+ fmul.s FTEN(%pc),%fp2 # compute 10^LEN
+ bra.w A6_str # return to A6 and recompute YINT
+test_2:
+ fmul.s FTEN(%pc),%fp2 # compute 10^LEN
+ fcmp.x %fp0,%fp2 # compare abs(YINT) with 10^LEN
+ fblt.w A14_st # if less, all is ok, go to A14
+ fbgt.w fix_ex # if greater, fix and redo
+ fdiv.s FTEN(%pc),%fp0 # if equal, divide by 10
+ addq.l &1,%d6 # and inc ILOG
+ bra.b A14_st # and continue elsewhere
+fix_ex:
+ addq.l &1,%d6 # increment ILOG by 1
+ mov.w &1,%d5 # set ICTR
+ fmov.l &rm_mode*0x10,%fpcr # set rmode to RM
+ bra.w A6_str # return to A6 and recompute YINT
+#
+# Since ICTR <> 0, we have already been through one adjustment,
+# and shouldn't have another; this is to check if abs(YINT) = 10^LEN
+# 10^LEN is again computed using whatever table is in a1 since the
+# value calculated cannot be inexact.
+#
+not_zr:
+ fmov.s FONE(%pc),%fp2 # init fp2 to 1.0
+ mov.l %d4,%d0 # put LEN in d0
+ clr.l %d3 # clr table index
+z_loop:
+ lsr.l &1,%d0 # shift next bit into carry
+ bcc.b z_next # if zero, skip the mul
+ fmul.x (%a1,%d3),%fp2 # mul by 10**(d3_bit_no)
+z_next:
+ add.l &12,%d3 # inc d3 to next pwrten table entry
+ tst.l %d0 # test if LEN is zero
+ bne.b z_loop # if not, loop
+ fabs.x %fp0 # get abs(YINT)
+ fcmp.x %fp0,%fp2 # check if abs(YINT) = 10^LEN
+ fbneq.w A14_st # if not, skip this
+ fdiv.s FTEN(%pc),%fp0 # divide abs(YINT) by 10
+ addq.l &1,%d6 # and inc ILOG by 1
+ addq.l &1,%d4 # and inc LEN
+ fmul.s FTEN(%pc),%fp2 # if LEN++, the get 10^^LEN
+
+# A14. Convert the mantissa to bcd.
+# The binstr routine is used to convert the LEN digit
+# mantissa to bcd in memory. The input to binstr is
+# to be a fraction; i.e. (mantissa)/10^LEN and adjusted
+# such that the decimal point is to the left of bit 63.
+# The bcd digits are stored in the correct position in
+# the final string area in memory.
+#
+#
+# Register usage:
+# Input/Output
+# d0: x/LEN call to binstr - final is 0
+# d1: x/0
+# d2: x/ms 32-bits of mant of abs(YINT)
+# d3: x/ls 32-bits of mant of abs(YINT)
+# d4: LEN/Unchanged
+# d5: ICTR:LAMBDA/LAMBDA:ICTR
+# d6: ILOG
+# d7: k-factor/Unchanged
+# a0: pointer into memory for packed bcd string formation
+# /ptr to first mantissa byte in result string
+# a1: ptr to PTENxx array/Unchanged
+# a2: ptr to FP_SCR1(a6)/Unchanged
+# fp0: int portion of Y/abs(YINT) adjusted
+# fp1: 10^ISCALE/Unchanged
+# fp2: 10^LEN/Unchanged
+# F_SCR1:x/Work area for final result
+# F_SCR2:Y with original exponent/Unchanged
+# L_SCR1:original USER_FPCR/Unchanged
+# L_SCR2:first word of X packed/Unchanged
+
+A14_st:
+ fmov.l &rz_mode*0x10,%fpcr # force rz for conversion
+ fdiv.x %fp2,%fp0 # divide abs(YINT) by 10^LEN
+ lea.l FP_SCR0(%a6),%a0
+ fmov.x %fp0,(%a0) # move abs(YINT)/10^LEN to memory
+ mov.l 4(%a0),%d2 # move 2nd word of FP_RES to d2
+ mov.l 8(%a0),%d3 # move 3rd word of FP_RES to d3
+ clr.l 4(%a0) # zero word 2 of FP_RES
+ clr.l 8(%a0) # zero word 3 of FP_RES
+ mov.l (%a0),%d0 # move exponent to d0
+ swap %d0 # put exponent in lower word
+ beq.b no_sft # if zero, don't shift
+ sub.l &0x3ffd,%d0 # sub bias less 2 to make fract
+ tst.l %d0 # check if > 1
+ bgt.b no_sft # if so, don't shift
+ neg.l %d0 # make exp positive
+m_loop:
+ lsr.l &1,%d2 # shift d2:d3 right, add 0s
+ roxr.l &1,%d3 # the number of places
+ dbf.w %d0,m_loop # given in d0
+no_sft:
+ tst.l %d2 # check for mantissa of zero
+ bne.b no_zr # if not, go on
+ tst.l %d3 # continue zero check
+ beq.b zer_m # if zero, go directly to binstr
+no_zr:
+ clr.l %d1 # put zero in d1 for addx
+ add.l &0x00000080,%d3 # inc at bit 7
+ addx.l %d1,%d2 # continue inc
+ and.l &0xffffff80,%d3 # strip off lsb not used by 882
+zer_m:
+ mov.l %d4,%d0 # put LEN in d0 for binstr call
+ addq.l &3,%a0 # a0 points to M16 byte in result
+ bsr binstr # call binstr to convert mant
+
+
+# A15. Convert the exponent to bcd.
+# As in A14 above, the exp is converted to bcd and the
+# digits are stored in the final string.
+#
+# Digits are stored in L_SCR1(a6) on return from BINDEC as:
+#
+# 32 16 15 0
+# -----------------------------------------
+# | 0 | e3 | e2 | e1 | e4 | X | X | X |
+# -----------------------------------------
+#
+# And are moved into their proper places in FP_SCR0. If digit e4
+# is non-zero, OPERR is signaled. In all cases, all 4 digits are
+# written as specified in the 881/882 manual for packed decimal.
+#
+# Register usage:
+# Input/Output
+# d0: x/LEN call to binstr - final is 0
+# d1: x/scratch (0);shift count for final exponent packing
+# d2: x/ms 32-bits of exp fraction/scratch
+# d3: x/ls 32-bits of exp fraction
+# d4: LEN/Unchanged
+# d5: ICTR:LAMBDA/LAMBDA:ICTR
+# d6: ILOG
+# d7: k-factor/Unchanged
+# a0: ptr to result string/ptr to L_SCR1(a6)
+# a1: ptr to PTENxx array/Unchanged
+# a2: ptr to FP_SCR1(a6)/Unchanged
+# fp0: abs(YINT) adjusted/float(ILOG)
+# fp1: 10^ISCALE/Unchanged
+# fp2: 10^LEN/Unchanged
+# F_SCR1:Work area for final result/BCD result
+# F_SCR2:Y with original exponent/ILOG/10^4
+# L_SCR1:original USER_FPCR/Exponent digits on return from binstr
+# L_SCR2:first word of X packed/Unchanged
+
+A15_st:
+ tst.b BINDEC_FLG(%a6) # check for denorm
+ beq.b not_denorm
+ ftest.x %fp0 # test for zero
+ fbeq.w den_zero # if zero, use k-factor or 4933
+ fmov.l %d6,%fp0 # float ILOG
+ fabs.x %fp0 # get abs of ILOG
+ bra.b convrt
+den_zero:
+ tst.l %d7 # check sign of the k-factor
+ blt.b use_ilog # if negative, use ILOG
+ fmov.s F4933(%pc),%fp0 # force exponent to 4933
+ bra.b convrt # do it
+use_ilog:
+ fmov.l %d6,%fp0 # float ILOG
+ fabs.x %fp0 # get abs of ILOG
+ bra.b convrt
+not_denorm:
+ ftest.x %fp0 # test for zero
+ fbneq.w not_zero # if zero, force exponent
+ fmov.s FONE(%pc),%fp0 # force exponent to 1
+ bra.b convrt # do it
+not_zero:
+ fmov.l %d6,%fp0 # float ILOG
+ fabs.x %fp0 # get abs of ILOG
+convrt:
+ fdiv.x 24(%a1),%fp0 # compute ILOG/10^4
+ fmov.x %fp0,FP_SCR1(%a6) # store fp0 in memory
+ mov.l 4(%a2),%d2 # move word 2 to d2
+ mov.l 8(%a2),%d3 # move word 3 to d3
+ mov.w (%a2),%d0 # move exp to d0
+ beq.b x_loop_fin # if zero, skip the shift
+ sub.w &0x3ffd,%d0 # subtract off bias
+ neg.w %d0 # make exp positive
+x_loop:
+ lsr.l &1,%d2 # shift d2:d3 right
+ roxr.l &1,%d3 # the number of places
+ dbf.w %d0,x_loop # given in d0
+x_loop_fin:
+ clr.l %d1 # put zero in d1 for addx
+ add.l &0x00000080,%d3 # inc at bit 6
+ addx.l %d1,%d2 # continue inc
+ and.l &0xffffff80,%d3 # strip off lsb not used by 882
+ mov.l &4,%d0 # put 4 in d0 for binstr call
+ lea.l L_SCR1(%a6),%a0 # a0 is ptr to L_SCR1 for exp digits
+ bsr binstr # call binstr to convert exp
+ mov.l L_SCR1(%a6),%d0 # load L_SCR1 lword to d0
+ mov.l &12,%d1 # use d1 for shift count
+ lsr.l %d1,%d0 # shift d0 right by 12
+ bfins %d0,FP_SCR0(%a6){&4:&12} # put e3:e2:e1 in FP_SCR0
+ lsr.l %d1,%d0 # shift d0 right by 12
+ bfins %d0,FP_SCR0(%a6){&16:&4} # put e4 in FP_SCR0
+ tst.b %d0 # check if e4 is zero
+ beq.b A16_st # if zero, skip rest
+ or.l &opaop_mask,USER_FPSR(%a6) # set OPERR & AIOP in USER_FPSR
+
+
+# A16. Write sign bits to final string.
+# Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
+#
+# Register usage:
+# Input/Output
+# d0: x/scratch - final is x
+# d2: x/x
+# d3: x/x
+# d4: LEN/Unchanged
+# d5: ICTR:LAMBDA/LAMBDA:ICTR
+# d6: ILOG/ILOG adjusted
+# d7: k-factor/Unchanged
+# a0: ptr to L_SCR1(a6)/Unchanged
+# a1: ptr to PTENxx array/Unchanged
+# a2: ptr to FP_SCR1(a6)/Unchanged
+# fp0: float(ILOG)/Unchanged
+# fp1: 10^ISCALE/Unchanged
+# fp2: 10^LEN/Unchanged
+# F_SCR1:BCD result with correct signs
+# F_SCR2:ILOG/10^4
+# L_SCR1:Exponent digits on return from binstr
+# L_SCR2:first word of X packed/Unchanged
+
+A16_st:
+ clr.l %d0 # clr d0 for collection of signs
+ and.b &0x0f,FP_SCR0(%a6) # clear first nibble of FP_SCR0
+ tst.l L_SCR2(%a6) # check sign of original mantissa
+ bge.b mant_p # if pos, don't set SM
+ mov.l &2,%d0 # move 2 in to d0 for SM
+mant_p:
+ tst.l %d6 # check sign of ILOG
+ bge.b wr_sgn # if pos, don't set SE
+ addq.l &1,%d0 # set bit 0 in d0 for SE
+wr_sgn:
+ bfins %d0,FP_SCR0(%a6){&0:&2} # insert SM and SE into FP_SCR0
+
+# Clean up and restore all registers used.
+
+ fmov.l &0,%fpsr # clear possible inex2/ainex bits
+ fmovm.x (%sp)+,&0xe0 # {%fp0-%fp2}
+ movm.l (%sp)+,&0x4fc # {%d2-%d7/%a2}
+ rts
+
+ global PTENRN
+PTENRN:
+ long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
+ long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
+ long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
+ long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
+ long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
+ long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
+ long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
+ long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
+ long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
+ long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
+ long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
+ long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
+ long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
+
+ global PTENRP
+PTENRP:
+ long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
+ long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
+ long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
+ long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
+ long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
+ long 0x40690000,0x9DC5ADA8,0x2B70B59E # 10 ^ 32
+ long 0x40D30000,0xC2781F49,0xFFCFA6D6 # 10 ^ 64
+ long 0x41A80000,0x93BA47C9,0x80E98CE0 # 10 ^ 128
+ long 0x43510000,0xAA7EEBFB,0x9DF9DE8E # 10 ^ 256
+ long 0x46A30000,0xE319A0AE,0xA60E91C7 # 10 ^ 512
+ long 0x4D480000,0xC9767586,0x81750C18 # 10 ^ 1024
+ long 0x5A920000,0x9E8B3B5D,0xC53D5DE5 # 10 ^ 2048
+ long 0x75250000,0xC4605202,0x8A20979B # 10 ^ 4096
+
+ global PTENRM
+PTENRM:
+ long 0x40020000,0xA0000000,0x00000000 # 10 ^ 1
+ long 0x40050000,0xC8000000,0x00000000 # 10 ^ 2
+ long 0x400C0000,0x9C400000,0x00000000 # 10 ^ 4
+ long 0x40190000,0xBEBC2000,0x00000000 # 10 ^ 8
+ long 0x40340000,0x8E1BC9BF,0x04000000 # 10 ^ 16
+ long 0x40690000,0x9DC5ADA8,0x2B70B59D # 10 ^ 32
+ long 0x40D30000,0xC2781F49,0xFFCFA6D5 # 10 ^ 64
+ long 0x41A80000,0x93BA47C9,0x80E98CDF # 10 ^ 128
+ long 0x43510000,0xAA7EEBFB,0x9DF9DE8D # 10 ^ 256
+ long 0x46A30000,0xE319A0AE,0xA60E91C6 # 10 ^ 512
+ long 0x4D480000,0xC9767586,0x81750C17 # 10 ^ 1024
+ long 0x5A920000,0x9E8B3B5D,0xC53D5DE4 # 10 ^ 2048
+ long 0x75250000,0xC4605202,0x8A20979A # 10 ^ 4096
+
+#########################################################################
+# binstr(): Converts a 64-bit binary integer to bcd. #
+# #
+# INPUT *************************************************************** #
+# d2:d3 = 64-bit binary integer #
+# d0 = desired length (LEN) #
+# a0 = pointer to start in memory for bcd characters #
+# (This pointer must point to byte 4 of the first #
+# lword of the packed decimal memory string.) #
+# #
+# OUTPUT ************************************************************** #
+# a0 = pointer to LEN bcd digits representing the 64-bit integer. #
+# #
+# ALGORITHM *********************************************************** #
+# The 64-bit binary is assumed to have a decimal point before #
+# bit 63. The fraction is multiplied by 10 using a mul by 2 #
+# shift and a mul by 8 shift. The bits shifted out of the #
+# msb form a decimal digit. This process is iterated until #
+# LEN digits are formed. #
+# #
+# A1. Init d7 to 1. D7 is the byte digit counter, and if 1, the #
+# digit formed will be assumed the least significant. This is #
+# to force the first byte formed to have a 0 in the upper 4 bits. #
+# #
+# A2. Beginning of the loop: #
+# Copy the fraction in d2:d3 to d4:d5. #
+# #
+# A3. Multiply the fraction in d2:d3 by 8 using bit-field #
+# extracts and shifts. The three msbs from d2 will go into d1. #
+# #
+# A4. Multiply the fraction in d4:d5 by 2 using shifts. The msb #
+# will be collected by the carry. #
+# #
+# A5. Add using the carry the 64-bit quantities in d2:d3 and d4:d5 #
+# into d2:d3. D1 will contain the bcd digit formed. #
+# #
+# A6. Test d7. If zero, the digit formed is the ms digit. If non- #
+# zero, it is the ls digit. Put the digit in its place in the #
+# upper word of d0. If it is the ls digit, write the word #
+# from d0 to memory. #
+# #
+# A7. Decrement d6 (LEN counter) and repeat the loop until zero. #
+# #
+#########################################################################
+
+# Implementation Notes:
+#
+# The registers are used as follows:
+#
+# d0: LEN counter
+# d1: temp used to form the digit
+# d2: upper 32-bits of fraction for mul by 8
+# d3: lower 32-bits of fraction for mul by 8
+# d4: upper 32-bits of fraction for mul by 2
+# d5: lower 32-bits of fraction for mul by 2
+# d6: temp for bit-field extracts
+# d7: byte digit formation word;digit count {0,1}
+# a0: pointer into memory for packed bcd string formation
+#
+
+ global binstr
+binstr:
+ movm.l &0xff00,-(%sp) # {%d0-%d7}
+
+#
+# A1: Init d7
+#
+ mov.l &1,%d7 # init d7 for second digit
+ subq.l &1,%d0 # for dbf d0 would have LEN+1 passes
+#
+# A2. Copy d2:d3 to d4:d5. Start loop.
+#
+loop:
+ mov.l %d2,%d4 # copy the fraction before muls
+ mov.l %d3,%d5 # to d4:d5
+#
+# A3. Multiply d2:d3 by 8; extract msbs into d1.
+#
+ bfextu %d2{&0:&3},%d1 # copy 3 msbs of d2 into d1
+ asl.l &3,%d2 # shift d2 left by 3 places
+ bfextu %d3{&0:&3},%d6 # copy 3 msbs of d3 into d6
+ asl.l &3,%d3 # shift d3 left by 3 places
+ or.l %d6,%d2 # or in msbs from d3 into d2
+#
+# A4. Multiply d4:d5 by 2; add carry out to d1.
+#
+ asl.l &1,%d5 # mul d5 by 2
+ roxl.l &1,%d4 # mul d4 by 2
+ swap %d6 # put 0 in d6 lower word
+ addx.w %d6,%d1 # add in extend from mul by 2
+#
+# A5. Add mul by 8 to mul by 2. D1 contains the digit formed.
+#
+ add.l %d5,%d3 # add lower 32 bits
+ nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
+ addx.l %d4,%d2 # add with extend upper 32 bits
+ nop # ERRATA FIX #13 (Rev. 1.2 6/6/90)
+ addx.w %d6,%d1 # add in extend from add to d1
+ swap %d6 # with d6 = 0; put 0 in upper word
+#
+# A6. Test d7 and branch.
+#
+ tst.w %d7 # if zero, store digit & to loop
+ beq.b first_d # if non-zero, form byte & write
+sec_d:
+ swap %d7 # bring first digit to word d7b
+ asl.w &4,%d7 # first digit in upper 4 bits d7b
+ add.w %d1,%d7 # add in ls digit to d7b
+ mov.b %d7,(%a0)+ # store d7b byte in memory
+ swap %d7 # put LEN counter in word d7a
+ clr.w %d7 # set d7a to signal no digits done
+ dbf.w %d0,loop # do loop some more!
+ bra.b end_bstr # finished, so exit
+first_d:
+ swap %d7 # put digit word in d7b
+ mov.w %d1,%d7 # put new digit in d7b
+ swap %d7 # put LEN counter in word d7a
+ addq.w &1,%d7 # set d7a to signal first digit done
+ dbf.w %d0,loop # do loop some more!
+ swap %d7 # put last digit in string
+ lsl.w &4,%d7 # move it to upper 4 bits
+ mov.b %d7,(%a0)+ # store it in memory string
+#
+# Clean up and return with result in fp0.
+#
+end_bstr:
+ movm.l (%sp)+,&0xff # {%d0-%d7}
+ rts
+
+#########################################################################
+# XDEF **************************************************************** #
+# facc_in_b(): dmem_read_byte failed #
+# facc_in_w(): dmem_read_word failed #
+# facc_in_l(): dmem_read_long failed #
+# facc_in_d(): dmem_read of dbl prec failed #
+# facc_in_x(): dmem_read of ext prec failed #
+# #
+# facc_out_b(): dmem_write_byte failed #
+# facc_out_w(): dmem_write_word failed #
+# facc_out_l(): dmem_write_long failed #
+# facc_out_d(): dmem_write of dbl prec failed #
+# facc_out_x(): dmem_write of ext prec failed #
+# #
+# XREF **************************************************************** #
+# _real_access() - exit through access error handler #
+# #
+# INPUT *************************************************************** #
+# None #
+# #
+# OUTPUT ************************************************************** #
+# None #
+# #
+# ALGORITHM *********************************************************** #
+# Flow jumps here when an FP data fetch call gets an error #
+# result. This means the operating system wants an access error frame #
+# made out of the current exception stack frame. #
+# So, we first call restore() which makes sure that any updated #
+# -(an)+ register gets returned to its pre-exception value and then #
+# we change the stack to an access error stack frame. #
+# #
+#########################################################################
+
+facc_in_b:
+ movq.l &0x1,%d0 # one byte
+ bsr.w restore # fix An
+
+ mov.w &0x0121,EXC_VOFF(%a6) # set FSLW
+ bra.w facc_finish
+
+facc_in_w:
+ movq.l &0x2,%d0 # two bytes
+ bsr.w restore # fix An
+
+ mov.w &0x0141,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+facc_in_l:
+ movq.l &0x4,%d0 # four bytes
+ bsr.w restore # fix An
+
+ mov.w &0x0101,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+facc_in_d:
+ movq.l &0x8,%d0 # eight bytes
+ bsr.w restore # fix An
+
+ mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+facc_in_x:
+ movq.l &0xc,%d0 # twelve bytes
+ bsr.w restore # fix An
+
+ mov.w &0x0161,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+################################################################
+
+facc_out_b:
+ movq.l &0x1,%d0 # one byte
+ bsr.w restore # restore An
+
+ mov.w &0x00a1,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+facc_out_w:
+ movq.l &0x2,%d0 # two bytes
+ bsr.w restore # restore An
+
+ mov.w &0x00c1,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+facc_out_l:
+ movq.l &0x4,%d0 # four bytes
+ bsr.w restore # restore An
+
+ mov.w &0x0081,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+facc_out_d:
+ movq.l &0x8,%d0 # eight bytes
+ bsr.w restore # restore An
+
+ mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
+ bra.b facc_finish
+
+facc_out_x:
+ mov.l &0xc,%d0 # twelve bytes
+ bsr.w restore # restore An
+
+ mov.w &0x00e1,EXC_VOFF(%a6) # set FSLW
+
+# here's where we actually create the access error frame from the
+# current exception stack frame.
+facc_finish:
+ mov.l USER_FPIAR(%a6),EXC_PC(%a6) # store current PC
+
+ fmovm.x EXC_FPREGS(%a6),&0xc0 # restore fp0-fp1
+ fmovm.l USER_FPCR(%a6),%fpcr,%fpsr,%fpiar # restore ctrl regs
+ movm.l EXC_DREGS(%a6),&0x0303 # restore d0-d1/a0-a1
+
+ unlk %a6
+
+ mov.l (%sp),-(%sp) # store SR, hi(PC)
+ mov.l 0x8(%sp),0x4(%sp) # store lo(PC)
+ mov.l 0xc(%sp),0x8(%sp) # store EA
+ mov.l &0x00000001,0xc(%sp) # store FSLW
+ mov.w 0x6(%sp),0xc(%sp) # fix FSLW (size)
+ mov.w &0x4008,0x6(%sp) # store voff
+
+ btst &0x5,(%sp) # supervisor or user mode?
+ beq.b facc_out2 # user
+ bset &0x2,0xd(%sp) # set supervisor TM bit
+
+facc_out2:
+ bra.l _real_access
+
+##################################################################
+
+# if the effective addressing mode was predecrement or postincrement,
+# the emulation has already changed its value to the correct post-
+# instruction value. but since we're exiting to the access error
+# handler, then AN must be returned to its pre-instruction value.
+# we do that here.
+restore:
+ mov.b EXC_OPWORD+0x1(%a6),%d1
+ andi.b &0x38,%d1 # extract opmode
+ cmpi.b %d1,&0x18 # postinc?
+ beq.w rest_inc
+ cmpi.b %d1,&0x20 # predec?
+ beq.w rest_dec
+ rts
+
+rest_inc:
+ mov.b EXC_OPWORD+0x1(%a6),%d1
+ andi.w &0x0007,%d1 # fetch An
+
+ mov.w (tbl_rest_inc.b,%pc,%d1.w*2),%d1
+ jmp (tbl_rest_inc.b,%pc,%d1.w*1)
+
+tbl_rest_inc:
+ short ri_a0 - tbl_rest_inc
+ short ri_a1 - tbl_rest_inc
+ short ri_a2 - tbl_rest_inc
+ short ri_a3 - tbl_rest_inc
+ short ri_a4 - tbl_rest_inc
+ short ri_a5 - tbl_rest_inc
+ short ri_a6 - tbl_rest_inc
+ short ri_a7 - tbl_rest_inc
+
+ri_a0:
+ sub.l %d0,EXC_DREGS+0x8(%a6) # fix stacked a0
+ rts
+ri_a1:
+ sub.l %d0,EXC_DREGS+0xc(%a6) # fix stacked a1
+ rts
+ri_a2:
+ sub.l %d0,%a2 # fix a2
+ rts
+ri_a3:
+ sub.l %d0,%a3 # fix a3
+ rts
+ri_a4:
+ sub.l %d0,%a4 # fix a4
+ rts
+ri_a5:
+ sub.l %d0,%a5 # fix a5
+ rts
+ri_a6:
+ sub.l %d0,(%a6) # fix stacked a6
+ rts
+# if it's a fmove out instruction, we don't have to fix a7
+# because we hadn't changed it yet. if it's an opclass two
+# instruction (data moved in) and the exception was in supervisor
+# mode, then also also wasn't updated. if it was user mode, then
+# restore the correct a7 which is in the USP currently.
+ri_a7:
+ cmpi.b EXC_VOFF(%a6),&0x30 # move in or out?
+ bne.b ri_a7_done # out
+
+ btst &0x5,EXC_SR(%a6) # user or supervisor?
+ bne.b ri_a7_done # supervisor
+ movc %usp,%a0 # restore USP
+ sub.l %d0,%a0
+ movc %a0,%usp
+ri_a7_done:
+ rts
+
+# need to invert adjustment value if the <ea> was predec
+rest_dec:
+ neg.l %d0
+ bra.b rest_inc