summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/removed/sysfs-kernel-uids (renamed from Documentation/ABI/testing/sysfs-kernel-uids)2
-rw-r--r--Documentation/ABI/testing/configfs-most196
-rw-r--r--Documentation/ABI/testing/sysfs-bus-counter-104-quad-825
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-adc-ad719224
-rw-r--r--Documentation/ABI/testing/sysfs-bus-most295
-rw-r--r--Documentation/ABI/testing/sysfs-class-typec23
-rw-r--r--Documentation/EDID/1024x768.S43
-rw-r--r--Documentation/EDID/1280x1024.S43
-rw-r--r--Documentation/EDID/1600x1200.S43
-rw-r--r--Documentation/EDID/1680x1050.S43
-rw-r--r--Documentation/EDID/1920x1080.S43
-rw-r--r--Documentation/EDID/800x600.S40
-rw-r--r--Documentation/EDID/Makefile37
-rw-r--r--Documentation/EDID/edid.S274
-rw-r--r--Documentation/EDID/hex1
-rw-r--r--Documentation/Makefile2
-rw-r--r--Documentation/PCI/pci.rst2
-rw-r--r--Documentation/accounting/psi.rst2
-rw-r--r--Documentation/admin-guide/binfmt-misc.rst4
-rw-r--r--Documentation/admin-guide/blockdev/zram.rst2
-rw-r--r--Documentation/admin-guide/bootconfig.rst2
-rw-r--r--Documentation/admin-guide/cgroup-v1/index.rst2
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst28
-rw-r--r--Documentation/admin-guide/edid.rst (renamed from Documentation/driver-api/edid.rst)4
-rw-r--r--Documentation/admin-guide/hw-vuln/tsx_async_abort.rst2
-rw-r--r--Documentation/admin-guide/index.rst1
-rw-r--r--Documentation/admin-guide/iostats.rst5
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt53
-rw-r--r--Documentation/admin-guide/kernel-per-CPU-kthreads.rst2
-rw-r--r--Documentation/admin-guide/perf/imx-ddr.rst3
-rw-r--r--Documentation/admin-guide/pm/cpufreq_drivers.rst274
-rw-r--r--Documentation/admin-guide/pm/cpuidle.rst73
-rw-r--r--Documentation/admin-guide/pm/intel_pstate.rst4
-rw-r--r--Documentation/admin-guide/pm/working-state.rst1
-rw-r--r--Documentation/admin-guide/sysctl/kernel.rst1049
-rw-r--r--Documentation/arm/tcm.rst6
-rw-r--r--Documentation/block/capability.rst16
-rw-r--r--Documentation/conf.py6
-rw-r--r--Documentation/core-api/index.rst94
-rw-r--r--Documentation/core-api/kobject.rst (renamed from Documentation/kobject.txt)78
-rw-r--r--Documentation/cpu-freq/amd-powernow.txt38
-rw-r--r--Documentation/cpu-freq/core.rst (renamed from Documentation/cpu-freq/core.txt)65
-rw-r--r--Documentation/cpu-freq/cpu-drivers.rst (renamed from Documentation/cpu-freq/cpu-drivers.txt)129
-rw-r--r--Documentation/cpu-freq/cpufreq-nforce2.txt19
-rw-r--r--Documentation/cpu-freq/cpufreq-stats.rst (renamed from Documentation/cpu-freq/cpufreq-stats.txt)119
-rw-r--r--Documentation/cpu-freq/index.rst39
-rw-r--r--Documentation/cpu-freq/index.txt56
-rw-r--r--Documentation/cpu-freq/pcc-cpufreq.txt207
-rw-r--r--Documentation/debugging-modules.txt22
-rw-r--r--Documentation/dev-tools/gcov.rst2
-rw-r--r--Documentation/dev-tools/kmemleak.rst3
-rw-r--r--Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml2
-rw-r--r--Documentation/devicetree/bindings/display/connector/analog-tv-connector.txt6
-rw-r--r--Documentation/devicetree/bindings/edac/dmc-520.yaml59
-rw-r--r--Documentation/devicetree/bindings/fsi/ibm,fsi2spi.yaml36
-rw-r--r--Documentation/devicetree/bindings/hwmon/adi,axi-fan-control.yaml62
-rw-r--r--Documentation/devicetree/bindings/hwmon/adt7475.yaml84
-rw-r--r--Documentation/devicetree/bindings/hwmon/ltc2978.txt22
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7923.yaml65
-rw-r--r--Documentation/devicetree/bindings/iio/adc/max1363.txt63
-rw-r--r--Documentation/devicetree/bindings/iio/adc/maxim,max1238.yaml76
-rw-r--r--Documentation/devicetree/bindings/iio/adc/maxim,max1363.yaml50
-rw-r--r--Documentation/devicetree/bindings/iio/adc/nuvoton,npcm-adc.txt2
-rw-r--r--Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt149
-rw-r--r--Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml458
-rw-r--r--Documentation/devicetree/bindings/iio/amplifiers/adi,hmc425a.yaml49
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/atlas,ec-sm.txt21
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/atlas,orp-sm.txt21
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/atlas,ph-sm.txt21
-rw-r--r--Documentation/devicetree/bindings/iio/chemical/atlas,sensor.yaml53
-rw-r--r--Documentation/devicetree/bindings/iio/dac/adi,ad5770r.yaml185
-rw-r--r--Documentation/devicetree/bindings/iio/dac/ltc2632.txt8
-rw-r--r--Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt5
-rw-r--r--Documentation/devicetree/bindings/iio/light/dynaimage,al3010.yaml43
-rw-r--r--Documentation/devicetree/bindings/iio/light/dynaimage,al3320a.yaml43
-rw-r--r--Documentation/devicetree/bindings/iio/light/sharp,gp2ap002.yaml85
-rw-r--r--Documentation/devicetree/bindings/iio/proximity/devantech-srf04.yaml18
-rw-r--r--Documentation/devicetree/bindings/input/cypress,tm2-touchkey.txt1
-rw-r--r--Documentation/devicetree/bindings/media/allwinner,sun8i-a83t-de2-rotate.yaml70
-rw-r--r--Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml6
-rw-r--r--Documentation/devicetree/bindings/media/aspeed-video.txt5
-rw-r--r--Documentation/devicetree/bindings/media/i2c/imx219.yaml114
-rw-r--r--Documentation/devicetree/bindings/media/i2c/tvp5150.txt146
-rw-r--r--Documentation/devicetree/bindings/media/nxp,imx8mq-vpu.yaml77
-rw-r--r--Documentation/devicetree/bindings/media/qcom,msm8916-venus.yaml119
-rw-r--r--Documentation/devicetree/bindings/media/qcom,msm8996-venus.yaml172
-rw-r--r--Documentation/devicetree/bindings/media/qcom,sc7180-venus.yaml140
-rw-r--r--Documentation/devicetree/bindings/media/qcom,sdm845-venus-v2.yaml140
-rw-r--r--Documentation/devicetree/bindings/media/qcom,sdm845-venus.yaml156
-rw-r--r--Documentation/devicetree/bindings/media/qcom,venus.txt120
-rw-r--r--Documentation/devicetree/bindings/media/rc.yaml1
-rw-r--r--Documentation/devicetree/bindings/media/rockchip-rga.txt5
-rw-r--r--Documentation/devicetree/bindings/mfd/qcom-rpm.txt4
-rw-r--r--Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt3
-rw-r--r--Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml14
-rw-r--r--Documentation/devicetree/bindings/phy/phy-cadence-dp.txt30
-rw-r--r--Documentation/devicetree/bindings/phy/phy-cadence-torrent.yaml143
-rw-r--r--Documentation/devicetree/bindings/phy/phy-mtk-tphy.txt32
-rw-r--r--Documentation/devicetree/bindings/phy/qcom,qusb2-phy.yaml185
-rw-r--r--Documentation/devicetree/bindings/phy/qcom,usb-hs-28nm.yaml90
-rw-r--r--Documentation/devicetree/bindings/phy/qcom,usb-ss.yaml83
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-dwc3-usb-phy.txt37
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt15
-rw-r--r--Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt68
-rw-r--r--Documentation/devicetree/bindings/phy/ti-phy-gmii-sel.txt1
-rw-r--r--Documentation/devicetree/bindings/phy/uniphier-pcie-phy.txt13
-rw-r--r--Documentation/devicetree/bindings/phy/uniphier-usb3-hsphy.txt6
-rw-r--r--Documentation/devicetree/bindings/phy/uniphier-usb3-ssphy.txt5
-rw-r--r--Documentation/devicetree/bindings/regulator/mp886x.txt27
-rw-r--r--Documentation/devicetree/bindings/regulator/mps,mp5416.yaml78
-rw-r--r--Documentation/devicetree/bindings/regulator/qcom,smd-rpm-regulator.txt13
-rw-r--r--Documentation/devicetree/bindings/regulator/vqmmc-ipq4019-regulator.yaml42
-rw-r--r--Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml22
-rw-r--r--Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt5
-rw-r--r--Documentation/devicetree/bindings/spi/qca,ar934x-spi.yaml41
-rw-r--r--Documentation/devicetree/bindings/spi/spi-controller.yaml10
-rw-r--r--Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt19
-rw-r--r--Documentation/devicetree/bindings/spi/spi-mtk-nor.txt (renamed from Documentation/devicetree/bindings/mtd/mtk-quadspi.txt)15
-rw-r--r--Documentation/devicetree/bindings/spi/spi-mux.yaml89
-rw-r--r--Documentation/devicetree/bindings/spi/spi-nxp-fspi.txt3
-rw-r--r--Documentation/devicetree/bindings/spi/spi-rockchip.txt58
-rw-r--r--Documentation/devicetree/bindings/spi/spi-rockchip.yaml107
-rw-r--r--Documentation/devicetree/bindings/trivial-devices.yaml10
-rw-r--r--Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml23
-rw-r--r--Documentation/devicetree/bindings/usb/aspeed,usb-vhub.yaml77
-rw-r--r--Documentation/devicetree/bindings/usb/dwc2.yaml30
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3.txt7
-rw-r--r--Documentation/devicetree/bindings/usb/generic.txt6
-rw-r--r--Documentation/devicetree/bindings/usb/ingenic,jz4740-musb.txt32
-rw-r--r--Documentation/devicetree/bindings/usb/ingenic,jz4770-phy.yaml52
-rw-r--r--Documentation/devicetree/bindings/usb/ingenic,musb.yaml76
-rw-r--r--Documentation/devicetree/bindings/usb/maxim,max3420-udc.yaml69
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.yaml4
-rw-r--r--Documentation/driver-api/80211/mac80211-advanced.rst8
-rw-r--r--Documentation/driver-api/dmaengine/index.rst4
-rw-r--r--Documentation/driver-api/dmaengine/provider.rst12
-rw-r--r--Documentation/driver-api/driver-model/driver.rst2
-rw-r--r--Documentation/driver-api/firmware/fallback-mechanisms.rst103
-rw-r--r--Documentation/driver-api/firmware/lookup-order.rst2
-rw-r--r--Documentation/driver-api/firmware/request_firmware.rst5
-rw-r--r--Documentation/driver-api/index.rst4
-rw-r--r--Documentation/driver-api/io-mapping.rst (renamed from Documentation/io-mapping.txt)0
-rw-r--r--Documentation/driver-api/io_ordering.rst (renamed from Documentation/io_ordering.txt)0
-rw-r--r--Documentation/driver-api/ioctl.rst (renamed from Documentation/core-api/ioctl.rst)0
-rw-r--r--Documentation/driver-api/usb/typec_bus.rst22
-rw-r--r--Documentation/features/vm/pte_special/arch-support.txt2
-rw-r--r--Documentation/filesystems/9p.rst (renamed from Documentation/filesystems/9p.txt)114
-rw-r--r--Documentation/filesystems/adfs.rst (renamed from Documentation/filesystems/adfs.txt)29
-rw-r--r--Documentation/filesystems/affs.rst (renamed from Documentation/filesystems/affs.txt)62
-rw-r--r--Documentation/filesystems/afs.rst (renamed from Documentation/filesystems/afs.txt)73
-rw-r--r--Documentation/filesystems/autofs-mount-control.rst (renamed from Documentation/filesystems/autofs-mount-control.txt)108
-rw-r--r--Documentation/filesystems/befs.rst (renamed from Documentation/filesystems/befs.txt)59
-rw-r--r--Documentation/filesystems/bfs.rst (renamed from Documentation/filesystems/bfs.txt)37
-rw-r--r--Documentation/filesystems/btrfs.rst (renamed from Documentation/filesystems/btrfs.txt)3
-rw-r--r--Documentation/filesystems/ceph.rst (renamed from Documentation/filesystems/ceph.txt)26
-rw-r--r--Documentation/filesystems/cifs/cifsroot.txt2
-rw-r--r--Documentation/filesystems/cramfs.rst (renamed from Documentation/filesystems/cramfs.txt)19
-rw-r--r--Documentation/filesystems/debugfs.rst (renamed from Documentation/filesystems/debugfs.txt)62
-rw-r--r--Documentation/filesystems/dlmfs.rst (renamed from Documentation/filesystems/dlmfs.txt)28
-rw-r--r--Documentation/filesystems/ecryptfs.rst (renamed from Documentation/filesystems/ecryptfs.txt)51
-rw-r--r--Documentation/filesystems/efivarfs.rst (renamed from Documentation/filesystems/efivarfs.txt)5
-rw-r--r--Documentation/filesystems/erofs.rst (renamed from Documentation/filesystems/erofs.txt)177
-rw-r--r--Documentation/filesystems/ext2.rst (renamed from Documentation/filesystems/ext2.txt)41
-rw-r--r--Documentation/filesystems/ext3.rst (renamed from Documentation/filesystems/ext3.txt)2
-rw-r--r--Documentation/filesystems/f2fs.rst (renamed from Documentation/filesystems/f2fs.txt)254
-rw-r--r--Documentation/filesystems/fuse.rst5
-rw-r--r--Documentation/filesystems/gfs2-uevents.rst (renamed from Documentation/filesystems/gfs2-uevents.txt)20
-rw-r--r--Documentation/filesystems/gfs2.rst (renamed from Documentation/filesystems/gfs2.txt)20
-rw-r--r--Documentation/filesystems/hfs.rst (renamed from Documentation/filesystems/hfs.txt)23
-rw-r--r--Documentation/filesystems/hfsplus.rst (renamed from Documentation/filesystems/hfsplus.txt)2
-rw-r--r--Documentation/filesystems/hpfs.rst (renamed from Documentation/filesystems/hpfs.txt)239
-rw-r--r--Documentation/filesystems/index.rst47
-rw-r--r--Documentation/filesystems/inotify.rst (renamed from Documentation/filesystems/inotify.txt)33
-rw-r--r--Documentation/filesystems/isofs.rst64
-rw-r--r--Documentation/filesystems/isofs.txt48
-rw-r--r--Documentation/filesystems/nfs/index.rst13
-rw-r--r--Documentation/filesystems/nfs/knfsd-stats.rst (renamed from Documentation/filesystems/nfs/knfsd-stats.txt)17
-rw-r--r--Documentation/filesystems/nfs/nfs41-server.rst256
-rw-r--r--Documentation/filesystems/nfs/nfs41-server.txt173
-rw-r--r--Documentation/filesystems/nfs/pnfs.rst (renamed from Documentation/filesystems/nfs/pnfs.txt)25
-rw-r--r--Documentation/filesystems/nfs/rpc-cache.rst (renamed from Documentation/filesystems/nfs/rpc-cache.txt)136
-rw-r--r--Documentation/filesystems/nfs/rpc-server-gss.rst (renamed from Documentation/filesystems/nfs/rpc-server-gss.txt)19
-rw-r--r--Documentation/filesystems/nilfs2.rst (renamed from Documentation/filesystems/nilfs2.txt)40
-rw-r--r--Documentation/filesystems/ntfs.rst (renamed from Documentation/filesystems/ntfs.txt)145
-rw-r--r--Documentation/filesystems/ocfs2-online-filecheck.rst (renamed from Documentation/filesystems/ocfs2-online-filecheck.txt)45
-rw-r--r--Documentation/filesystems/ocfs2.rst (renamed from Documentation/filesystems/ocfs2.txt)31
-rw-r--r--Documentation/filesystems/omfs.rst112
-rw-r--r--Documentation/filesystems/omfs.txt106
-rw-r--r--Documentation/filesystems/orangefs.rst (renamed from Documentation/filesystems/orangefs.txt)187
-rw-r--r--Documentation/filesystems/proc.rst (renamed from Documentation/filesystems/proc.txt)1544
-rw-r--r--Documentation/filesystems/qnx6.rst (renamed from Documentation/filesystems/qnx6.txt)22
-rw-r--r--Documentation/filesystems/ramfs-rootfs-initramfs.rst (renamed from Documentation/filesystems/ramfs-rootfs-initramfs.txt)54
-rw-r--r--Documentation/filesystems/relay.rst (renamed from Documentation/filesystems/relay.txt)139
-rw-r--r--Documentation/filesystems/romfs.rst (renamed from Documentation/filesystems/romfs.txt)42
-rw-r--r--Documentation/filesystems/squashfs.rst (renamed from Documentation/filesystems/squashfs.txt)60
-rw-r--r--Documentation/filesystems/sysfs.rst (renamed from Documentation/filesystems/sysfs.txt)324
-rw-r--r--Documentation/filesystems/sysv-fs.rst (renamed from Documentation/filesystems/sysv-fs.txt)153
-rw-r--r--Documentation/filesystems/tmpfs.rst (renamed from Documentation/filesystems/tmpfs.txt)44
-rw-r--r--Documentation/filesystems/ubifs-authentication.rst10
-rw-r--r--Documentation/filesystems/ubifs.rst (renamed from Documentation/filesystems/ubifs.txt)25
-rw-r--r--Documentation/filesystems/udf.rst (renamed from Documentation/filesystems/udf.txt)21
-rw-r--r--Documentation/filesystems/virtiofs.rst2
-rw-r--r--Documentation/filesystems/zonefs.rst (renamed from Documentation/filesystems/zonefs.txt)126
-rw-r--r--Documentation/gpu/i915.rst4
-rw-r--r--Documentation/hwmon/index.rst1
-rw-r--r--Documentation/hwmon/isl68137.rst541
-rw-r--r--Documentation/hwmon/k10temp.rst29
-rw-r--r--Documentation/hwmon/ltc2978.rst198
-rw-r--r--Documentation/hwmon/pmbus-core.rst22
-rw-r--r--Documentation/hwmon/pmbus.rst8
-rw-r--r--Documentation/hwmon/tps53679.rst178
-rw-r--r--Documentation/index.rst2
-rw-r--r--Documentation/kbuild/gcc-plugins.rst (renamed from Documentation/core-api/gcc-plugins.rst)4
-rw-r--r--Documentation/kbuild/index.rst1
-rw-r--r--Documentation/kernel-hacking/hacking.rst4
-rw-r--r--Documentation/kernel-hacking/locking.rst176
-rw-r--r--Documentation/kref.txt4
-rw-r--r--Documentation/media/kapi/csi2.rst2
-rw-r--r--Documentation/media/kapi/v4l2-controls.rst8
-rw-r--r--Documentation/media/kapi/v4l2-dev.rst4
-rw-r--r--Documentation/media/uapi/cec/cec-ioc-adap-g-conn-info.rst10
-rw-r--r--Documentation/media/uapi/cec/cec-ioc-dqevent.rst20
-rw-r--r--Documentation/media/uapi/mediactl/media-ioc-enum-entities.rst24
-rw-r--r--Documentation/media/uapi/v4l/buffer.rst53
-rw-r--r--Documentation/media/uapi/v4l/dev-sliced-vbi.rst15
-rw-r--r--Documentation/media/uapi/v4l/ext-ctrls-codec.rst16
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-bayer.rst1
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-srggb14.rst82
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst6
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-v4l2.rst2
-rw-r--r--Documentation/media/uapi/v4l/pixfmt-y14.rst72
-rw-r--r--Documentation/media/uapi/v4l/subdev-formats.rst37
-rw-r--r--Documentation/media/uapi/v4l/vidioc-dbg-g-chip-info.rst12
-rw-r--r--Documentation/media/uapi/v4l/vidioc-dbg-g-register.rst12
-rw-r--r--Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst26
-rw-r--r--Documentation/media/uapi/v4l/vidioc-dqevent.rst55
-rw-r--r--Documentation/media/uapi/v4l/vidioc-dv-timings-cap.rst14
-rw-r--r--Documentation/media/uapi/v4l/vidioc-enum-frameintervals.rst19
-rw-r--r--Documentation/media/uapi/v4l/vidioc-enum-framesizes.rst18
-rw-r--r--Documentation/media/uapi/v4l/vidioc-g-dv-timings.rst16
-rw-r--r--Documentation/media/uapi/v4l/vidioc-g-ext-ctrls.rst45
-rw-r--r--Documentation/media/uapi/v4l/vidioc-g-fmt.rst29
-rw-r--r--Documentation/media/uapi/v4l/vidioc-g-parm.rst18
-rw-r--r--Documentation/media/uapi/v4l/vidioc-queryctrl.rst21
-rw-r--r--Documentation/media/uapi/v4l/yuv-formats.rst1
-rw-r--r--Documentation/media/v4l-drivers/ipu3.rst11
-rw-r--r--Documentation/media/v4l-drivers/vivid.rst63
-rw-r--r--Documentation/misc-devices/index.rst1
-rw-r--r--Documentation/misc-devices/mic/index.rst (renamed from Documentation/mic/index.rst)0
-rw-r--r--Documentation/misc-devices/mic/mic_overview.rst (renamed from Documentation/mic/mic_overview.rst)0
-rw-r--r--Documentation/misc-devices/mic/scif_overview.rst (renamed from Documentation/mic/scif_overview.rst)0
-rw-r--r--Documentation/networking/snmp_counter.rst4
-rw-r--r--Documentation/power/pm_qos_interface.rst88
-rw-r--r--Documentation/power/runtime_pm.rst6
-rw-r--r--Documentation/power/userland-swsusp.rst8
-rw-r--r--Documentation/powerpc/ultravisor.rst4
-rw-r--r--Documentation/process/2.Process.rst108
-rw-r--r--Documentation/process/coding-style.rst18
-rw-r--r--Documentation/process/deprecated.rst120
-rw-r--r--Documentation/process/email-clients.rst4
-rw-r--r--Documentation/process/howto.rst17
-rw-r--r--Documentation/process/kernel-docs.rst10
-rw-r--r--Documentation/process/management-style.rst2
-rw-r--r--Documentation/scsi/scsi_mid_low_api.txt21
-rw-r--r--Documentation/security/siphash.rst8
-rw-r--r--Documentation/target/tcmu-design.rst6
-rw-r--r--Documentation/trace/events-power.rst21
-rw-r--r--Documentation/trace/events.rst63
-rw-r--r--Documentation/translations/it_IT/networking/netdev-FAQ.rst2
-rw-r--r--Documentation/translations/it_IT/process/programming-language.rst30
-rw-r--r--Documentation/translations/zh_CN/filesystems/index.rst27
-rw-r--r--Documentation/translations/zh_CN/filesystems/virtiofs.rst58
-rw-r--r--Documentation/translations/zh_CN/index.rst1
-rw-r--r--Documentation/translations/zh_CN/io_ordering.txt4
-rw-r--r--Documentation/translations/zh_CN/process/5.Posting.rst2
-rw-r--r--Documentation/translations/zh_CN/video4linux/v4l2-framework.txt4
-rw-r--r--Documentation/usb/index.rst1
-rw-r--r--Documentation/usb/raw-gadget.rst61
-rw-r--r--Documentation/userspace-api/ioctl/ioctl-number.rst1
-rw-r--r--Documentation/virt/kvm/amd-memory-encryption.rst25
-rw-r--r--Documentation/x86/exception-tables.rst14
-rw-r--r--Documentation/x86/intel-iommu.rst3
282 files changed, 10926 insertions, 5536 deletions
diff --git a/Documentation/ABI/testing/sysfs-kernel-uids b/Documentation/ABI/removed/sysfs-kernel-uids
index 4182b7061816..dc4463f190a7 100644
--- a/Documentation/ABI/testing/sysfs-kernel-uids
+++ b/Documentation/ABI/removed/sysfs-kernel-uids
@@ -1,5 +1,5 @@
What: /sys/kernel/uids/<uid>/cpu_shares
-Date: December 2007
+Date: December 2007, finally removed in kernel v2.6.34-rc1
Contact: Dhaval Giani <dhaval@linux.vnet.ibm.com>
Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Description:
diff --git a/Documentation/ABI/testing/configfs-most b/Documentation/ABI/testing/configfs-most
new file mode 100644
index 000000000000..ed67a4d9f6d6
--- /dev/null
+++ b/Documentation/ABI/testing/configfs-most
@@ -0,0 +1,196 @@
+What: /sys/kernel/config/most_<component>
+Date: March 8, 2019
+KernelVersion: 5.2
+Description: Interface is used to configure and connect device channels
+ to component drivers.
+
+ Attributes are visible only when configfs is mounted. To mount
+ configfs in /sys/kernel/config directory use:
+ # mount -t configfs none /sys/kernel/config/
+
+
+What: /sys/kernel/config/most_cdev/<link>
+Date: March 8, 2019
+KernelVersion: 5.2
+Description:
+ The attributes:
+
+ buffer_size configure the buffer size for this channel
+
+ subbuffer_size configure the sub-buffer size for this channel
+ (needed for synchronous and isochrnous data)
+
+
+ num_buffers configure number of buffers used for this
+ channel
+
+ datatype configure type of data that will travel over
+ this channel
+
+ direction configure whether this link will be an input
+ or output
+
+ dbr_size configure DBR data buffer size (this is used
+ for MediaLB communication only)
+
+ packets_per_xact
+ configure the number of packets that will be
+ collected from the network before being
+ transmitted via USB (this is used for USB
+ communication only)
+
+ device name of the device the link is to be attached to
+
+ channel name of the channel the link is to be attached to
+
+ comp_params pass parameters needed by some components
+
+ create_link write '1' to this attribute to trigger the
+ creation of the link. In case of speculative
+ configuration, the creation is post-poned until
+ a physical device is being attached to the bus.
+
+ destroy_link write '1' to this attribute to destroy an
+ active link
+
+What: /sys/kernel/config/most_video/<link>
+Date: March 8, 2019
+KernelVersion: 5.2
+Description:
+ The attributes:
+
+ buffer_size configure the buffer size for this channel
+
+ subbuffer_size configure the sub-buffer size for this channel
+ (needed for synchronous and isochrnous data)
+
+
+ num_buffers configure number of buffers used for this
+ channel
+
+ datatype configure type of data that will travel over
+ this channel
+
+ direction configure whether this link will be an input
+ or output
+
+ dbr_size configure DBR data buffer size (this is used
+ for MediaLB communication only)
+
+ packets_per_xact
+ configure the number of packets that will be
+ collected from the network before being
+ transmitted via USB (this is used for USB
+ communication only)
+
+ device name of the device the link is to be attached to
+
+ channel name of the channel the link is to be attached to
+
+ comp_params pass parameters needed by some components
+
+ create_link write '1' to this attribute to trigger the
+ creation of the link. In case of speculative
+ configuration, the creation is post-poned until
+ a physical device is being attached to the bus.
+
+ destroy_link write '1' to this attribute to destroy an
+ active link
+
+What: /sys/kernel/config/most_net/<link>
+Date: March 8, 2019
+KernelVersion: 5.2
+Description:
+ The attributes:
+
+ buffer_size configure the buffer size for this channel
+
+ subbuffer_size configure the sub-buffer size for this channel
+ (needed for synchronous and isochrnous data)
+
+
+ num_buffers configure number of buffers used for this
+ channel
+
+ datatype configure type of data that will travel over
+ this channel
+
+ direction configure whether this link will be an input
+ or output
+
+ dbr_size configure DBR data buffer size (this is used
+ for MediaLB communication only)
+
+ packets_per_xact
+ configure the number of packets that will be
+ collected from the network before being
+ transmitted via USB (this is used for USB
+ communication only)
+
+ device name of the device the link is to be attached to
+
+ channel name of the channel the link is to be attached to
+
+ comp_params pass parameters needed by some components
+
+ create_link write '1' to this attribute to trigger the
+ creation of the link. In case of speculative
+ configuration, the creation is post-poned until
+ a physical device is being attached to the bus.
+
+ destroy_link write '1' to this attribute to destroy an
+ active link
+
+What: /sys/kernel/config/most_sound/<card>
+Date: March 8, 2019
+KernelVersion: 5.2
+Description:
+ The attributes:
+
+ create_card write '1' to this attribute to trigger the
+ registration of the sound card with the ALSA
+ subsystem.
+
+What: /sys/kernel/config/most_sound/<card>/<link>
+Date: March 8, 2019
+KernelVersion: 5.2
+Description:
+ The attributes:
+
+ buffer_size configure the buffer size for this channel
+
+ subbuffer_size configure the sub-buffer size for this channel
+ (needed for synchronous and isochrnous data)
+
+
+ num_buffers configure number of buffers used for this
+ channel
+
+ datatype configure type of data that will travel over
+ this channel
+
+ direction configure whether this link will be an input
+ or output
+
+ dbr_size configure DBR data buffer size (this is used
+ for MediaLB communication only)
+
+ packets_per_xact
+ configure the number of packets that will be
+ collected from the network before being
+ transmitted via USB (this is used for USB
+ communication only)
+
+ device name of the device the link is to be attached to
+
+ channel name of the channel the link is to be attached to
+
+ comp_params pass parameters needed by some components
+
+ create_link write '1' to this attribute to trigger the
+ creation of the link. In case of speculative
+ configuration, the creation is post-poned until
+ a physical device is being attached to the bus.
+
+ destroy_link write '1' to this attribute to destroy an
+ active link
diff --git a/Documentation/ABI/testing/sysfs-bus-counter-104-quad-8 b/Documentation/ABI/testing/sysfs-bus-counter-104-quad-8
index 46b1f33b2fce..eac32180c40d 100644
--- a/Documentation/ABI/testing/sysfs-bus-counter-104-quad-8
+++ b/Documentation/ABI/testing/sysfs-bus-counter-104-quad-8
@@ -1,3 +1,28 @@
+What: /sys/bus/counter/devices/counterX/signalY/cable_fault
+KernelVersion: 5.7
+Contact: linux-iio@vger.kernel.org
+Description:
+ Read-only attribute that indicates whether a differential
+ encoder cable fault (not connected or loose wires) is detected
+ for the respective channel of Signal Y. Valid attribute values
+ are boolean. Detection must first be enabled via the
+ corresponding cable_fault_enable attribute.
+
+What: /sys/bus/counter/devices/counterX/signalY/cable_fault_enable
+KernelVersion: 5.7
+Contact: linux-iio@vger.kernel.org
+Description:
+ Whether detection of differential encoder cable faults for the
+ respective channel of Signal Y is enabled. Valid attribute
+ values are boolean.
+
+What: /sys/bus/counter/devices/counterX/signalY/filter_clock_prescaler
+KernelVersion: 5.7
+Contact: linux-iio@vger.kernel.org
+Description:
+ Filter clock factor for input Signal Y. This prescaler value
+ affects the inputs of both quadrature pair signals.
+
What: /sys/bus/counter/devices/counterX/signalY/index_polarity
KernelVersion: 5.2
Contact: linux-iio@vger.kernel.org
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-adc-ad7192 b/Documentation/ABI/testing/sysfs-bus-iio-adc-ad7192
index 7627d3be08f5..f8315202c8f0 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio-adc-ad7192
+++ b/Documentation/ABI/testing/sysfs-bus-iio-adc-ad7192
@@ -2,17 +2,22 @@ What: /sys/bus/iio/devices/iio:deviceX/ac_excitation_en
KernelVersion:
Contact: linux-iio@vger.kernel.org
Description:
- Reading gives the state of AC excitation.
- Writing '1' enables AC excitation.
+ This attribute, if available, is used to enable the AC
+ excitation mode found on some converters. In ac excitation mode,
+ the polarity of the excitation voltage is reversed on
+ alternate cycles, to eliminate DC errors.
What: /sys/bus/iio/devices/iio:deviceX/bridge_switch_en
KernelVersion:
Contact: linux-iio@vger.kernel.org
Description:
- This bridge switch is used to disconnect it when there is a
- need to minimize the system current consumption.
- Reading gives the state of the bridge switch.
- Writing '1' enables the bridge switch.
+ This attribute, if available, is used to close or open the
+ bridge power down switch found on some converters.
+ In bridge applications, such as strain gauges and load cells,
+ the bridge itself consumes the majority of the current in the
+ system. To minimize the current consumption of the system,
+ the bridge can be disconnected (when it is not being used
+ using the bridge_switch_en attribute.
What: /sys/bus/iio/devices/iio:deviceX/in_voltagex_sys_calibration
KernelVersion:
@@ -21,6 +26,13 @@ Description:
Initiates the system calibration procedure. This is done on a
single channel at a time. Write '1' to start the calibration.
+What: /sys/bus/iio/devices/iio:deviceX/in_voltage2-voltage2_shorted_raw
+KernelVersion:
+Contact: linux-iio@vger.kernel.org
+Description:
+ Measure voltage from AIN2 pin connected to AIN(+)
+ and AIN(-) shorted.
+
What: /sys/bus/iio/devices/iio:deviceX/in_voltagex_sys_calibration_mode_available
KernelVersion:
Contact: linux-iio@vger.kernel.org
diff --git a/Documentation/ABI/testing/sysfs-bus-most b/Documentation/ABI/testing/sysfs-bus-most
new file mode 100644
index 000000000000..6b1d06e3285e
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-most
@@ -0,0 +1,295 @@
+What: /sys/bus/most/devices/.../description
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Provides information about the interface type and the physical
+ location of the device. Hardware attached via USB, for instance,
+ might return <1-1.1:1.0>
+Users:
+
+What: /sys/bus/most/devices/.../interface
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the type of peripheral interface the device uses.
+Users:
+
+What: /sys/bus/most/devices/.../dci
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ If the network interface controller is attached via USB, a dci
+ directory is created that allows applications to read and
+ write the controller's DCI registers.
+Users:
+
+What: /sys/bus/most/devices/.../dci/arb_address
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to set an arbitrary DCI register address an
+ application wants to read from or write to.
+Users:
+
+What: /sys/bus/most/devices/.../dci/arb_value
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to read and write the DCI register whose address
+ is stored in arb_address.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_eui48_hi
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MAC address.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_eui48_lo
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MAC address.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_eui48_mi
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MAC address.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_filter
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MEP filter address.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_hash0
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MEP hash table.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_hash1
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MEP hash table.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_hash2
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MEP hash table.
+Users:
+
+What: /sys/bus/most/devices/.../dci/mep_hash3
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to check and configure the MEP hash table.
+Users:
+
+What: /sys/bus/most/devices/.../dci/ni_state
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the current network interface state.
+Users:
+
+What: /sys/bus/most/devices/.../dci/node_address
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the current node address.
+Users:
+
+What: /sys/bus/most/devices/.../dci/node_position
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the current node position.
+Users:
+
+What: /sys/bus/most/devices/.../dci/packet_bandwidth
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the configured packet bandwidth.
+Users:
+
+What: /sys/bus/most/devices/.../dci/sync_ep
+Date: June 2016
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Triggers the controller's synchronization process for a certain
+ endpoint.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ For every channel of the device a directory is created, whose
+ name is dictated by the HDM. This enables an application to
+ collect information about the channel's capabilities and
+ configure it.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/available_datatypes
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the data types the current channel can transport.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/available_directions
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the directions the current channel is capable of.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/number_of_packet_buffers
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the number of packet buffers the current channel can
+ handle.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/number_of_stream_buffers
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the number of streaming buffers the current channel can
+ handle.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/size_of_packet_buffer
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the size of a packet buffer the current channel can
+ handle.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/size_of_stream_buffer
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates the size of a streaming buffer the current channel can
+ handle.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/set_number_of_buffers
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is to configure the number of buffers of the current channel.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/set_buffer_size
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is to configure the size of a buffer of the current channel.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/set_direction
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is to configure the direction of the current channel.
+ The following strings will be accepted:
+ 'dir_tx',
+ 'dir_rx'
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/set_datatype
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is to configure the data type of the current channel.
+ The following strings will be accepted:
+ 'control',
+ 'async',
+ 'sync',
+ 'isoc_avp'
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/set_subbuffer_size
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is to configure the subbuffer size of the current channel.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/set_packets_per_xact
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is to configure the number of packets per transaction of
+ the current channel. This is only needed network interface
+ controller is attached via USB.
+Users:
+
+What: /sys/bus/most/devices/.../<channel>/channel_starving
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ Indicates whether current channel ran out of buffers.
+Users:
+
+What: /sys/bus/most/drivers/most_core/components
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to retrieve a list of registered components.
+Users:
+
+What: /sys/bus/most/drivers/most_core/links
+Date: March 2017
+KernelVersion: 4.15
+Contact: Christian Gromm <christian.gromm@microchip.com>
+Description:
+ This is used to retrieve a list of established links.
+Users:
diff --git a/Documentation/ABI/testing/sysfs-class-typec b/Documentation/ABI/testing/sysfs-class-typec
index d7647b258c3c..b834671522d6 100644
--- a/Documentation/ABI/testing/sysfs-class-typec
+++ b/Documentation/ABI/testing/sysfs-class-typec
@@ -20,13 +20,13 @@ Date: April 2017
Contact: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Description:
The supported power roles. This attribute can be used to request
- power role swap on the port when the port supports USB Power
- Delivery. Swapping is supported as synchronous operation, so
- write(2) to the attribute will not return until the operation
- has finished. The attribute is notified about role changes so
- that poll(2) on the attribute wakes up. Change on the role will
- also generate uevent KOBJ_CHANGE. The current role is show in
- brackets, for example "[source] sink" when in source mode.
+ power role swap on the port. Swapping is supported as
+ synchronous operation, so write(2) to the attribute will not
+ return until the operation has finished. The attribute is
+ notified about role changes so that poll(2) on the attribute
+ wakes up. Change on the role will also generate uevent
+ KOBJ_CHANGE. The current role is show in brackets, for example
+ "[source] sink" when in source mode.
Valid values: source, sink
@@ -108,6 +108,15 @@ Contact: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Description:
Revision number of the supported USB Type-C specification.
+What: /sys/class/typec/<port>/orientation
+Date: February 2020
+Contact: Badhri Jagan Sridharan <badhri@google.com>
+Description:
+ Indicates the active orientation of the Type-C connector.
+ Valid values:
+ - "normal": CC1 orientation
+ - "reverse": CC2 orientation
+ - "unknown": Orientation cannot be determined.
USB Type-C partner devices (eg. /sys/class/typec/port0-partner/)
diff --git a/Documentation/EDID/1024x768.S b/Documentation/EDID/1024x768.S
deleted file mode 100644
index 4aed3f9ab88a..000000000000
--- a/Documentation/EDID/1024x768.S
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- 1024x768.S: EDID data set for standard 1024x768 60 Hz monitor
-
- Copyright (C) 2011 Carsten Emde <C.Emde@osadl.org>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- as published by the Free Software Foundation; either version 2
- of the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
-*/
-
-/* EDID */
-#define VERSION 1
-#define REVISION 3
-
-/* Display */
-#define CLOCK 65000 /* kHz */
-#define XPIX 1024
-#define YPIX 768
-#define XY_RATIO XY_RATIO_4_3
-#define XBLANK 320
-#define YBLANK 38
-#define XOFFSET 8
-#define XPULSE 144
-#define YOFFSET 3
-#define YPULSE 6
-#define DPI 72
-#define VFREQ 60 /* Hz */
-#define TIMING_NAME "Linux XGA"
-#define ESTABLISHED_TIMING2_BITS 0x08 /* Bit 3 -> 1024x768 @60 Hz */
-#define HSYNC_POL 0
-#define VSYNC_POL 0
-
-#include "edid.S"
diff --git a/Documentation/EDID/1280x1024.S b/Documentation/EDID/1280x1024.S
deleted file mode 100644
index b26dd424cad7..000000000000
--- a/Documentation/EDID/1280x1024.S
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- 1280x1024.S: EDID data set for standard 1280x1024 60 Hz monitor
-
- Copyright (C) 2011 Carsten Emde <C.Emde@osadl.org>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- as published by the Free Software Foundation; either version 2
- of the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
-*/
-
-/* EDID */
-#define VERSION 1
-#define REVISION 3
-
-/* Display */
-#define CLOCK 108000 /* kHz */
-#define XPIX 1280
-#define YPIX 1024
-#define XY_RATIO XY_RATIO_5_4
-#define XBLANK 408
-#define YBLANK 42
-#define XOFFSET 48
-#define XPULSE 112
-#define YOFFSET 1
-#define YPULSE 3
-#define DPI 72
-#define VFREQ 60 /* Hz */
-#define TIMING_NAME "Linux SXGA"
-/* No ESTABLISHED_TIMINGx_BITS */
-#define HSYNC_POL 1
-#define VSYNC_POL 1
-
-#include "edid.S"
diff --git a/Documentation/EDID/1600x1200.S b/Documentation/EDID/1600x1200.S
deleted file mode 100644
index 0d091b282768..000000000000
--- a/Documentation/EDID/1600x1200.S
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- 1600x1200.S: EDID data set for standard 1600x1200 60 Hz monitor
-
- Copyright (C) 2013 Carsten Emde <C.Emde@osadl.org>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- as published by the Free Software Foundation; either version 2
- of the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
-*/
-
-/* EDID */
-#define VERSION 1
-#define REVISION 3
-
-/* Display */
-#define CLOCK 162000 /* kHz */
-#define XPIX 1600
-#define YPIX 1200
-#define XY_RATIO XY_RATIO_4_3
-#define XBLANK 560
-#define YBLANK 50
-#define XOFFSET 64
-#define XPULSE 192
-#define YOFFSET 1
-#define YPULSE 3
-#define DPI 72
-#define VFREQ 60 /* Hz */
-#define TIMING_NAME "Linux UXGA"
-/* No ESTABLISHED_TIMINGx_BITS */
-#define HSYNC_POL 1
-#define VSYNC_POL 1
-
-#include "edid.S"
diff --git a/Documentation/EDID/1680x1050.S b/Documentation/EDID/1680x1050.S
deleted file mode 100644
index 7dfed9a33eab..000000000000
--- a/Documentation/EDID/1680x1050.S
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- 1680x1050.S: EDID data set for standard 1680x1050 60 Hz monitor
-
- Copyright (C) 2012 Carsten Emde <C.Emde@osadl.org>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- as published by the Free Software Foundation; either version 2
- of the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
-*/
-
-/* EDID */
-#define VERSION 1
-#define REVISION 3
-
-/* Display */
-#define CLOCK 146250 /* kHz */
-#define XPIX 1680
-#define YPIX 1050
-#define XY_RATIO XY_RATIO_16_10
-#define XBLANK 560
-#define YBLANK 39
-#define XOFFSET 104
-#define XPULSE 176
-#define YOFFSET 3
-#define YPULSE 6
-#define DPI 96
-#define VFREQ 60 /* Hz */
-#define TIMING_NAME "Linux WSXGA"
-/* No ESTABLISHED_TIMINGx_BITS */
-#define HSYNC_POL 1
-#define VSYNC_POL 1
-
-#include "edid.S"
diff --git a/Documentation/EDID/1920x1080.S b/Documentation/EDID/1920x1080.S
deleted file mode 100644
index d6ffbba28e95..000000000000
--- a/Documentation/EDID/1920x1080.S
+++ /dev/null
@@ -1,43 +0,0 @@
-/*
- 1920x1080.S: EDID data set for standard 1920x1080 60 Hz monitor
-
- Copyright (C) 2012 Carsten Emde <C.Emde@osadl.org>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- as published by the Free Software Foundation; either version 2
- of the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
-*/
-
-/* EDID */
-#define VERSION 1
-#define REVISION 3
-
-/* Display */
-#define CLOCK 148500 /* kHz */
-#define XPIX 1920
-#define YPIX 1080
-#define XY_RATIO XY_RATIO_16_9
-#define XBLANK 280
-#define YBLANK 45
-#define XOFFSET 88
-#define XPULSE 44
-#define YOFFSET 4
-#define YPULSE 5
-#define DPI 96
-#define VFREQ 60 /* Hz */
-#define TIMING_NAME "Linux FHD"
-/* No ESTABLISHED_TIMINGx_BITS */
-#define HSYNC_POL 1
-#define VSYNC_POL 1
-
-#include "edid.S"
diff --git a/Documentation/EDID/800x600.S b/Documentation/EDID/800x600.S
deleted file mode 100644
index a5616588de08..000000000000
--- a/Documentation/EDID/800x600.S
+++ /dev/null
@@ -1,40 +0,0 @@
-/*
- 800x600.S: EDID data set for standard 800x600 60 Hz monitor
-
- Copyright (C) 2011 Carsten Emde <C.Emde@osadl.org>
- Copyright (C) 2014 Linaro Limited
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- as published by the Free Software Foundation; either version 2
- of the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-*/
-
-/* EDID */
-#define VERSION 1
-#define REVISION 3
-
-/* Display */
-#define CLOCK 40000 /* kHz */
-#define XPIX 800
-#define YPIX 600
-#define XY_RATIO XY_RATIO_4_3
-#define XBLANK 256
-#define YBLANK 28
-#define XOFFSET 40
-#define XPULSE 128
-#define YOFFSET 1
-#define YPULSE 4
-#define DPI 72
-#define VFREQ 60 /* Hz */
-#define TIMING_NAME "Linux SVGA"
-#define ESTABLISHED_TIMING1_BITS 0x01 /* Bit 0: 800x600 @ 60Hz */
-#define HSYNC_POL 1
-#define VSYNC_POL 1
-
-#include "edid.S"
diff --git a/Documentation/EDID/Makefile b/Documentation/EDID/Makefile
deleted file mode 100644
index 85a927dfab02..000000000000
--- a/Documentation/EDID/Makefile
+++ /dev/null
@@ -1,37 +0,0 @@
-
-SOURCES := $(wildcard [0-9]*x[0-9]*.S)
-
-BIN := $(patsubst %.S, %.bin, $(SOURCES))
-
-IHEX := $(patsubst %.S, %.bin.ihex, $(SOURCES))
-
-CODE := $(patsubst %.S, %.c, $(SOURCES))
-
-all: $(BIN) $(IHEX) $(CODE)
-
-clean:
- @rm -f *.o *.bin.ihex *.bin *.c
-
-%.o: %.S
- @cc -c $^
-
-%.bin.nocrc: %.o
- @objcopy -Obinary $^ $@
-
-%.crc: %.bin.nocrc
- @list=$$(for i in `seq 1 127`; do head -c$$i $^ | tail -c1 \
- | hexdump -v -e '/1 "%02X+"'; done); \
- echo "ibase=16;100-($${list%?})%100" | bc >$@
-
-%.p: %.crc %.S
- @cc -c -DCRC="$$(cat $*.crc)" -o $@ $*.S
-
-%.bin: %.p
- @objcopy -Obinary $^ $@
-
-%.bin.ihex: %.p
- @objcopy -Oihex $^ $@
- @dos2unix $@ 2>/dev/null
-
-%.c: %.bin
- @echo "{" >$@; hexdump -f hex $^ >>$@; echo "};" >>$@
diff --git a/Documentation/EDID/edid.S b/Documentation/EDID/edid.S
deleted file mode 100644
index c3d13815526d..000000000000
--- a/Documentation/EDID/edid.S
+++ /dev/null
@@ -1,274 +0,0 @@
-/*
- edid.S: EDID data template
-
- Copyright (C) 2012 Carsten Emde <C.Emde@osadl.org>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- as published by the Free Software Foundation; either version 2
- of the License, or (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
-*/
-
-
-/* Manufacturer */
-#define MFG_LNX1 'L'
-#define MFG_LNX2 'N'
-#define MFG_LNX3 'X'
-#define SERIAL 0
-#define YEAR 2012
-#define WEEK 5
-
-/* EDID 1.3 standard definitions */
-#define XY_RATIO_16_10 0b00
-#define XY_RATIO_4_3 0b01
-#define XY_RATIO_5_4 0b10
-#define XY_RATIO_16_9 0b11
-
-/* Provide defaults for the timing bits */
-#ifndef ESTABLISHED_TIMING1_BITS
-#define ESTABLISHED_TIMING1_BITS 0x00
-#endif
-#ifndef ESTABLISHED_TIMING2_BITS
-#define ESTABLISHED_TIMING2_BITS 0x00
-#endif
-#ifndef ESTABLISHED_TIMING3_BITS
-#define ESTABLISHED_TIMING3_BITS 0x00
-#endif
-
-#define mfgname2id(v1,v2,v3) \
- ((((v1-'@')&0x1f)<<10)+(((v2-'@')&0x1f)<<5)+((v3-'@')&0x1f))
-#define swap16(v1) ((v1>>8)+((v1&0xff)<<8))
-#define lsbs2(v1,v2) (((v1&0x0f)<<4)+(v2&0x0f))
-#define msbs2(v1,v2) ((((v1>>8)&0x0f)<<4)+((v2>>8)&0x0f))
-#define msbs4(v1,v2,v3,v4) \
- ((((v1>>8)&0x03)<<6)+(((v2>>8)&0x03)<<4)+\
- (((v3>>4)&0x03)<<2)+((v4>>4)&0x03))
-#define pixdpi2mm(pix,dpi) ((pix*25)/dpi)
-#define xsize pixdpi2mm(XPIX,DPI)
-#define ysize pixdpi2mm(YPIX,DPI)
-
- .data
-
-/* Fixed header pattern */
-header: .byte 0x00,0xff,0xff,0xff,0xff,0xff,0xff,0x00
-
-mfg_id: .hword swap16(mfgname2id(MFG_LNX1, MFG_LNX2, MFG_LNX3))
-
-prod_code: .hword 0
-
-/* Serial number. 32 bits, little endian. */
-serial_number: .long SERIAL
-
-/* Week of manufacture */
-week: .byte WEEK
-
-/* Year of manufacture, less 1990. (1990-2245)
- If week=255, it is the model year instead */
-year: .byte YEAR-1990
-
-version: .byte VERSION /* EDID version, usually 1 (for 1.3) */
-revision: .byte REVISION /* EDID revision, usually 3 (for 1.3) */
-
-/* If Bit 7=1 Digital input. If set, the following bit definitions apply:
- Bits 6-1 Reserved, must be 0
- Bit 0 Signal is compatible with VESA DFP 1.x TMDS CRGB,
- 1 pixel per clock, up to 8 bits per color, MSB aligned,
- If Bit 7=0 Analog input. If clear, the following bit definitions apply:
- Bits 6-5 Video white and sync levels, relative to blank
- 00=+0.7/-0.3 V; 01=+0.714/-0.286 V;
- 10=+1.0/-0.4 V; 11=+0.7/0 V
- Bit 4 Blank-to-black setup (pedestal) expected
- Bit 3 Separate sync supported
- Bit 2 Composite sync (on HSync) supported
- Bit 1 Sync on green supported
- Bit 0 VSync pulse must be serrated when somposite or
- sync-on-green is used. */
-video_parms: .byte 0x6d
-
-/* Maximum horizontal image size, in centimetres
- (max 292 cm/115 in at 16:9 aspect ratio) */
-max_hor_size: .byte xsize/10
-
-/* Maximum vertical image size, in centimetres.
- If either byte is 0, undefined (e.g. projector) */
-max_vert_size: .byte ysize/10
-
-/* Display gamma, minus 1, times 100 (range 1.00-3.5 */
-gamma: .byte 120
-
-/* Bit 7 DPMS standby supported
- Bit 6 DPMS suspend supported
- Bit 5 DPMS active-off supported
- Bits 4-3 Display type: 00=monochrome; 01=RGB colour;
- 10=non-RGB multicolour; 11=undefined
- Bit 2 Standard sRGB colour space. Bytes 25-34 must contain
- sRGB standard values.
- Bit 1 Preferred timing mode specified in descriptor block 1.
- Bit 0 GTF supported with default parameter values. */
-dsp_features: .byte 0xea
-
-/* Chromaticity coordinates. */
-/* Red and green least-significant bits
- Bits 7-6 Red x value least-significant 2 bits
- Bits 5-4 Red y value least-significant 2 bits
- Bits 3-2 Green x value lst-significant 2 bits
- Bits 1-0 Green y value least-significant 2 bits */
-red_green_lsb: .byte 0x5e
-
-/* Blue and white least-significant 2 bits */
-blue_white_lsb: .byte 0xc0
-
-/* Red x value most significant 8 bits.
- 0-255 encodes 0-0.996 (255/256); 0-0.999 (1023/1024) with lsbits */
-red_x_msb: .byte 0xa4
-
-/* Red y value most significant 8 bits */
-red_y_msb: .byte 0x59
-
-/* Green x and y value most significant 8 bits */
-green_x_y_msb: .byte 0x4a,0x98
-
-/* Blue x and y value most significant 8 bits */
-blue_x_y_msb: .byte 0x25,0x20
-
-/* Default white point x and y value most significant 8 bits */
-white_x_y_msb: .byte 0x50,0x54
-
-/* Established timings */
-/* Bit 7 720x400 @ 70 Hz
- Bit 6 720x400 @ 88 Hz
- Bit 5 640x480 @ 60 Hz
- Bit 4 640x480 @ 67 Hz
- Bit 3 640x480 @ 72 Hz
- Bit 2 640x480 @ 75 Hz
- Bit 1 800x600 @ 56 Hz
- Bit 0 800x600 @ 60 Hz */
-estbl_timing1: .byte ESTABLISHED_TIMING1_BITS
-
-/* Bit 7 800x600 @ 72 Hz
- Bit 6 800x600 @ 75 Hz
- Bit 5 832x624 @ 75 Hz
- Bit 4 1024x768 @ 87 Hz, interlaced (1024x768)
- Bit 3 1024x768 @ 60 Hz
- Bit 2 1024x768 @ 72 Hz
- Bit 1 1024x768 @ 75 Hz
- Bit 0 1280x1024 @ 75 Hz */
-estbl_timing2: .byte ESTABLISHED_TIMING2_BITS
-
-/* Bit 7 1152x870 @ 75 Hz (Apple Macintosh II)
- Bits 6-0 Other manufacturer-specific display mod */
-estbl_timing3: .byte ESTABLISHED_TIMING3_BITS
-
-/* Standard timing */
-/* X resolution, less 31, divided by 8 (256-2288 pixels) */
-std_xres: .byte (XPIX/8)-31
-/* Y resolution, X:Y pixel ratio
- Bits 7-6 X:Y pixel ratio: 00=16:10; 01=4:3; 10=5:4; 11=16:9.
- Bits 5-0 Vertical frequency, less 60 (60-123 Hz) */
-std_vres: .byte (XY_RATIO<<6)+VFREQ-60
- .fill 7,2,0x0101 /* Unused */
-
-descriptor1:
-/* Pixel clock in 10 kHz units. (0.-655.35 MHz, little-endian) */
-clock: .hword CLOCK/10
-
-/* Horizontal active pixels 8 lsbits (0-4095) */
-x_act_lsb: .byte XPIX&0xff
-/* Horizontal blanking pixels 8 lsbits (0-4095)
- End of active to start of next active. */
-x_blk_lsb: .byte XBLANK&0xff
-/* Bits 7-4 Horizontal active pixels 4 msbits
- Bits 3-0 Horizontal blanking pixels 4 msbits */
-x_msbs: .byte msbs2(XPIX,XBLANK)
-
-/* Vertical active lines 8 lsbits (0-4095) */
-y_act_lsb: .byte YPIX&0xff
-/* Vertical blanking lines 8 lsbits (0-4095) */
-y_blk_lsb: .byte YBLANK&0xff
-/* Bits 7-4 Vertical active lines 4 msbits
- Bits 3-0 Vertical blanking lines 4 msbits */
-y_msbs: .byte msbs2(YPIX,YBLANK)
-
-/* Horizontal sync offset pixels 8 lsbits (0-1023) From blanking start */
-x_snc_off_lsb: .byte XOFFSET&0xff
-/* Horizontal sync pulse width pixels 8 lsbits (0-1023) */
-x_snc_pls_lsb: .byte XPULSE&0xff
-/* Bits 7-4 Vertical sync offset lines 4 lsbits (0-63)
- Bits 3-0 Vertical sync pulse width lines 4 lsbits (0-63) */
-y_snc_lsb: .byte lsbs2(YOFFSET, YPULSE)
-/* Bits 7-6 Horizontal sync offset pixels 2 msbits
- Bits 5-4 Horizontal sync pulse width pixels 2 msbits
- Bits 3-2 Vertical sync offset lines 2 msbits
- Bits 1-0 Vertical sync pulse width lines 2 msbits */
-xy_snc_msbs: .byte msbs4(XOFFSET,XPULSE,YOFFSET,YPULSE)
-
-/* Horizontal display size, mm, 8 lsbits (0-4095 mm, 161 in) */
-x_dsp_size: .byte xsize&0xff
-
-/* Vertical display size, mm, 8 lsbits (0-4095 mm, 161 in) */
-y_dsp_size: .byte ysize&0xff
-
-/* Bits 7-4 Horizontal display size, mm, 4 msbits
- Bits 3-0 Vertical display size, mm, 4 msbits */
-dsp_size_mbsb: .byte msbs2(xsize,ysize)
-
-/* Horizontal border pixels (each side; total is twice this) */
-x_border: .byte 0
-/* Vertical border lines (each side; total is twice this) */
-y_border: .byte 0
-
-/* Bit 7 Interlaced
- Bits 6-5 Stereo mode: 00=No stereo; other values depend on bit 0:
- Bit 0=0: 01=Field sequential, sync=1 during right; 10=similar,
- sync=1 during left; 11=4-way interleaved stereo
- Bit 0=1 2-way interleaved stereo: 01=Right image on even lines;
- 10=Left image on even lines; 11=side-by-side
- Bits 4-3 Sync type: 00=Analog composite; 01=Bipolar analog composite;
- 10=Digital composite (on HSync); 11=Digital separate
- Bit 2 If digital separate: Vertical sync polarity (1=positive)
- Other types: VSync serrated (HSync during VSync)
- Bit 1 If analog sync: Sync on all 3 RGB lines (else green only)
- Digital: HSync polarity (1=positive)
- Bit 0 2-way line-interleaved stereo, if bits 4-3 are not 00. */
-features: .byte 0x18+(VSYNC_POL<<2)+(HSYNC_POL<<1)
-
-descriptor2: .byte 0,0 /* Not a detailed timing descriptor */
- .byte 0 /* Must be zero */
- .byte 0xff /* Descriptor is monitor serial number (text) */
- .byte 0 /* Must be zero */
-start1: .ascii "Linux #0"
-end1: .byte 0x0a /* End marker */
- .fill 12-(end1-start1), 1, 0x20 /* Padded spaces */
-descriptor3: .byte 0,0 /* Not a detailed timing descriptor */
- .byte 0 /* Must be zero */
- .byte 0xfd /* Descriptor is monitor range limits */
- .byte 0 /* Must be zero */
-start2: .byte VFREQ-1 /* Minimum vertical field rate (1-255 Hz) */
- .byte VFREQ+1 /* Maximum vertical field rate (1-255 Hz) */
- .byte (CLOCK/(XPIX+XBLANK))-1 /* Minimum horizontal line rate
- (1-255 kHz) */
- .byte (CLOCK/(XPIX+XBLANK))+1 /* Maximum horizontal line rate
- (1-255 kHz) */
- .byte (CLOCK/10000)+1 /* Maximum pixel clock rate, rounded up
- to 10 MHz multiple (10-2550 MHz) */
- .byte 0 /* No extended timing information type */
-end2: .byte 0x0a /* End marker */
- .fill 12-(end2-start2), 1, 0x20 /* Padded spaces */
-descriptor4: .byte 0,0 /* Not a detailed timing descriptor */
- .byte 0 /* Must be zero */
- .byte 0xfc /* Descriptor is text */
- .byte 0 /* Must be zero */
-start3: .ascii TIMING_NAME
-end3: .byte 0x0a /* End marker */
- .fill 12-(end3-start3), 1, 0x20 /* Padded spaces */
-extensions: .byte 0 /* Number of extensions to follow */
-checksum: .byte CRC /* Sum of all bytes must be 0 */
diff --git a/Documentation/EDID/hex b/Documentation/EDID/hex
deleted file mode 100644
index 8873ebb618af..000000000000
--- a/Documentation/EDID/hex
+++ /dev/null
@@ -1 +0,0 @@
-"\t" 8/1 "0x%02x, " "\n"
diff --git a/Documentation/Makefile b/Documentation/Makefile
index d77bb607aea4..79ecee62d597 100644
--- a/Documentation/Makefile
+++ b/Documentation/Makefile
@@ -13,7 +13,7 @@ endif
SPHINXBUILD = sphinx-build
SPHINXOPTS =
SPHINXDIRS = .
-_SPHINXDIRS = $(patsubst $(srctree)/Documentation/%/index.rst,%,$(wildcard $(srctree)/Documentation/*/index.rst))
+_SPHINXDIRS = $(sort $(patsubst $(srctree)/Documentation/%/index.rst,%,$(wildcard $(srctree)/Documentation/*/index.rst)))
SPHINX_CONF = conf.py
PAPER =
BUILDDIR = $(obj)/output
diff --git a/Documentation/PCI/pci.rst b/Documentation/PCI/pci.rst
index 6864f9a70f5f..8c016d8c9862 100644
--- a/Documentation/PCI/pci.rst
+++ b/Documentation/PCI/pci.rst
@@ -239,7 +239,7 @@ from the PCI device config space. Use the values in the pci_dev structure
as the PCI "bus address" might have been remapped to a "host physical"
address by the arch/chip-set specific kernel support.
-See Documentation/io-mapping.txt for how to access device registers
+See Documentation/driver-api/io-mapping.rst for how to access device registers
or device memory.
The device driver needs to call pci_request_region() to verify
diff --git a/Documentation/accounting/psi.rst b/Documentation/accounting/psi.rst
index 621111ce5740..f2b3439edcc2 100644
--- a/Documentation/accounting/psi.rst
+++ b/Documentation/accounting/psi.rst
@@ -1,3 +1,5 @@
+.. _psi:
+
================================
PSI - Pressure Stall Information
================================
diff --git a/Documentation/admin-guide/binfmt-misc.rst b/Documentation/admin-guide/binfmt-misc.rst
index 97b0d7927078..95c93bbe408a 100644
--- a/Documentation/admin-guide/binfmt-misc.rst
+++ b/Documentation/admin-guide/binfmt-misc.rst
@@ -1,5 +1,5 @@
-Kernel Support for miscellaneous (your favourite) Binary Formats v1.1
-=====================================================================
+Kernel Support for miscellaneous Binary Formats (binfmt_misc)
+=============================================================
This Kernel feature allows you to invoke almost (for restrictions see below)
every program by simply typing its name in the shell.
diff --git a/Documentation/admin-guide/blockdev/zram.rst b/Documentation/admin-guide/blockdev/zram.rst
index 27c77d853028..a6fd1f9b5faf 100644
--- a/Documentation/admin-guide/blockdev/zram.rst
+++ b/Documentation/admin-guide/blockdev/zram.rst
@@ -251,8 +251,6 @@ line of text and contains the following stats separated by whitespace:
================ =============================================================
orig_data_size uncompressed size of data stored in this disk.
- This excludes same-element-filled pages (same_pages) since
- no memory is allocated for them.
Unit: bytes
compr_data_size compressed size of data stored in this disk
mem_used_total the amount of memory allocated for this disk. This
diff --git a/Documentation/admin-guide/bootconfig.rst b/Documentation/admin-guide/bootconfig.rst
index cf2edcd09183..d6b3b77a4129 100644
--- a/Documentation/admin-guide/bootconfig.rst
+++ b/Documentation/admin-guide/bootconfig.rst
@@ -23,7 +23,7 @@ of dot-connected-words, and key and value are connected by ``=``. The value
has to be terminated by semi-colon (``;``) or newline (``\n``).
For array value, array entries are separated by comma (``,``). ::
-KEY[.WORD[...]] = VALUE[, VALUE2[...]][;]
+ KEY[.WORD[...]] = VALUE[, VALUE2[...]][;]
Unlike the kernel command line syntax, spaces are OK around the comma and ``=``.
diff --git a/Documentation/admin-guide/cgroup-v1/index.rst b/Documentation/admin-guide/cgroup-v1/index.rst
index 10bf48bae0b0..226f64473e8e 100644
--- a/Documentation/admin-guide/cgroup-v1/index.rst
+++ b/Documentation/admin-guide/cgroup-v1/index.rst
@@ -1,3 +1,5 @@
+.. _cgroup-v1:
+
========================
Control Groups version 1
========================
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 3f801461f0f3..fbb111616705 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -9,7 +9,7 @@ This is the authoritative documentation on the design, interface and
conventions of cgroup v2. It describes all userland-visible aspects
of cgroup including core and specific controller behaviors. All
future changes must be reflected in this document. Documentation for
-v1 is available under Documentation/admin-guide/cgroup-v1/.
+v1 is available under :ref:`Documentation/admin-guide/cgroup-v1/index.rst <cgroup-v1>`.
.. CONTENTS
@@ -1023,7 +1023,7 @@ All time durations are in microseconds.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for CPU. See
- Documentation/accounting/psi.rst for details.
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
cpu.uclamp.min
A read-write single value file which exists on non-root cgroups.
@@ -1103,7 +1103,7 @@ PAGE_SIZE multiple when read back.
proportionally to the overage, reducing reclaim pressure for
smaller overages.
- Effective min boundary is limited by memory.min values of
+ Effective min boundary is limited by memory.min values of
all ancestor cgroups. If there is memory.min overcommitment
(child cgroup or cgroups are requiring more protected memory
than parent will allow), then each child cgroup will get
@@ -1313,53 +1313,41 @@ PAGE_SIZE multiple when read back.
Number of major page faults incurred
workingset_refault
-
Number of refaults of previously evicted pages
workingset_activate
-
Number of refaulted pages that were immediately activated
workingset_nodereclaim
-
Number of times a shadow node has been reclaimed
pgrefill
-
Amount of scanned pages (in an active LRU list)
pgscan
-
Amount of scanned pages (in an inactive LRU list)
pgsteal
-
Amount of reclaimed pages
pgactivate
-
Amount of pages moved to the active LRU list
pgdeactivate
-
Amount of pages moved to the inactive LRU list
pglazyfree
-
Amount of pages postponed to be freed under memory pressure
pglazyfreed
-
Amount of reclaimed lazyfree pages
thp_fault_alloc
-
Number of transparent hugepages which were allocated to satisfy
a page fault, including COW faults. This counter is not present
when CONFIG_TRANSPARENT_HUGEPAGE is not set.
thp_collapse_alloc
-
Number of transparent hugepages which were allocated to allow
collapsing an existing range of pages. This counter is not
present when CONFIG_TRANSPARENT_HUGEPAGE is not set.
@@ -1403,7 +1391,7 @@ PAGE_SIZE multiple when read back.
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for memory. See
- Documentation/accounting/psi.rst for details.
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
Usage Guidelines
@@ -1478,7 +1466,7 @@ IO Interface Files
dios Number of discard IOs
====== =====================
- An example read output follows:
+ An example read output follows::
8:16 rbytes=1459200 wbytes=314773504 rios=192 wios=353 dbytes=0 dios=0
8:0 rbytes=90430464 wbytes=299008000 rios=8950 wios=1252 dbytes=50331648 dios=3021
@@ -1643,7 +1631,7 @@ IO Interface Files
A read-only nested-key file which exists on non-root cgroups.
Shows pressure stall information for IO. See
- Documentation/accounting/psi.rst for details.
+ :ref:`Documentation/accounting/psi.rst <psi>` for details.
Writeback
@@ -1853,7 +1841,7 @@ Cpuset Interface Files
from the requested CPUs.
The CPU numbers are comma-separated numbers or ranges.
- For example:
+ For example::
# cat cpuset.cpus
0-4,6,8-10
@@ -1892,7 +1880,7 @@ Cpuset Interface Files
from the requested memory nodes.
The memory node numbers are comma-separated numbers or ranges.
- For example:
+ For example::
# cat cpuset.mems
0-1,3
diff --git a/Documentation/driver-api/edid.rst b/Documentation/admin-guide/edid.rst
index b1b5acd501ed..80deeb21a265 100644
--- a/Documentation/driver-api/edid.rst
+++ b/Documentation/admin-guide/edid.rst
@@ -11,11 +11,13 @@ Today, with the advent of Kernel Mode Setting, a graphics board is
either correctly working because all components follow the standards -
or the computer is unusable, because the screen remains dark after
booting or it displays the wrong area. Cases when this happens are:
+
- The graphics board does not recognize the monitor.
- The graphics board is unable to detect any EDID data.
- The graphics board incorrectly forwards EDID data to the driver.
- The monitor sends no or bogus EDID data.
- A KVM sends its own EDID data instead of querying the connected monitor.
+
Adding the kernel parameter "nomodeset" helps in most cases, but causes
restrictions later on.
@@ -32,7 +34,7 @@ individual data for a specific misbehaving monitor, commented sources
and a Makefile environment are given here.
To create binary EDID and C source code files from the existing data
-material, simply type "make".
+material, simply type "make" in tools/edid/.
If you want to create your own EDID file, copy the file 1024x768.S,
replace the settings with your own data and add a new target to the
diff --git a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
index af6865b822d2..68d96f0e9c95 100644
--- a/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
+++ b/Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
@@ -136,8 +136,6 @@ enables the mitigation by default.
The mitigation can be controlled at boot time via a kernel command line option.
See :ref:`taa_mitigation_control_command_line`.
-.. _virt_mechanism:
-
Virtualization mitigation
^^^^^^^^^^^^^^^^^^^^^^^^^
diff --git a/Documentation/admin-guide/index.rst b/Documentation/admin-guide/index.rst
index f1d0ccffbe72..5a6269fb8593 100644
--- a/Documentation/admin-guide/index.rst
+++ b/Documentation/admin-guide/index.rst
@@ -75,6 +75,7 @@ configure specific aspects of kernel behavior to your liking.
cputopology
dell_rbu
device-mapper/index
+ edid
efi-stub
ext4
nfs/index
diff --git a/Documentation/admin-guide/iostats.rst b/Documentation/admin-guide/iostats.rst
index df5b8345c41d..9b14b0c2c9c4 100644
--- a/Documentation/admin-guide/iostats.rst
+++ b/Documentation/admin-guide/iostats.rst
@@ -100,7 +100,7 @@ Field 10 -- # of milliseconds spent doing I/Os (unsigned int)
Since 5.0 this field counts jiffies when at least one request was
started or completed. If request runs more than 2 jiffies then some
- I/O time will not be accounted unless there are other requests.
+ I/O time might be not accounted in case of concurrent requests.
Field 11 -- weighted # of milliseconds spent doing I/Os (unsigned int)
This field is incremented at each I/O start, I/O completion, I/O
@@ -143,6 +143,9 @@ are summed (possibly overflowing the unsigned long variable they are
summed to) and the result given to the user. There is no convenient
user interface for accessing the per-CPU counters themselves.
+Since 4.19 request times are measured with nanoseconds precision and
+truncated to milliseconds before showing in this interface.
+
Disks vs Partitions
-------------------
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 1a5ff110d52d..74e75a7b4b24 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -450,6 +450,9 @@
bert_disable [ACPI]
Disable BERT OS support on buggy BIOSes.
+ bgrt_disable [ACPI][X86]
+ Disable BGRT to avoid flickering OEM logo.
+
bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards)
bttv.radio= Most important insmod options are available as
kernel args too.
@@ -1099,6 +1102,12 @@
A valid base address must be provided, and the serial
port must already be setup and configured.
+ ec_imx21,<addr>
+ ec_imx6q,<addr>
+ Start an early, polled-mode, output-only console on the
+ Freescale i.MX UART at the specified address. The UART
+ must already be setup and configured.
+
ar3700_uart,<addr>
Start an early, polled-mode console on the
Armada 3700 serial port at the specified
@@ -1354,6 +1363,24 @@
can be changed at run time by the max_graph_depth file
in the tracefs tracing directory. default: 0 (no limit)
+ fw_devlink= [KNL] Create device links between consumer and supplier
+ devices by scanning the firmware to infer the
+ consumer/supplier relationships. This feature is
+ especially useful when drivers are loaded as modules as
+ it ensures proper ordering of tasks like device probing
+ (suppliers first, then consumers), supplier boot state
+ clean up (only after all consumers have probed),
+ suspend/resume & runtime PM (consumers first, then
+ suppliers).
+ Format: { off | permissive | on | rpm }
+ off -- Don't create device links from firmware info.
+ permissive -- Create device links from firmware info
+ but use it only for ordering boot state clean
+ up (sync_state() calls).
+ on -- Create device links from firmware info and use it
+ to enforce probe and suspend/resume ordering.
+ rpm -- Like "on", but also use to order runtime PM.
+
gamecon.map[2|3]=
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad
support via parallel port (up to 5 devices per port)
@@ -1779,7 +1806,7 @@
provided by tboot because it makes the system
vulnerable to DMA attacks.
nobounce [Default off]
- Disable bounce buffer for unstrusted devices such as
+ Disable bounce buffer for untrusted devices such as
the Thunderbolt devices. This will treat the untrusted
devices as the trusted ones, hence might expose security
risks of DMA attacks.
@@ -1883,7 +1910,7 @@
No delay
ip= [IP_PNP]
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
ipcmni_extend [KNL] Extend the maximum number of unique System V
IPC identifiers from 32,768 to 16,777,216.
@@ -2795,7 +2822,7 @@
<name>,<region-number>[,<base>,<size>,<buswidth>,<altbuswidth>]
mtdparts= [MTD]
- See drivers/mtd/cmdlinepart.c.
+ See drivers/mtd/parsers/cmdlinepart.c
multitce=off [PPC] This parameter disables the use of the pSeries
firmware feature for updating multiple TCE entries
@@ -2853,13 +2880,13 @@
Default value is 0.
nfsaddrs= [NFS] Deprecated. Use ip= instead.
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
nfsroot= [NFS] nfs root filesystem for disk-less boxes.
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
nfsrootdebug [NFS] enable nfsroot debugging messages.
- See Documentation/filesystems/nfs/nfsroot.txt.
+ See Documentation/admin-guide/nfs/nfsroot.rst.
nfs.callback_nr_threads=
[NFSv4] set the total number of threads that the
@@ -3285,12 +3312,6 @@
This can be set from sysctl after boot.
See Documentation/admin-guide/sysctl/vm.rst for details.
- of_devlink [OF, KNL] Create device links between consumer and
- supplier devices by scanning the devictree to infer the
- consumer/supplier relationships. A consumer device
- will not be probed until all the supplier devices have
- probed successfully.
-
ohci1394_dma=early [HW] enable debugging via the ohci1394 driver.
See Documentation/debugging-via-ohci1394.txt for more
info.
@@ -4529,10 +4550,10 @@
Format: <integer>
A nonzero value instructs the soft-lockup detector
- to panic the machine when a soft-lockup occurs. This
- is also controlled by CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC
- which is the respective build-time switch to that
- functionality.
+ to panic the machine when a soft-lockup occurs. It is
+ also controlled by the kernel.softlockup_panic sysctl
+ and CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC, which is the
+ respective build-time switch to that functionality.
softlockup_all_cpu_backtrace=
[KNL] Should the soft-lockup detector generate
diff --git a/Documentation/admin-guide/kernel-per-CPU-kthreads.rst b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
index baeeba8762ae..21818aca4708 100644
--- a/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
+++ b/Documentation/admin-guide/kernel-per-CPU-kthreads.rst
@@ -234,7 +234,7 @@ To reduce its OS jitter, do any of the following:
Such a workqueue can be confined to a given subset of the
CPUs using the ``/sys/devices/virtual/workqueue/*/cpumask`` sysfs
files. The set of WQ_SYSFS workqueues can be displayed using
- "ls sys/devices/virtual/workqueue". That said, the workqueues
+ "ls /sys/devices/virtual/workqueue". That said, the workqueues
maintainer would like to caution people against indiscriminately
sprinkling WQ_SYSFS across all the workqueues. The reason for
caution is that it is easy to add WQ_SYSFS, but because sysfs is
diff --git a/Documentation/admin-guide/perf/imx-ddr.rst b/Documentation/admin-guide/perf/imx-ddr.rst
index 3726a10a03ba..f05f56c73b7d 100644
--- a/Documentation/admin-guide/perf/imx-ddr.rst
+++ b/Documentation/admin-guide/perf/imx-ddr.rst
@@ -43,7 +43,8 @@ value 1 for supported.
AXI_ID and AXI_MASKING are mapped on DPCR1 register in performance counter.
When non-masked bits are matching corresponding AXI_ID bits then counter is
- incremented. Perf counter is incremented if
+ incremented. Perf counter is incremented if::
+
AxID && AXI_MASKING == AXI_ID && AXI_MASKING
This filter doesn't support filter different AXI ID for axid-read and axid-write
diff --git a/Documentation/admin-guide/pm/cpufreq_drivers.rst b/Documentation/admin-guide/pm/cpufreq_drivers.rst
new file mode 100644
index 000000000000..9a134ae65803
--- /dev/null
+++ b/Documentation/admin-guide/pm/cpufreq_drivers.rst
@@ -0,0 +1,274 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================================
+Legacy Documentation of CPU Performance Scaling Drivers
+=======================================================
+
+Included below are historic documents describing assorted
+:doc:`CPU performance scaling <cpufreq>` drivers. They are reproduced verbatim,
+with the original white space formatting and indentation preserved, except for
+the added leading space character in every line of text.
+
+
+AMD PowerNow! Drivers
+=====================
+
+::
+
+ PowerNow! and Cool'n'Quiet are AMD names for frequency
+ management capabilities in AMD processors. As the hardware
+ implementation changes in new generations of the processors,
+ there is a different cpu-freq driver for each generation.
+
+ Note that the driver's will not load on the "wrong" hardware,
+ so it is safe to try each driver in turn when in doubt as to
+ which is the correct driver.
+
+ Note that the functionality to change frequency (and voltage)
+ is not available in all processors. The drivers will refuse
+ to load on processors without this capability. The capability
+ is detected with the cpuid instruction.
+
+ The drivers use BIOS supplied tables to obtain frequency and
+ voltage information appropriate for a particular platform.
+ Frequency transitions will be unavailable if the BIOS does
+ not supply these tables.
+
+ 6th Generation: powernow-k6
+
+ 7th Generation: powernow-k7: Athlon, Duron, Geode.
+
+ 8th Generation: powernow-k8: Athlon, Athlon 64, Opteron, Sempron.
+ Documentation on this functionality in 8th generation processors
+ is available in the "BIOS and Kernel Developer's Guide", publication
+ 26094, in chapter 9, available for download from www.amd.com.
+
+ BIOS supplied data, for powernow-k7 and for powernow-k8, may be
+ from either the PSB table or from ACPI objects. The ACPI support
+ is only available if the kernel config sets CONFIG_ACPI_PROCESSOR.
+ The powernow-k8 driver will attempt to use ACPI if so configured,
+ and fall back to PST if that fails.
+ The powernow-k7 driver will try to use the PSB support first, and
+ fall back to ACPI if the PSB support fails. A module parameter,
+ acpi_force, is provided to force ACPI support to be used instead
+ of PSB support.
+
+
+``cpufreq-nforce2``
+===================
+
+::
+
+ The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms.
+
+ This works better than on other platforms, because the FSB of the CPU
+ can be controlled independently from the PCI/AGP clock.
+
+ The module has two options:
+
+ fid: multiplier * 10 (for example 8.5 = 85)
+ min_fsb: minimum FSB
+
+ If not set, fid is calculated from the current CPU speed and the FSB.
+ min_fsb defaults to FSB at boot time - 50 MHz.
+
+ IMPORTANT: The available range is limited downwards!
+ Also the minimum available FSB can differ, for systems
+ booting with 200 MHz, 150 should always work.
+
+
+``pcc-cpufreq``
+===============
+
+::
+
+ /*
+ * pcc-cpufreq.txt - PCC interface documentation
+ *
+ * Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
+ * Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
+ * Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
+ */
+
+
+ Processor Clocking Control Driver
+ ---------------------------------
+
+ Contents:
+ ---------
+ 1. Introduction
+ 1.1 PCC interface
+ 1.1.1 Get Average Frequency
+ 1.1.2 Set Desired Frequency
+ 1.2 Platforms affected
+ 2. Driver and /sys details
+ 2.1 scaling_available_frequencies
+ 2.2 cpuinfo_transition_latency
+ 2.3 cpuinfo_cur_freq
+ 2.4 related_cpus
+ 3. Caveats
+
+ 1. Introduction:
+ ----------------
+ Processor Clocking Control (PCC) is an interface between the platform
+ firmware and OSPM. It is a mechanism for coordinating processor
+ performance (ie: frequency) between the platform firmware and the OS.
+
+ The PCC driver (pcc-cpufreq) allows OSPM to take advantage of the PCC
+ interface.
+
+ OS utilizes the PCC interface to inform platform firmware what frequency the
+ OS wants for a logical processor. The platform firmware attempts to achieve
+ the requested frequency. If the request for the target frequency could not be
+ satisfied by platform firmware, then it usually means that power budget
+ conditions are in place, and "power capping" is taking place.
+
+ 1.1 PCC interface:
+ ------------------
+ The complete PCC specification is available here:
+ https://acpica.org/sites/acpica/files/Processor-Clocking-Control-v1p0.pdf
+
+ PCC relies on a shared memory region that provides a channel for communication
+ between the OS and platform firmware. PCC also implements a "doorbell" that
+ is used by the OS to inform the platform firmware that a command has been
+ sent.
+
+ The ACPI PCCH() method is used to discover the location of the PCC shared
+ memory region. The shared memory region header contains the "command" and
+ "status" interface. PCCH() also contains details on how to access the platform
+ doorbell.
+
+ The following commands are supported by the PCC interface:
+ * Get Average Frequency
+ * Set Desired Frequency
+
+ The ACPI PCCP() method is implemented for each logical processor and is
+ used to discover the offsets for the input and output buffers in the shared
+ memory region.
+
+ When PCC mode is enabled, the platform will not expose processor performance
+ or throttle states (_PSS, _TSS and related ACPI objects) to OSPM. Therefore,
+ the native P-state driver (such as acpi-cpufreq for Intel, powernow-k8 for
+ AMD) will not load.
+
+ However, OSPM remains in control of policy. The governor (eg: "ondemand")
+ computes the required performance for each processor based on server workload.
+ The PCC driver fills in the command interface, and the input buffer and
+ communicates the request to the platform firmware. The platform firmware is
+ responsible for delivering the requested performance.
+
+ Each PCC command is "global" in scope and can affect all the logical CPUs in
+ the system. Therefore, PCC is capable of performing "group" updates. With PCC
+ the OS is capable of getting/setting the frequency of all the logical CPUs in
+ the system with a single call to the BIOS.
+
+ 1.1.1 Get Average Frequency:
+ ----------------------------
+ This command is used by the OSPM to query the running frequency of the
+ processor since the last time this command was completed. The output buffer
+ indicates the average unhalted frequency of the logical processor expressed as
+ a percentage of the nominal (ie: maximum) CPU frequency. The output buffer
+ also signifies if the CPU frequency is limited by a power budget condition.
+
+ 1.1.2 Set Desired Frequency:
+ ----------------------------
+ This command is used by the OSPM to communicate to the platform firmware the
+ desired frequency for a logical processor. The output buffer is currently
+ ignored by OSPM. The next invocation of "Get Average Frequency" will inform
+ OSPM if the desired frequency was achieved or not.
+
+ 1.2 Platforms affected:
+ -----------------------
+ The PCC driver will load on any system where the platform firmware:
+ * supports the PCC interface, and the associated PCCH() and PCCP() methods
+ * assumes responsibility for managing the hardware clocking controls in order
+ to deliver the requested processor performance
+
+ Currently, certain HP ProLiant platforms implement the PCC interface. On those
+ platforms PCC is the "default" choice.
+
+ However, it is possible to disable this interface via a BIOS setting. In
+ such an instance, as is also the case on platforms where the PCC interface
+ is not implemented, the PCC driver will fail to load silently.
+
+ 2. Driver and /sys details:
+ ---------------------------
+ When the driver loads, it merely prints the lowest and the highest CPU
+ frequencies supported by the platform firmware.
+
+ The PCC driver loads with a message such as:
+ pcc-cpufreq: (v1.00.00) driver loaded with frequency limits: 1600 MHz, 2933
+ MHz
+
+ This means that the OPSM can request the CPU to run at any frequency in
+ between the limits (1600 MHz, and 2933 MHz) specified in the message.
+
+ Internally, there is no need for the driver to convert the "target" frequency
+ to a corresponding P-state.
+
+ The VERSION number for the driver will be of the format v.xy.ab.
+ eg: 1.00.02
+ ----- --
+ | |
+ | -- this will increase with bug fixes/enhancements to the driver
+ |-- this is the version of the PCC specification the driver adheres to
+
+
+ The following is a brief discussion on some of the fields exported via the
+ /sys filesystem and how their values are affected by the PCC driver:
+
+ 2.1 scaling_available_frequencies:
+ ----------------------------------
+ scaling_available_frequencies is not created in /sys. No intermediate
+ frequencies need to be listed because the BIOS will try to achieve any
+ frequency, within limits, requested by the governor. A frequency does not have
+ to be strictly associated with a P-state.
+
+ 2.2 cpuinfo_transition_latency:
+ -------------------------------
+ The cpuinfo_transition_latency field is 0. The PCC specification does
+ not include a field to expose this value currently.
+
+ 2.3 cpuinfo_cur_freq:
+ ---------------------
+ A) Often cpuinfo_cur_freq will show a value different than what is declared
+ in the scaling_available_frequencies or scaling_cur_freq, or scaling_max_freq.
+ This is due to "turbo boost" available on recent Intel processors. If certain
+ conditions are met the BIOS can achieve a slightly higher speed than requested
+ by OSPM. An example:
+
+ scaling_cur_freq : 2933000
+ cpuinfo_cur_freq : 3196000
+
+ B) There is a round-off error associated with the cpuinfo_cur_freq value.
+ Since the driver obtains the current frequency as a "percentage" (%) of the
+ nominal frequency from the BIOS, sometimes, the values displayed by
+ scaling_cur_freq and cpuinfo_cur_freq may not match. An example:
+
+ scaling_cur_freq : 1600000
+ cpuinfo_cur_freq : 1583000
+
+ In this example, the nominal frequency is 2933 MHz. The driver obtains the
+ current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency:
+
+ 54% of 2933 MHz = 1583 MHz
+
+ Nominal frequency is the maximum frequency of the processor, and it usually
+ corresponds to the frequency of the P0 P-state.
+
+ 2.4 related_cpus:
+ -----------------
+ The related_cpus field is identical to affected_cpus.
+
+ affected_cpus : 4
+ related_cpus : 4
+
+ Currently, the PCC driver does not evaluate _PSD. The platforms that support
+ PCC do not implement SW_ALL. So OSPM doesn't need to perform any coordination
+ to ensure that the same frequency is requested of all dependent CPUs.
+
+ 3. Caveats:
+ -----------
+ The "cpufreq_stats" module in its present form cannot be loaded and
+ expected to work with the PCC driver. Since the "cpufreq_stats" module
+ provides information wrt each P-state, it is not applicable to the PCC driver.
diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst
index 6a06dc473dd6..5605cc6f9560 100644
--- a/Documentation/admin-guide/pm/cpuidle.rst
+++ b/Documentation/admin-guide/pm/cpuidle.rst
@@ -583,20 +583,17 @@ Power Management Quality of Service for CPUs
The power management quality of service (PM QoS) framework in the Linux kernel
allows kernel code and user space processes to set constraints on various
energy-efficiency features of the kernel to prevent performance from dropping
-below a required level. The PM QoS constraints can be set globally, in
-predefined categories referred to as PM QoS classes, or against individual
-devices.
+below a required level.
CPU idle time management can be affected by PM QoS in two ways, through the
-global constraint in the ``PM_QOS_CPU_DMA_LATENCY`` class and through the
-resume latency constraints for individual CPUs. Kernel code (e.g. device
-drivers) can set both of them with the help of special internal interfaces
-provided by the PM QoS framework. User space can modify the former by opening
-the :file:`cpu_dma_latency` special device file under :file:`/dev/` and writing
-a binary value (interpreted as a signed 32-bit integer) to it. In turn, the
-resume latency constraint for a CPU can be modified by user space by writing a
-string (representing a signed 32-bit integer) to the
-:file:`power/pm_qos_resume_latency_us` file under
+global CPU latency limit and through the resume latency constraints for
+individual CPUs. Kernel code (e.g. device drivers) can set both of them with
+the help of special internal interfaces provided by the PM QoS framework. User
+space can modify the former by opening the :file:`cpu_dma_latency` special
+device file under :file:`/dev/` and writing a binary value (interpreted as a
+signed 32-bit integer) to it. In turn, the resume latency constraint for a CPU
+can be modified from user space by writing a string (representing a signed
+32-bit integer) to the :file:`power/pm_qos_resume_latency_us` file under
:file:`/sys/devices/system/cpu/cpu<N>/` in ``sysfs``, where the CPU number
``<N>`` is allocated at the system initialization time. Negative values
will be rejected in both cases and, also in both cases, the written integer
@@ -605,32 +602,34 @@ number will be interpreted as a requested PM QoS constraint in microseconds.
The requested value is not automatically applied as a new constraint, however,
as it may be less restrictive (greater in this particular case) than another
constraint previously requested by someone else. For this reason, the PM QoS
-framework maintains a list of requests that have been made so far in each
-global class and for each device, aggregates them and applies the effective
-(minimum in this particular case) value as the new constraint.
+framework maintains a list of requests that have been made so far for the
+global CPU latency limit and for each individual CPU, aggregates them and
+applies the effective (minimum in this particular case) value as the new
+constraint.
In fact, opening the :file:`cpu_dma_latency` special device file causes a new
-PM QoS request to be created and added to the priority list of requests in the
-``PM_QOS_CPU_DMA_LATENCY`` class and the file descriptor coming from the
-"open" operation represents that request. If that file descriptor is then
-used for writing, the number written to it will be associated with the PM QoS
-request represented by it as a new requested constraint value. Next, the
-priority list mechanism will be used to determine the new effective value of
-the entire list of requests and that effective value will be set as a new
-constraint. Thus setting a new requested constraint value will only change the
-real constraint if the effective "list" value is affected by it. In particular,
-for the ``PM_QOS_CPU_DMA_LATENCY`` class it only affects the real constraint if
-it is the minimum of the requested constraints in the list. The process holding
-a file descriptor obtained by opening the :file:`cpu_dma_latency` special device
-file controls the PM QoS request associated with that file descriptor, but it
-controls this particular PM QoS request only.
+PM QoS request to be created and added to a global priority list of CPU latency
+limit requests and the file descriptor coming from the "open" operation
+represents that request. If that file descriptor is then used for writing, the
+number written to it will be associated with the PM QoS request represented by
+it as a new requested limit value. Next, the priority list mechanism will be
+used to determine the new effective value of the entire list of requests and
+that effective value will be set as a new CPU latency limit. Thus requesting a
+new limit value will only change the real limit if the effective "list" value is
+affected by it, which is the case if it is the minimum of the requested values
+in the list.
+
+The process holding a file descriptor obtained by opening the
+:file:`cpu_dma_latency` special device file controls the PM QoS request
+associated with that file descriptor, but it controls this particular PM QoS
+request only.
Closing the :file:`cpu_dma_latency` special device file or, more precisely, the
file descriptor obtained while opening it, causes the PM QoS request associated
-with that file descriptor to be removed from the ``PM_QOS_CPU_DMA_LATENCY``
-class priority list and destroyed. If that happens, the priority list mechanism
-will be used, again, to determine the new effective value for the whole list
-and that value will become the new real constraint.
+with that file descriptor to be removed from the global priority list of CPU
+latency limit requests and destroyed. If that happens, the priority list
+mechanism will be used again, to determine the new effective value for the whole
+list and that value will become the new limit.
In turn, for each CPU there is one resume latency PM QoS request associated with
the :file:`power/pm_qos_resume_latency_us` file under
@@ -647,10 +646,10 @@ CPU in question every time the list of requests is updated this way or another
(there may be other requests coming from kernel code in that list).
CPU idle time governors are expected to regard the minimum of the global
-effective ``PM_QOS_CPU_DMA_LATENCY`` class constraint and the effective
-resume latency constraint for the given CPU as the upper limit for the exit
-latency of the idle states they can select for that CPU. They should never
-select any idle states with exit latency beyond that limit.
+(effective) CPU latency limit and the effective resume latency constraint for
+the given CPU as the upper limit for the exit latency of the idle states that
+they are allowed to select for that CPU. They should never select any idle
+states with exit latency beyond that limit.
Idle States Control Via Kernel Command Line
diff --git a/Documentation/admin-guide/pm/intel_pstate.rst b/Documentation/admin-guide/pm/intel_pstate.rst
index 67e414e34f37..ad392f3aee06 100644
--- a/Documentation/admin-guide/pm/intel_pstate.rst
+++ b/Documentation/admin-guide/pm/intel_pstate.rst
@@ -734,10 +734,10 @@ References
==========
.. [1] Kristen Accardi, *Balancing Power and Performance in the Linux Kernel*,
- http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf
+ https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
.. [2] *Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3: System Programming Guide*,
- http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
+ https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
.. [3] *Advanced Configuration and Power Interface Specification*,
https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
diff --git a/Documentation/admin-guide/pm/working-state.rst b/Documentation/admin-guide/pm/working-state.rst
index 88f717e59a42..0a38cdf39df1 100644
--- a/Documentation/admin-guide/pm/working-state.rst
+++ b/Documentation/admin-guide/pm/working-state.rst
@@ -11,4 +11,5 @@ Working-State Power Management
intel_idle
cpufreq
intel_pstate
+ cpufreq_drivers
intel_epb
diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index def074807cee..335696d3360d 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -2,262 +2,197 @@
Documentation for /proc/sys/kernel/
===================================
-kernel version 2.2.10
+.. See scripts/check-sysctl-docs to keep this up to date
+
Copyright (c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
Copyright (c) 2009, Shen Feng<shen@cn.fujitsu.com>
-For general info and legal blurb, please look in index.rst.
+For general info and legal blurb, please look in :doc:`index`.
------------------------------------------------------------------------------
This file contains documentation for the sysctl files in
-/proc/sys/kernel/ and is valid for Linux kernel version 2.2.
+``/proc/sys/kernel/`` and is valid for Linux kernel version 2.2.
The files in this directory can be used to tune and monitor
miscellaneous and general things in the operation of the Linux
-kernel. Since some of the files _can_ be used to screw up your
+kernel. Since some of the files *can* be used to screw up your
system, it is advisable to read both documentation and source
before actually making adjustments.
Currently, these files might (depending on your configuration)
-show up in /proc/sys/kernel:
-
-- acct
-- acpi_video_flags
-- auto_msgmni
-- bootloader_type [ X86 only ]
-- bootloader_version [ X86 only ]
-- cap_last_cap
-- core_pattern
-- core_pipe_limit
-- core_uses_pid
-- ctrl-alt-del
-- dmesg_restrict
-- domainname
-- hostname
-- hotplug
-- hardlockup_all_cpu_backtrace
-- hardlockup_panic
-- hung_task_panic
-- hung_task_check_count
-- hung_task_timeout_secs
-- hung_task_check_interval_secs
-- hung_task_warnings
-- hyperv_record_panic_msg
-- kexec_load_disabled
-- kptr_restrict
-- l2cr [ PPC only ]
-- modprobe ==> Documentation/debugging-modules.txt
-- modules_disabled
-- msg_next_id [ sysv ipc ]
-- msgmax
-- msgmnb
-- msgmni
-- nmi_watchdog
-- osrelease
-- ostype
-- overflowgid
-- overflowuid
-- panic
-- panic_on_oops
-- panic_on_stackoverflow
-- panic_on_unrecovered_nmi
-- panic_on_warn
-- panic_print
-- panic_on_rcu_stall
-- perf_cpu_time_max_percent
-- perf_event_paranoid
-- perf_event_max_stack
-- perf_event_mlock_kb
-- perf_event_max_contexts_per_stack
-- pid_max
-- powersave-nap [ PPC only ]
-- printk
-- printk_delay
-- printk_ratelimit
-- printk_ratelimit_burst
-- pty ==> Documentation/filesystems/devpts.txt
-- randomize_va_space
-- real-root-dev ==> Documentation/admin-guide/initrd.rst
-- reboot-cmd [ SPARC only ]
-- rtsig-max
-- rtsig-nr
-- sched_energy_aware
-- seccomp/ ==> Documentation/userspace-api/seccomp_filter.rst
-- sem
-- sem_next_id [ sysv ipc ]
-- sg-big-buff [ generic SCSI device (sg) ]
-- shm_next_id [ sysv ipc ]
-- shm_rmid_forced
-- shmall
-- shmmax [ sysv ipc ]
-- shmmni
-- softlockup_all_cpu_backtrace
-- soft_watchdog
-- stack_erasing
-- stop-a [ SPARC only ]
-- sysrq ==> Documentation/admin-guide/sysrq.rst
-- sysctl_writes_strict
-- tainted ==> Documentation/admin-guide/tainted-kernels.rst
-- threads-max
-- unknown_nmi_panic
-- watchdog
-- watchdog_thresh
-- version
-
-
-acct:
-=====
+show up in ``/proc/sys/kernel``:
+
+.. contents:: :local:
+
+
+acct
+====
+
+::
-highwater lowwater frequency
+ highwater lowwater frequency
If BSD-style process accounting is enabled these values control
its behaviour. If free space on filesystem where the log lives
-goes below <lowwater>% accounting suspends. If free space gets
-above <highwater>% accounting resumes. <Frequency> determines
+goes below ``lowwater``% accounting suspends. If free space gets
+above ``highwater``% accounting resumes. ``frequency`` determines
how often do we check the amount of free space (value is in
seconds). Default:
-4 2 30
-That is, suspend accounting if there left <= 2% free; resume it
-if we got >=4%; consider information about amount of free space
-valid for 30 seconds.
+::
-acpi_video_flags:
-=================
+ 4 2 30
+
+That is, suspend accounting if free space drops below 2%; resume it
+if it increases to at least 4%; consider information about amount of
+free space valid for 30 seconds.
-flags
-See Doc*/kernel/power/video.txt, it allows mode of video boot to be
-set during run time.
+acpi_video_flags
+================
+See :doc:`/power/video`. This allows the video resume mode to be set,
+in a similar fashion to the ``acpi_sleep`` kernel parameter, by
+combining the following values:
+
+= =======
+1 s3_bios
+2 s3_mode
+4 s3_beep
+= =======
-auto_msgmni:
-============
+
+auto_msgmni
+===========
This variable has no effect and may be removed in future kernel
releases. Reading it always returns 0.
-Up to Linux 3.17, it enabled/disabled automatic recomputing of msgmni
-upon memory add/remove or upon ipc namespace creation/removal.
+Up to Linux 3.17, it enabled/disabled automatic recomputing of
+`msgmni`_
+upon memory add/remove or upon IPC namespace creation/removal.
Echoing "1" into this file enabled msgmni automatic recomputing.
-Echoing "0" turned it off. auto_msgmni default value was 1.
-
+Echoing "0" turned it off. The default value was 1.
-bootloader_type:
-================
-x86 bootloader identification
+bootloader_type (x86 only)
+==========================
This gives the bootloader type number as indicated by the bootloader,
shifted left by 4, and OR'd with the low four bits of the bootloader
version. The reason for this encoding is that this used to match the
-type_of_loader field in the kernel header; the encoding is kept for
+``type_of_loader`` field in the kernel header; the encoding is kept for
backwards compatibility. That is, if the full bootloader type number
is 0x15 and the full version number is 0x234, this file will contain
the value 340 = 0x154.
-See the type_of_loader and ext_loader_type fields in
-Documentation/x86/boot.rst for additional information.
-
+See the ``type_of_loader`` and ``ext_loader_type`` fields in
+:doc:`/x86/boot` for additional information.
-bootloader_version:
-===================
-x86 bootloader version
+bootloader_version (x86 only)
+=============================
The complete bootloader version number. In the example above, this
file will contain the value 564 = 0x234.
-See the type_of_loader and ext_loader_ver fields in
-Documentation/x86/boot.rst for additional information.
+See the ``type_of_loader`` and ``ext_loader_ver`` fields in
+:doc:`/x86/boot` for additional information.
-cap_last_cap:
-=============
+cap_last_cap
+============
Highest valid capability of the running kernel. Exports
-CAP_LAST_CAP from the kernel.
+``CAP_LAST_CAP`` from the kernel.
-core_pattern:
-=============
+core_pattern
+============
-core_pattern is used to specify a core dumpfile pattern name.
+``core_pattern`` is used to specify a core dumpfile pattern name.
* max length 127 characters; default value is "core"
-* core_pattern is used as a pattern template for the output filename;
- certain string patterns (beginning with '%') are substituted with
- their actual values.
-* backward compatibility with core_uses_pid:
+* ``core_pattern`` is used as a pattern template for the output
+ filename; certain string patterns (beginning with '%') are
+ substituted with their actual values.
+* backward compatibility with ``core_uses_pid``:
- If core_pattern does not include "%p" (default does not)
- and core_uses_pid is set, then .PID will be appended to
+ If ``core_pattern`` does not include "%p" (default does not)
+ and ``core_uses_pid`` is set, then .PID will be appended to
the filename.
-* corename format specifiers::
-
- %<NUL> '%' is dropped
- %% output one '%'
- %p pid
- %P global pid (init PID namespace)
- %i tid
- %I global tid (init PID namespace)
- %u uid (in initial user namespace)
- %g gid (in initial user namespace)
- %d dump mode, matches PR_SET_DUMPABLE and
- /proc/sys/fs/suid_dumpable
- %s signal number
- %t UNIX time of dump
- %h hostname
- %e executable filename (may be shortened)
- %E executable path
- %<OTHER> both are dropped
+* corename format specifiers
+
+ ======== ==========================================
+ %<NUL> '%' is dropped
+ %% output one '%'
+ %p pid
+ %P global pid (init PID namespace)
+ %i tid
+ %I global tid (init PID namespace)
+ %u uid (in initial user namespace)
+ %g gid (in initial user namespace)
+ %d dump mode, matches ``PR_SET_DUMPABLE`` and
+ ``/proc/sys/fs/suid_dumpable``
+ %s signal number
+ %t UNIX time of dump
+ %h hostname
+ %e executable filename (may be shortened)
+ %E executable path
+ %c maximum size of core file by resource limit RLIMIT_CORE
+ %<OTHER> both are dropped
+ ======== ==========================================
* If the first character of the pattern is a '|', the kernel will treat
the rest of the pattern as a command to run. The core dump will be
written to the standard input of that program instead of to a file.
-core_pipe_limit:
-================
+core_pipe_limit
+===============
-This sysctl is only applicable when core_pattern is configured to pipe
-core files to a user space helper (when the first character of
-core_pattern is a '|', see above). When collecting cores via a pipe
-to an application, it is occasionally useful for the collecting
-application to gather data about the crashing process from its
-/proc/pid directory. In order to do this safely, the kernel must wait
-for the collecting process to exit, so as not to remove the crashing
-processes proc files prematurely. This in turn creates the
-possibility that a misbehaving userspace collecting process can block
-the reaping of a crashed process simply by never exiting. This sysctl
-defends against that. It defines how many concurrent crashing
-processes may be piped to user space applications in parallel. If
-this value is exceeded, then those crashing processes above that value
-are noted via the kernel log and their cores are skipped. 0 is a
-special value, indicating that unlimited processes may be captured in
-parallel, but that no waiting will take place (i.e. the collecting
-process is not guaranteed access to /proc/<crashing pid>/). This
-value defaults to 0.
-
-
-core_uses_pid:
-==============
+This sysctl is only applicable when `core_pattern`_ is configured to
+pipe core files to a user space helper (when the first character of
+``core_pattern`` is a '|', see above).
+When collecting cores via a pipe to an application, it is occasionally
+useful for the collecting application to gather data about the
+crashing process from its ``/proc/pid`` directory.
+In order to do this safely, the kernel must wait for the collecting
+process to exit, so as not to remove the crashing processes proc files
+prematurely.
+This in turn creates the possibility that a misbehaving userspace
+collecting process can block the reaping of a crashed process simply
+by never exiting.
+This sysctl defends against that.
+It defines how many concurrent crashing processes may be piped to user
+space applications in parallel.
+If this value is exceeded, then those crashing processes above that
+value are noted via the kernel log and their cores are skipped.
+0 is a special value, indicating that unlimited processes may be
+captured in parallel, but that no waiting will take place (i.e. the
+collecting process is not guaranteed access to ``/proc/<crashing
+pid>/``).
+This value defaults to 0.
+
+
+core_uses_pid
+=============
The default coredump filename is "core". By setting
-core_uses_pid to 1, the coredump filename becomes core.PID.
-If core_pattern does not include "%p" (default does not)
-and core_uses_pid is set, then .PID will be appended to
+``core_uses_pid`` to 1, the coredump filename becomes core.PID.
+If `core_pattern`_ does not include "%p" (default does not)
+and ``core_uses_pid`` is set, then .PID will be appended to
the filename.
-ctrl-alt-del:
-=============
+ctrl-alt-del
+============
When the value in this file is 0, ctrl-alt-del is trapped and
-sent to the init(1) program to handle a graceful restart.
+sent to the ``init(1)`` program to handle a graceful restart.
When, however, the value is > 0, Linux's reaction to a Vulcan
Nerve Pinch (tm) will be an immediate reboot, without even
syncing its dirty buffers.
@@ -269,21 +204,22 @@ Note:
to decide what to do with it.
-dmesg_restrict:
-===============
+dmesg_restrict
+==============
This toggle indicates whether unprivileged users are prevented
-from using dmesg(8) to view messages from the kernel's log buffer.
-When dmesg_restrict is set to (0) there are no restrictions. When
-dmesg_restrict is set set to (1), users must have CAP_SYSLOG to use
-dmesg(8).
+from using ``dmesg(8)`` to view messages from the kernel's log
+buffer.
+When ``dmesg_restrict`` is set to 0 there are no restrictions.
+When ``dmesg_restrict`` is set set to 1, users must have
+``CAP_SYSLOG`` to use ``dmesg(8)``.
-The kernel config option CONFIG_SECURITY_DMESG_RESTRICT sets the
-default value of dmesg_restrict.
+The kernel config option ``CONFIG_SECURITY_DMESG_RESTRICT`` sets the
+default value of ``dmesg_restrict``.
-domainname & hostname:
-======================
+domainname & hostname
+=====================
These files can be used to set the NIS/YP domainname and the
hostname of your box in exactly the same way as the commands
@@ -302,167 +238,206 @@ hostname "darkstar" and DNS (Internet Domain Name Server)
domainname "frop.org", not to be confused with the NIS (Network
Information Service) or YP (Yellow Pages) domainname. These two
domain names are in general different. For a detailed discussion
-see the hostname(1) man page.
+see the ``hostname(1)`` man page.
-hardlockup_all_cpu_backtrace:
-=============================
+hardlockup_all_cpu_backtrace
+============================
This value controls the hard lockup detector behavior when a hard
lockup condition is detected as to whether or not to gather further
debug information. If enabled, arch-specific all-CPU stack dumping
will be initiated.
-0: do nothing. This is the default behavior.
-
-1: on detection capture more debug information.
+= ============================================
+0 Do nothing. This is the default behavior.
+1 On detection capture more debug information.
+= ============================================
-hardlockup_panic:
-=================
+hardlockup_panic
+================
This parameter can be used to control whether the kernel panics
when a hard lockup is detected.
- 0 - don't panic on hard lockup
- 1 - panic on hard lockup
+= ===========================
+0 Don't panic on hard lockup.
+1 Panic on hard lockup.
+= ===========================
-See Documentation/admin-guide/lockup-watchdogs.rst for more information. This can
-also be set using the nmi_watchdog kernel parameter.
+See :doc:`/admin-guide/lockup-watchdogs` for more information.
+This can also be set using the nmi_watchdog kernel parameter.
-hotplug:
-========
+hotplug
+=======
Path for the hotplug policy agent.
-Default value is "/sbin/hotplug".
+Default value is "``/sbin/hotplug``".
-hung_task_panic:
-================
+hung_task_panic
+===============
Controls the kernel's behavior when a hung task is detected.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
-
-0: continue operation. This is the default behavior.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-1: panic immediately.
+= =================================================
+0 Continue operation. This is the default behavior.
+1 Panic immediately.
+= =================================================
-hung_task_check_count:
-======================
+hung_task_check_count
+=====================
The upper bound on the number of tasks that are checked.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-hung_task_timeout_secs:
-=======================
+hung_task_timeout_secs
+======================
When a task in D state did not get scheduled
for more than this value report a warning.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-0: means infinite timeout - no checking done.
+0 means infinite timeout, no checking is done.
-Possible values to set are in range {0..LONG_MAX/HZ}.
+Possible values to set are in range {0:``LONG_MAX``/``HZ``}.
-hung_task_check_interval_secs:
-==============================
+hung_task_check_interval_secs
+=============================
Hung task check interval. If hung task checking is enabled
-(see hung_task_timeout_secs), the check is done every
-hung_task_check_interval_secs seconds.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+(see `hung_task_timeout_secs`_), the check is done every
+``hung_task_check_interval_secs`` seconds.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-0 (default): means use hung_task_timeout_secs as checking interval.
-Possible values to set are in range {0..LONG_MAX/HZ}.
+0 (default) means use ``hung_task_timeout_secs`` as checking
+interval.
+Possible values to set are in range {0:``LONG_MAX``/``HZ``}.
-hung_task_warnings:
-===================
+
+hung_task_warnings
+==================
The maximum number of warnings to report. During a check interval
if a hung task is detected, this value is decreased by 1.
When this value reaches 0, no more warnings will be reported.
-This file shows up if CONFIG_DETECT_HUNG_TASK is enabled.
+This file shows up if ``CONFIG_DETECT_HUNG_TASK`` is enabled.
-1: report an infinite number of warnings.
-hyperv_record_panic_msg:
-========================
+hyperv_record_panic_msg
+=======================
Controls whether the panic kmsg data should be reported to Hyper-V.
-0: do not report panic kmsg data.
+= =========================================================
+0 Do not report panic kmsg data.
+1 Report the panic kmsg data. This is the default behavior.
+= =========================================================
-1: report the panic kmsg data. This is the default behavior.
+kexec_load_disabled
+===================
-kexec_load_disabled:
-====================
-
-A toggle indicating if the kexec_load syscall has been disabled. This
-value defaults to 0 (false: kexec_load enabled), but can be set to 1
-(true: kexec_load disabled). Once true, kexec can no longer be used, and
-the toggle cannot be set back to false. This allows a kexec image to be
-loaded before disabling the syscall, allowing a system to set up (and
-later use) an image without it being altered. Generally used together
-with the "modules_disabled" sysctl.
+A toggle indicating if the ``kexec_load`` syscall has been disabled.
+This value defaults to 0 (false: ``kexec_load`` enabled), but can be
+set to 1 (true: ``kexec_load`` disabled).
+Once true, kexec can no longer be used, and the toggle cannot be set
+back to false.
+This allows a kexec image to be loaded before disabling the syscall,
+allowing a system to set up (and later use) an image without it being
+altered.
+Generally used together with the `modules_disabled`_ sysctl.
-kptr_restrict:
-==============
+kptr_restrict
+=============
This toggle indicates whether restrictions are placed on
-exposing kernel addresses via /proc and other interfaces.
+exposing kernel addresses via ``/proc`` and other interfaces.
+
+When ``kptr_restrict`` is set to 0 (the default) the address is hashed
+before printing.
+(This is the equivalent to %p.)
+
+When ``kptr_restrict`` is set to 1, kernel pointers printed using the
+%pK format specifier will be replaced with 0s unless the user has
+``CAP_SYSLOG`` and effective user and group ids are equal to the real
+ids.
+This is because %pK checks are done at read() time rather than open()
+time, so if permissions are elevated between the open() and the read()
+(e.g via a setuid binary) then %pK will not leak kernel pointers to
+unprivileged users.
+Note, this is a temporary solution only.
+The correct long-term solution is to do the permission checks at
+open() time.
+Consider removing world read permissions from files that use %pK, and
+using `dmesg_restrict`_ to protect against uses of %pK in ``dmesg(8)``
+if leaking kernel pointer values to unprivileged users is a concern.
+
+When ``kptr_restrict`` is set to 2, kernel pointers printed using
+%pK will be replaced with 0s regardless of privileges.
+
+
+modprobe
+========
-When kptr_restrict is set to 0 (the default) the address is hashed before
-printing. (This is the equivalent to %p.)
+This gives the full path of the modprobe command which the kernel will
+use to load modules. This can be used to debug module loading
+requests::
-When kptr_restrict is set to (1), kernel pointers printed using the %pK
-format specifier will be replaced with 0's unless the user has CAP_SYSLOG
-and effective user and group ids are equal to the real ids. This is
-because %pK checks are done at read() time rather than open() time, so
-if permissions are elevated between the open() and the read() (e.g via
-a setuid binary) then %pK will not leak kernel pointers to unprivileged
-users. Note, this is a temporary solution only. The correct long-term
-solution is to do the permission checks at open() time. Consider removing
-world read permissions from files that use %pK, and using dmesg_restrict
-to protect against uses of %pK in dmesg(8) if leaking kernel pointer
-values to unprivileged users is a concern.
+ echo '#! /bin/sh' > /tmp/modprobe
+ echo 'echo "$@" >> /tmp/modprobe.log' >> /tmp/modprobe
+ echo 'exec /sbin/modprobe "$@"' >> /tmp/modprobe
+ chmod a+x /tmp/modprobe
+ echo /tmp/modprobe > /proc/sys/kernel/modprobe
-When kptr_restrict is set to (2), kernel pointers printed using
-%pK will be replaced with 0's regardless of privileges.
+This only applies when the *kernel* is requesting that the module be
+loaded; it won't have any effect if the module is being loaded
+explicitly using ``modprobe`` from userspace.
-l2cr: (PPC only)
+modules_disabled
================
-This flag controls the L2 cache of G3 processor boards. If
-0, the cache is disabled. Enabled if nonzero.
-
-
-modules_disabled:
-=================
-
A toggle value indicating if modules are allowed to be loaded
in an otherwise modular kernel. This toggle defaults to off
(0), but can be set true (1). Once true, modules can be
neither loaded nor unloaded, and the toggle cannot be set back
-to false. Generally used with the "kexec_load_disabled" toggle.
+to false. Generally used with the `kexec_load_disabled`_ toggle.
+
+
+.. _msgmni:
+
+msgmax, msgmnb, and msgmni
+==========================
+
+``msgmax`` is the maximum size of an IPC message, in bytes. 8192 by
+default (``MSGMAX``).
+``msgmnb`` is the maximum size of an IPC queue, in bytes. 16384 by
+default (``MSGMNB``).
-msg_next_id, sem_next_id, and shm_next_id:
-==========================================
+``msgmni`` is the maximum number of IPC queues. 32000 by default
+(``MSGMNI``).
+
+
+msg_next_id, sem_next_id, and shm_next_id (System V IPC)
+========================================================
These three toggles allows to specify desired id for next allocated IPC
object: message, semaphore or shared memory respectively.
By default they are equal to -1, which means generic allocation logic.
-Possible values to set are in range {0..INT_MAX}.
+Possible values to set are in range {0:``INT_MAX``}.
Notes:
1) kernel doesn't guarantee, that new object will have desired id. So,
@@ -472,15 +447,16 @@ Notes:
fails, it is undefined if the value remains unmodified or is reset to -1.
-nmi_watchdog:
-=============
+nmi_watchdog
+============
This parameter can be used to control the NMI watchdog
(i.e. the hard lockup detector) on x86 systems.
-0 - disable the hard lockup detector
-
-1 - enable the hard lockup detector
+= =================================
+0 Disable the hard lockup detector.
+1 Enable the hard lockup detector.
+= =================================
The hard lockup detector monitors each CPU for its ability to respond to
timer interrupts. The mechanism utilizes CPU performance counter registers
@@ -492,11 +468,11 @@ in a KVM virtual machine. This default can be overridden by adding::
nmi_watchdog=1
-to the guest kernel command line (see Documentation/admin-guide/kernel-parameters.rst).
+to the guest kernel command line (see :doc:`/admin-guide/kernel-parameters`).
-numa_balancing:
-===============
+numa_balancing
+==============
Enables/disables automatic page fault based NUMA memory
balancing. Memory is moved automatically to nodes
@@ -514,9 +490,10 @@ ideally is offset by improved memory locality but there is no universal
guarantee. If the target workload is already bound to NUMA nodes then this
feature should be disabled. Otherwise, if the system overhead from the
feature is too high then the rate the kernel samples for NUMA hinting
-faults may be controlled by the numa_balancing_scan_period_min_ms,
+faults may be controlled by the `numa_balancing_scan_period_min_ms,
numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms,
-numa_balancing_scan_size_mb, and numa_balancing_settle_count sysctls.
+numa_balancing_scan_size_mb`_, and numa_balancing_settle_count sysctls.
+
numa_balancing_scan_period_min_ms, numa_balancing_scan_delay_ms, numa_balancing_scan_period_max_ms, numa_balancing_scan_size_mb
===============================================================================================================================
@@ -542,23 +519,23 @@ workload pattern changes and minimises performance impact due to remote
memory accesses. These sysctls control the thresholds for scan delays and
the number of pages scanned.
-numa_balancing_scan_period_min_ms is the minimum time in milliseconds to
+``numa_balancing_scan_period_min_ms`` is the minimum time in milliseconds to
scan a tasks virtual memory. It effectively controls the maximum scanning
rate for each task.
-numa_balancing_scan_delay_ms is the starting "scan delay" used for a task
+``numa_balancing_scan_delay_ms`` is the starting "scan delay" used for a task
when it initially forks.
-numa_balancing_scan_period_max_ms is the maximum time in milliseconds to
+``numa_balancing_scan_period_max_ms`` is the maximum time in milliseconds to
scan a tasks virtual memory. It effectively controls the minimum scanning
rate for each task.
-numa_balancing_scan_size_mb is how many megabytes worth of pages are
+``numa_balancing_scan_size_mb`` is how many megabytes worth of pages are
scanned for a given scan.
-osrelease, ostype & version:
-============================
+osrelease, ostype & version
+===========================
::
@@ -569,15 +546,16 @@ osrelease, ostype & version:
# cat version
#5 Wed Feb 25 21:49:24 MET 1998
-The files osrelease and ostype should be clear enough. Version
+The files ``osrelease`` and ``ostype`` should be clear enough.
+``version``
needs a little more clarification however. The '#5' means that
this is the fifth kernel built from this source base and the
date behind it indicates the time the kernel was built.
The only way to tune these values is to rebuild the kernel :-)
-overflowgid & overflowuid:
-==========================
+overflowgid & overflowuid
+=========================
if your architecture did not always support 32-bit UIDs (i.e. arm,
i386, m68k, sh, and sparc32), a fixed UID and GID will be returned to
@@ -588,108 +566,119 @@ These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.
+panic
+=====
+
+The value in this file determines the behaviour of the kernel on a
panic:
-======
-The value in this file represents the number of seconds the kernel
-waits before rebooting on a panic. When you use the software watchdog,
-the recommended setting is 60.
+* if zero, the kernel will loop forever;
+* if negative, the kernel will reboot immediately;
+* if positive, the kernel will reboot after the corresponding number
+ of seconds.
+When you use the software watchdog, the recommended setting is 60.
-panic_on_io_nmi:
-================
+
+panic_on_io_nmi
+===============
Controls the kernel's behavior when a CPU receives an NMI caused by
an IO error.
-0: try to continue operation (default)
-
-1: panic immediately. The IO error triggered an NMI. This indicates a
- serious system condition which could result in IO data corruption.
- Rather than continuing, panicking might be a better choice. Some
- servers issue this sort of NMI when the dump button is pushed,
- and you can use this option to take a crash dump.
+= ==================================================================
+0 Try to continue operation (default).
+1 Panic immediately. The IO error triggered an NMI. This indicates a
+ serious system condition which could result in IO data corruption.
+ Rather than continuing, panicking might be a better choice. Some
+ servers issue this sort of NMI when the dump button is pushed,
+ and you can use this option to take a crash dump.
+= ==================================================================
-panic_on_oops:
-==============
+panic_on_oops
+=============
Controls the kernel's behaviour when an oops or BUG is encountered.
-0: try to continue operation
-
-1: panic immediately. If the `panic` sysctl is also non-zero then the
- machine will be rebooted.
+= ===================================================================
+0 Try to continue operation.
+1 Panic immediately. If the `panic` sysctl is also non-zero then the
+ machine will be rebooted.
+= ===================================================================
-panic_on_stackoverflow:
-=======================
+panic_on_stackoverflow
+======================
Controls the kernel's behavior when detecting the overflows of
kernel, IRQ and exception stacks except a user stack.
-This file shows up if CONFIG_DEBUG_STACKOVERFLOW is enabled.
-
-0: try to continue operation.
+This file shows up if ``CONFIG_DEBUG_STACKOVERFLOW`` is enabled.
-1: panic immediately.
+= ==========================
+0 Try to continue operation.
+1 Panic immediately.
+= ==========================
-panic_on_unrecovered_nmi:
-=========================
+panic_on_unrecovered_nmi
+========================
The default Linux behaviour on an NMI of either memory or unknown is
to continue operation. For many environments such as scientific
computing it is preferable that the box is taken out and the error
dealt with than an uncorrected parity/ECC error get propagated.
-A small number of systems do generate NMI's for bizarre random reasons
+A small number of systems do generate NMIs for bizarre random reasons
such as power management so the default is off. That sysctl works like
the existing panic controls already in that directory.
-panic_on_warn:
-==============
+panic_on_warn
+=============
Calls panic() in the WARN() path when set to 1. This is useful to avoid
a kernel rebuild when attempting to kdump at the location of a WARN().
-0: only WARN(), default behaviour.
-
-1: call panic() after printing out WARN() location.
+= ================================================
+0 Only WARN(), default behaviour.
+1 Call panic() after printing out WARN() location.
+= ================================================
-panic_print:
-============
+panic_print
+===========
Bitmask for printing system info when panic happens. User can chose
combination of the following bits:
-===== ========================================
+===== ============================================
bit 0 print all tasks info
bit 1 print system memory info
bit 2 print timer info
-bit 3 print locks info if CONFIG_LOCKDEP is on
+bit 3 print locks info if ``CONFIG_LOCKDEP`` is on
bit 4 print ftrace buffer
-===== ========================================
+===== ============================================
So for example to print tasks and memory info on panic, user can::
echo 3 > /proc/sys/kernel/panic_print
-panic_on_rcu_stall:
-===================
+panic_on_rcu_stall
+==================
When set to 1, calls panic() after RCU stall detection messages. This
is useful to define the root cause of RCU stalls using a vmcore.
-0: do not panic() when RCU stall takes place, default behavior.
+= ============================================================
+0 Do not panic() when RCU stall takes place, default behavior.
+1 panic() after printing RCU stall messages.
+= ============================================================
-1: panic() after printing RCU stall messages.
-
-perf_cpu_time_max_percent:
-==========================
+perf_cpu_time_max_percent
+=========================
Hints to the kernel how much CPU time it should be allowed to
use to handle perf sampling events. If the perf subsystem
@@ -702,171 +691,179 @@ unexpectedly take too long to execute, the NMIs can become
stacked up next to each other so much that nothing else is
allowed to execute.
-0:
- disable the mechanism. Do not monitor or correct perf's
- sampling rate no matter how CPU time it takes.
+===== ========================================================
+0 Disable the mechanism. Do not monitor or correct perf's
+ sampling rate no matter how CPU time it takes.
-1-100:
- attempt to throttle perf's sample rate to this
- percentage of CPU. Note: the kernel calculates an
- "expected" length of each sample event. 100 here means
- 100% of that expected length. Even if this is set to
- 100, you may still see sample throttling if this
- length is exceeded. Set to 0 if you truly do not care
- how much CPU is consumed.
+1-100 Attempt to throttle perf's sample rate to this
+ percentage of CPU. Note: the kernel calculates an
+ "expected" length of each sample event. 100 here means
+ 100% of that expected length. Even if this is set to
+ 100, you may still see sample throttling if this
+ length is exceeded. Set to 0 if you truly do not care
+ how much CPU is consumed.
+===== ========================================================
-perf_event_paranoid:
-====================
+perf_event_paranoid
+===================
Controls use of the performance events system by unprivileged
users (without CAP_SYS_ADMIN). The default value is 2.
=== ==================================================================
- -1 Allow use of (almost) all events by all users
+ -1 Allow use of (almost) all events by all users.
- Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK
+ Ignore mlock limit after perf_event_mlock_kb without
+ ``CAP_IPC_LOCK``.
->=0 Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN
+>=0 Disallow ftrace function tracepoint by users without
+ ``CAP_SYS_ADMIN``.
- Disallow raw tracepoint access by users without CAP_SYS_ADMIN
+ Disallow raw tracepoint access by users without ``CAP_SYS_ADMIN``.
->=1 Disallow CPU event access by users without CAP_SYS_ADMIN
+>=1 Disallow CPU event access by users without ``CAP_SYS_ADMIN``.
->=2 Disallow kernel profiling by users without CAP_SYS_ADMIN
+>=2 Disallow kernel profiling by users without ``CAP_SYS_ADMIN``.
=== ==================================================================
-perf_event_max_stack:
-=====================
+perf_event_max_stack
+====================
-Controls maximum number of stack frames to copy for (attr.sample_type &
-PERF_SAMPLE_CALLCHAIN) configured events, for instance, when using
-'perf record -g' or 'perf trace --call-graph fp'.
+Controls maximum number of stack frames to copy for (``attr.sample_type &
+PERF_SAMPLE_CALLCHAIN``) configured events, for instance, when using
+'``perf record -g``' or '``perf trace --call-graph fp``'.
This can only be done when no events are in use that have callchains
-enabled, otherwise writing to this file will return -EBUSY.
+enabled, otherwise writing to this file will return ``-EBUSY``.
The default value is 127.
-perf_event_mlock_kb:
-====================
+perf_event_mlock_kb
+===================
Control size of per-cpu ring buffer not counted agains mlock limit.
The default value is 512 + 1 page
-perf_event_max_contexts_per_stack:
-==================================
+perf_event_max_contexts_per_stack
+=================================
Controls maximum number of stack frame context entries for
-(attr.sample_type & PERF_SAMPLE_CALLCHAIN) configured events, for
-instance, when using 'perf record -g' or 'perf trace --call-graph fp'.
+(``attr.sample_type & PERF_SAMPLE_CALLCHAIN``) configured events, for
+instance, when using '``perf record -g``' or '``perf trace --call-graph fp``'.
This can only be done when no events are in use that have callchains
-enabled, otherwise writing to this file will return -EBUSY.
+enabled, otherwise writing to this file will return ``-EBUSY``.
The default value is 8.
-pid_max:
-========
+pid_max
+=======
PID allocation wrap value. When the kernel's next PID value
reaches this value, it wraps back to a minimum PID value.
-PIDs of value pid_max or larger are not allocated.
+PIDs of value ``pid_max`` or larger are not allocated.
-ns_last_pid:
-============
+ns_last_pid
+===========
The last pid allocated in the current (the one task using this sysctl
lives in) pid namespace. When selecting a pid for a next task on fork
kernel tries to allocate a number starting from this one.
-powersave-nap: (PPC only)
-=========================
+powersave-nap (PPC only)
+========================
If set, Linux-PPC will use the 'nap' mode of powersaving,
otherwise the 'doze' mode will be used.
+
==============================================================
-printk:
-=======
+printk
+======
-The four values in printk denote: console_loglevel,
-default_message_loglevel, minimum_console_loglevel and
-default_console_loglevel respectively.
+The four values in printk denote: ``console_loglevel``,
+``default_message_loglevel``, ``minimum_console_loglevel`` and
+``default_console_loglevel`` respectively.
These values influence printk() behavior when printing or
-logging error messages. See 'man 2 syslog' for more info on
+logging error messages. See '``man 2 syslog``' for more info on
the different loglevels.
-- console_loglevel:
- messages with a higher priority than
- this will be printed to the console
-- default_message_loglevel:
- messages without an explicit priority
- will be printed with this priority
-- minimum_console_loglevel:
- minimum (highest) value to which
- console_loglevel can be set
-- default_console_loglevel:
- default value for console_loglevel
+======================== =====================================
+console_loglevel messages with a higher priority than
+ this will be printed to the console
+default_message_loglevel messages without an explicit priority
+ will be printed with this priority
+minimum_console_loglevel minimum (highest) value to which
+ console_loglevel can be set
+default_console_loglevel default value for console_loglevel
+======================== =====================================
-printk_delay:
-=============
+printk_delay
+============
-Delay each printk message in printk_delay milliseconds
+Delay each printk message in ``printk_delay`` milliseconds
Value from 0 - 10000 is allowed.
-printk_ratelimit:
-=================
+printk_ratelimit
+================
-Some warning messages are rate limited. printk_ratelimit specifies
+Some warning messages are rate limited. ``printk_ratelimit`` specifies
the minimum length of time between these messages (in seconds).
The default value is 5 seconds.
A value of 0 will disable rate limiting.
-printk_ratelimit_burst:
-=======================
+printk_ratelimit_burst
+======================
-While long term we enforce one message per printk_ratelimit
+While long term we enforce one message per `printk_ratelimit`_
seconds, we do allow a burst of messages to pass through.
-printk_ratelimit_burst specifies the number of messages we can
+``printk_ratelimit_burst`` specifies the number of messages we can
send before ratelimiting kicks in.
The default value is 10 messages.
-printk_devkmsg:
-===============
-
-Control the logging to /dev/kmsg from userspace:
-
-ratelimit:
- default, ratelimited
+printk_devkmsg
+==============
-on: unlimited logging to /dev/kmsg from userspace
+Control the logging to ``/dev/kmsg`` from userspace:
-off: logging to /dev/kmsg disabled
+========= =============================================
+ratelimit default, ratelimited
+on unlimited logging to /dev/kmsg from userspace
+off logging to /dev/kmsg disabled
+========= =============================================
-The kernel command line parameter printk.devkmsg= overrides this and is
+The kernel command line parameter ``printk.devkmsg=`` overrides this and is
a one-time setting until next reboot: once set, it cannot be changed by
this sysctl interface anymore.
+==============================================================
-randomize_va_space:
-===================
+
+pty
+===
+
+See Documentation/filesystems/devpts.txt.
+
+
+randomize_va_space
+==================
This option can be used to select the type of process address
space randomization that is used in the system, for architectures
@@ -881,10 +878,10 @@ that support this feature.
This, among other things, implies that shared libraries will be
loaded to random addresses. Also for PIE-linked binaries, the
location of code start is randomized. This is the default if the
- CONFIG_COMPAT_BRK option is enabled.
+ ``CONFIG_COMPAT_BRK`` option is enabled.
2 Additionally enable heap randomization. This is the default if
- CONFIG_COMPAT_BRK is disabled.
+ ``CONFIG_COMPAT_BRK`` is disabled.
There are a few legacy applications out there (such as some ancient
versions of libc.so.5 from 1996) that assume that brk area starts
@@ -894,31 +891,27 @@ that support this feature.
systems it is safe to choose full randomization.
Systems with ancient and/or broken binaries should be configured
- with CONFIG_COMPAT_BRK enabled, which excludes the heap from process
+ with ``CONFIG_COMPAT_BRK`` enabled, which excludes the heap from process
address space randomization.
== ===========================================================================
-reboot-cmd: (Sparc only)
-========================
-
-??? This seems to be a way to give an argument to the Sparc
-ROM/Flash boot loader. Maybe to tell it what to do after
-rebooting. ???
+real-root-dev
+=============
+See :doc:`/admin-guide/initrd`.
-rtsig-max & rtsig-nr:
-=====================
-The file rtsig-max can be used to tune the maximum number
-of POSIX realtime (queued) signals that can be outstanding
-in the system.
+reboot-cmd (SPARC only)
+=======================
-rtsig-nr shows the number of RT signals currently queued.
+??? This seems to be a way to give an argument to the Sparc
+ROM/Flash boot loader. Maybe to tell it what to do after
+rebooting. ???
-sched_energy_aware:
-===================
+sched_energy_aware
+==================
Enables/disables Energy Aware Scheduling (EAS). EAS starts
automatically on platforms where it can run (that is,
@@ -928,75 +921,88 @@ requirements for EAS but you do not want to use it, change
this value to 0.
-sched_schedstats:
-=================
+sched_schedstats
+================
Enables/disables scheduler statistics. Enabling this feature
incurs a small amount of overhead in the scheduler but is
useful for debugging and performance tuning.
-sg-big-buff:
-============
+seccomp
+=======
+
+See :doc:`/userspace-api/seccomp_filter`.
+
+
+sg-big-buff
+===========
This file shows the size of the generic SCSI (sg) buffer.
You can't tune it just yet, but you could change it on
-compile time by editing include/scsi/sg.h and changing
-the value of SG_BIG_BUFF.
+compile time by editing ``include/scsi/sg.h`` and changing
+the value of ``SG_BIG_BUFF``.
There shouldn't be any reason to change this value. If
you can come up with one, you probably know what you
are doing anyway :)
-shmall:
-=======
+shmall
+======
This parameter sets the total amount of shared memory pages that
-can be used system wide. Hence, SHMALL should always be at least
-ceil(shmmax/PAGE_SIZE).
+can be used system wide. Hence, ``shmall`` should always be at least
+``ceil(shmmax/PAGE_SIZE)``.
-If you are not sure what the default PAGE_SIZE is on your Linux
-system, you can run the following command:
+If you are not sure what the default ``PAGE_SIZE`` is on your Linux
+system, you can run the following command::
# getconf PAGE_SIZE
-shmmax:
-=======
+shmmax
+======
This value can be used to query and set the run time limit
on the maximum shared memory segment size that can be created.
Shared memory segments up to 1Gb are now supported in the
-kernel. This value defaults to SHMMAX.
+kernel. This value defaults to ``SHMMAX``.
-shm_rmid_forced:
-================
+shmmni
+======
+
+This value determines the maximum number of shared memory segments.
+4096 by default (``SHMMNI``).
+
+
+shm_rmid_forced
+===============
Linux lets you set resource limits, including how much memory one
-process can consume, via setrlimit(2). Unfortunately, shared memory
+process can consume, via ``setrlimit(2)``. Unfortunately, shared memory
segments are allowed to exist without association with any process, and
thus might not be counted against any resource limits. If enabled,
shared memory segments are automatically destroyed when their attach
count becomes zero after a detach or a process termination. It will
also destroy segments that were created, but never attached to, on exit
-from the process. The only use left for IPC_RMID is to immediately
+from the process. The only use left for ``IPC_RMID`` is to immediately
destroy an unattached segment. Of course, this breaks the way things are
defined, so some applications might stop working. Note that this
feature will do you no good unless you also configure your resource
-limits (in particular, RLIMIT_AS and RLIMIT_NPROC). Most systems don't
+limits (in particular, ``RLIMIT_AS`` and ``RLIMIT_NPROC``). Most systems don't
need this.
Note that if you change this from 0 to 1, already created segments
without users and with a dead originative process will be destroyed.
-sysctl_writes_strict:
-=====================
+sysctl_writes_strict
+====================
Control how file position affects the behavior of updating sysctl values
-via the /proc/sys interface:
+via the ``/proc/sys`` interface:
== ======================================================================
-1 Legacy per-write sysctl value handling, with no printk warnings.
@@ -1013,8 +1019,8 @@ via the /proc/sys interface:
== ======================================================================
-softlockup_all_cpu_backtrace:
-=============================
+softlockup_all_cpu_backtrace
+============================
This value controls the soft lockup detector thread's behavior
when a soft lockup condition is detected as to whether or not
@@ -1024,43 +1030,80 @@ be issued an NMI and instructed to capture stack trace.
This feature is only applicable for architectures which support
NMI.
-0: do nothing. This is the default behavior.
+= ============================================
+0 Do nothing. This is the default behavior.
+1 On detection capture more debug information.
+= ============================================
-1: on detection capture more debug information.
+softlockup_panic
+=================
-soft_watchdog:
-==============
+This parameter can be used to control whether the kernel panics
+when a soft lockup is detected.
-This parameter can be used to control the soft lockup detector.
+= ============================================
+0 Don't panic on soft lockup.
+1 Panic on soft lockup.
+= ============================================
- 0 - disable the soft lockup detector
+This can also be set using the softlockup_panic kernel parameter.
- 1 - enable the soft lockup detector
+
+soft_watchdog
+=============
+
+This parameter can be used to control the soft lockup detector.
+
+= =================================
+0 Disable the soft lockup detector.
+1 Enable the soft lockup detector.
+= =================================
The soft lockup detector monitors CPUs for threads that are hogging the CPUs
without rescheduling voluntarily, and thus prevent the 'watchdog/N' threads
from running. The mechanism depends on the CPUs ability to respond to timer
interrupts which are needed for the 'watchdog/N' threads to be woken up by
-the watchdog timer function, otherwise the NMI watchdog - if enabled - can
+the watchdog timer function, otherwise the NMI watchdog — if enabled — can
detect a hard lockup condition.
-stack_erasing:
-==============
+stack_erasing
+=============
This parameter can be used to control kernel stack erasing at the end
-of syscalls for kernels built with CONFIG_GCC_PLUGIN_STACKLEAK.
+of syscalls for kernels built with ``CONFIG_GCC_PLUGIN_STACKLEAK``.
That erasing reduces the information which kernel stack leak bugs
can reveal and blocks some uninitialized stack variable attacks.
The tradeoff is the performance impact: on a single CPU system kernel
compilation sees a 1% slowdown, other systems and workloads may vary.
- 0: kernel stack erasing is disabled, STACKLEAK_METRICS are not updated.
+= ====================================================================
+0 Kernel stack erasing is disabled, STACKLEAK_METRICS are not updated.
+1 Kernel stack erasing is enabled (default), it is performed before
+ returning to the userspace at the end of syscalls.
+= ====================================================================
+
+
+stop-a (SPARC only)
+===================
+
+Controls Stop-A:
+
+= ====================================
+0 Stop-A has no effect.
+1 Stop-A breaks to the PROM (default).
+= ====================================
+
+Stop-A is always enabled on a panic, so that the user can return to
+the boot PROM.
- 1: kernel stack erasing is enabled (default), it is performed before
- returning to the userspace at the end of syscalls.
+
+sysrq
+=====
+
+See :doc:`/admin-guide/sysrq`.
tainted
@@ -1090,30 +1133,30 @@ ORed together. The letters are seen in "Tainted" line of Oops reports.
131072 `(T)` The kernel was built with the struct randomization plugin
====== ===== ==============================================================
-See Documentation/admin-guide/tainted-kernels.rst for more information.
+See :doc:`/admin-guide/tainted-kernels` for more information.
-threads-max:
-============
+threads-max
+===========
This value controls the maximum number of threads that can be created
-using fork().
+using ``fork()``.
During initialization the kernel sets this value such that even if the
maximum number of threads is created, the thread structures occupy only
a part (1/8th) of the available RAM pages.
-The minimum value that can be written to threads-max is 1.
+The minimum value that can be written to ``threads-max`` is 1.
-The maximum value that can be written to threads-max is given by the
-constant FUTEX_TID_MASK (0x3fffffff).
+The maximum value that can be written to ``threads-max`` is given by the
+constant ``FUTEX_TID_MASK`` (0x3fffffff).
-If a value outside of this range is written to threads-max an error
-EINVAL occurs.
+If a value outside of this range is written to ``threads-max`` an
+``EINVAL`` error occurs.
-unknown_nmi_panic:
-==================
+unknown_nmi_panic
+=================
The value in this file affects behavior of handling NMI. When the
value is non-zero, unknown NMI is trapped and then panic occurs. At
@@ -1123,37 +1166,39 @@ NMI switch that most IA32 servers have fires unknown NMI up, for
example. If a system hangs up, try pressing the NMI switch.
-watchdog:
-=========
+watchdog
+========
This parameter can be used to disable or enable the soft lockup detector
-_and_ the NMI watchdog (i.e. the hard lockup detector) at the same time.
-
- 0 - disable both lockup detectors
+*and* the NMI watchdog (i.e. the hard lockup detector) at the same time.
- 1 - enable both lockup detectors
+= ==============================
+0 Disable both lockup detectors.
+1 Enable both lockup detectors.
+= ==============================
The soft lockup detector and the NMI watchdog can also be disabled or
-enabled individually, using the soft_watchdog and nmi_watchdog parameters.
-If the watchdog parameter is read, for example by executing::
+enabled individually, using the ``soft_watchdog`` and ``nmi_watchdog``
+parameters.
+If the ``watchdog`` parameter is read, for example by executing::
cat /proc/sys/kernel/watchdog
-the output of this command (0 or 1) shows the logical OR of soft_watchdog
-and nmi_watchdog.
+the output of this command (0 or 1) shows the logical OR of
+``soft_watchdog`` and ``nmi_watchdog``.
-watchdog_cpumask:
-=================
+watchdog_cpumask
+================
This value can be used to control on which cpus the watchdog may run.
-The default cpumask is all possible cores, but if NO_HZ_FULL is
+The default cpumask is all possible cores, but if ``NO_HZ_FULL`` is
enabled in the kernel config, and cores are specified with the
-nohz_full= boot argument, those cores are excluded by default.
+``nohz_full=`` boot argument, those cores are excluded by default.
Offline cores can be included in this mask, and if the core is later
brought online, the watchdog will be started based on the mask value.
-Typically this value would only be touched in the nohz_full case
+Typically this value would only be touched in the ``nohz_full`` case
to re-enable cores that by default were not running the watchdog,
if a kernel lockup was suspected on those cores.
@@ -1164,12 +1209,12 @@ might say::
echo 0,2-4 > /proc/sys/kernel/watchdog_cpumask
-watchdog_thresh:
-================
+watchdog_thresh
+===============
This value can be used to control the frequency of hrtimer and NMI
events and the soft and hard lockup thresholds. The default threshold
is 10 seconds.
-The softlockup threshold is (2 * watchdog_thresh). Setting this
+The softlockup threshold is (``2 * watchdog_thresh``). Setting this
tunable to zero will disable lockup detection altogether.
diff --git a/Documentation/arm/tcm.rst b/Documentation/arm/tcm.rst
index effd9c7bc968..b256f9783883 100644
--- a/Documentation/arm/tcm.rst
+++ b/Documentation/arm/tcm.rst
@@ -4,18 +4,18 @@ ARM TCM (Tightly-Coupled Memory) handling in Linux
Written by Linus Walleij <linus.walleij@stericsson.com>
-Some ARM SoC:s have a so-called TCM (Tightly-Coupled Memory).
+Some ARM SoCs have a so-called TCM (Tightly-Coupled Memory).
This is usually just a few (4-64) KiB of RAM inside the ARM
processor.
-Due to being embedded inside the CPU The TCM has a
+Due to being embedded inside the CPU, the TCM has a
Harvard-architecture, so there is an ITCM (instruction TCM)
and a DTCM (data TCM). The DTCM can not contain any
instructions, but the ITCM can actually contain data.
The size of DTCM or ITCM is minimum 4KiB so the typical
minimum configuration is 4KiB ITCM and 4KiB DTCM.
-ARM CPU:s have special registers to read out status, physical
+ARM CPUs have special registers to read out status, physical
location and size of TCM memories. arch/arm/include/asm/cputype.h
defines a CPUID_TCM register that you can read out from the
system control coprocessor. Documentation from ARM can be found
diff --git a/Documentation/block/capability.rst b/Documentation/block/capability.rst
index 2cf258d64bbe..160a5148b915 100644
--- a/Documentation/block/capability.rst
+++ b/Documentation/block/capability.rst
@@ -2,17 +2,9 @@
Generic Block Device Capability
===============================
-This file documents the sysfs file block/<disk>/capability
+This file documents the sysfs file ``block/<disk>/capability``.
-capability is a hex word indicating which capabilities a specific disk
-supports. For more information on bits not listed here, see
-include/linux/genhd.h
+``capability`` is a bitfield, printed in hexadecimal, indicating which
+capabilities a specific block device supports:
-GENHD_FL_MEDIA_CHANGE_NOTIFY
-----------------------------
-
-Value: 4
-
-When this bit is set, the disk supports Asynchronous Notification
-of media change events. These events will be broadcast to user
-space via kernel uevent.
+.. kernel-doc:: include/linux/genhd.h
diff --git a/Documentation/conf.py b/Documentation/conf.py
index 3c7bdf4cd31f..9ae8e9abf846 100644
--- a/Documentation/conf.py
+++ b/Documentation/conf.py
@@ -38,7 +38,11 @@ needs_sphinx = '1.3'
# ones.
extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain',
'kfigure', 'sphinx.ext.ifconfig', 'automarkup',
- 'maintainers_include']
+ 'maintainers_include', 'sphinx.ext.autosectionlabel' ]
+
+# Ensure that autosectionlabel will produce unique names
+autosectionlabel_prefix_document = True
+autosectionlabel_maxdepth = 2
# The name of the math extension changed on Sphinx 1.4
if (major == 1 and minor > 3) or (major > 1):
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst
index a501dc1c90d0..0897ad12c119 100644
--- a/Documentation/core-api/index.rst
+++ b/Documentation/core-api/index.rst
@@ -8,41 +8,81 @@ This is the beginning of a manual for core kernel APIs. The conversion
Core utilities
==============
+This section has general and "core core" documentation. The first is a
+massive grab-bag of kerneldoc info left over from the docbook days; it
+should really be broken up someday when somebody finds the energy to do
+it.
+
.. toctree::
:maxdepth: 1
kernel-api
+ workqueue
+ printk-formats
+ symbol-namespaces
+
+Data structures and low-level utilities
+=======================================
+
+Library functionality that is used throughout the kernel.
+
+.. toctree::
+ :maxdepth: 1
+
+ kobject
assoc_array
+ xarray
+ idr
+ circular-buffers
+ generic-radix-tree
+ packing
+ timekeeping
+ errseq
+
+Concurrency primitives
+======================
+
+How Linux keeps everything from happening at the same time. See
+:doc:`/locking/index` for more related documentation.
+
+.. toctree::
+ :maxdepth: 1
+
atomic_ops
- cachetlb
refcount-vs-atomic
- cpu_hotplug
- idr
local_ops
- workqueue
+ padata
+ ../RCU/index
+
+Low-level hardware management
+=============================
+
+Cache management, managing CPU hotplug, etc.
+
+.. toctree::
+ :maxdepth: 1
+
+ cachetlb
+ cpu_hotplug
+ memory-hotplug
genericirq
- xarray
- librs
- genalloc
- errseq
- packing
- printk-formats
- circular-buffers
- generic-radix-tree
+ protection-keys
+
+Memory management
+=================
+
+How to allocate and use memory in the kernel. Note that there is a lot
+more memory-management documentation in :doc:`/vm/index`.
+
+.. toctree::
+ :maxdepth: 1
+
memory-allocation
mm-api
+ genalloc
pin_user_pages
- gfp_mask-from-fs-io
- timekeeping
boot-time-mm
- memory-hotplug
- protection-keys
- ../RCU/index
- gcc-plugins
- symbol-namespaces
- padata
- ioctl
-
+ gfp_mask-from-fs-io
Interfaces for kernel debugging
===============================
@@ -53,6 +93,16 @@ Interfaces for kernel debugging
debug-objects
tracepoint
+Everything else
+===============
+
+Documents that don't fit elsewhere or which have yet to be categorized.
+
+.. toctree::
+ :maxdepth: 1
+
+ librs
+
.. only:: subproject and html
Indices
diff --git a/Documentation/kobject.txt b/Documentation/core-api/kobject.rst
index ff4c25098119..1f62d4d7d966 100644
--- a/Documentation/kobject.txt
+++ b/Documentation/core-api/kobject.rst
@@ -25,7 +25,7 @@ some terms we will be working with.
usually embedded within some other structure which contains the stuff
the code is really interested in.
- No structure should EVER have more than one kobject embedded within it.
+ No structure should **EVER** have more than one kobject embedded within it.
If it does, the reference counting for the object is sure to be messed
up and incorrect, and your code will be buggy. So do not do this.
@@ -55,7 +55,7 @@ a larger, domain-specific object. To this end, kobjects will be found
embedded in other structures. If you are used to thinking of things in
object-oriented terms, kobjects can be seen as a top-level, abstract class
from which other classes are derived. A kobject implements a set of
-capabilities which are not particularly useful by themselves, but which are
+capabilities which are not particularly useful by themselves, but are
nice to have in other objects. The C language does not allow for the
direct expression of inheritance, so other techniques - such as structure
embedding - must be used.
@@ -65,12 +65,12 @@ this is analogous as to how "list_head" structs are rarely useful on
their own, but are invariably found embedded in the larger objects of
interest.)
-So, for example, the UIO code in drivers/uio/uio.c has a structure that
+So, for example, the UIO code in ``drivers/uio/uio.c`` has a structure that
defines the memory region associated with a uio device::
struct uio_map {
- struct kobject kobj;
- struct uio_mem *mem;
+ struct kobject kobj;
+ struct uio_mem *mem;
};
If you have a struct uio_map structure, finding its embedded kobject is
@@ -78,30 +78,30 @@ just a matter of using the kobj member. Code that works with kobjects will
often have the opposite problem, however: given a struct kobject pointer,
what is the pointer to the containing structure? You must avoid tricks
(such as assuming that the kobject is at the beginning of the structure)
-and, instead, use the container_of() macro, found in <linux/kernel.h>::
+and, instead, use the container_of() macro, found in ``<linux/kernel.h>``::
container_of(pointer, type, member)
where:
- * "pointer" is the pointer to the embedded kobject,
- * "type" is the type of the containing structure, and
- * "member" is the name of the structure field to which "pointer" points.
+ * ``pointer`` is the pointer to the embedded kobject,
+ * ``type`` is the type of the containing structure, and
+ * ``member`` is the name of the structure field to which ``pointer`` points.
The return value from container_of() is a pointer to the corresponding
-container type. So, for example, a pointer "kp" to a struct kobject
-embedded *within* a struct uio_map could be converted to a pointer to the
-*containing* uio_map structure with::
+container type. So, for example, a pointer ``kp`` to a struct kobject
+embedded **within** a struct uio_map could be converted to a pointer to the
+**containing** uio_map structure with::
struct uio_map *u_map = container_of(kp, struct uio_map, kobj);
-For convenience, programmers often define a simple macro for "back-casting"
+For convenience, programmers often define a simple macro for **back-casting**
kobject pointers to the containing type. Exactly this happens in the
-earlier drivers/uio/uio.c, as you can see here::
+earlier ``drivers/uio/uio.c``, as you can see here::
struct uio_map {
- struct kobject kobj;
- struct uio_mem *mem;
+ struct kobject kobj;
+ struct uio_mem *mem;
};
#define to_map(map) container_of(map, struct uio_map, kobj)
@@ -125,7 +125,7 @@ must have an associated kobj_type. After calling kobject_init(), to
register the kobject with sysfs, the function kobject_add() must be called::
int kobject_add(struct kobject *kobj, struct kobject *parent,
- const char *fmt, ...);
+ const char *fmt, ...);
This sets up the parent of the kobject and the name for the kobject
properly. If the kobject is to be associated with a specific kset,
@@ -172,13 +172,13 @@ call to kobject_uevent()::
int kobject_uevent(struct kobject *kobj, enum kobject_action action);
-Use the KOBJ_ADD action for when the kobject is first added to the kernel.
+Use the **KOBJ_ADD** action for when the kobject is first added to the kernel.
This should be done only after any attributes or children of the kobject
have been initialized properly, as userspace will instantly start to look
for them when this call happens.
When the kobject is removed from the kernel (details on how to do that are
-below), the uevent for KOBJ_REMOVE will be automatically created by the
+below), the uevent for **KOBJ_REMOVE** will be automatically created by the
kobject core, so the caller does not have to worry about doing that by
hand.
@@ -238,7 +238,7 @@ Both types of attributes used here, with a kobject that has been created
with the kobject_create_and_add(), can be of type kobj_attribute, so no
special custom attribute is needed to be created.
-See the example module, samples/kobject/kobject-example.c for an
+See the example module, ``samples/kobject/kobject-example.c`` for an
implementation of a simple kobject and attributes.
@@ -270,10 +270,10 @@ such a method has a form like::
void my_object_release(struct kobject *kobj)
{
- struct my_object *mine = container_of(kobj, struct my_object, kobj);
+ struct my_object *mine = container_of(kobj, struct my_object, kobj);
- /* Perform any additional cleanup on this object, then... */
- kfree(mine);
+ /* Perform any additional cleanup on this object, then... */
+ kfree(mine);
}
One important point cannot be overstated: every kobject must have a
@@ -297,11 +297,11 @@ instead, it is associated with the ktype. So let us introduce struct
kobj_type::
struct kobj_type {
- void (*release)(struct kobject *kobj);
- const struct sysfs_ops *sysfs_ops;
- struct attribute **default_attrs;
- const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj);
- const void *(*namespace)(struct kobject *kobj);
+ void (*release)(struct kobject *kobj);
+ const struct sysfs_ops *sysfs_ops;
+ struct attribute **default_attrs;
+ const struct kobj_ns_type_operations *(*child_ns_type)(struct kobject *kobj);
+ const void *(*namespace)(struct kobject *kobj);
};
This structure is used to describe a particular type of kobject (or, more
@@ -352,8 +352,8 @@ created and never declared statically or on the stack. To create a new
kset use::
struct kset *kset_create_and_add(const char *name,
- struct kset_uevent_ops *u,
- struct kobject *parent);
+ struct kset_uevent_ops *u,
+ struct kobject *parent);
When you are finished with the kset, call::
@@ -365,16 +365,16 @@ Because other references to the kset may still exist, the release may happen
after kset_unregister() returns.
An example of using a kset can be seen in the
-samples/kobject/kset-example.c file in the kernel tree.
+``samples/kobject/kset-example.c`` file in the kernel tree.
If a kset wishes to control the uevent operations of the kobjects
associated with it, it can use the struct kset_uevent_ops to handle it::
struct kset_uevent_ops {
- int (*filter)(struct kset *kset, struct kobject *kobj);
- const char *(*name)(struct kset *kset, struct kobject *kobj);
- int (*uevent)(struct kset *kset, struct kobject *kobj,
- struct kobj_uevent_env *env);
+ int (*filter)(struct kset *kset, struct kobject *kobj);
+ const char *(*name)(struct kset *kset, struct kobject *kobj);
+ int (*uevent)(struct kset *kset, struct kobject *kobj,
+ struct kobj_uevent_env *env);
};
@@ -408,8 +408,8 @@ Kobject removal
After a kobject has been registered with the kobject core successfully, it
must be cleaned up when the code is finished with it. To do that, call
kobject_put(). By doing this, the kobject core will automatically clean up
-all of the memory allocated by this kobject. If a KOBJ_ADD uevent has been
-sent for the object, a corresponding KOBJ_REMOVE uevent will be sent, and
+all of the memory allocated by this kobject. If a ``KOBJ_ADD`` uevent has been
+sent for the object, a corresponding ``KOBJ_REMOVE`` uevent will be sent, and
any other sysfs housekeeping will be handled for the caller properly.
If you need to do a two-stage delete of the kobject (say you are not
@@ -430,5 +430,5 @@ Example code to copy from
=========================
For a more complete example of using ksets and kobjects properly, see the
-example programs samples/kobject/{kobject-example.c,kset-example.c},
-which will be built as loadable modules if you select CONFIG_SAMPLE_KOBJECT.
+example programs ``samples/kobject/{kobject-example.c,kset-example.c}``,
+which will be built as loadable modules if you select ``CONFIG_SAMPLE_KOBJECT``.
diff --git a/Documentation/cpu-freq/amd-powernow.txt b/Documentation/cpu-freq/amd-powernow.txt
deleted file mode 100644
index 254da155fa47..000000000000
--- a/Documentation/cpu-freq/amd-powernow.txt
+++ /dev/null
@@ -1,38 +0,0 @@
-
-PowerNow! and Cool'n'Quiet are AMD names for frequency
-management capabilities in AMD processors. As the hardware
-implementation changes in new generations of the processors,
-there is a different cpu-freq driver for each generation.
-
-Note that the driver's will not load on the "wrong" hardware,
-so it is safe to try each driver in turn when in doubt as to
-which is the correct driver.
-
-Note that the functionality to change frequency (and voltage)
-is not available in all processors. The drivers will refuse
-to load on processors without this capability. The capability
-is detected with the cpuid instruction.
-
-The drivers use BIOS supplied tables to obtain frequency and
-voltage information appropriate for a particular platform.
-Frequency transitions will be unavailable if the BIOS does
-not supply these tables.
-
-6th Generation: powernow-k6
-
-7th Generation: powernow-k7: Athlon, Duron, Geode.
-
-8th Generation: powernow-k8: Athlon, Athlon 64, Opteron, Sempron.
-Documentation on this functionality in 8th generation processors
-is available in the "BIOS and Kernel Developer's Guide", publication
-26094, in chapter 9, available for download from www.amd.com.
-
-BIOS supplied data, for powernow-k7 and for powernow-k8, may be
-from either the PSB table or from ACPI objects. The ACPI support
-is only available if the kernel config sets CONFIG_ACPI_PROCESSOR.
-The powernow-k8 driver will attempt to use ACPI if so configured,
-and fall back to PST if that fails.
-The powernow-k7 driver will try to use the PSB support first, and
-fall back to ACPI if the PSB support fails. A module parameter,
-acpi_force, is provided to force ACPI support to be used instead
-of PSB support.
diff --git a/Documentation/cpu-freq/core.txt b/Documentation/cpu-freq/core.rst
index ed577d9c154b..33cb90bd1d8f 100644
--- a/Documentation/cpu-freq/core.txt
+++ b/Documentation/cpu-freq/core.rst
@@ -1,31 +1,23 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
+.. SPDX-License-Identifier: GPL-2.0
+=============================================================
+General description of the CPUFreq core and CPUFreq notifiers
+=============================================================
- L i n u x C P U F r e q
+Authors:
+ - Dominik Brodowski <linux@brodo.de>
+ - David Kimdon <dwhedon@debian.org>
+ - Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ - Viresh Kumar <viresh.kumar@linaro.org>
- C P U F r e q C o r e
+.. Contents:
-
- Dominik Brodowski <linux@brodo.de>
- David Kimdon <dwhedon@debian.org>
- Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Viresh Kumar <viresh.kumar@linaro.org>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-Contents:
----------
-1. CPUFreq core and interfaces
-2. CPUFreq notifiers
-3. CPUFreq Table Generation with Operating Performance Point (OPP)
+ 1. CPUFreq core and interfaces
+ 2. CPUFreq notifiers
+ 3. CPUFreq Table Generation with Operating Performance Point (OPP)
1. General Information
-=======================
+======================
The CPUFreq core code is located in drivers/cpufreq/cpufreq.c. This
cpufreq code offers a standardized interface for the CPUFreq
@@ -63,7 +55,7 @@ The phase is specified in the second argument to the notifier. The phase is
CPUFREQ_CREATE_POLICY when the policy is first created and it is
CPUFREQ_REMOVE_POLICY when the policy is removed.
-The third argument, a void *pointer, points to a struct cpufreq_policy
+The third argument, a ``void *pointer``, points to a struct cpufreq_policy
consisting of several values, including min, max (the lower and upper
frequencies (in kHz) of the new policy).
@@ -80,10 +72,13 @@ CPUFREQ_POSTCHANGE.
The third argument is a struct cpufreq_freqs with the following
values:
-cpu - number of the affected CPU
-old - old frequency
-new - new frequency
-flags - flags of the cpufreq driver
+
+===== ===========================
+cpu number of the affected CPU
+old old frequency
+new new frequency
+flags flags of the cpufreq driver
+===== ===========================
3. CPUFreq Table Generation with Operating Performance Point (OPP)
==================================================================
@@ -94,9 +89,12 @@ dev_pm_opp_init_cpufreq_table -
the OPP layer's internal information about the available frequencies
into a format readily providable to cpufreq.
- WARNING: Do not use this function in interrupt context.
+ .. Warning::
+
+ Do not use this function in interrupt context.
+
+ Example::
- Example:
soc_pm_init()
{
/* Do things */
@@ -106,7 +104,10 @@ dev_pm_opp_init_cpufreq_table -
/* Do other things */
}
- NOTE: This function is available only if CONFIG_CPU_FREQ is enabled in
- addition to CONFIG_PM_OPP.
+ .. note::
+
+ This function is available only if CONFIG_CPU_FREQ is enabled in
+ addition to CONFIG_PM_OPP.
-dev_pm_opp_free_cpufreq_table - Free up the table allocated by dev_pm_opp_init_cpufreq_table
+dev_pm_opp_free_cpufreq_table
+ Free up the table allocated by dev_pm_opp_init_cpufreq_table
diff --git a/Documentation/cpu-freq/cpu-drivers.txt b/Documentation/cpu-freq/cpu-drivers.rst
index 6e353d00cdc6..a697278ce190 100644
--- a/Documentation/cpu-freq/cpu-drivers.txt
+++ b/Documentation/cpu-freq/cpu-drivers.rst
@@ -1,35 +1,27 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
+.. SPDX-License-Identifier: GPL-2.0
+===============================================
+How to Implement a new CPUFreq Processor Driver
+===============================================
- L i n u x C P U F r e q
+Authors:
- C P U D r i v e r s
- - information for developers -
+ - Dominik Brodowski <linux@brodo.de>
+ - Rafael J. Wysocki <rafael.j.wysocki@intel.com>
+ - Viresh Kumar <viresh.kumar@linaro.org>
+.. Contents
- Dominik Brodowski <linux@brodo.de>
- Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Viresh Kumar <viresh.kumar@linaro.org>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-Contents:
----------
-1. What To Do?
-1.1 Initialization
-1.2 Per-CPU Initialization
-1.3 verify
-1.4 target/target_index or setpolicy?
-1.5 target/target_index
-1.6 setpolicy
-1.7 get_intermediate and target_intermediate
-2. Frequency Table Helpers
+ 1. What To Do?
+ 1.1 Initialization
+ 1.2 Per-CPU Initialization
+ 1.3 verify
+ 1.4 target/target_index or setpolicy?
+ 1.5 target/target_index
+ 1.6 setpolicy
+ 1.7 get_intermediate and target_intermediate
+ 2. Frequency Table Helpers
@@ -49,7 +41,7 @@ function check whether this kernel runs on the right CPU and the right
chipset. If so, register a struct cpufreq_driver with the CPUfreq core
using cpufreq_register_driver()
-What shall this struct cpufreq_driver contain?
+What shall this struct cpufreq_driver contain?
.name - The name of this driver.
@@ -108,37 +100,42 @@ Whenever a new CPU is registered with the device model, or after the
cpufreq driver registers itself, the per-policy initialization function
cpufreq_driver.init is called if no cpufreq policy existed for the CPU.
Note that the .init() and .exit() routines are called only once for the
-policy and not for each CPU managed by the policy. It takes a struct
-cpufreq_policy *policy as argument. What to do now?
+policy and not for each CPU managed by the policy. It takes a ``struct
+cpufreq_policy *policy`` as argument. What to do now?
If necessary, activate the CPUfreq support on your CPU.
Then, the driver must fill in the following values:
-policy->cpuinfo.min_freq _and_
-policy->cpuinfo.max_freq - the minimum and maximum frequency
- (in kHz) which is supported by
- this CPU
-policy->cpuinfo.transition_latency the time it takes on this CPU to
- switch between two frequencies in
- nanoseconds (if appropriate, else
- specify CPUFREQ_ETERNAL)
-
-policy->cur The current operating frequency of
- this CPU (if appropriate)
-policy->min,
-policy->max,
-policy->policy and, if necessary,
-policy->governor must contain the "default policy" for
- this CPU. A few moments later,
- cpufreq_driver.verify and either
- cpufreq_driver.setpolicy or
- cpufreq_driver.target/target_index is called
- with these values.
-policy->cpus Update this with the masks of the
- (online + offline) CPUs that do DVFS
- along with this CPU (i.e. that share
- clock/voltage rails with it).
++-----------------------------------+--------------------------------------+
+|policy->cpuinfo.min_freq _and_ | |
+|policy->cpuinfo.max_freq | the minimum and maximum frequency |
+| | (in kHz) which is supported by |
+| | this CPU |
++-----------------------------------+--------------------------------------+
+|policy->cpuinfo.transition_latency | the time it takes on this CPU to |
+| | switch between two frequencies in |
+| | nanoseconds (if appropriate, else |
+| | specify CPUFREQ_ETERNAL) |
++-----------------------------------+--------------------------------------+
+|policy->cur | The current operating frequency of |
+| | this CPU (if appropriate) |
++-----------------------------------+--------------------------------------+
+|policy->min, | |
+|policy->max, | |
+|policy->policy and, if necessary, | |
+|policy->governor | must contain the "default policy" for|
+| | this CPU. A few moments later, |
+| | cpufreq_driver.verify and either |
+| | cpufreq_driver.setpolicy or |
+| | cpufreq_driver.target/target_index is|
+| | called with these values. |
++-----------------------------------+--------------------------------------+
+|policy->cpus | Update this with the masks of the |
+| | (online + offline) CPUs that do DVFS |
+| | along with this CPU (i.e. that share|
+| | clock/voltage rails with it). |
++-----------------------------------+--------------------------------------+
For setting some of these values (cpuinfo.min[max]_freq, policy->min[max]), the
frequency table helpers might be helpful. See the section 2 for more information
@@ -151,8 +148,8 @@ on them.
When the user decides a new policy (consisting of
"policy,governor,min,max") shall be set, this policy must be validated
so that incompatible values can be corrected. For verifying these
-values cpufreq_verify_within_limits(struct cpufreq_policy *policy,
-unsigned int min_freq, unsigned int max_freq) function might be helpful.
+values cpufreq_verify_within_limits(``struct cpufreq_policy *policy``,
+``unsigned int min_freq``, ``unsigned int max_freq``) function might be helpful.
See section 2 for details on frequency table helpers.
You need to make sure that at least one valid frequency (or operating
@@ -163,7 +160,7 @@ policy->max first, and only if this is no solution, decrease policy->min.
1.4 target or target_index or setpolicy or fast_switch?
-------------------------------------------------------
-Most cpufreq drivers or even most cpu frequency scaling algorithms
+Most cpufreq drivers or even most cpu frequency scaling algorithms
only allow the CPU frequency to be set to predefined fixed values. For
these, you use the ->target(), ->target_index() or ->fast_switch()
callbacks.
@@ -175,8 +172,8 @@ limits on their own. These shall use the ->setpolicy() callback.
1.5. target/target_index
------------------------
-The target_index call has two arguments: struct cpufreq_policy *policy,
-and unsigned int index (into the exposed frequency table).
+The target_index call has two arguments: ``struct cpufreq_policy *policy``,
+and ``unsigned int`` index (into the exposed frequency table).
The CPUfreq driver must set the new frequency when called here. The
actual frequency must be determined by freq_table[index].frequency.
@@ -184,9 +181,9 @@ actual frequency must be determined by freq_table[index].frequency.
It should always restore to earlier frequency (i.e. policy->restore_freq) in
case of errors, even if we switched to intermediate frequency earlier.
-Deprecated:
+Deprecated
----------
-The target call has three arguments: struct cpufreq_policy *policy,
+The target call has three arguments: ``struct cpufreq_policy *policy``,
unsigned int target_frequency, unsigned int relation.
The CPUfreq driver must set the new frequency when called here. The
@@ -210,14 +207,14 @@ Not all drivers are expected to implement it, as sleeping from within
this callback isn't allowed. This callback must be highly optimized to
do switching as fast as possible.
-This function has two arguments: struct cpufreq_policy *policy and
-unsigned int target_frequency.
+This function has two arguments: ``struct cpufreq_policy *policy`` and
+``unsigned int target_frequency``.
1.7 setpolicy
-------------
-The setpolicy call only takes a struct cpufreq_policy *policy as
+The setpolicy call only takes a ``struct cpufreq_policy *policy`` as
argument. You need to set the lower limit of the in-processor or
in-chipset dynamic frequency switching to policy->min, the upper limit
to policy->max, and -if supported- select a performance-oriented
@@ -278,10 +275,10 @@ table.
cpufreq_for_each_valid_entry(pos, table) - iterates over all entries,
excluding CPUFREQ_ENTRY_INVALID frequencies.
-Use arguments "pos" - a cpufreq_frequency_table * as a loop cursor and
-"table" - the cpufreq_frequency_table * you want to iterate over.
+Use arguments "pos" - a ``cpufreq_frequency_table *`` as a loop cursor and
+"table" - the ``cpufreq_frequency_table *`` you want to iterate over.
-For example:
+For example::
struct cpufreq_frequency_table *pos, *driver_freq_table;
diff --git a/Documentation/cpu-freq/cpufreq-nforce2.txt b/Documentation/cpu-freq/cpufreq-nforce2.txt
deleted file mode 100644
index babce1315026..000000000000
--- a/Documentation/cpu-freq/cpufreq-nforce2.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-
-The cpufreq-nforce2 driver changes the FSB on nVidia nForce2 platforms.
-
-This works better than on other platforms, because the FSB of the CPU
-can be controlled independently from the PCI/AGP clock.
-
-The module has two options:
-
- fid: multiplier * 10 (for example 8.5 = 85)
- min_fsb: minimum FSB
-
-If not set, fid is calculated from the current CPU speed and the FSB.
-min_fsb defaults to FSB at boot time - 50 MHz.
-
-IMPORTANT: The available range is limited downwards!
- Also the minimum available FSB can differ, for systems
- booting with 200 MHz, 150 should always work.
-
-
diff --git a/Documentation/cpu-freq/cpufreq-stats.txt b/Documentation/cpu-freq/cpufreq-stats.rst
index 14378cecb172..9ad695b1c7db 100644
--- a/Documentation/cpu-freq/cpufreq-stats.txt
+++ b/Documentation/cpu-freq/cpufreq-stats.rst
@@ -1,21 +1,23 @@
+.. SPDX-License-Identifier: GPL-2.0
- CPU frequency and voltage scaling statistics in the Linux(TM) kernel
+==========================================
+General Description of sysfs CPUFreq Stats
+==========================================
+information for users
- L i n u x c p u f r e q - s t a t s d r i v e r
- - information for users -
+Author: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
+.. Contents
- Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
-
-Contents
-1. Introduction
-2. Statistics Provided (with example)
-3. Configuring cpufreq-stats
+ 1. Introduction
+ 2. Statistics Provided (with example)
+ 3. Configuring cpufreq-stats
1. Introduction
+===============
cpufreq-stats is a driver that provides CPU frequency statistics for each CPU.
These statistics are provided in /sysfs as a bunch of read_only interfaces. This
@@ -28,8 +30,10 @@ that may be running on your CPU. So, it will work with any cpufreq_driver.
2. Statistics Provided (with example)
+=====================================
cpufreq stats provides following statistics (explained in detail below).
+
- time_in_state
- total_trans
- trans_table
@@ -39,53 +43,57 @@ All the statistics will be from the time the stats driver has been inserted
statistic is done. Obviously, stats driver will not have any information
about the frequency transitions before the stats driver insertion.
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l
-total 0
-drwxr-xr-x 2 root root 0 May 14 16:06 .
-drwxr-xr-x 3 root root 0 May 14 15:58 ..
---w------- 1 root root 4096 May 14 16:06 reset
--r--r--r-- 1 root root 4096 May 14 16:06 time_in_state
--r--r--r-- 1 root root 4096 May 14 16:06 total_trans
--r--r--r-- 1 root root 4096 May 14 16:06 trans_table
---------------------------------------------------------------------------------
-
-- reset
+::
+
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # ls -l
+ total 0
+ drwxr-xr-x 2 root root 0 May 14 16:06 .
+ drwxr-xr-x 3 root root 0 May 14 15:58 ..
+ --w------- 1 root root 4096 May 14 16:06 reset
+ -r--r--r-- 1 root root 4096 May 14 16:06 time_in_state
+ -r--r--r-- 1 root root 4096 May 14 16:06 total_trans
+ -r--r--r-- 1 root root 4096 May 14 16:06 trans_table
+
+- **reset**
+
Write-only attribute that can be used to reset the stat counters. This can be
useful for evaluating system behaviour under different governors without the
need for a reboot.
-- time_in_state
+- **time_in_state**
+
This gives the amount of time spent in each of the frequencies supported by
this CPU. The cat output will have "<frequency> <time>" pair in each line, which
will mean this CPU spent <time> usertime units of time at <frequency>. Output
-will have one line for each of the supported frequencies. usertime units here
+will have one line for each of the supported frequencies. usertime units here
is 10mS (similar to other time exported in /proc).
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat time_in_state
-3600000 2089
-3400000 136
-3200000 34
-3000000 67
-2800000 172488
---------------------------------------------------------------------------------
+::
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat time_in_state
+ 3600000 2089
+ 3400000 136
+ 3200000 34
+ 3000000 67
+ 2800000 172488
-- total_trans
-This gives the total number of frequency transitions on this CPU. The cat
+
+- **total_trans**
+
+This gives the total number of frequency transitions on this CPU. The cat
output will have a single count which is the total number of frequency
transitions.
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat total_trans
-20
---------------------------------------------------------------------------------
+::
+
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat total_trans
+ 20
+
+- **trans_table**
-- trans_table
This will give a fine grained information about all the CPU frequency
transitions. The cat output here is a two dimensional matrix, where an entry
-<i,j> (row i, column j) represents the count of number of transitions from
+<i,j> (row i, column j) represents the count of number of transitions from
Freq_i to Freq_j. Freq_i rows and Freq_j columns follow the sorting order in
which the driver has provided the frequency table initially to the cpufreq core
and so can be sorted (ascending or descending) or unsorted. The output here
@@ -95,26 +103,27 @@ readability.
If the transition table is bigger than PAGE_SIZE, reading this will
return an -EFBIG error.
---------------------------------------------------------------------------------
-<mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat trans_table
- From : To
- : 3600000 3400000 3200000 3000000 2800000
- 3600000: 0 5 0 0 0
- 3400000: 4 0 2 0 0
- 3200000: 0 1 0 2 0
- 3000000: 0 0 1 0 3
- 2800000: 0 0 0 2 0
---------------------------------------------------------------------------------
+::
+ <mysystem>:/sys/devices/system/cpu/cpu0/cpufreq/stats # cat trans_table
+ From : To
+ : 3600000 3400000 3200000 3000000 2800000
+ 3600000: 0 5 0 0 0
+ 3400000: 4 0 2 0 0
+ 3200000: 0 1 0 2 0
+ 3000000: 0 0 1 0 3
+ 2800000: 0 0 0 2 0
3. Configuring cpufreq-stats
+============================
+
+To configure cpufreq-stats in your kernel::
-To configure cpufreq-stats in your kernel
-Config Main Menu
- Power management options (ACPI, APM) --->
- CPU Frequency scaling --->
- [*] CPU Frequency scaling
- [*] CPU frequency translation statistics
+ Config Main Menu
+ Power management options (ACPI, APM) --->
+ CPU Frequency scaling --->
+ [*] CPU Frequency scaling
+ [*] CPU frequency translation statistics
"CPU Frequency scaling" (CONFIG_CPU_FREQ) should be enabled to configure
diff --git a/Documentation/cpu-freq/index.rst b/Documentation/cpu-freq/index.rst
new file mode 100644
index 000000000000..aba7831ab1cb
--- /dev/null
+++ b/Documentation/cpu-freq/index.rst
@@ -0,0 +1,39 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============================================================================
+Linux CPUFreq - CPU frequency and voltage scaling code in the Linux(TM) kernel
+==============================================================================
+
+Author: Dominik Brodowski <linux@brodo.de>
+
+ Clock scaling allows you to change the clock speed of the CPUs on the
+ fly. This is a nice method to save battery power, because the lower
+ the clock speed, the less power the CPU consumes.
+
+
+.. toctree::
+ :maxdepth: 1
+
+ core
+ cpu-drivers
+ cpufreq-stats
+
+Mailing List
+------------
+There is a CPU frequency changing CVS commit and general list where
+you can report bugs, problems or submit patches. To post a message,
+send an email to linux-pm@vger.kernel.org.
+
+Links
+-----
+the FTP archives:
+* ftp://ftp.linux.org.uk/pub/linux/cpufreq/
+
+how to access the CVS repository:
+* http://cvs.arm.linux.org.uk/
+
+the CPUFreq Mailing list:
+* http://vger.kernel.org/vger-lists.html#linux-pm
+
+Clock and voltage scaling for the SA-1100:
+* http://www.lartmaker.nl/projects/scaling
diff --git a/Documentation/cpu-freq/index.txt b/Documentation/cpu-freq/index.txt
deleted file mode 100644
index c15e75386a05..000000000000
--- a/Documentation/cpu-freq/index.txt
+++ /dev/null
@@ -1,56 +0,0 @@
- CPU frequency and voltage scaling code in the Linux(TM) kernel
-
-
- L i n u x C P U F r e q
-
-
-
-
- Dominik Brodowski <linux@brodo.de>
-
-
-
- Clock scaling allows you to change the clock speed of the CPUs on the
- fly. This is a nice method to save battery power, because the lower
- the clock speed, the less power the CPU consumes.
-
-
-
-Documents in this directory:
-----------------------------
-
-amd-powernow.txt - AMD powernow driver specific file.
-
-core.txt - General description of the CPUFreq core and
- of CPUFreq notifiers.
-
-cpu-drivers.txt - How to implement a new cpufreq processor driver.
-
-cpufreq-nforce2.txt - nVidia nForce2 platform specific file.
-
-cpufreq-stats.txt - General description of sysfs cpufreq stats.
-
-index.txt - File index, Mailing list and Links (this document)
-
-pcc-cpufreq.txt - PCC cpufreq driver specific file.
-
-
-Mailing List
-------------
-There is a CPU frequency changing CVS commit and general list where
-you can report bugs, problems or submit patches. To post a message,
-send an email to linux-pm@vger.kernel.org.
-
-Links
------
-the FTP archives:
-* ftp://ftp.linux.org.uk/pub/linux/cpufreq/
-
-how to access the CVS repository:
-* http://cvs.arm.linux.org.uk/
-
-the CPUFreq Mailing list:
-* http://vger.kernel.org/vger-lists.html#linux-pm
-
-Clock and voltage scaling for the SA-1100:
-* http://www.lartmaker.nl/projects/scaling
diff --git a/Documentation/cpu-freq/pcc-cpufreq.txt b/Documentation/cpu-freq/pcc-cpufreq.txt
deleted file mode 100644
index 9e3c3b33514c..000000000000
--- a/Documentation/cpu-freq/pcc-cpufreq.txt
+++ /dev/null
@@ -1,207 +0,0 @@
-/*
- * pcc-cpufreq.txt - PCC interface documentation
- *
- * Copyright (C) 2009 Red Hat, Matthew Garrett <mjg@redhat.com>
- * Copyright (C) 2009 Hewlett-Packard Development Company, L.P.
- * Nagananda Chumbalkar <nagananda.chumbalkar@hp.com>
- *
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; version 2 of the License.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or NON
- * INFRINGEMENT. See the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- */
-
-
- Processor Clocking Control Driver
- ---------------------------------
-
-Contents:
----------
-1. Introduction
-1.1 PCC interface
-1.1.1 Get Average Frequency
-1.1.2 Set Desired Frequency
-1.2 Platforms affected
-2. Driver and /sys details
-2.1 scaling_available_frequencies
-2.2 cpuinfo_transition_latency
-2.3 cpuinfo_cur_freq
-2.4 related_cpus
-3. Caveats
-
-1. Introduction:
-----------------
-Processor Clocking Control (PCC) is an interface between the platform
-firmware and OSPM. It is a mechanism for coordinating processor
-performance (ie: frequency) between the platform firmware and the OS.
-
-The PCC driver (pcc-cpufreq) allows OSPM to take advantage of the PCC
-interface.
-
-OS utilizes the PCC interface to inform platform firmware what frequency the
-OS wants for a logical processor. The platform firmware attempts to achieve
-the requested frequency. If the request for the target frequency could not be
-satisfied by platform firmware, then it usually means that power budget
-conditions are in place, and "power capping" is taking place.
-
-1.1 PCC interface:
-------------------
-The complete PCC specification is available here:
-http://www.acpica.org/download/Processor-Clocking-Control-v1p0.pdf
-
-PCC relies on a shared memory region that provides a channel for communication
-between the OS and platform firmware. PCC also implements a "doorbell" that
-is used by the OS to inform the platform firmware that a command has been
-sent.
-
-The ACPI PCCH() method is used to discover the location of the PCC shared
-memory region. The shared memory region header contains the "command" and
-"status" interface. PCCH() also contains details on how to access the platform
-doorbell.
-
-The following commands are supported by the PCC interface:
-* Get Average Frequency
-* Set Desired Frequency
-
-The ACPI PCCP() method is implemented for each logical processor and is
-used to discover the offsets for the input and output buffers in the shared
-memory region.
-
-When PCC mode is enabled, the platform will not expose processor performance
-or throttle states (_PSS, _TSS and related ACPI objects) to OSPM. Therefore,
-the native P-state driver (such as acpi-cpufreq for Intel, powernow-k8 for
-AMD) will not load.
-
-However, OSPM remains in control of policy. The governor (eg: "ondemand")
-computes the required performance for each processor based on server workload.
-The PCC driver fills in the command interface, and the input buffer and
-communicates the request to the platform firmware. The platform firmware is
-responsible for delivering the requested performance.
-
-Each PCC command is "global" in scope and can affect all the logical CPUs in
-the system. Therefore, PCC is capable of performing "group" updates. With PCC
-the OS is capable of getting/setting the frequency of all the logical CPUs in
-the system with a single call to the BIOS.
-
-1.1.1 Get Average Frequency:
-----------------------------
-This command is used by the OSPM to query the running frequency of the
-processor since the last time this command was completed. The output buffer
-indicates the average unhalted frequency of the logical processor expressed as
-a percentage of the nominal (ie: maximum) CPU frequency. The output buffer
-also signifies if the CPU frequency is limited by a power budget condition.
-
-1.1.2 Set Desired Frequency:
-----------------------------
-This command is used by the OSPM to communicate to the platform firmware the
-desired frequency for a logical processor. The output buffer is currently
-ignored by OSPM. The next invocation of "Get Average Frequency" will inform
-OSPM if the desired frequency was achieved or not.
-
-1.2 Platforms affected:
------------------------
-The PCC driver will load on any system where the platform firmware:
-* supports the PCC interface, and the associated PCCH() and PCCP() methods
-* assumes responsibility for managing the hardware clocking controls in order
-to deliver the requested processor performance
-
-Currently, certain HP ProLiant platforms implement the PCC interface. On those
-platforms PCC is the "default" choice.
-
-However, it is possible to disable this interface via a BIOS setting. In
-such an instance, as is also the case on platforms where the PCC interface
-is not implemented, the PCC driver will fail to load silently.
-
-2. Driver and /sys details:
----------------------------
-When the driver loads, it merely prints the lowest and the highest CPU
-frequencies supported by the platform firmware.
-
-The PCC driver loads with a message such as:
-pcc-cpufreq: (v1.00.00) driver loaded with frequency limits: 1600 MHz, 2933
-MHz
-
-This means that the OPSM can request the CPU to run at any frequency in
-between the limits (1600 MHz, and 2933 MHz) specified in the message.
-
-Internally, there is no need for the driver to convert the "target" frequency
-to a corresponding P-state.
-
-The VERSION number for the driver will be of the format v.xy.ab.
-eg: 1.00.02
- ----- --
- | |
- | -- this will increase with bug fixes/enhancements to the driver
- |-- this is the version of the PCC specification the driver adheres to
-
-
-The following is a brief discussion on some of the fields exported via the
-/sys filesystem and how their values are affected by the PCC driver:
-
-2.1 scaling_available_frequencies:
-----------------------------------
-scaling_available_frequencies is not created in /sys. No intermediate
-frequencies need to be listed because the BIOS will try to achieve any
-frequency, within limits, requested by the governor. A frequency does not have
-to be strictly associated with a P-state.
-
-2.2 cpuinfo_transition_latency:
--------------------------------
-The cpuinfo_transition_latency field is 0. The PCC specification does
-not include a field to expose this value currently.
-
-2.3 cpuinfo_cur_freq:
----------------------
-A) Often cpuinfo_cur_freq will show a value different than what is declared
-in the scaling_available_frequencies or scaling_cur_freq, or scaling_max_freq.
-This is due to "turbo boost" available on recent Intel processors. If certain
-conditions are met the BIOS can achieve a slightly higher speed than requested
-by OSPM. An example:
-
-scaling_cur_freq : 2933000
-cpuinfo_cur_freq : 3196000
-
-B) There is a round-off error associated with the cpuinfo_cur_freq value.
-Since the driver obtains the current frequency as a "percentage" (%) of the
-nominal frequency from the BIOS, sometimes, the values displayed by
-scaling_cur_freq and cpuinfo_cur_freq may not match. An example:
-
-scaling_cur_freq : 1600000
-cpuinfo_cur_freq : 1583000
-
-In this example, the nominal frequency is 2933 MHz. The driver obtains the
-current frequency, cpuinfo_cur_freq, as 54% of the nominal frequency:
-
- 54% of 2933 MHz = 1583 MHz
-
-Nominal frequency is the maximum frequency of the processor, and it usually
-corresponds to the frequency of the P0 P-state.
-
-2.4 related_cpus:
------------------
-The related_cpus field is identical to affected_cpus.
-
-affected_cpus : 4
-related_cpus : 4
-
-Currently, the PCC driver does not evaluate _PSD. The platforms that support
-PCC do not implement SW_ALL. So OSPM doesn't need to perform any coordination
-to ensure that the same frequency is requested of all dependent CPUs.
-
-3. Caveats:
------------
-The "cpufreq_stats" module in its present form cannot be loaded and
-expected to work with the PCC driver. Since the "cpufreq_stats" module
-provides information wrt each P-state, it is not applicable to the PCC driver.
diff --git a/Documentation/debugging-modules.txt b/Documentation/debugging-modules.txt
deleted file mode 100644
index 172ad4aec493..000000000000
--- a/Documentation/debugging-modules.txt
+++ /dev/null
@@ -1,22 +0,0 @@
-Debugging Modules after 2.6.3
------------------------------
-
-In almost all distributions, the kernel asks for modules which don't
-exist, such as "net-pf-10" or whatever. Changing "modprobe -q" to
-"succeed" in this case is hacky and breaks some setups, and also we
-want to know if it failed for the fallback code for old aliases in
-fs/char_dev.c, for example.
-
-In the past a debugging message which would fill people's logs was
-emitted. This debugging message has been removed. The correct way
-of debugging module problems is something like this:
-
-echo '#! /bin/sh' > /tmp/modprobe
-echo 'echo "$@" >> /tmp/modprobe.log' >> /tmp/modprobe
-echo 'exec /sbin/modprobe "$@"' >> /tmp/modprobe
-chmod a+x /tmp/modprobe
-echo /tmp/modprobe > /proc/sys/kernel/modprobe
-
-Note that the above applies only when the *kernel* is requesting
-that the module be loaded -- it won't have any effect if that module
-is being loaded explicitly using "modprobe" from userspace.
diff --git a/Documentation/dev-tools/gcov.rst b/Documentation/dev-tools/gcov.rst
index 46aae52a41d0..7bd013596217 100644
--- a/Documentation/dev-tools/gcov.rst
+++ b/Documentation/dev-tools/gcov.rst
@@ -203,7 +203,7 @@ Cause
may not correctly copy files from sysfs.
Solution
- Use ``cat``' to read ``.gcda`` files and ``cp -d`` to copy links.
+ Use ``cat`` to read ``.gcda`` files and ``cp -d`` to copy links.
Alternatively use the mechanism shown in Appendix B.
diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst
index 3a289e8a1d12..fce262883984 100644
--- a/Documentation/dev-tools/kmemleak.rst
+++ b/Documentation/dev-tools/kmemleak.rst
@@ -8,7 +8,8 @@ with the difference that the orphan objects are not freed but only
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in
user-space applications.
-Kmemleak is supported on x86, arm, powerpc, sparc, sh, microblaze, ppc, mips, s390 and tile.
+Kmemleak is supported on x86, arm, arm64, powerpc, sparc, sh, microblaze, mips,
+s390, nds32, arc and xtensa.
Usage
-----
diff --git a/Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml b/Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml
index 33c7842917f6..8b9a8f337f16 100644
--- a/Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml
+++ b/Documentation/devicetree/bindings/crypto/allwinner,sun4i-a10-crypto.yaml
@@ -23,6 +23,8 @@ properties:
- items:
- const: allwinner,sun7i-a20-crypto
- const: allwinner,sun4i-a10-crypto
+ - items:
+ - const: allwinner,sun8i-a33-crypto
reg:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/display/connector/analog-tv-connector.txt b/Documentation/devicetree/bindings/display/connector/analog-tv-connector.txt
index 0c0970c210ab..883bcb2604c7 100644
--- a/Documentation/devicetree/bindings/display/connector/analog-tv-connector.txt
+++ b/Documentation/devicetree/bindings/display/connector/analog-tv-connector.txt
@@ -6,16 +6,22 @@ Required properties:
Optional properties:
- label: a symbolic name for the connector
+- sdtv-standards: limit the supported TV standards on a connector to the given
+ ones. If not specified all TV standards are allowed.
+ Possible TV standards are defined in
+ include/dt-bindings/display/sdtv-standards.h.
Required nodes:
- Video port for TV input
Example
-------
+#include <dt-bindings/display/sdtv-standards.h>
tv: connector {
compatible = "composite-video-connector";
label = "tv";
+ sdtv-standards = <(SDTV_STD_PAL | SDTV_STD_NTSC)>;
port {
tv_connector_in: endpoint {
diff --git a/Documentation/devicetree/bindings/edac/dmc-520.yaml b/Documentation/devicetree/bindings/edac/dmc-520.yaml
new file mode 100644
index 000000000000..9272d2bd8634
--- /dev/null
+++ b/Documentation/devicetree/bindings/edac/dmc-520.yaml
@@ -0,0 +1,59 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/edac/dmc-520.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ARM DMC-520 EDAC bindings
+
+maintainers:
+ - Lei Wang <lewan@microsoft.com>
+
+description: |+
+ DMC-520 node is defined to describe DRAM error detection and correction.
+
+ https://static.docs.arm.com/100000/0200/corelink_dmc520_trm_100000_0200_01_en.pdf
+
+properties:
+ compatible:
+ items:
+ - const: brcm,dmc-520
+ - const: arm,dmc-520
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ minItems: 1
+ maxItems: 10
+
+ interrupt-names:
+ minItems: 1
+ maxItems: 10
+ items:
+ enum:
+ - ram_ecc_errc
+ - ram_ecc_errd
+ - dram_ecc_errc
+ - dram_ecc_errd
+ - failed_access
+ - failed_prog
+ - link_err
+ - temperature_event
+ - arch_fsm
+ - phy_request
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+
+examples:
+ - |
+ dmc0: dmc@200000 {
+ compatible = "brcm,dmc-520", "arm,dmc-520";
+ reg = <0x200000 0x80000>;
+ interrupts = <0x0 0x349 0x4>, <0x0 0x34B 0x4>;
+ interrupt-names = "dram_ecc_errc", "dram_ecc_errd";
+ };
diff --git a/Documentation/devicetree/bindings/fsi/ibm,fsi2spi.yaml b/Documentation/devicetree/bindings/fsi/ibm,fsi2spi.yaml
new file mode 100644
index 000000000000..893d81e54caa
--- /dev/null
+++ b/Documentation/devicetree/bindings/fsi/ibm,fsi2spi.yaml
@@ -0,0 +1,36 @@
+# SPDX-License-Identifier: (GPL-2.0-or-later)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/fsi/ibm,fsi2spi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: IBM FSI-attached SPI controllers
+
+maintainers:
+ - Eddie James <eajames@linux.ibm.com>
+
+description: |
+ This binding describes an FSI CFAM engine called the FSI2SPI. Therefore this
+ node will always be a child of an FSI CFAM node; see fsi.txt for details on
+ FSI slave and CFAM nodes. This FSI2SPI engine provides access to a number of
+ SPI controllers.
+
+properties:
+ compatible:
+ enum:
+ - ibm,fsi2spi
+
+ reg:
+ items:
+ - description: FSI slave address
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ fsi2spi@1c00 {
+ compatible = "ibm,fsi2spi";
+ reg = <0x1c00 0x400>;
+ };
diff --git a/Documentation/devicetree/bindings/hwmon/adi,axi-fan-control.yaml b/Documentation/devicetree/bindings/hwmon/adi,axi-fan-control.yaml
new file mode 100644
index 000000000000..57a240d2d026
--- /dev/null
+++ b/Documentation/devicetree/bindings/hwmon/adi,axi-fan-control.yaml
@@ -0,0 +1,62 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+# Copyright 2019 Analog Devices Inc.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bindings/hwmon/adi,axi-fan-control.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AXI FAN Control Device Tree Bindings
+
+maintainers:
+ - Nuno Sá <nuno.sa@analog.com>
+
+description: |+
+ Bindings for the Analog Devices AXI FAN Control driver. Spefications of the
+ core can be found in:
+
+ https://wiki.analog.com/resources/fpga/docs/axi_fan_control
+
+properties:
+ compatible:
+ enum:
+ - adi,axi-fan-control-1.00.a
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ pulses-per-revolution:
+ description:
+ Value specifying the number of pulses per revolution of the controlled
+ FAN.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [1, 2, 4]
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - interrupts
+ - pulses-per-revolution
+
+examples:
+ - |
+ fpga_axi: fpga-axi@0 {
+ #address-cells = <0x2>;
+ #size-cells = <0x1>;
+
+ axi_fan_control: axi-fan-control@80000000 {
+ compatible = "adi,axi-fan-control-1.00.a";
+ reg = <0x0 0x80000000 0x10000>;
+ clocks = <&clk 71>;
+ interrupts = <0 110 0>;
+ pulses-per-revolution = <2>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/hwmon/adt7475.yaml b/Documentation/devicetree/bindings/hwmon/adt7475.yaml
new file mode 100644
index 000000000000..76985034ea73
--- /dev/null
+++ b/Documentation/devicetree/bindings/hwmon/adt7475.yaml
@@ -0,0 +1,84 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/adt7475.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ADT7475 hwmon sensor
+
+maintainers:
+ - Jean Delvare <jdelvare@suse.com>
+
+description: |
+ The ADT7473, ADT7475, ADT7476, and ADT7490 are thermal monitors and multiple
+ PWN fan controllers.
+
+ They support monitoring and controlling up to four fans (the ADT7490 can only
+ control up to three). They support reading a single on chip temperature
+ sensor and two off chip temperature sensors (the ADT7490 additionally
+ supports measuring up to three current external temperature sensors with
+ series resistance cancellation (SRC)).
+
+ Datasheets:
+ https://www.onsemi.com/pub/Collateral/ADT7473-D.PDF
+ https://www.onsemi.com/pub/Collateral/ADT7475-D.PDF
+ https://www.onsemi.com/pub/Collateral/ADT7476-D.PDF
+ https://www.onsemi.com/pub/Collateral/ADT7490-D.PDF
+
+ Description taken from onsemiconductors specification sheets, with minor
+ rephrasing.
+
+properties:
+ compatible:
+ enum:
+ - adi,adt7473
+ - adi,adt7475
+ - adi,adt7476
+ - adi,adt7490
+
+ reg:
+ maxItems: 1
+
+patternProperties:
+ "^adi,bypass-attenuator-in[0-4]$":
+ description: |
+ Configures bypassing the individual voltage input attenuator. If
+ set to 1 the attenuator is bypassed if set to 0 the attenuator is
+ not bypassed. If the property is absent then the attenuator
+ retains it's configuration from the bios/bootloader.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [0, 1]
+
+ "^adi,pwm-active-state$":
+ description: |
+ Integer array, represents the active state of the pwm outputs If set to 0
+ the pwm uses a logic low output for 100% duty cycle. If set to 1 the pwm
+ uses a logic high output for 100% duty cycle.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - minItems: 3
+ maxItems: 3
+ items:
+ enum: [0, 1]
+ default: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ hwmon@2e {
+ compatible = "adi,adt7476";
+ reg = <0x2e>;
+ adi,bypass-attenuator-in0 = <1>;
+ adi,bypass-attenuator-in1 = <0>;
+ adi,pwm-active-state = <1 0 1>;
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/hwmon/ltc2978.txt b/Documentation/devicetree/bindings/hwmon/ltc2978.txt
index b428a70a7cc0..4e7f6215a453 100644
--- a/Documentation/devicetree/bindings/hwmon/ltc2978.txt
+++ b/Documentation/devicetree/bindings/hwmon/ltc2978.txt
@@ -2,20 +2,30 @@ ltc2978
Required properties:
- compatible: should contain one of:
+ * "lltc,ltc2972"
* "lltc,ltc2974"
* "lltc,ltc2975"
* "lltc,ltc2977"
* "lltc,ltc2978"
+ * "lltc,ltc2979"
* "lltc,ltc2980"
* "lltc,ltc3880"
* "lltc,ltc3882"
* "lltc,ltc3883"
+ * "lltc,ltc3884"
* "lltc,ltc3886"
* "lltc,ltc3887"
+ * "lltc,ltc3889"
+ * "lltc,ltc7880"
* "lltc,ltm2987"
+ * "lltc,ltm4664"
* "lltc,ltm4675"
* "lltc,ltm4676"
+ * "lltc,ltm4677"
+ * "lltc,ltm4678"
+ * "lltc,ltm4680"
* "lltc,ltm4686"
+ * "lltc,ltm4700"
- reg: I2C slave address
Optional properties:
@@ -25,13 +35,17 @@ Optional properties:
standard binding for regulators; see regulator.txt.
Valid names of regulators depend on number of supplies supported per device:
+ * ltc2972 vout0 - vout1
* ltc2974, ltc2975 : vout0 - vout3
- * ltc2977, ltc2980, ltm2987 : vout0 - vout7
+ * ltc2977, ltc2979, ltc2980, ltm2987 : vout0 - vout7
* ltc2978 : vout0 - vout7
- * ltc3880, ltc3882, ltc3886 : vout0 - vout1
+ * ltc3880, ltc3882, ltc3884, ltc3886, ltc3887, ltc3889 : vout0 - vout1
+ * ltc7880 : vout0 - vout1
* ltc3883 : vout0
- * ltm4676 : vout0 - vout1
- * ltm4686 : vout0 - vout1
+ * ltm4664 : vout0 - vout1
+ * ltm4675, ltm4676, ltm4677, ltm4678 : vout0 - vout1
+ * ltm4680, ltm4686 : vout0 - vout1
+ * ltm4700 : vout0 - vout1
Example:
ltc2978@5e {
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7923.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7923.yaml
new file mode 100644
index 000000000000..a11b918e0016
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7923.yaml
@@ -0,0 +1,65 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/adc/adi,ad7923.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD7923 and similars with 4 and 8 Channel ADCs.
+
+maintainers:
+ - Michael Hennerich <michael.hennerich@analog.com>
+ - Patrick Vasseur <patrick.vasseur@c-s.fr>
+
+description: |
+ Analog Devices AD7904, AD7914, AD7923, AD7924 4 Channel ADCs, and AD7908,
+ AD7918, AD7928 8 Channels ADCs.
+
+ Specifications about the part can be found at:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7923.pdf
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7904_7914_7924.pdf
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD7908_7918_7928.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad7904
+ - adi,ad7914
+ - adi,ad7923
+ - adi,ad7924
+ - adi,ad7908
+ - adi,ad7918
+ - adi,ad7928
+
+ reg:
+ maxItems: 1
+
+ refin-supply:
+ description: |
+ The regulator supply for ADC reference voltage.
+
+ '#address-cells':
+ const: 1
+
+ '#size-cells':
+ const: 0
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ spi {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ad7928: adc@0 {
+ compatible = "adi,ad7928";
+ reg = <0>;
+ spi-max-frequency = <25000000>;
+ refin-supply = <&adc_vref>;
+
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/adc/max1363.txt b/Documentation/devicetree/bindings/iio/adc/max1363.txt
deleted file mode 100644
index 94a9011dd860..000000000000
--- a/Documentation/devicetree/bindings/iio/adc/max1363.txt
+++ /dev/null
@@ -1,63 +0,0 @@
-* Maxim 1x3x/136x/116xx Analog to Digital Converter (ADC)
-
-The node for this driver must be a child node of a I2C controller, hence
-all mandatory properties for your controller must be specified. See directory:
-
- Documentation/devicetree/bindings/i2c
-
-for more details.
-
-Required properties:
- - compatible: Should be one of
- "maxim,max1361"
- "maxim,max1362"
- "maxim,max1363"
- "maxim,max1364"
- "maxim,max1036"
- "maxim,max1037"
- "maxim,max1038"
- "maxim,max1039"
- "maxim,max1136"
- "maxim,max1137"
- "maxim,max1138"
- "maxim,max1139"
- "maxim,max1236"
- "maxim,max1237"
- "maxim,max1238"
- "maxim,max1239"
- "maxim,max11600"
- "maxim,max11601"
- "maxim,max11602"
- "maxim,max11603"
- "maxim,max11604"
- "maxim,max11605"
- "maxim,max11606"
- "maxim,max11607"
- "maxim,max11608"
- "maxim,max11609"
- "maxim,max11610"
- "maxim,max11611"
- "maxim,max11612"
- "maxim,max11613"
- "maxim,max11614"
- "maxim,max11615"
- "maxim,max11616"
- "maxim,max11617"
- "maxim,max11644"
- "maxim,max11645"
- "maxim,max11646"
- "maxim,max11647"
- - reg: Should contain the ADC I2C address
-
-Optional properties:
- - vcc-supply: phandle to the regulator that provides power to the ADC.
- - vref-supply: phandle to the regulator for ADC reference voltage.
- - interrupts: IRQ line for the ADC. If not used the driver will use
- polling.
-
-Example:
-adc: max11644@36 {
- compatible = "maxim,max11644";
- reg = <0x36>;
- vref-supply = <&adc_vref>;
-};
diff --git a/Documentation/devicetree/bindings/iio/adc/maxim,max1238.yaml b/Documentation/devicetree/bindings/iio/adc/maxim,max1238.yaml
new file mode 100644
index 000000000000..a0ebb4680140
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/maxim,max1238.yaml
@@ -0,0 +1,76 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/adc/maxim,max1238.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Maxim MAX1238 and similar ADCs
+
+maintainers:
+ - Jonathan Cameron <jic23@kernel.org>
+
+description: |
+ Family of simple ADCs with i2c inteface and internal references.
+
+properties:
+ compatible:
+ enum:
+ - maxim,max1036
+ - maxim,max1037
+ - maxim,max1038
+ - maxim,max1039
+ - maxim,max1136
+ - maxim,max1137
+ - maxim,max1138
+ - maxim,max1139
+ - maxim,max1236
+ - maxim,max1237
+ - maxim,max1238
+ - maxim,max1239
+ - maxim,max11600
+ - maxim,max11601
+ - maxim,max11602
+ - maxim,max11603
+ - maxim,max11604
+ - maxim,max11605
+ - maxim,max11606
+ - maxim,max11607
+ - maxim,max11608
+ - maxim,max11609
+ - maxim,max11610
+ - maxim,max11611
+ - maxim,max11612
+ - maxim,max11613
+ - maxim,max11614
+ - maxim,max11615
+ - maxim,max11616
+ - maxim,max11617
+ - maxim,max11644
+ - maxim,max11645
+ - maxim,max11646
+ - maxim,max11647
+
+ reg:
+ maxItems: 1
+
+ vcc-supply: true
+ vref-supply:
+ description: Optional external reference. If not supplied, internal
+ reference will be used.
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ adc@36 {
+ compatible = "maxim,max1238";
+ reg = <0x36>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/adc/maxim,max1363.yaml b/Documentation/devicetree/bindings/iio/adc/maxim,max1363.yaml
new file mode 100644
index 000000000000..48377549c39a
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/maxim,max1363.yaml
@@ -0,0 +1,50 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/adc/maxim,max1363.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Maxim MAX1363 and similar ADCs
+
+maintainers:
+ - Jonathan Cameron <jic23@kernel.org>
+
+description: |
+ Family of ADCs with i2c inteface, internal references and threshold
+ monitoring.
+
+properties:
+ compatible:
+ enum:
+ - maxim,max1361
+ - maxim,max1362
+ - maxim,max1363
+ - maxim,max1364
+
+ reg:
+ maxItems: 1
+
+ vcc-supply: true
+ vref-supply:
+ description: Optional external reference. If not supplied, internal
+ reference will be used.
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ adc@36 {
+ compatible = "maxim,max1363";
+ reg = <0x36>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/adc/nuvoton,npcm-adc.txt b/Documentation/devicetree/bindings/iio/adc/nuvoton,npcm-adc.txt
index eb939fe77836..ef8eeec1a997 100644
--- a/Documentation/devicetree/bindings/iio/adc/nuvoton,npcm-adc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/nuvoton,npcm-adc.txt
@@ -6,6 +6,7 @@ Required properties:
- compatible: "nuvoton,npcm750-adc" for the NPCM7XX BMC.
- reg: specifies physical base address and size of the registers.
- interrupts: Contain the ADC interrupt with flags for falling edge.
+- resets : phandle to the reset control for this device.
Optional properties:
- clocks: phandle of ADC reference clock, in case the clock is not
@@ -21,4 +22,5 @@ adc: adc@f000c000 {
reg = <0xf000c000 0x8>;
interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clk NPCM7XX_CLK_ADC>;
+ resets = <&rstc NPCM7XX_RESET_IPSRST1 NPCM7XX_RESET_ADC>;
};
diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
deleted file mode 100644
index 8de933146771..000000000000
--- a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.txt
+++ /dev/null
@@ -1,149 +0,0 @@
-STMicroelectronics STM32 ADC device driver
-
-STM32 ADC is a successive approximation analog-to-digital converter.
-It has several multiplexed input channels. Conversions can be performed
-in single, continuous, scan or discontinuous mode. Result of the ADC is
-stored in a left-aligned or right-aligned 32-bit data register.
-Conversions can be launched in software or using hardware triggers.
-
-The analog watchdog feature allows the application to detect if the input
-voltage goes beyond the user-defined, higher or lower thresholds.
-
-Each STM32 ADC block can have up to 3 ADC instances.
-
-Each instance supports two contexts to manage conversions, each one has its
-own configurable sequence and trigger:
-- regular conversion can be done in sequence, running in background
-- injected conversions have higher priority, and so have the ability to
- interrupt regular conversion sequence (either triggered in SW or HW).
- Regular sequence is resumed, in case it has been interrupted.
-
-Contents of a stm32 adc root node:
------------------------------------
-Required properties:
-- compatible: Should be one of:
- "st,stm32f4-adc-core"
- "st,stm32h7-adc-core"
- "st,stm32mp1-adc-core"
-- reg: Offset and length of the ADC block register set.
-- interrupts: One or more interrupts for ADC block. Some parts like stm32f4
- and stm32h7 share a common ADC interrupt line. stm32mp1 has two separate
- interrupt lines, one for each ADC within ADC block.
-- clocks: Core can use up to two clocks, depending on part used:
- - "adc" clock: for the analog circuitry, common to all ADCs.
- It's required on stm32f4.
- It's optional on stm32h7.
- - "bus" clock: for registers access, common to all ADCs.
- It's not present on stm32f4.
- It's required on stm32h7.
-- clock-names: Must be "adc" and/or "bus" depending on part used.
-- interrupt-controller: Identifies the controller node as interrupt-parent
-- vdda-supply: Phandle to the vdda input analog voltage.
-- vref-supply: Phandle to the vref input analog reference voltage.
-- #interrupt-cells = <1>;
-- #address-cells = <1>;
-- #size-cells = <0>;
-
-Optional properties:
-- A pinctrl state named "default" for each ADC channel may be defined to set
- inX ADC pins in mode of operation for analog input on external pin.
-- booster-supply: Phandle to the embedded booster regulator that can be used
- to supply ADC analog input switches on stm32h7 and stm32mp1.
-- vdd-supply: Phandle to the vdd input voltage. It can be used to supply ADC
- analog input switches on stm32mp1.
-- st,syscfg: Phandle to system configuration controller. It can be used to
- control the analog circuitry on stm32mp1.
-- st,max-clk-rate-hz: Allow to specify desired max clock rate used by analog
- circuitry.
-
-Contents of a stm32 adc child node:
------------------------------------
-An ADC block node should contain at least one subnode, representing an
-ADC instance available on the machine.
-
-Required properties:
-- compatible: Should be one of:
- "st,stm32f4-adc"
- "st,stm32h7-adc"
- "st,stm32mp1-adc"
-- reg: Offset of ADC instance in ADC block (e.g. may be 0x0, 0x100, 0x200).
-- clocks: Input clock private to this ADC instance. It's required only on
- stm32f4, that has per instance clock input for registers access.
-- interrupts: IRQ Line for the ADC (e.g. may be 0 for adc@0, 1 for adc@100 or
- 2 for adc@200).
-- st,adc-channels: List of single-ended channels muxed for this ADC.
- It can have up to 16 channels on stm32f4 or 20 channels on stm32h7, numbered
- from 0 to 15 or 19 (resp. for in0..in15 or in0..in19).
-- st,adc-diff-channels: List of differential channels muxed for this ADC.
- Depending on part used, some channels can be configured as differential
- instead of single-ended (e.g. stm32h7). List here positive and negative
- inputs pairs as <vinp vinn>, <vinp vinn>,... vinp and vinn are numbered
- from 0 to 19 on stm32h7)
- Note: At least one of "st,adc-channels" or "st,adc-diff-channels" is required.
- Both properties can be used together. Some channels can be used as
- single-ended and some other ones as differential (mixed). But channels
- can't be configured both as single-ended and differential (invalid).
-- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers" in
- Documentation/devicetree/bindings/iio/iio-bindings.txt
-
-Optional properties:
-- dmas: Phandle to dma channel for this ADC instance.
- See ../../dma/dma.txt for details.
-- dma-names: Must be "rx" when dmas property is being used.
-- assigned-resolution-bits: Resolution (bits) to use for conversions. Must
- match device available resolutions:
- * can be 6, 8, 10 or 12 on stm32f4
- * can be 8, 10, 12, 14 or 16 on stm32h7
- Default is maximum resolution if unset.
-- st,min-sample-time-nsecs: Minimum sampling time in nanoseconds.
- Depending on hardware (board) e.g. high/low analog input source impedance,
- fine tune of ADC sampling time may be recommended.
- This can be either one value or an array that matches 'st,adc-channels' list,
- to set sample time resp. for all channels, or independently for each channel.
-
-Example:
- adc: adc@40012000 {
- compatible = "st,stm32f4-adc-core";
- reg = <0x40012000 0x400>;
- interrupts = <18>;
- clocks = <&rcc 0 168>;
- clock-names = "adc";
- vref-supply = <&reg_vref>;
- interrupt-controller;
- pinctrl-names = "default";
- pinctrl-0 = <&adc3_in8_pin>;
-
- #interrupt-cells = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
-
- adc@0 {
- compatible = "st,stm32f4-adc";
- #io-channel-cells = <1>;
- reg = <0x0>;
- clocks = <&rcc 0 168>;
- interrupt-parent = <&adc>;
- interrupts = <0>;
- st,adc-channels = <8>;
- dmas = <&dma2 0 0 0x400 0x0>;
- dma-names = "rx";
- assigned-resolution-bits = <8>;
- };
- ...
- other adc child nodes follow...
- };
-
-Example to setup:
-- channel 1 as single-ended
-- channels 2 & 3 as differential (with resp. 6 & 7 negative inputs)
-
- adc: adc@40022000 {
- compatible = "st,stm32h7-adc-core";
- ...
- adc1: adc@0 {
- compatible = "st,stm32h7-adc";
- ...
- st,adc-channels = <1>;
- st,adc-diff-channels = <2 6>, <3 7>;
- };
- };
diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml
new file mode 100644
index 000000000000..933ba37944d7
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml
@@ -0,0 +1,458 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/bindings/iio/adc/st,stm32-adc.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: STMicroelectronics STM32 ADC bindings
+
+description: |
+ STM32 ADC is a successive approximation analog-to-digital converter.
+ It has several multiplexed input channels. Conversions can be performed
+ in single, continuous, scan or discontinuous mode. Result of the ADC is
+ stored in a left-aligned or right-aligned 32-bit data register.
+ Conversions can be launched in software or using hardware triggers.
+
+ The analog watchdog feature allows the application to detect if the input
+ voltage goes beyond the user-defined, higher or lower thresholds.
+
+ Each STM32 ADC block can have up to 3 ADC instances.
+
+maintainers:
+ - Fabrice Gasnier <fabrice.gasnier@st.com>
+
+properties:
+ compatible:
+ enum:
+ - st,stm32f4-adc-core
+ - st,stm32h7-adc-core
+ - st,stm32mp1-adc-core
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ description: |
+ One or more interrupts for ADC block, depending on part used:
+ - stm32f4 and stm32h7 share a common ADC interrupt line.
+ - stm32mp1 has two separate interrupt lines, one for each ADC within
+ ADC block.
+ minItems: 1
+ maxItems: 2
+
+ clocks:
+ description: |
+ Core can use up to two clocks, depending on part used:
+ - "adc" clock: for the analog circuitry, common to all ADCs.
+ It's required on stm32f4.
+ It's optional on stm32h7 and stm32mp1.
+ - "bus" clock: for registers access, common to all ADCs.
+ It's not present on stm32f4.
+ It's required on stm32h7 and stm32mp1.
+
+ clock-names: true
+
+ st,max-clk-rate-hz:
+ description:
+ Allow to specify desired max clock rate used by analog circuitry.
+
+ vdda-supply:
+ description: Phandle to the vdda input analog voltage.
+
+ vref-supply:
+ description: Phandle to the vref input analog reference voltage.
+
+ booster-supply:
+ description:
+ Phandle to the embedded booster regulator that can be used to supply ADC
+ analog input switches on stm32h7 and stm32mp1.
+
+ vdd-supply:
+ description:
+ Phandle to the vdd input voltage. It can be used to supply ADC analog
+ input switches on stm32mp1.
+
+ st,syscfg:
+ description:
+ Phandle to system configuration controller. It can be used to control the
+ analog circuitry on stm32mp1.
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/phandle-array"
+
+ interrupt-controller: true
+
+ '#interrupt-cells':
+ const: 1
+
+ '#address-cells':
+ const: 1
+
+ '#size-cells':
+ const: 0
+
+allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: st,stm32f4-adc-core
+
+ then:
+ properties:
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ const: adc
+
+ interrupts:
+ items:
+ - description: interrupt line common for all ADCs
+
+ st,max-clk-rate-hz:
+ minimum: 600000
+ maximum: 36000000
+ default: 36000000
+
+ booster-supply: false
+
+ vdd-supply: false
+
+ st,syscfg: false
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: st,stm32h7-adc-core
+
+ then:
+ properties:
+ clocks:
+ minItems: 1
+ maxItems: 2
+
+ clock-names:
+ items:
+ - const: bus
+ - const: adc
+ minItems: 1
+ maxItems: 2
+
+ interrupts:
+ items:
+ - description: interrupt line common for all ADCs
+
+ st,max-clk-rate-hz:
+ minimum: 120000
+ maximum: 36000000
+ default: 36000000
+
+ vdd-supply: false
+
+ st,syscfg: false
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: st,stm32mp1-adc-core
+
+ then:
+ properties:
+ clocks:
+ minItems: 1
+ maxItems: 2
+
+ clock-names:
+ items:
+ - const: bus
+ - const: adc
+ minItems: 1
+ maxItems: 2
+
+ interrupts:
+ items:
+ - description: interrupt line for ADC1
+ - description: interrupt line for ADC2
+
+ st,max-clk-rate-hz:
+ minimum: 120000
+ maximum: 36000000
+ default: 36000000
+
+additionalProperties: false
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+ - vdda-supply
+ - vref-supply
+ - interrupt-controller
+ - '#interrupt-cells'
+ - '#address-cells'
+ - '#size-cells'
+
+patternProperties:
+ "^adc@[0-9]+$":
+ type: object
+ description:
+ An ADC block node should contain at least one subnode, representing an
+ ADC instance available on the machine.
+
+ properties:
+ compatible:
+ enum:
+ - st,stm32f4-adc
+ - st,stm32h7-adc
+ - st,stm32mp1-adc
+
+ reg:
+ description: |
+ Offset of ADC instance in ADC block. Valid values are:
+ - 0x0: ADC1
+ - 0x100: ADC2
+ - 0x200: ADC3 (stm32f4 only)
+ maxItems: 1
+
+ '#io-channel-cells':
+ const: 1
+
+ interrupts:
+ description: |
+ IRQ Line for the ADC instance. Valid values are:
+ - 0 for adc@0
+ - 1 for adc@100
+ - 2 for adc@200 (stm32f4 only)
+ maxItems: 1
+
+ clocks:
+ description:
+ Input clock private to this ADC instance. It's required only on
+ stm32f4, that has per instance clock input for registers access.
+ maxItems: 1
+
+ dmas:
+ description: RX DMA Channel
+ maxItems: 1
+
+ dma-names:
+ const: rx
+
+ assigned-resolution-bits:
+ description: |
+ Resolution (bits) to use for conversions:
+ - can be 6, 8, 10 or 12 on stm32f4
+ - can be 8, 10, 12, 14 or 16 on stm32h7 and stm32mp1
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+
+ st,adc-channels:
+ description: |
+ List of single-ended channels muxed for this ADC. It can have up to:
+ - 16 channels, numbered from 0 to 15 (for in0..in15) on stm32f4
+ - 20 channels, numbered from 0 to 19 (for in0..in19) on stm32h7 and
+ stm32mp1.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+
+ st,adc-diff-channels:
+ description: |
+ List of differential channels muxed for this ADC. Some channels can
+ be configured as differential instead of single-ended on stm32h7 and
+ on stm32mp1. Positive and negative inputs pairs are listed:
+ <vinp vinn>, <vinp vinn>,... vinp and vinn are numbered from 0 to 19.
+
+ Note: At least one of "st,adc-channels" or "st,adc-diff-channels" is
+ required. Both properties can be used together. Some channels can be
+ used as single-ended and some other ones as differential (mixed). But
+ channels can't be configured both as single-ended and differential.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-matrix
+ - items:
+ items:
+ - description: |
+ "vinp" indicates positive input number
+ minimum: 0
+ maximum: 19
+ - description: |
+ "vinn" indicates negative input number
+ minimum: 0
+ maximum: 19
+
+ st,min-sample-time-nsecs:
+ description:
+ Minimum sampling time in nanoseconds. Depending on hardware (board)
+ e.g. high/low analog input source impedance, fine tune of ADC
+ sampling time may be recommended. This can be either one value or an
+ array that matches "st,adc-channels" and/or "st,adc-diff-channels"
+ list, to set sample time resp. for all channels, or independently for
+ each channel.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+
+ allOf:
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: st,stm32f4-adc
+
+ then:
+ properties:
+ reg:
+ enum:
+ - 0x0
+ - 0x100
+ - 0x200
+
+ interrupts:
+ minimum: 0
+ maximum: 2
+
+ assigned-resolution-bits:
+ enum: [6, 8, 10, 12]
+ default: 12
+
+ st,adc-channels:
+ minItems: 1
+ maxItems: 16
+ items:
+ minimum: 0
+ maximum: 15
+
+ st,adc-diff-channels: false
+
+ st,min-sample-time-nsecs:
+ minItems: 1
+ maxItems: 16
+ items:
+ minimum: 80
+
+ required:
+ - clocks
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - st,stm32h7-adc
+ - st,stm32mp1-adc
+
+ then:
+ properties:
+ reg:
+ enum:
+ - 0x0
+ - 0x100
+
+ interrupts:
+ minimum: 0
+ maximum: 1
+
+ assigned-resolution-bits:
+ enum: [8, 10, 12, 14, 16]
+ default: 16
+
+ st,adc-channels:
+ minItems: 1
+ maxItems: 20
+ items:
+ minimum: 0
+ maximum: 19
+
+ st,min-sample-time-nsecs:
+ minItems: 1
+ maxItems: 20
+ items:
+ minimum: 40
+
+ additionalProperties: false
+
+ anyOf:
+ - required:
+ - st,adc-channels
+ - required:
+ - st,adc-diff-channels
+
+ required:
+ - compatible
+ - reg
+ - interrupts
+ - '#io-channel-cells'
+
+examples:
+ - |
+ // Example 1: with stm32f429, ADC1, single-ended channel 8
+ adc123: adc@40012000 {
+ compatible = "st,stm32f4-adc-core";
+ reg = <0x40012000 0x400>;
+ interrupts = <18>;
+ clocks = <&rcc 0 168>;
+ clock-names = "adc";
+ st,max-clk-rate-hz = <36000000>;
+ vdda-supply = <&vdda>;
+ vref-supply = <&vref>;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ adc@0 {
+ compatible = "st,stm32f4-adc";
+ #io-channel-cells = <1>;
+ reg = <0x0>;
+ clocks = <&rcc 0 168>;
+ interrupt-parent = <&adc123>;
+ interrupts = <0>;
+ st,adc-channels = <8>;
+ dmas = <&dma2 0 0 0x400 0x0>;
+ dma-names = "rx";
+ assigned-resolution-bits = <8>;
+ };
+ // ...
+ // other adc child nodes follow...
+ };
+
+ - |
+ // Example 2: with stm32mp157c to setup ADC1 with:
+ // - channels 0 & 1 as single-ended
+ // - channels 2 & 3 as differential (with resp. 6 & 7 negative inputs)
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/stm32mp1-clks.h>
+ adc12: adc@48003000 {
+ compatible = "st,stm32mp1-adc-core";
+ reg = <0x48003000 0x400>;
+ interrupts = <GIC_SPI 18 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 90 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&rcc ADC12>, <&rcc ADC12_K>;
+ clock-names = "bus", "adc";
+ booster-supply = <&booster>;
+ vdd-supply = <&vdd>;
+ vdda-supply = <&vdda>;
+ vref-supply = <&vref>;
+ st,syscfg = <&syscfg>;
+ interrupt-controller;
+ #interrupt-cells = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ adc@0 {
+ compatible = "st,stm32mp1-adc";
+ #io-channel-cells = <1>;
+ reg = <0x0>;
+ interrupt-parent = <&adc12>;
+ interrupts = <0>;
+ st,adc-channels = <0 1>;
+ st,adc-diff-channels = <2 6>, <3 7>;
+ st,min-sample-time-nsecs = <5000>;
+ dmas = <&dmamux1 9 0x400 0x05>;
+ dma-names = "rx";
+ };
+ // ...
+ // other adc child node follow...
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/iio/amplifiers/adi,hmc425a.yaml b/Documentation/devicetree/bindings/iio/amplifiers/adi,hmc425a.yaml
new file mode 100644
index 000000000000..1c6d49685e9f
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/amplifiers/adi,hmc425a.yaml
@@ -0,0 +1,49 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/amplifiers/adi,hmc425a.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: HMC425A 6-bit Digital Step Attenuator
+
+maintainers:
+- Michael Hennerich <michael.hennerich@analog.com>
+- Beniamin Bia <beniamin.bia@analog.com>
+
+description: |
+ Digital Step Attenuator IIO device with gpio interface.
+ HMC425A 0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz
+ https://www.analog.com/media/en/technical-documentation/data-sheets/hmc425A.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,hmc425a
+
+ vcc-supply: true
+
+ ctrl-gpios:
+ description:
+ Must contain an array of 6 GPIO specifiers, referring to the GPIO pins
+ connected to the control pins V1-V6.
+ minItems: 6
+ maxItems: 6
+
+required:
+ - compatible
+ - ctrl-gpios
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ gpio_hmc425a: hmc425a {
+ compatible = "adi,hmc425a";
+ ctrl-gpios = <&gpio 40 GPIO_ACTIVE_HIGH>,
+ <&gpio 39 GPIO_ACTIVE_HIGH>,
+ <&gpio 38 GPIO_ACTIVE_HIGH>,
+ <&gpio 37 GPIO_ACTIVE_HIGH>,
+ <&gpio 36 GPIO_ACTIVE_HIGH>,
+ <&gpio 35 GPIO_ACTIVE_HIGH>;
+ vcc-supply = <&foo>;
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/chemical/atlas,ec-sm.txt b/Documentation/devicetree/bindings/iio/chemical/atlas,ec-sm.txt
deleted file mode 100644
index f4320595b851..000000000000
--- a/Documentation/devicetree/bindings/iio/chemical/atlas,ec-sm.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-* Atlas Scientific EC-SM OEM sensor
-
-http://www.atlas-scientific.com/_files/_datasheets/_oem/EC_oem_datasheet.pdf
-
-Required properties:
-
- - compatible: must be "atlas,ec-sm"
- - reg: the I2C address of the sensor
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
-Example:
-
-atlas@64 {
- compatible = "atlas,ec-sm";
- reg = <0x64>;
- interrupt-parent = <&gpio1>;
- interrupts = <16 2>;
-};
diff --git a/Documentation/devicetree/bindings/iio/chemical/atlas,orp-sm.txt b/Documentation/devicetree/bindings/iio/chemical/atlas,orp-sm.txt
deleted file mode 100644
index af1f5a9aa4da..000000000000
--- a/Documentation/devicetree/bindings/iio/chemical/atlas,orp-sm.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-* Atlas Scientific ORP-SM OEM sensor
-
-https://www.atlas-scientific.com/_files/_datasheets/_oem/ORP_oem_datasheet.pdf
-
-Required properties:
-
- - compatible: must be "atlas,orp-sm"
- - reg: the I2C address of the sensor
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
-Example:
-
-atlas@66 {
- compatible = "atlas,orp-sm";
- reg = <0x66>;
- interrupt-parent = <&gpio1>;
- interrupts = <16 2>;
-};
diff --git a/Documentation/devicetree/bindings/iio/chemical/atlas,ph-sm.txt b/Documentation/devicetree/bindings/iio/chemical/atlas,ph-sm.txt
deleted file mode 100644
index 79d90f060327..000000000000
--- a/Documentation/devicetree/bindings/iio/chemical/atlas,ph-sm.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-* Atlas Scientific pH-SM OEM sensor
-
-http://www.atlas-scientific.com/_files/_datasheets/_oem/pH_oem_datasheet.pdf
-
-Required properties:
-
- - compatible: must be "atlas,ph-sm"
- - reg: the I2C address of the sensor
- - interrupts: the sole interrupt generated by the device
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client
- node bindings.
-
-Example:
-
-atlas@65 {
- compatible = "atlas,ph-sm";
- reg = <0x65>;
- interrupt-parent = <&gpio1>;
- interrupts = <16 2>;
-};
diff --git a/Documentation/devicetree/bindings/iio/chemical/atlas,sensor.yaml b/Documentation/devicetree/bindings/iio/chemical/atlas,sensor.yaml
new file mode 100644
index 000000000000..edcd2904d50e
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/chemical/atlas,sensor.yaml
@@ -0,0 +1,53 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/chemical/atlas,sensor.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Atlas Scientific OEM sensors
+
+maintainers:
+ - Matt Ranostay <matt.ranostay@konsulko.com>
+
+description: |
+ Atlas Scientific OEM sensors connected via I2C
+
+ Datasheets:
+ http://www.atlas-scientific.com/_files/_datasheets/_oem/DO_oem_datasheet.pdf
+ http://www.atlas-scientific.com/_files/_datasheets/_oem/EC_oem_datasheet.pdf
+ http://www.atlas-scientific.com/_files/_datasheets/_oem/ORP_oem_datasheet.pdf
+ http://www.atlas-scientific.com/_files/_datasheets/_oem/pH_oem_datasheet.pdf
+
+properties:
+ compatible:
+ enum:
+ - atlas,do-sm
+ - atlas,ec-sm
+ - atlas,orp-sm
+ - atlas,ph-sm
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+additionalProperties: false
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ atlas@66 {
+ compatible = "atlas,orp-sm";
+ reg = <0x66>;
+ interrupt-parent = <&gpio1>;
+ interrupts = <16 2>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/dac/adi,ad5770r.yaml b/Documentation/devicetree/bindings/iio/dac/adi,ad5770r.yaml
new file mode 100644
index 000000000000..d9c25cf4b92f
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/dac/adi,ad5770r.yaml
@@ -0,0 +1,185 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2020 Analog Devices Inc.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/bindings/iio/dac/adi,ad5770r.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD5770R DAC device driver
+
+maintainers:
+ - Mircea Caprioru <mircea.caprioru@analog.com>
+
+description: |
+ Bindings for the Analog Devices AD5770R current DAC device. Datasheet can be
+ found here:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/AD5770R.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad5770r
+
+ reg:
+ maxItems: 1
+
+ avdd-supply:
+ description:
+ AVdd voltage supply. Represents two different supplies in the datasheet
+ that are in fact the same.
+
+ iovdd-supply:
+ description:
+ Voltage supply for the chip interface.
+
+ vref-supply:
+ description: Specify the voltage of the external reference used.
+ Available reference options are 1.25 V or 2.5 V. If no
+ external reference declared then the device will use the
+ internal reference of 1.25 V.
+
+ adi,external-resistor:
+ description: Specify if an external 2.5k ohm resistor is used. If not
+ specified the device will use an internal 2.5k ohm resistor.
+ The precision resistor is used for reference current generation.
+ type: boolean
+
+ reset-gpios:
+ description: GPIO spec for the RESET pin. If specified, it will be
+ asserted during driver probe.
+ maxItems: 1
+
+ channel0:
+ description: Represents an external channel which are
+ connected to the DAC. Channel 0 can act both as a current
+ source and sink.
+ type: object
+
+ properties:
+ num:
+ description: This represents the channel number.
+ items:
+ const: 0
+
+ adi,range-microamp:
+ description: Output range of the channel.
+ oneOf:
+ - $ref: /schemas/types.yaml#/definitions/int32-array
+ - items:
+ - enum: [0 300000]
+ - enum: [-60000 0]
+ - enum: [-60000 300000]
+
+ channel1:
+ description: Represents an external channel which are
+ connected to the DAC.
+ type: object
+
+ properties:
+ num:
+ description: This represents the channel number.
+ items:
+ const: 1
+
+ adi,range-microamp:
+ description: Output range of the channel.
+ oneOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - items:
+ - enum: [0 140000]
+ - enum: [0 250000]
+
+ channel2:
+ description: Represents an external channel which are
+ connected to the DAC.
+ type: object
+
+ properties:
+ num:
+ description: This represents the channel number.
+ items:
+ const: 2
+
+ adi,range-microamp:
+ description: Output range of the channel.
+ oneOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - items:
+ - enum: [0 140000]
+ - enum: [0 250000]
+
+patternProperties:
+ "^channel@([3-5])$":
+ type: object
+ description: Represents the external channels which are connected to the DAC.
+ properties:
+ num:
+ description: This represents the channel number.
+ items:
+ minimum: 3
+ maximum: 5
+
+ adi,range-microamp:
+ description: Output range of the channel.
+ oneOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32-array
+ - items:
+ - enum: [0 45000]
+ - enum: [0 100000]
+
+required:
+- reg
+- diff-channels
+- channel0
+- channel1
+- channel2
+- channel3
+- channel4
+- channel5
+
+examples:
+ - |
+ spi {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ad5770r@0 {
+ compatible = "ad5770r";
+ reg = <0>;
+ spi-max-frequency = <1000000>;
+ vref-supply = <&vref>;
+ adi,external-resistor;
+ reset-gpios = <&gpio 22 0>;
+
+ channel@0 {
+ num = <0>;
+ adi,range-microamp = <(-60000) 300000>;
+ };
+
+ channel@1 {
+ num = <1>;
+ adi,range-microamp = <0 140000>;
+ };
+
+ channel@2 {
+ num = <2>;
+ adi,range-microamp = <0 55000>;
+ };
+
+ channel@3 {
+ num = <3>;
+ adi,range-microamp = <0 45000>;
+ };
+
+ channel@4 {
+ num = <4>;
+ adi,range-microamp = <0 45000>;
+ };
+
+ channel@5 {
+ num = <5>;
+ adi,range-microamp = <0 45000>;
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/dac/ltc2632.txt b/Documentation/devicetree/bindings/iio/dac/ltc2632.txt
index e0d5fea33031..338c3220f01a 100644
--- a/Documentation/devicetree/bindings/iio/dac/ltc2632.txt
+++ b/Documentation/devicetree/bindings/iio/dac/ltc2632.txt
@@ -1,4 +1,4 @@
-Linear Technology LTC2632 DAC device driver
+Linear Technology LTC2632/2636 DAC
Required properties:
- compatible: Has to contain one of the following:
@@ -8,6 +8,12 @@ Required properties:
lltc,ltc2632-h12
lltc,ltc2632-h10
lltc,ltc2632-h8
+ lltc,ltc2636-l12
+ lltc,ltc2636-l10
+ lltc,ltc2636-l8
+ lltc,ltc2636-h12
+ lltc,ltc2636-h10
+ lltc,ltc2636-h8
Property rules described in Documentation/devicetree/bindings/spi/spi-bus.txt
apply. In particular, "reg" and "spi-max-frequency" properties must be given.
diff --git a/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt b/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
index c5ee8a20af9f..f2f64749e818 100644
--- a/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
+++ b/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
@@ -4,6 +4,7 @@ http://www.invensense.com/mems/gyro/mpu6050.html
Required properties:
- compatible : should be one of
+ "invensense,mpu6000"
"invensense,mpu6050"
"invensense,mpu6500"
"invensense,mpu6515"
@@ -11,7 +12,11 @@ Required properties:
"invensense,mpu9250"
"invensense,mpu9255"
"invensense,icm20608"
+ "invensense,icm20609"
+ "invensense,icm20689"
"invensense,icm20602"
+ "invensense,icm20690"
+ "invensense,iam20680"
- reg : the I2C address of the sensor
- interrupts: interrupt mapping for IRQ. It should be configured with flags
IRQ_TYPE_LEVEL_HIGH, IRQ_TYPE_EDGE_RISING, IRQ_TYPE_LEVEL_LOW or
diff --git a/Documentation/devicetree/bindings/iio/light/dynaimage,al3010.yaml b/Documentation/devicetree/bindings/iio/light/dynaimage,al3010.yaml
new file mode 100644
index 000000000000..f671edda6641
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/dynaimage,al3010.yaml
@@ -0,0 +1,43 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/dynaimage,al3010.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Dyna-Image AL3010 sensor
+
+maintainers:
+ - David Heidelberg <david@ixit.cz>
+
+properties:
+ compatible:
+ const: dynaimage,al3010
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ vdd-supply:
+ description: Regulator that provides power to the sensor
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ light-sensor@1c {
+ compatible = "dynaimage,al3010";
+ reg = <0x1c>;
+ vdd-supply = <&vdd_reg>;
+ interrupts = <0 99 4>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/light/dynaimage,al3320a.yaml b/Documentation/devicetree/bindings/iio/light/dynaimage,al3320a.yaml
new file mode 100644
index 000000000000..497300239d93
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/dynaimage,al3320a.yaml
@@ -0,0 +1,43 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/dynaimage,al3320a.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Dyna-Image AL3320A sensor
+
+maintainers:
+ - David Heidelberg <david@ixit.cz>
+
+properties:
+ compatible:
+ const: dynaimage,al3320a
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ vdd-supply:
+ description: Regulator that provides power to the sensor
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ light-sensor@1c {
+ compatible = "dynaimage,al3320a";
+ reg = <0x1c>;
+ vdd-supply = <&vdd_reg>;
+ interrupts = <0 99 4>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/light/sharp,gp2ap002.yaml b/Documentation/devicetree/bindings/iio/light/sharp,gp2ap002.yaml
new file mode 100644
index 000000000000..12aa16f24772
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/light/sharp,gp2ap002.yaml
@@ -0,0 +1,85 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/light/sharp,gp2ap002.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Sharp GP2AP002A00F and GP2AP002S00F proximity and ambient light sensors
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+
+description: |
+ Proximity and ambient light sensor with IR LED for the proximity
+ sensing and an analog output for light intensity. The ambient light
+ sensor output is not available on the GP2AP002S00F variant.
+
+properties:
+ compatible:
+ enum:
+ - sharp,gp2ap002a00f
+ - sharp,gp2ap002s00f
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+ description: an interrupt for proximity, usually a GPIO line
+
+ vdd-supply:
+ description: VDD power supply a phandle to a regulator
+
+ vio-supply:
+ description: VIO power supply a phandle to a regulator
+
+ io-channels:
+ maxItems: 1
+ description: ALSOUT ADC channel to read the ambient light
+
+ io-channel-names:
+ const: alsout
+
+ sharp,proximity-far-hysteresis:
+ $ref: /schemas/types.yaml#/definitions/uint8
+ description: |
+ Hysteresis setting for "far" object detection, this setting is
+ device-unique and adjust the optical setting for proximity detection
+ of a "far away" object in front of the sensor.
+
+ sharp,proximity-close-hysteresis:
+ $ref: /schemas/types.yaml#/definitions/uint8
+ description: |
+ Hysteresis setting for "close" object detection, this setting is
+ device-unique and adjust the optical setting for proximity detection
+ of a "close" object in front of the sensor.
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - sharp,proximity-far-hysteresis
+ - sharp,proximity-close-hysteresis
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ light-sensor@44 {
+ compatible = "sharp,gp2ap002a00f";
+ reg = <0x44>;
+ interrupts = <18 IRQ_TYPE_EDGE_FALLING>;
+ vdd-supply = <&vdd_regulator>;
+ vio-supply = <&vio_regulator>;
+ io-channels = <&adc_channel>;
+ io-channel-names = "alsout";
+ sharp,proximity-far-hysteresis = /bits/ 8 <0x2f>;
+ sharp,proximity-close-hysteresis = /bits/ 8 <0x0f>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/iio/proximity/devantech-srf04.yaml b/Documentation/devicetree/bindings/iio/proximity/devantech-srf04.yaml
index 4e80ea7c1475..8afbac24c34e 100644
--- a/Documentation/devicetree/bindings/iio/proximity/devantech-srf04.yaml
+++ b/Documentation/devicetree/bindings/iio/proximity/devantech-srf04.yaml
@@ -51,6 +51,24 @@ properties:
the time between two interrupts is measured in the driver.
maxItems: 1
+ power-gpios:
+ description:
+ Definition of the GPIO for power management of connected peripheral
+ (output).
+ This GPIO can be used by the external hardware for power management.
+ When the device gets suspended it's switched off and when it resumes
+ it's switched on again. After some period of inactivity the driver
+ get suspended automatically (autosuspend feature).
+ maxItems: 1
+
+ startup-time-ms:
+ description:
+ This is the startup time the device needs after a resume to be up and
+ running.
+ minimum: 0
+ maximum: 1000
+ default: 100
+
required:
- compatible
- trig-gpios
diff --git a/Documentation/devicetree/bindings/input/cypress,tm2-touchkey.txt b/Documentation/devicetree/bindings/input/cypress,tm2-touchkey.txt
index ef2ae729718f..921172f689b8 100644
--- a/Documentation/devicetree/bindings/input/cypress,tm2-touchkey.txt
+++ b/Documentation/devicetree/bindings/input/cypress,tm2-touchkey.txt
@@ -5,6 +5,7 @@ Required properties:
* "cypress,tm2-touchkey" - for the touchkey found on the tm2 board
* "cypress,midas-touchkey" - for the touchkey found on midas boards
* "cypress,aries-touchkey" - for the touchkey found on aries boards
+ * "coreriver,tc360-touchkey" - for the Coreriver TouchCore 360 touchkey
- reg: I2C address of the chip.
- interrupts: interrupt to which the chip is connected (see interrupt
binding[0]).
diff --git a/Documentation/devicetree/bindings/media/allwinner,sun8i-a83t-de2-rotate.yaml b/Documentation/devicetree/bindings/media/allwinner,sun8i-a83t-de2-rotate.yaml
new file mode 100644
index 000000000000..75196d11da58
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/allwinner,sun8i-a83t-de2-rotate.yaml
@@ -0,0 +1,70 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/media/allwinner,sun8i-a83t-de2-rotate.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A83T DE2 Rotate Device Tree Bindings
+
+maintainers:
+ - Jernej Skrabec <jernej.skrabec@siol.net>
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <mripard@kernel.org>
+
+description: |-
+ The Allwinner A83T and A64 have a rotation core used for
+ rotating and flipping images.
+
+properties:
+ compatible:
+ oneOf:
+ - const: allwinner,sun8i-a83t-de2-rotate
+ - items:
+ - const: allwinner,sun50i-a64-de2-rotate
+ - const: allwinner,sun8i-a83t-de2-rotate
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: Rotate interface clock
+ - description: Rotate module clock
+
+ clock-names:
+ items:
+ - const: bus
+ - const: mod
+
+ resets:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/sun8i-de2.h>
+ #include <dt-bindings/reset/sun8i-de2.h>
+
+ rotate: rotate@1020000 {
+ compatible = "allwinner,sun8i-a83t-de2-rotate";
+ reg = <0x1020000 0x10000>;
+ interrupts = <GIC_SPI 92 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&display_clocks CLK_BUS_ROT>,
+ <&display_clocks CLK_ROT>;
+ clock-names = "bus",
+ "mod";
+ resets = <&display_clocks RST_ROT>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml b/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml
index 2e40f700e84f..8707df613f6c 100644
--- a/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml
+++ b/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml
@@ -17,7 +17,11 @@ description: |-
properties:
compatible:
- const: allwinner,sun8i-h3-deinterlace
+ oneOf:
+ - const: allwinner,sun8i-h3-deinterlace
+ - items:
+ - const: allwinner,sun50i-a64-deinterlace
+ - const: allwinner,sun8i-h3-deinterlace
reg:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/media/aspeed-video.txt b/Documentation/devicetree/bindings/media/aspeed-video.txt
index ce2894506e1f..d2ca32512272 100644
--- a/Documentation/devicetree/bindings/media/aspeed-video.txt
+++ b/Documentation/devicetree/bindings/media/aspeed-video.txt
@@ -1,11 +1,12 @@
* Device tree bindings for Aspeed Video Engine
-The Video Engine (VE) embedded in the Aspeed AST2400 and AST2500 SOCs can
+The Video Engine (VE) embedded in the Aspeed AST2400/2500/2600 SOCs can
capture and compress video data from digital or analog sources.
Required properties:
- compatible: "aspeed,ast2400-video-engine" or
- "aspeed,ast2500-video-engine"
+ "aspeed,ast2500-video-engine" or
+ "aspeed,ast2600-video-engine"
- reg: contains the offset and length of the VE memory region
- clocks: clock specifiers for the syscon clocks associated with
the VE (ordering must match the clock-names property)
diff --git a/Documentation/devicetree/bindings/media/i2c/imx219.yaml b/Documentation/devicetree/bindings/media/i2c/imx219.yaml
new file mode 100644
index 000000000000..32d6b693274f
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/i2c/imx219.yaml
@@ -0,0 +1,114 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/media/i2c/imx219.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Sony 1/4.0-Inch 8Mpixel CMOS Digital Image Sensor
+
+maintainers:
+ - Dave Stevenson <dave.stevenson@raspberrypi.com>
+
+description: |-
+ The Sony imx219 is a 1/4.0-inch CMOS active pixel digital image sensor
+ with an active array size of 3280H x 2464V. It is programmable through
+ I2C interface. The I2C address is fixed to 0x10 as per sensor data sheet.
+ Image data is sent through MIPI CSI-2, which is configured as either 2 or
+ 4 data lanes.
+
+properties:
+ compatible:
+ const: sony,imx219
+
+ reg:
+ description: I2C device address
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ VDIG-supply:
+ description:
+ Digital I/O voltage supply, 1.8 volts
+
+ VANA-supply:
+ description:
+ Analog voltage supply, 2.8 volts
+
+ VDDL-supply:
+ description:
+ Digital core voltage supply, 1.2 volts
+
+ reset-gpios:
+ description: |-
+ Reference to the GPIO connected to the xclr pin, if any.
+ Must be released (set high) after all supplies are applied.
+
+ # See ../video-interfaces.txt for more details
+ port:
+ type: object
+ properties:
+ endpoint:
+ type: object
+ properties:
+ data-lanes:
+ description: |-
+ The sensor supports either two-lane, or four-lane operation.
+ If this property is omitted four-lane operation is assumed.
+ For two-lane operation the property must be set to <1 2>.
+ items:
+ - const: 1
+ - const: 2
+
+ clock-noncontinuous:
+ type: boolean
+ description: |-
+ MIPI CSI-2 clock is non-continuous if this property is present,
+ otherwise it's continuous.
+
+ link-frequencies:
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint64-array
+ description:
+ Allowed data bus frequencies.
+
+ required:
+ - link-frequencies
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - VANA-supply
+ - VDIG-supply
+ - VDDL-supply
+ - port
+
+additionalProperties: false
+
+examples:
+ - |
+ i2c0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ imx219: sensor@10 {
+ compatible = "sony,imx219";
+ reg = <0x10>;
+ clocks = <&imx219_clk>;
+ VANA-supply = <&imx219_vana>; /* 2.8v */
+ VDIG-supply = <&imx219_vdig>; /* 1.8v */
+ VDDL-supply = <&imx219_vddl>; /* 1.2v */
+
+ port {
+ imx219_0: endpoint {
+ remote-endpoint = <&csi1_ep>;
+ data-lanes = <1 2>;
+ clock-noncontinuous;
+ link-frequencies = /bits/ 64 <456000000>;
+ };
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/media/i2c/tvp5150.txt b/Documentation/devicetree/bindings/media/i2c/tvp5150.txt
index 8c0fc1a26bf0..6c88ce858d08 100644
--- a/Documentation/devicetree/bindings/media/i2c/tvp5150.txt
+++ b/Documentation/devicetree/bindings/media/i2c/tvp5150.txt
@@ -5,38 +5,150 @@ The TVP5150 and TVP5151 are video decoders that convert baseband NTSC and PAL
with discrete syncs or 8-bit ITU-R BT.656 with embedded syncs output formats.
Required Properties:
-- compatible: value must be "ti,tvp5150"
-- reg: I2C slave address
+====================
+- compatible: Value must be "ti,tvp5150".
+- reg: I2C slave address.
Optional Properties:
-- pdn-gpios: phandle for the GPIO connected to the PDN pin, if any.
-- reset-gpios: phandle for the GPIO connected to the RESETB pin, if any.
+====================
+- pdn-gpios: Phandle for the GPIO connected to the PDN pin, if any.
+- reset-gpios: Phandle for the GPIO connected to the RESETB pin, if any.
-The device node must contain one 'port' child node for its digital output
-video port, in accordance with the video interface bindings defined in
-Documentation/devicetree/bindings/media/video-interfaces.txt.
+The device node must contain one 'port' child node per device physical input
+and output port, in accordance with the video interface bindings defined in
+Documentation/devicetree/bindings/media/video-interfaces.txt. The port nodes
+are numbered as follows
-Required Endpoint Properties for parallel synchronization:
+ Name Type Port
+ --------------------------------------
+ AIP1A sink 0
+ AIP1B sink 1
+ Y-OUT src 2
-- hsync-active: active state of the HSYNC signal. Must be <1> (HIGH).
-- vsync-active: active state of the VSYNC signal. Must be <1> (HIGH).
-- field-even-active: field signal level during the even field data
- transmission. Must be <0>.
+The device node must contain at least one sink port and the src port. Each input
+port must be linked to an endpoint defined in [1]. The port/connector layout is
+as follows
-If none of hsync-active, vsync-active and field-even-active is specified,
-the endpoint is assumed to use embedded BT.656 synchronization.
+tvp-5150 port@0 (AIP1A)
+ endpoint@0 -----------> Comp0-Con port
+ endpoint@1 ------+----> Svideo-Con port
+tvp-5150 port@1 (AIP1B) |
+ endpoint@1 ------+
+ endpoint@0 -----------> Comp1-Con port
+tvp-5150 port@2
+ endpoint (video bitstream output at YOUT[0-7] parallel bus)
-Example:
+Required Endpoint Properties for parallel synchronization on output port:
+=========================================================================
+
+- hsync-active: Active state of the HSYNC signal. Must be <1> (HIGH).
+- vsync-active: Active state of the VSYNC signal. Must be <1> (HIGH).
+- field-even-active: Field signal level during the even field data
+ transmission. Must be <0>.
+
+Note: Do not specify any of these properties if you want to use the embedded
+ BT.656 synchronization.
+
+Optional Connector Properties:
+==============================
+
+- sdtv-standards: Set the possible signals to which the hardware tries to lock
+ instead of using the autodetection mechnism. Please look at
+ [1] for more information.
+
+[1] Documentation/devicetree/bindings/display/connector/analog-tv-connector.txt.
+
+Example - three input sources:
+#include <dt-bindings/display/sdtv-standards.h>
+
+comp_connector_0 {
+ compatible = "composite-video-connector";
+ label = "Composite0";
+ sdtv-standards = <SDTV_STD_PAL_M>; /* limit to pal-m signals */
+
+ port {
+ composite0_to_tvp5150: endpoint {
+ remote-endpoint = <&tvp5150_to_composite0>;
+ };
+ };
+};
+
+comp_connector_1 {
+ compatible = "composite-video-connector";
+ label = "Composite1";
+ sdtv-standards = <SDTV_STD_NTSC_M>; /* limit to ntsc-m signals */
+
+ port {
+ composite1_to_tvp5150: endpoint {
+ remote-endpoint = <&tvp5150_to_composite1>;
+ };
+ };
+};
+
+svideo_connector {
+ compatible = "svideo-connector";
+ label = "S-Video";
+
+ port {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ svideo_luma_to_tvp5150: endpoint@0 {
+ reg = <0>;
+ remote-endpoint = <&tvp5150_to_svideo_luma>;
+ };
+
+ svideo_chroma_to_tvp5150: endpoint@1 {
+ reg = <1>;
+ remote-endpoint = <&tvp5150_to_svideo_chroma>;
+ };
+ };
+};
&i2c2 {
- ...
tvp5150@5c {
compatible = "ti,tvp5150";
reg = <0x5c>;
pdn-gpios = <&gpio4 30 GPIO_ACTIVE_LOW>;
reset-gpios = <&gpio6 7 GPIO_ACTIVE_LOW>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0>;
+
+ tvp5150_to_composite0: endpoint@0 {
+ reg = <0>;
+ remote-endpoint = <&composite0_to_tvp5150>;
+ };
+
+ tvp5150_to_svideo_luma: endpoint@1 {
+ reg = <1>;
+ remote-endpoint = <&svideo_luma_to_tvp5150>;
+ };
+ };
+
+ port@1 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <1>;
+
+ tvp5150_to_composite1: endpoint@0 {
+ reg = <0>;
+ remote-endpoint = <&composite1_to_tvp5150>;
+ };
+
+ tvp5150_to_svideo_chroma: endpoint@1 {
+ reg = <1>;
+ remote-endpoint = <&svideo_chroma_to_tvp5150>;
+ };
+ };
+
+ port@2 {
+ reg = <2>;
- port {
tvp5150_1: endpoint {
remote-endpoint = <&ccdc_ep>;
};
diff --git a/Documentation/devicetree/bindings/media/nxp,imx8mq-vpu.yaml b/Documentation/devicetree/bindings/media/nxp,imx8mq-vpu.yaml
new file mode 100644
index 000000000000..a2d1cd77c1e2
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/nxp,imx8mq-vpu.yaml
@@ -0,0 +1,77 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/media/nxp,imx8mq-vpu.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Hantro G1/G2 VPU codecs implemented on i.MX8MQ SoCs
+
+maintainers:
+ - Philipp Zabel <p.zabel@pengutronix.de>
+
+description:
+ Hantro G1/G2 video decode accelerators present on i.MX8MQ SoCs.
+
+properties:
+ compatible:
+ const: nxp,imx8mq-vpu
+
+ reg:
+ maxItems: 3
+
+ reg-names:
+ items:
+ - const: g1
+ - const: g2
+ - const: ctrl
+
+ interrupts:
+ maxItems: 2
+
+ interrupt-names:
+ items:
+ - const: g1
+ - const: g2
+
+ clocks:
+ maxItems: 3
+
+ clock-names:
+ items:
+ - const: g1
+ - const: g2
+ - const: bus
+
+ power-domains:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - reg-names
+ - interrupts
+ - interrupt-names
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ #include <dt-bindings/clock/imx8mq-clock.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ vpu: video-codec@38300000 {
+ compatible = "nxp,imx8mq-vpu";
+ reg = <0x38300000 0x10000>,
+ <0x38310000 0x10000>,
+ <0x38320000 0x10000>;
+ reg-names = "g1", "g2", "ctrl";
+ interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "g1", "g2";
+ clocks = <&clk IMX8MQ_CLK_VPU_G1_ROOT>,
+ <&clk IMX8MQ_CLK_VPU_G2_ROOT>,
+ <&clk IMX8MQ_CLK_VPU_DEC_ROOT>;
+ clock-names = "g1", "g2", "bus";
+ power-domains = <&pgc_vpu>;
+ };
diff --git a/Documentation/devicetree/bindings/media/qcom,msm8916-venus.yaml b/Documentation/devicetree/bindings/media/qcom,msm8916-venus.yaml
new file mode 100644
index 000000000000..f9606df02d70
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/qcom,msm8916-venus.yaml
@@ -0,0 +1,119 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/media/qcom,msm8916-venus.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Venus video encode and decode accelerators
+
+maintainers:
+ - Stanimir Varbanov <stanimir.varbanov@linaro.org>
+
+description: |
+ The Venus IP is a video encode and decode accelerator present
+ on Qualcomm platforms
+
+properties:
+ compatible:
+ const: qcom,msm8916-venus
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ maxItems: 1
+
+ clocks:
+ maxItems: 3
+
+ clock-names:
+ items:
+ - const: core
+ - const: iface
+ - const: bus
+
+ iommus:
+ maxItems: 1
+
+ memory-region:
+ maxItems: 1
+
+ video-decoder:
+ type: object
+
+ properties:
+ compatible:
+ const: "venus-decoder"
+
+ required:
+ - compatible
+
+ additionalProperties: false
+
+ video-encoder:
+ type: object
+
+ properties:
+ compatible:
+ const: "venus-encoder"
+
+ required:
+ - compatible
+
+ additionalProperties: false
+
+ video-firmware:
+ type: object
+
+ description: |
+ Firmware subnode is needed when the platform does not
+ have TrustZone.
+
+ properties:
+ iommus:
+ maxItems: 1
+
+ required:
+ - iommus
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - power-domains
+ - clocks
+ - clock-names
+ - iommus
+ - memory-region
+ - video-decoder
+ - video-encoder
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/qcom,gcc-msm8916.h>
+
+ video-codec@1d00000 {
+ compatible = "qcom,msm8916-venus";
+ reg = <0x01d00000 0xff000>;
+ interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&gcc GCC_VENUS0_VCODEC0_CLK>,
+ <&gcc GCC_VENUS0_AHB_CLK>,
+ <&gcc GCC_VENUS0_AXI_CLK>;
+ clock-names = "core", "iface", "bus";
+ power-domains = <&gcc VENUS_GDSC>;
+ iommus = <&apps_iommu 5>;
+ memory-region = <&venus_mem>;
+
+ video-decoder {
+ compatible = "venus-decoder";
+ };
+
+ video-encoder {
+ compatible = "venus-encoder";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/qcom,msm8996-venus.yaml b/Documentation/devicetree/bindings/media/qcom,msm8996-venus.yaml
new file mode 100644
index 000000000000..fa0dc6c47f1d
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/qcom,msm8996-venus.yaml
@@ -0,0 +1,172 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/media/qcom,msm8996-venus.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Venus video encode and decode accelerators
+
+maintainers:
+ - Stanimir Varbanov <stanimir.varbanov@linaro.org>
+
+description: |
+ The Venus IP is a video encode and decode accelerator present
+ on Qualcomm platforms
+
+properties:
+ compatible:
+ const: qcom,msm8996-venus
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ maxItems: 1
+
+ clocks:
+ maxItems: 4
+
+ clock-names:
+ items:
+ - const: core
+ - const: iface
+ - const: bus
+ - const: mbus
+
+ iommus:
+ maxItems: 20
+
+ memory-region:
+ maxItems: 1
+
+ video-decoder:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-decoder
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ items:
+ - const: core
+
+ power-domains:
+ maxItems: 1
+
+ required:
+ - compatible
+ - clocks
+ - clock-names
+ - power-domains
+
+ additionalProperties: false
+
+ video-encoder:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-encoder
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ items:
+ - const: core
+
+ power-domains:
+ maxItems: 1
+
+ required:
+ - compatible
+ - clocks
+ - clock-names
+ - power-domains
+
+ additionalProperties: false
+
+ video-firmware:
+ type: object
+
+ description: |
+ Firmware subnode is needed when the platform does not
+ have TrustZone.
+
+ properties:
+ iommus:
+ maxItems: 1
+
+ required:
+ - iommus
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - power-domains
+ - clocks
+ - clock-names
+ - iommus
+ - memory-region
+ - video-decoder
+ - video-encoder
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/qcom,mmcc-msm8996.h>
+
+ video-codec@c00000 {
+ compatible = "qcom,msm8996-venus";
+ reg = <0x00c00000 0xff000>;
+ interrupts = <GIC_SPI 287 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&mmcc VIDEO_CORE_CLK>,
+ <&mmcc VIDEO_AHB_CLK>,
+ <&mmcc VIDEO_AXI_CLK>,
+ <&mmcc VIDEO_MAXI_CLK>;
+ clock-names = "core", "iface", "bus", "mbus";
+ power-domains = <&mmcc VENUS_GDSC>;
+ iommus = <&venus_smmu 0x00>,
+ <&venus_smmu 0x01>,
+ <&venus_smmu 0x0a>,
+ <&venus_smmu 0x07>,
+ <&venus_smmu 0x0e>,
+ <&venus_smmu 0x0f>,
+ <&venus_smmu 0x08>,
+ <&venus_smmu 0x09>,
+ <&venus_smmu 0x0b>,
+ <&venus_smmu 0x0c>,
+ <&venus_smmu 0x0d>,
+ <&venus_smmu 0x10>,
+ <&venus_smmu 0x11>,
+ <&venus_smmu 0x21>,
+ <&venus_smmu 0x28>,
+ <&venus_smmu 0x29>,
+ <&venus_smmu 0x2b>,
+ <&venus_smmu 0x2c>,
+ <&venus_smmu 0x2d>,
+ <&venus_smmu 0x31>;
+ memory-region = <&venus_mem>;
+
+ video-decoder {
+ compatible = "venus-decoder";
+ clocks = <&mmcc VIDEO_SUBCORE0_CLK>;
+ clock-names = "core";
+ power-domains = <&mmcc VENUS_CORE0_GDSC>;
+ };
+
+ video-encoder {
+ compatible = "venus-encoder";
+ clocks = <&mmcc VIDEO_SUBCORE1_CLK>;
+ clock-names = "core";
+ power-domains = <&mmcc VENUS_CORE1_GDSC>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/qcom,sc7180-venus.yaml b/Documentation/devicetree/bindings/media/qcom,sc7180-venus.yaml
new file mode 100644
index 000000000000..764affa4877e
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/qcom,sc7180-venus.yaml
@@ -0,0 +1,140 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/media/qcom,sc7180-venus.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Venus video encode and decode accelerators
+
+maintainers:
+ - Stanimir Varbanov <stanimir.varbanov@linaro.org>
+
+description: |
+ The Venus IP is a video encode and decode accelerator present
+ on Qualcomm platforms
+
+properties:
+ compatible:
+ const: qcom,sc7180-venus
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ maxItems: 2
+
+ power-domain-names:
+ items:
+ - const: venus
+ - const: vcodec0
+
+ clocks:
+ maxItems: 5
+
+ clock-names:
+ items:
+ - const: core
+ - const: iface
+ - const: bus
+ - const: vcodec0_core
+ - const: vcodec0_bus
+
+ iommus:
+ maxItems: 1
+
+ memory-region:
+ maxItems: 1
+
+ interconnects:
+ maxItems: 2
+
+ interconnect-names:
+ items:
+ - const: video-mem
+ - const: cpu-cfg
+
+ video-decoder:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-decoder
+
+ required:
+ - compatible
+
+ additionalProperties: false
+
+ video-encoder:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-encoder
+
+ required:
+ - compatible
+
+ additionalProperties: false
+
+ video-firmware:
+ type: object
+
+ description: |
+ Firmware subnode is needed when the platform does not
+ have TrustZone.
+
+ properties:
+ iommus:
+ maxItems: 1
+
+ required:
+ - iommus
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - power-domains
+ - power-domain-names
+ - clocks
+ - clock-names
+ - iommus
+ - memory-region
+ - video-decoder
+ - video-encoder
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/qcom,videocc-sc7180.h>
+
+ venus: video-codec@aa00000 {
+ compatible = "qcom,sc7180-venus";
+ reg = <0 0x0aa00000 0 0xff000>;
+ interrupts = <GIC_SPI 174 IRQ_TYPE_LEVEL_HIGH>;
+ power-domains = <&videocc VENUS_GDSC>,
+ <&videocc VCODEC0_GDSC>;
+ power-domain-names = "venus", "vcodec0";
+ clocks = <&videocc VIDEO_CC_VENUS_CTL_CORE_CLK>,
+ <&videocc VIDEO_CC_VENUS_AHB_CLK>,
+ <&videocc VIDEO_CC_VENUS_CTL_AXI_CLK>,
+ <&videocc VIDEO_CC_VCODEC0_CORE_CLK>,
+ <&videocc VIDEO_CC_VCODEC0_AXI_CLK>;
+ clock-names = "core", "iface", "bus",
+ "vcodec0_core", "vcodec0_bus";
+ iommus = <&apps_smmu 0x0c00 0x60>;
+ memory-region = <&venus_mem>;
+
+ video-decoder {
+ compatible = "venus-decoder";
+ };
+
+ video-encoder {
+ compatible = "venus-encoder";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/qcom,sdm845-venus-v2.yaml b/Documentation/devicetree/bindings/media/qcom,sdm845-venus-v2.yaml
new file mode 100644
index 000000000000..8552f4ab907e
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/qcom,sdm845-venus-v2.yaml
@@ -0,0 +1,140 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/media/qcom,sdm845-venus-v2.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Venus video encode and decode accelerators
+
+maintainers:
+ - Stanimir Varbanov <stanimir.varbanov@linaro.org>
+
+description: |
+ The Venus IP is a video encode and decode accelerator present
+ on Qualcomm platforms
+
+properties:
+ compatible:
+ const: qcom,sdm845-venus-v2
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ maxItems: 3
+
+ power-domain-names:
+ items:
+ - const: venus
+ - const: vcodec0
+ - const: vcodec1
+
+ clocks:
+ maxItems: 7
+
+ clock-names:
+ items:
+ - const: core
+ - const: iface
+ - const: bus
+ - const: vcodec0_core
+ - const: vcodec0_bus
+ - const: vcodec1_core
+ - const: vcodec1_bus
+
+ iommus:
+ maxItems: 2
+
+ memory-region:
+ maxItems: 1
+
+ video-core0:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-decoder
+
+ required:
+ - compatible
+
+ additionalProperties: false
+
+ video-core1:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-encoder
+
+ required:
+ - compatible
+
+ additionalProperties: false
+
+ video-firmware:
+ type: object
+
+ description: |
+ Firmware subnode is needed when the platform does not
+ have TrustZone.
+
+ properties:
+ iommus:
+ maxItems: 1
+
+ required:
+ - iommus
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - power-domains
+ - power-domain-names
+ - clocks
+ - clock-names
+ - iommus
+ - memory-region
+ - video-core0
+ - video-core1
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/qcom,videocc-sdm845.h>
+
+ video-codec@aa00000 {
+ compatible = "qcom,sdm845-venus-v2";
+ reg = <0 0x0aa00000 0 0xff000>;
+ interrupts = <GIC_SPI 174 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&videocc VIDEO_CC_VENUS_CTL_CORE_CLK>,
+ <&videocc VIDEO_CC_VENUS_AHB_CLK>,
+ <&videocc VIDEO_CC_VENUS_CTL_AXI_CLK>,
+ <&videocc VIDEO_CC_VCODEC0_CORE_CLK>,
+ <&videocc VIDEO_CC_VCODEC0_AXI_CLK>,
+ <&videocc VIDEO_CC_VCODEC1_CORE_CLK>,
+ <&videocc VIDEO_CC_VCODEC1_AXI_CLK>;
+ clock-names = "core", "iface", "bus",
+ "vcodec0_core", "vcodec0_bus",
+ "vcodec1_core", "vcodec1_bus";
+ power-domains = <&videocc VENUS_GDSC>,
+ <&videocc VCODEC0_GDSC>,
+ <&videocc VCODEC1_GDSC>;
+ power-domain-names = "venus", "vcodec0", "vcodec1";
+ iommus = <&apps_smmu 0x10a0 0x8>,
+ <&apps_smmu 0x10b0 0x0>;
+ memory-region = <&venus_mem>;
+
+ video-core0 {
+ compatible = "venus-decoder";
+ };
+
+ video-core1 {
+ compatible = "venus-encoder";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/qcom,sdm845-venus.yaml b/Documentation/devicetree/bindings/media/qcom,sdm845-venus.yaml
new file mode 100644
index 000000000000..05cabe4e893a
--- /dev/null
+++ b/Documentation/devicetree/bindings/media/qcom,sdm845-venus.yaml
@@ -0,0 +1,156 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/media/qcom,sdm845-venus.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Venus video encode and decode accelerators
+
+maintainers:
+ - Stanimir Varbanov <stanimir.varbanov@linaro.org>
+
+description: |
+ The Venus IP is a video encode and decode accelerator present
+ on Qualcomm platforms
+
+properties:
+ compatible:
+ const: qcom,sdm845-venus
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ maxItems: 1
+
+ clocks:
+ maxItems: 3
+
+ clock-names:
+ items:
+ - const: core
+ - const: iface
+ - const: bus
+
+ iommus:
+ maxItems: 2
+
+ memory-region:
+ maxItems: 1
+
+ video-core0:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-decoder
+
+ clocks:
+ maxItems: 2
+
+ clock-names:
+ items:
+ - const: core
+ - const: bus
+
+ power-domains:
+ maxItems: 1
+
+ required:
+ - compatible
+ - clocks
+ - clock-names
+ - power-domains
+
+ additionalProperties: false
+
+ video-core1:
+ type: object
+
+ properties:
+ compatible:
+ const: venus-encoder
+
+ clocks:
+ maxItems: 2
+
+ clock-names:
+ items:
+ - const: core
+ - const: bus
+
+ power-domains:
+ maxItems: 1
+
+ required:
+ - compatible
+ - clocks
+ - clock-names
+ - power-domains
+
+ additionalProperties: false
+
+ video-firmware:
+ type: object
+
+ description: |
+ Firmware subnode is needed when the platform does not
+ have TrustZone.
+
+ properties:
+ iommus:
+ maxItems: 1
+
+ required:
+ - iommus
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - power-domains
+ - clocks
+ - clock-names
+ - iommus
+ - memory-region
+ - video-core0
+ - video-core1
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/qcom,videocc-sdm845.h>
+
+ video-codec@aa00000 {
+ compatible = "qcom,sdm845-venus";
+ reg = <0 0x0aa00000 0 0xff000>;
+ interrupts = <GIC_SPI 174 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&videocc VIDEO_CC_VENUS_CTL_CORE_CLK>,
+ <&videocc VIDEO_CC_VENUS_AHB_CLK>,
+ <&videocc VIDEO_CC_VENUS_CTL_AXI_CLK>;
+ clock-names = "core", "iface", "bus";
+ power-domains = <&videocc VENUS_GDSC>;
+ iommus = <&apps_smmu 0x10a0 0x8>,
+ <&apps_smmu 0x10b0 0x0>;
+ memory-region = <&venus_mem>;
+
+ video-core0 {
+ compatible = "venus-decoder";
+ clocks = <&videocc VIDEO_CC_VCODEC0_CORE_CLK>,
+ <&videocc VIDEO_CC_VCODEC0_AXI_CLK>;
+ clock-names = "core", "bus";
+ power-domains = <&videocc VCODEC0_GDSC>;
+ };
+
+ video-core1 {
+ compatible = "venus-encoder";
+ clocks = <&videocc VIDEO_CC_VCODEC1_CORE_CLK>,
+ <&videocc VIDEO_CC_VCODEC1_AXI_CLK>;
+ clock-names = "core", "bus";
+ power-domains = <&videocc VCODEC1_GDSC>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/media/qcom,venus.txt b/Documentation/devicetree/bindings/media/qcom,venus.txt
deleted file mode 100644
index b602c4c025e7..000000000000
--- a/Documentation/devicetree/bindings/media/qcom,venus.txt
+++ /dev/null
@@ -1,120 +0,0 @@
-* Qualcomm Venus video encoder/decoder accelerators
-
-- compatible:
- Usage: required
- Value type: <stringlist>
- Definition: Value should contain one of:
- - "qcom,msm8916-venus"
- - "qcom,msm8996-venus"
- - "qcom,sdm845-venus"
-- reg:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: Register base address and length of the register map.
-- interrupts:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: Should contain interrupt line number.
-- clocks:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: A List of phandle and clock specifier pairs as listed
- in clock-names property.
-- clock-names:
- Usage: required for msm8916
- Value type: <stringlist>
- Definition: Should contain the following entries:
- - "core" Core video accelerator clock
- - "iface" Video accelerator AHB clock
- - "bus" Video accelerator AXI clock
-- clock-names:
- Usage: required for msm8996
- Value type: <stringlist>
- Definition: Should contain the following entries:
- - "core" Core video accelerator clock
- - "iface" Video accelerator AHB clock
- - "bus" Video accelerator AXI clock
- - "mbus" Video MAXI clock
-- power-domains:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: A phandle and power domain specifier pairs to the
- power domain which is responsible for collapsing
- and restoring power to the peripheral.
-- iommus:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: A list of phandle and IOMMU specifier pairs.
-- memory-region:
- Usage: required
- Value type: <phandle>
- Definition: reference to the reserved-memory for the firmware
- memory region.
-
-* Subnodes
-The Venus video-codec node must contain two subnodes representing
-video-decoder and video-encoder, and one optional firmware subnode.
-Firmware subnode is needed when the platform does not have TrustZone.
-
-Every of video-encoder or video-decoder subnode should have:
-
-- compatible:
- Usage: required
- Value type: <stringlist>
- Definition: Value should contain "venus-decoder" or "venus-encoder"
-- clocks:
- Usage: required for msm8996
- Value type: <prop-encoded-array>
- Definition: A List of phandle and clock specifier pairs as listed
- in clock-names property.
-- clock-names:
- Usage: required for msm8996
- Value type: <stringlist>
- Definition: Should contain the following entries:
- - "core" Subcore video accelerator clock
-
-- power-domains:
- Usage: required for msm8996
- Value type: <prop-encoded-array>
- Definition: A phandle and power domain specifier pairs to the
- power domain which is responsible for collapsing
- and restoring power to the subcore.
-
-The firmware subnode must have:
-
-- iommus:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: A list of phandle and IOMMU specifier pairs.
-
-* An Example
- video-codec@1d00000 {
- compatible = "qcom,msm8916-venus";
- reg = <0x01d00000 0xff000>;
- interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&gcc GCC_VENUS0_VCODEC0_CLK>,
- <&gcc GCC_VENUS0_AHB_CLK>,
- <&gcc GCC_VENUS0_AXI_CLK>;
- clock-names = "core", "iface", "bus";
- power-domains = <&gcc VENUS_GDSC>;
- iommus = <&apps_iommu 5>;
- memory-region = <&venus_mem>;
-
- video-decoder {
- compatible = "venus-decoder";
- clocks = <&mmcc VIDEO_SUBCORE0_CLK>;
- clock-names = "core";
- power-domains = <&mmcc VENUS_CORE0_GDSC>;
- };
-
- video-encoder {
- compatible = "venus-encoder";
- clocks = <&mmcc VIDEO_SUBCORE1_CLK>;
- clock-names = "core";
- power-domains = <&mmcc VENUS_CORE1_GDSC>;
- };
-
- video-firmware {
- iommus = <&apps_iommu 0x10b2 0x0>;
- };
- };
diff --git a/Documentation/devicetree/bindings/media/rc.yaml b/Documentation/devicetree/bindings/media/rc.yaml
index a64ee038d235..b27c9385d490 100644
--- a/Documentation/devicetree/bindings/media/rc.yaml
+++ b/Documentation/devicetree/bindings/media/rc.yaml
@@ -143,6 +143,7 @@ properties:
- rc-videomate-k100
- rc-videomate-s350
- rc-videomate-tv-pvr
+ - rc-videostrong-kii-pro
- rc-wetek-hub
- rc-wetek-play2
- rc-winfast
diff --git a/Documentation/devicetree/bindings/media/rockchip-rga.txt b/Documentation/devicetree/bindings/media/rockchip-rga.txt
index fd5276abfad6..c53a8e5133f6 100644
--- a/Documentation/devicetree/bindings/media/rockchip-rga.txt
+++ b/Documentation/devicetree/bindings/media/rockchip-rga.txt
@@ -6,8 +6,9 @@ BitBLT, alpha blending and image blur/sharpness.
Required properties:
- compatible: value should be one of the following
- "rockchip,rk3288-rga";
- "rockchip,rk3399-rga";
+ "rockchip,rk3228-rga", "rockchip,rk3288-rga": for Rockchip RK3228
+ "rockchip,rk3288-rga": for Rockchip RK3288
+ "rockchip,rk3399-rga": for Rockchip RK3399
- interrupts: RGA interrupt specifier.
diff --git a/Documentation/devicetree/bindings/mfd/qcom-rpm.txt b/Documentation/devicetree/bindings/mfd/qcom-rpm.txt
index 3c91ad430eea..b823b8625243 100644
--- a/Documentation/devicetree/bindings/mfd/qcom-rpm.txt
+++ b/Documentation/devicetree/bindings/mfd/qcom-rpm.txt
@@ -61,6 +61,7 @@ Regulator nodes are identified by their compatible:
"qcom,rpm-pm8901-regulators"
"qcom,rpm-pm8921-regulators"
"qcom,rpm-pm8018-regulators"
+ "qcom,rpm-smb208-regulators"
- vdd_l0_l1_lvs-supply:
- vdd_l2_l11_l12-supply:
@@ -171,6 +172,9 @@ pm8018:
s1, s2, s3, s4, s5, , l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11,
l12, l14, lvs1
+smb208:
+ s1a, s1b, s2a, s2b
+
The content of each sub-node is defined by the standard binding for regulators -
see regulator.txt - with additional custom properties described below:
diff --git a/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt b/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
index 4751029b9b74..64f07417ecfb 100644
--- a/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
+++ b/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
@@ -19,7 +19,8 @@ In 'cpu' nodes:
In 'operating-points-v2' table:
- compatible: Should be
- - 'operating-points-v2-kryo-cpu' for apq8096 and msm8996.
+ - 'operating-points-v2-kryo-cpu' for apq8096, msm8996, msm8974,
+ apq8064, ipq8064, msm8960 and ipq8074.
Optional properties:
--------------------
diff --git a/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml b/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml
index 57d8603076bd..9e32cb43fb21 100644
--- a/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml
+++ b/Documentation/devicetree/bindings/phy/amlogic,meson-g12a-usb2-phy.yaml
@@ -14,6 +14,7 @@ properties:
compatible:
enum:
- amlogic,meson-g12a-usb2-phy
+ - amlogic,meson-a1-usb2-phy
reg:
maxItems: 1
@@ -49,6 +50,19 @@ required:
- reset-names
- "#phy-cells"
+if:
+ properties:
+ compatible:
+ enum:
+ - amlogic,meson-a1-usb-ctrl
+
+then:
+ properties:
+ power-domains:
+ maxItems: 1
+ required:
+ - power-domains
+
examples:
- |
phy@36000 {
diff --git a/Documentation/devicetree/bindings/phy/phy-cadence-dp.txt b/Documentation/devicetree/bindings/phy/phy-cadence-dp.txt
deleted file mode 100644
index 7f49fd54ebc1..000000000000
--- a/Documentation/devicetree/bindings/phy/phy-cadence-dp.txt
+++ /dev/null
@@ -1,30 +0,0 @@
-Cadence MHDP DisplayPort SD0801 PHY binding
-===========================================
-
-This binding describes the Cadence SD0801 PHY hardware included with
-the Cadence MHDP DisplayPort controller.
-
--------------------------------------------------------------------------------
-Required properties (controller (parent) node):
-- compatible : Should be "cdns,dp-phy"
-- reg : Defines the following sets of registers in the parent
- mhdp device:
- - Offset of the DPTX PHY configuration registers
- - Offset of the SD0801 PHY configuration registers
-- #phy-cells : from the generic PHY bindings, must be 0.
-
-Optional properties:
-- num_lanes : Number of DisplayPort lanes to use (1, 2 or 4)
-- max_bit_rate : Maximum DisplayPort link bit rate to use, in Mbps (2160,
- 2430, 2700, 3240, 4320, 5400 or 8100)
--------------------------------------------------------------------------------
-
-Example:
- dp_phy: phy@f0fb030a00 {
- compatible = "cdns,dp-phy";
- reg = <0xf0 0xfb030a00 0x0 0x00000040>,
- <0xf0 0xfb500000 0x0 0x00100000>;
- num_lanes = <4>;
- max_bit_rate = <8100>;
- #phy-cells = <0>;
- };
diff --git a/Documentation/devicetree/bindings/phy/phy-cadence-torrent.yaml b/Documentation/devicetree/bindings/phy/phy-cadence-torrent.yaml
new file mode 100644
index 000000000000..c779a3c7d87a
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-cadence-torrent.yaml
@@ -0,0 +1,143 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/phy/phy-cadence-torrent.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Cadence Torrent SD0801 PHY binding for DisplayPort
+
+description:
+ This binding describes the Cadence SD0801 PHY (also known as Torrent PHY)
+ hardware included with the Cadence MHDP DisplayPort controller.
+
+maintainers:
+ - Swapnil Jakhade <sjakhade@cadence.com>
+ - Yuti Amonkar <yamonkar@cadence.com>
+
+properties:
+ compatible:
+ enum:
+ - cdns,torrent-phy
+ - ti,j721e-serdes-10g
+
+ '#address-cells':
+ const: 1
+
+ '#size-cells':
+ const: 0
+
+ clocks:
+ maxItems: 1
+ description:
+ PHY reference clock. Must contain an entry in clock-names.
+
+ clock-names:
+ const: refclk
+
+ reg:
+ minItems: 1
+ maxItems: 2
+ items:
+ - description: Offset of the Torrent PHY configuration registers.
+ - description: Offset of the DPTX PHY configuration registers.
+
+ reg-names:
+ minItems: 1
+ maxItems: 2
+ items:
+ - const: torrent_phy
+ - const: dptx_phy
+
+ resets:
+ maxItems: 1
+ description:
+ Torrent PHY reset.
+ See Documentation/devicetree/bindings/reset/reset.txt
+
+patternProperties:
+ '^phy@[0-7]+$':
+ type: object
+ description:
+ Each group of PHY lanes with a single master lane should be represented as a sub-node.
+ properties:
+ reg:
+ description:
+ The master lane number. This is the lowest numbered lane in the lane group.
+
+ resets:
+ minItems: 1
+ maxItems: 4
+ description:
+ Contains list of resets, one per lane, to get all the link lanes out of reset.
+
+ "#phy-cells":
+ const: 0
+
+ cdns,phy-type:
+ description:
+ Specifies the type of PHY for which the group of PHY lanes is used.
+ Refer include/dt-bindings/phy/phy.h. Constants from the header should be used.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [1, 2, 3, 4, 5, 6]
+
+ cdns,num-lanes:
+ description:
+ Number of DisplayPort lanes.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [1, 2, 4]
+ default: 4
+
+ cdns,max-bit-rate:
+ description:
+ Maximum DisplayPort link bit rate to use, in Mbps
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - enum: [2160, 2430, 2700, 3240, 4320, 5400, 8100]
+ default: 8100
+
+ required:
+ - reg
+ - resets
+ - "#phy-cells"
+ - cdns,phy-type
+
+ additionalProperties: false
+
+required:
+ - compatible
+ - "#address-cells"
+ - "#size-cells"
+ - clocks
+ - clock-names
+ - reg
+ - reg-names
+ - resets
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/phy/phy.h>
+ torrent_phy: torrent-phy@f0fb500000 {
+ compatible = "cdns,torrent-phy";
+ reg = <0xf0 0xfb500000 0x0 0x00100000>,
+ <0xf0 0xfb030a00 0x0 0x00000040>;
+ reg-names = "torrent_phy", "dptx_phy";
+ resets = <&phyrst 0>;
+ clocks = <&ref_clk>;
+ clock-names = "refclk";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ torrent_phy_dp: phy@0 {
+ reg = <0>;
+ resets = <&phyrst 1>, <&phyrst 2>,
+ <&phyrst 3>, <&phyrst 4>;
+ #phy-cells = <0>;
+ cdns,phy-type = <PHY_TYPE_DP>;
+ cdns,num-lanes = <4>;
+ cdns,max-bit-rate = <8100>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/phy/phy-mtk-tphy.txt b/Documentation/devicetree/bindings/phy/phy-mtk-tphy.txt
index a5f7a4f0dbc1..dd75b676b71d 100644
--- a/Documentation/devicetree/bindings/phy/phy-mtk-tphy.txt
+++ b/Documentation/devicetree/bindings/phy/phy-mtk-tphy.txt
@@ -13,10 +13,16 @@ Required properties (controller (parent) node):
"mediatek,mt8173-u3phy";
make use of "mediatek,generic-tphy-v1" on mt2701 instead and
"mediatek,generic-tphy-v2" on mt2712 instead.
- - clocks : (deprecated, use port's clocks instead) a list of phandle +
- clock-specifier pairs, one for each entry in clock-names
- - clock-names : (deprecated, use port's one instead) must contain
- "u3phya_ref": for reference clock of usb3.0 analog phy.
+
+- #address-cells: the number of cells used to represent physical
+ base addresses.
+- #size-cells: the number of cells used to represent the size of an address.
+- ranges: the address mapping relationship to the parent, defined with
+ - empty value: if optional 'reg' is used.
+ - non-empty value: if optional 'reg' is not used. should set
+ the child's base address to 0, the physical address
+ within parent's address space, and the length of
+ the address map.
Required nodes : a sub-node is required for each port the controller
provides. Address range information including the usual
@@ -34,12 +40,6 @@ Optional properties (controller (parent) node):
Required properties (port (child) node):
- reg : address and length of the register set for the port.
-- clocks : a list of phandle + clock-specifier pairs, one for each
- entry in clock-names
-- clock-names : must contain
- "ref": 48M reference clock for HighSpeed analog phy; and 26M
- reference clock for SuperSpeed analog phy, sometimes is
- 24M, 25M or 27M, depended on platform.
- #phy-cells : should be 1 (See second example)
cell after port phandle is phy type from:
- PHY_TYPE_USB2
@@ -48,10 +48,22 @@ Required properties (port (child) node):
- PHY_TYPE_SATA
Optional properties (PHY_TYPE_USB2 port (child) node):
+- clocks : a list of phandle + clock-specifier pairs, one for each
+ entry in clock-names
+- clock-names : may contain
+ "ref": 48M reference clock for HighSpeed (digital) phy; and 26M
+ reference clock for SuperSpeed (digital) phy, sometimes is
+ 24M, 25M or 27M, depended on platform.
+ "da_ref": the reference clock of analog phy, used if the clocks
+ of analog and digital phys are separated, otherwise uses
+ "ref" clock only if needed.
+
- mediatek,eye-src : u32, the value of slew rate calibrate
- mediatek,eye-vrt : u32, the selection of VRT reference voltage
- mediatek,eye-term : u32, the selection of HS_TX TERM reference voltage
- mediatek,bc12 : bool, enable BC12 of u2phy if support it
+- mediatek,discth : u32, the selection of disconnect threshold
+- mediatek,intr : u32, the selection of internal R (resistance)
Example:
diff --git a/Documentation/devicetree/bindings/phy/qcom,qusb2-phy.yaml b/Documentation/devicetree/bindings/phy/qcom,qusb2-phy.yaml
new file mode 100644
index 000000000000..144ae29e7141
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/qcom,qusb2-phy.yaml
@@ -0,0 +1,185 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/phy/qcom,qusb2-phy.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm QUSB2 phy controller
+
+maintainers:
+ - Manu Gautam <mgautam@codeaurora.org>
+
+description:
+ QUSB2 controller supports LS/FS/HS usb connectivity on Qualcomm chipsets.
+
+properties:
+ compatible:
+ oneOf:
+ - items:
+ - enum:
+ - qcom,msm8996-qusb2-phy
+ - qcom,msm8998-qusb2-phy
+ - items:
+ - enum:
+ - qcom,sc7180-qusb2-phy
+ - qcom,sdm845-qusb2-phy
+ - const: qcom,qusb2-v2-phy
+ reg:
+ maxItems: 1
+
+ "#phy-cells":
+ const: 0
+
+ clocks:
+ minItems: 2
+ maxItems: 3
+ items:
+ - description: phy config clock
+ - description: 19.2 MHz ref clk
+ - description: phy interface clock (Optional)
+
+ clock-names:
+ minItems: 2
+ maxItems: 3
+ items:
+ - const: cfg_ahb
+ - const: ref
+ - const: iface
+
+ vdda-pll-supply:
+ description:
+ Phandle to 1.8V regulator supply to PHY refclk pll block.
+
+ vdda-phy-dpdm-supply:
+ description:
+ Phandle to 3.1V regulator supply to Dp/Dm port signals.
+
+ resets:
+ maxItems: 1
+ description:
+ Phandle to reset to phy block.
+
+ nvmem-cells:
+ maxItems: 1
+ description:
+ Phandle to nvmem cell that contains 'HS Tx trim'
+ tuning parameter value for qusb2 phy.
+
+ qcom,tcsr-syscon:
+ description:
+ Phandle to TCSR syscon register region.
+ $ref: /schemas/types.yaml#/definitions/phandle
+
+if:
+ properties:
+ compatible:
+ contains:
+ const: qcom,qusb2-v2-phy
+then:
+ properties:
+ qcom,imp-res-offset-value:
+ description:
+ It is a 6 bit value that specifies offset to be
+ added to PHY refgen RESCODE via IMP_CTRL1 register. It is a PHY
+ tuning parameter that may vary for different boards of same SOC.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 63
+ default: 0
+
+ qcom,bias-ctrl-value:
+ description:
+ It is a 6 bit value that specifies bias-ctrl-value. It is a PHY
+ tuning parameter that may vary for different boards of same SOC.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 63
+ default: 0
+
+ qcom,charge-ctrl-value:
+ description:
+ It is a 2 bit value that specifies charge-ctrl-value. It is a PHY
+ tuning parameter that may vary for different boards of same SOC.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 3
+ default: 0
+
+ qcom,hstx-trim-value:
+ description:
+ It is a 4 bit value that specifies tuning for HSTX
+ output current.
+ Possible range is - 15mA to 24mA (stepsize of 600 uA).
+ See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 15
+ default: 3
+
+ qcom,preemphasis-level:
+ description:
+ It is a 2 bit value that specifies pre-emphasis level.
+ Possible range is 0 to 15% (stepsize of 5%).
+ See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 3
+ default: 2
+
+ qcom,preemphasis-width:
+ description:
+ It is a 1 bit value that specifies how long the HSTX
+ pre-emphasis (specified using qcom,preemphasis-level) must be in
+ effect. Duration could be half-bit of full-bit.
+ See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 1
+ default: 0
+
+ qcom,hsdisc-trim-value:
+ description:
+ It is a 2 bit value tuning parameter that control disconnect
+ threshold and may vary for different boards of same SOC.
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - minimum: 0
+ maximum: 3
+ default: 0
+
+required:
+ - compatible
+ - reg
+ - "#phy-cells"
+ - clocks
+ - clock-names
+ - vdda-pll-supply
+ - vdda-phy-dpdm-supply
+ - resets
+
+
+examples:
+ - |
+ #include <dt-bindings/clock/qcom,gcc-msm8996.h>
+ hsusb_phy: phy@7411000 {
+ compatible = "qcom,msm8996-qusb2-phy";
+ reg = <0x7411000 0x180>;
+ #phy-cells = <0>;
+
+ clocks = <&gcc GCC_USB_PHY_CFG_AHB2PHY_CLK>,
+ <&gcc GCC_RX1_USB2_CLKREF_CLK>;
+ clock-names = "cfg_ahb", "ref";
+
+ vdda-pll-supply = <&pm8994_l12>;
+ vdda-phy-dpdm-supply = <&pm8994_l24>;
+
+ resets = <&gcc GCC_QUSB2PHY_PRIM_BCR>;
+ nvmem-cells = <&qusb2p_hstx_trim>;
+ };
diff --git a/Documentation/devicetree/bindings/phy/qcom,usb-hs-28nm.yaml b/Documentation/devicetree/bindings/phy/qcom,usb-hs-28nm.yaml
new file mode 100644
index 000000000000..ca6a0836b53c
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/qcom,usb-hs-28nm.yaml
@@ -0,0 +1,90 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/phy/qcom,usb-hs-28nm.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Synopsys DesignWare Core 28nm High-Speed PHY
+
+maintainers:
+ - Bryan O'Donoghue <bryan.odonoghue@linaro.org>
+
+description: |
+ Qualcomm Low-Speed, Full-Speed, Hi-Speed 28nm USB PHY
+
+properties:
+ compatible:
+ enum:
+ - qcom,usb-hs-28nm-femtophy
+
+ reg:
+ maxItems: 1
+
+ "#phy-cells":
+ const: 0
+
+ clocks:
+ items:
+ - description: rpmcc ref clock
+ - description: PHY AHB clock
+ - description: Rentention clock
+
+ clock-names:
+ items:
+ - const: ref
+ - const: ahb
+ - const: sleep
+
+ resets:
+ items:
+ - description: PHY core reset
+ - description: POR reset
+
+ reset-names:
+ items:
+ - const: phy
+ - const: por
+
+ vdd-supply:
+ description: phandle to the regulator VDD supply node.
+
+ vdda1p8-supply:
+ description: phandle to the regulator 1.8V supply node.
+
+ vdda3p3-supply:
+ description: phandle to the regulator 3.3V supply node.
+
+required:
+ - compatible
+ - reg
+ - "#phy-cells"
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - vdd-supply
+ - vdda1p8-supply
+ - vdda3p3-supply
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/qcom,gcc-qcs404.h>
+ #include <dt-bindings/clock/qcom,rpmcc.h>
+ usb2_phy_prim: phy@7a000 {
+ compatible = "qcom,usb-hs-28nm-femtophy";
+ reg = <0x0007a000 0x200>;
+ #phy-cells = <0>;
+ clocks = <&rpmcc RPM_SMD_LN_BB_CLK>,
+ <&gcc GCC_USB_HS_PHY_CFG_AHB_CLK>,
+ <&gcc GCC_USB2A_PHY_SLEEP_CLK>;
+ clock-names = "ref", "ahb", "sleep";
+ resets = <&gcc GCC_USB_HS_PHY_CFG_AHB_BCR>,
+ <&gcc GCC_USB2A_PHY_BCR>;
+ reset-names = "phy", "por";
+ vdd-supply = <&vreg_l4_1p2>;
+ vdda1p8-supply = <&vreg_l5_1p8>;
+ vdda3p3-supply = <&vreg_l12_3p3>;
+ };
+...
diff --git a/Documentation/devicetree/bindings/phy/qcom,usb-ss.yaml b/Documentation/devicetree/bindings/phy/qcom,usb-ss.yaml
new file mode 100644
index 000000000000..bd1388d62ce0
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/qcom,usb-ss.yaml
@@ -0,0 +1,83 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/phy/qcom,usb-ss.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Synopsys 1.0.0 SuperSpeed USB PHY
+
+maintainers:
+ - Bryan O'Donoghue <bryan.odonoghue@linaro.org>
+
+description: |
+ Qualcomm Synopsys 1.0.0 SuperSpeed USB PHY
+
+properties:
+ compatible:
+ enum:
+ - qcom,usb-ss-28nm-phy
+
+ reg:
+ maxItems: 1
+
+ "#phy-cells":
+ const: 0
+
+ clocks:
+ items:
+ - description: rpmcc clock
+ - description: PHY AHB clock
+ - description: SuperSpeed pipe clock
+
+ clock-names:
+ items:
+ - const: ref
+ - const: ahb
+ - const: pipe
+
+ vdd-supply:
+ description: phandle to the regulator VDD supply node.
+
+ vdda1p8-supply:
+ description: phandle to the regulator 1.8V supply node.
+
+ resets:
+ items:
+ - description: COM reset
+ - description: PHY reset line
+
+ reset-names:
+ items:
+ - const: com
+ - const: phy
+
+required:
+ - compatible
+ - reg
+ - "#phy-cells"
+ - clocks
+ - clock-names
+ - vdd-supply
+ - vdda1p8-supply
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/qcom,gcc-qcs404.h>
+ #include <dt-bindings/clock/qcom,rpmcc.h>
+ usb3_phy: usb3-phy@78000 {
+ compatible = "qcom,usb-ss-28nm-phy";
+ reg = <0x78000 0x400>;
+ #phy-cells = <0>;
+ clocks = <&rpmcc RPM_SMD_LN_BB_CLK>,
+ <&gcc GCC_USB_HS_PHY_CFG_AHB_CLK>,
+ <&gcc GCC_USB3_PHY_PIPE_CLK>;
+ clock-names = "ref", "ahb", "pipe";
+ resets = <&gcc GCC_USB3_PHY_BCR>,
+ <&gcc GCC_USB3PHY_PHY_BCR>;
+ reset-names = "com", "phy";
+ vdd-supply = <&vreg_l3_1p05>;
+ vdda1p8-supply = <&vreg_l5_1p8>;
+ };
+...
diff --git a/Documentation/devicetree/bindings/phy/qcom-dwc3-usb-phy.txt b/Documentation/devicetree/bindings/phy/qcom-dwc3-usb-phy.txt
deleted file mode 100644
index a1697c27aecd..000000000000
--- a/Documentation/devicetree/bindings/phy/qcom-dwc3-usb-phy.txt
+++ /dev/null
@@ -1,37 +0,0 @@
-Qualcomm DWC3 HS AND SS PHY CONTROLLER
---------------------------------------
-
-DWC3 PHY nodes are defined to describe on-chip Synopsis Physical layer
-controllers. Each DWC3 PHY controller should have its own node.
-
-Required properties:
-- compatible: should contain one of the following:
- - "qcom,dwc3-hs-usb-phy" for High Speed Synopsis PHY controller
- - "qcom,dwc3-ss-usb-phy" for Super Speed Synopsis PHY controller
-- reg: offset and length of the DWC3 PHY controller register set
-- #phy-cells: must be zero
-- clocks: a list of phandles and clock-specifier pairs, one for each entry in
- clock-names.
-- clock-names: Should contain "ref" for the PHY reference clock
-
-Optional clocks:
- "xo" External reference clock
-
-Example:
- phy@100f8800 {
- compatible = "qcom,dwc3-hs-usb-phy";
- reg = <0x100f8800 0x30>;
- clocks = <&gcc USB30_0_UTMI_CLK>;
- clock-names = "ref";
- #phy-cells = <0>;
-
- };
-
- phy@100f8830 {
- compatible = "qcom,dwc3-ss-usb-phy";
- reg = <0x100f8830 0x30>;
- clocks = <&gcc USB30_0_MASTER_CLK>;
- clock-names = "ref";
- #phy-cells = <0>;
-
- };
diff --git a/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt b/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
index eac9ad3cbbc8..54d6f8d43508 100644
--- a/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
+++ b/Documentation/devicetree/bindings/phy/qcom-qmp-phy.txt
@@ -8,10 +8,13 @@ Required properties:
- compatible: compatible list, contains:
"qcom,ipq8074-qmp-pcie-phy" for PCIe phy on IPQ8074
"qcom,msm8996-qmp-pcie-phy" for 14nm PCIe phy on msm8996,
+ "qcom,msm8996-qmp-ufs-phy" for 14nm UFS phy on msm8996,
"qcom,msm8996-qmp-usb3-phy" for 14nm USB3 phy on msm8996,
"qcom,msm8998-qmp-usb3-phy" for USB3 QMP V3 phy on msm8998,
"qcom,msm8998-qmp-ufs-phy" for UFS QMP phy on msm8998,
"qcom,msm8998-qmp-pcie-phy" for PCIe QMP phy on msm8998,
+ "qcom,sdm845-qhp-pcie-phy" for QHP PCIe phy on sdm845,
+ "qcom,sdm845-qmp-pcie-phy" for QMP PCIe phy on sdm845,
"qcom,sdm845-qmp-usb3-phy" for USB3 QMP V3 phy on sdm845,
"qcom,sdm845-qmp-usb3-uni-phy" for USB3 QMP V3 UNI phy on sdm845,
"qcom,sdm845-qmp-ufs-phy" for UFS QMP phy on sdm845,
@@ -44,6 +47,8 @@ Required properties:
For "qcom,ipq8074-qmp-pcie-phy": no clocks are listed.
For "qcom,msm8996-qmp-pcie-phy" must contain:
"aux", "cfg_ahb", "ref".
+ For "qcom,msm8996-qmp-ufs-phy" must contain:
+ "ref".
For "qcom,msm8996-qmp-usb3-phy" must contain:
"aux", "cfg_ahb", "ref".
For "qcom,msm8998-qmp-usb3-phy" must contain:
@@ -52,6 +57,10 @@ Required properties:
"ref", "ref_aux".
For "qcom,msm8998-qmp-pcie-phy" must contain:
"aux", "cfg_ahb", "ref".
+ For "qcom,sdm845-qhp-pcie-phy" must contain:
+ "aux", "cfg_ahb", "ref", "refgen".
+ For "qcom,sdm845-qmp-pcie-phy" must contain:
+ "aux", "cfg_ahb", "ref", "refgen".
For "qcom,sdm845-qmp-usb3-phy" must contain:
"aux", "cfg_ahb", "ref", "com_aux".
For "qcom,sdm845-qmp-usb3-uni-phy" must contain:
@@ -72,6 +81,8 @@ Required properties:
"phy", "common".
For "qcom,msm8996-qmp-pcie-phy" must contain:
"phy", "common", "cfg".
+ For "qcom,msm8996-qmp-ufs-phy": must contain:
+ "ufsphy".
For "qcom,msm8996-qmp-usb3-phy" must contain
"phy", "common".
For "qcom,msm8998-qmp-usb3-phy" must contain
@@ -80,6 +91,10 @@ Required properties:
"ufsphy".
For "qcom,msm8998-qmp-pcie-phy" must contain:
"phy", "common".
+ For "qcom,sdm845-qhp-pcie-phy" must contain:
+ "phy".
+ For "qcom,sdm845-qmp-pcie-phy" must contain:
+ "phy".
For "qcom,sdm845-qmp-usb3-phy" must contain:
"phy", "common".
For "qcom,sdm845-qmp-usb3-uni-phy" must contain:
diff --git a/Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt b/Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt
deleted file mode 100644
index fe29f9e0af6d..000000000000
--- a/Documentation/devicetree/bindings/phy/qcom-qusb2-phy.txt
+++ /dev/null
@@ -1,68 +0,0 @@
-Qualcomm QUSB2 phy controller
-=============================
-
-QUSB2 controller supports LS/FS/HS usb connectivity on Qualcomm chipsets.
-
-Required properties:
- - compatible: compatible list, contains
- "qcom,msm8996-qusb2-phy" for 14nm PHY on msm8996,
- "qcom,msm8998-qusb2-phy" for 10nm PHY on msm8998,
- "qcom,sdm845-qusb2-phy" for 10nm PHY on sdm845.
-
- - reg: offset and length of the PHY register set.
- - #phy-cells: must be 0.
-
- - clocks: a list of phandles and clock-specifier pairs,
- one for each entry in clock-names.
- - clock-names: must be "cfg_ahb" for phy config clock,
- "ref" for 19.2 MHz ref clk,
- "iface" for phy interface clock (Optional).
-
- - vdda-pll-supply: Phandle to 1.8V regulator supply to PHY refclk pll block.
- - vdda-phy-dpdm-supply: Phandle to 3.1V regulator supply to Dp/Dm port signals.
-
- - resets: Phandle to reset to phy block.
-
-Optional properties:
- - nvmem-cells: Phandle to nvmem cell that contains 'HS Tx trim'
- tuning parameter value for qusb2 phy.
-
- - qcom,tcsr-syscon: Phandle to TCSR syscon register region.
- - qcom,imp-res-offset-value: It is a 6 bit value that specifies offset to be
- added to PHY refgen RESCODE via IMP_CTRL1 register. It is a PHY
- tuning parameter that may vary for different boards of same SOC.
- This property is applicable to only QUSB2 v2 PHY (sdm845).
- - qcom,hstx-trim-value: It is a 4 bit value that specifies tuning for HSTX
- output current.
- Possible range is - 15mA to 24mA (stepsize of 600 uA).
- See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
- This property is applicable to only QUSB2 v2 PHY (sdm845).
- Default value is 22.2mA for sdm845.
- - qcom,preemphasis-level: It is a 2 bit value that specifies pre-emphasis level.
- Possible range is 0 to 15% (stepsize of 5%).
- See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
- This property is applicable to only QUSB2 v2 PHY (sdm845).
- Default value is 10% for sdm845.
-- qcom,preemphasis-width: It is a 1 bit value that specifies how long the HSTX
- pre-emphasis (specified using qcom,preemphasis-level) must be in
- effect. Duration could be half-bit of full-bit.
- See dt-bindings/phy/phy-qcom-qusb2.h for applicable values.
- This property is applicable to only QUSB2 v2 PHY (sdm845).
- Default value is full-bit width for sdm845.
-
-Example:
- hsusb_phy: phy@7411000 {
- compatible = "qcom,msm8996-qusb2-phy";
- reg = <0x7411000 0x180>;
- #phy-cells = <0>;
-
- clocks = <&gcc GCC_USB_PHY_CFG_AHB2PHY_CLK>,
- <&gcc GCC_RX1_USB2_CLKREF_CLK>,
- clock-names = "cfg_ahb", "ref";
-
- vdda-pll-supply = <&pm8994_l12>;
- vdda-phy-dpdm-supply = <&pm8994_l24>;
-
- resets = <&gcc GCC_QUSB2PHY_PRIM_BCR>;
- nvmem-cells = <&qusb2p_hstx_trim>;
- };
diff --git a/Documentation/devicetree/bindings/phy/ti-phy-gmii-sel.txt b/Documentation/devicetree/bindings/phy/ti-phy-gmii-sel.txt
index 50ce9ae0f7a5..83b78c1c0644 100644
--- a/Documentation/devicetree/bindings/phy/ti-phy-gmii-sel.txt
+++ b/Documentation/devicetree/bindings/phy/ti-phy-gmii-sel.txt
@@ -40,6 +40,7 @@ Required properties:
"ti,dra7xx-phy-gmii-sel" for dra7xx/am57xx platform
"ti,am43xx-phy-gmii-sel" for am43xx platform
"ti,dm814-phy-gmii-sel" for dm814x platform
+ "ti,am654-phy-gmii-sel" for AM654x/J721E platform
- reg : Address and length of the register set for the device
- #phy-cells : must be 2.
cell 1 - CPSW port number (starting from 1)
diff --git a/Documentation/devicetree/bindings/phy/uniphier-pcie-phy.txt b/Documentation/devicetree/bindings/phy/uniphier-pcie-phy.txt
index 1889d3b89d68..3cee372c5742 100644
--- a/Documentation/devicetree/bindings/phy/uniphier-pcie-phy.txt
+++ b/Documentation/devicetree/bindings/phy/uniphier-pcie-phy.txt
@@ -5,14 +5,19 @@ PCIe controller implemented on Socionext UniPhier SoCs.
Required properties:
- compatible: Should contain one of the following:
+ "socionext,uniphier-pro5-pcie-phy" - for Pro5 PHY
"socionext,uniphier-ld20-pcie-phy" - for LD20 PHY
"socionext,uniphier-pxs3-pcie-phy" - for PXs3 PHY
- reg: Specifies offset and length of the register set for the device.
- #phy-cells: Must be zero.
-- clocks: A phandle to the clock gate for PCIe glue layer including
- this phy.
-- resets: A phandle to the reset line for PCIe glue layer including
- this phy.
+- clocks: A list of phandles to the clock gate for PCIe glue layer
+ including this phy.
+- clock-names: For Pro5 only, should contain the following:
+ "gio", "link" - for Pro5 SoC
+- resets: A list of phandles to the reset line for PCIe glue layer
+ including this phy.
+- reset-names: For Pro5 only, should contain the following:
+ "gio", "link" - for Pro5 SoC
Optional properties:
- socionext,syscon: A phandle to system control to set configurations
diff --git a/Documentation/devicetree/bindings/phy/uniphier-usb3-hsphy.txt b/Documentation/devicetree/bindings/phy/uniphier-usb3-hsphy.txt
index e8d8086a7ae9..093d4f08705f 100644
--- a/Documentation/devicetree/bindings/phy/uniphier-usb3-hsphy.txt
+++ b/Documentation/devicetree/bindings/phy/uniphier-usb3-hsphy.txt
@@ -7,7 +7,7 @@ this describes about High-Speed PHY.
Required properties:
- compatible: Should contain one of the following:
- "socionext,uniphier-pro4-usb3-hsphy" - for Pro4 SoC
+ "socionext,uniphier-pro5-usb3-hsphy" - for Pro5 SoC
"socionext,uniphier-pxs2-usb3-hsphy" - for PXs2 SoC
"socionext,uniphier-ld20-usb3-hsphy" - for LD20 SoC
"socionext,uniphier-pxs3-usb3-hsphy" - for PXs3 SoC
@@ -16,13 +16,13 @@ Required properties:
- clocks: A list of phandles to the clock gate for USB3 glue layer.
According to the clock-names, appropriate clocks are required.
- clock-names: Should contain the following:
- "gio", "link" - for Pro4 SoC
+ "gio", "link" - for Pro5 SoC
"phy", "phy-ext", "link" - for PXs3 SoC, "phy-ext" is optional.
"phy", "link" - for others
- resets: A list of phandles to the reset control for USB3 glue layer.
According to the reset-names, appropriate resets are required.
- reset-names: Should contain the following:
- "gio", "link" - for Pro4 SoC
+ "gio", "link" - for Pro5 SoC
"phy", "link" - for others
Optional properties:
diff --git a/Documentation/devicetree/bindings/phy/uniphier-usb3-ssphy.txt b/Documentation/devicetree/bindings/phy/uniphier-usb3-ssphy.txt
index 490b815445e8..9df2bc2f5999 100644
--- a/Documentation/devicetree/bindings/phy/uniphier-usb3-ssphy.txt
+++ b/Documentation/devicetree/bindings/phy/uniphier-usb3-ssphy.txt
@@ -8,6 +8,7 @@ this describes about Super-Speed PHY.
Required properties:
- compatible: Should contain one of the following:
"socionext,uniphier-pro4-usb3-ssphy" - for Pro4 SoC
+ "socionext,uniphier-pro5-usb3-ssphy" - for Pro5 SoC
"socionext,uniphier-pxs2-usb3-ssphy" - for PXs2 SoC
"socionext,uniphier-ld20-usb3-ssphy" - for LD20 SoC
"socionext,uniphier-pxs3-usb3-ssphy" - for PXs3 SoC
@@ -16,13 +17,13 @@ Required properties:
- clocks: A list of phandles to the clock gate for USB3 glue layer.
According to the clock-names, appropriate clocks are required.
- clock-names:
- "gio", "link" - for Pro4 SoC
+ "gio", "link" - for Pro4 and Pro5 SoC
"phy", "phy-ext", "link" - for PXs3 SoC, "phy-ext" is optional.
"phy", "link" - for others
- resets: A list of phandles to the reset control for USB3 glue layer.
According to the reset-names, appropriate resets are required.
- reset-names:
- "gio", "link" - for Pro4 SoC
+ "gio", "link" - for Pro4 and Pro5 SoC
"phy", "link" - for others
Optional properties:
diff --git a/Documentation/devicetree/bindings/regulator/mp886x.txt b/Documentation/devicetree/bindings/regulator/mp886x.txt
new file mode 100644
index 000000000000..551867829459
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/mp886x.txt
@@ -0,0 +1,27 @@
+Monolithic Power Systems MP8867/MP8869 voltage regulator
+
+Required properties:
+- compatible: Must be one of the following.
+ "mps,mp8867"
+ "mps,mp8869"
+- reg: I2C slave address.
+- enable-gpios: enable gpios.
+- mps,fb-voltage-divider: An array of two integers containing the resistor
+ values R1 and R2 of the feedback voltage divider in kilo ohms.
+
+Any property defined as part of the core regulator binding, defined in
+./regulator.txt, can also be used.
+
+Example:
+
+ vcpu: regulator@62 {
+ compatible = "mps,mp8869";
+ regulator-name = "vcpu";
+ regulator-min-microvolt = <700000>;
+ regulator-max-microvolt = <850000>;
+ regulator-always-on;
+ regulator-boot-on;
+ enable-gpios = <&porta 1 GPIO_ACTIVE_LOW>;
+ mps,fb-voltage-divider = <80 240>;
+ reg = <0x62>;
+ };
diff --git a/Documentation/devicetree/bindings/regulator/mps,mp5416.yaml b/Documentation/devicetree/bindings/regulator/mps,mp5416.yaml
new file mode 100644
index 000000000000..f0acce2029fd
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/mps,mp5416.yaml
@@ -0,0 +1,78 @@
+# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/mps,mp5416.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Monolithic Power System MP5416 PMIC
+
+maintainers:
+ - Saravanan Sekar <sravanhome@gmail.com>
+
+properties:
+ $nodename:
+ pattern: "^pmic@[0-9a-f]{1,2}$"
+ compatible:
+ enum:
+ - mps,mp5416
+
+ reg:
+ maxItems: 1
+
+ regulators:
+ type: object
+ description: |
+ list of regulators provided by this controller, must be named
+ after their hardware counterparts BUCK[1-4] and LDO[1-4]
+
+ patternProperties:
+ "^buck[1-4]$":
+ allOf:
+ - $ref: "regulator.yaml#"
+ type: object
+
+ "^ldo[1-4]$":
+ allOf:
+ - $ref: "regulator.yaml#"
+ type: object
+
+ additionalProperties: false
+ additionalProperties: false
+
+required:
+ - compatible
+ - reg
+ - regulators
+
+additionalProperties: false
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ pmic@69 {
+ compatible = "mps,mp5416";
+ reg = <0x69>;
+
+ regulators {
+
+ buck1 {
+ regulator-name = "buck1";
+ regulator-min-microvolt = <600000>;
+ regulator-max-microvolt = <2187500>;
+ regulator-min-microamp = <3800000>;
+ regulator-max-microamp = <6800000>;
+ regulator-boot-on;
+ };
+
+ ldo2 {
+ regulator-name = "ldo2";
+ regulator-min-microvolt = <800000>;
+ regulator-max-microvolt = <3975000>;
+ };
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/regulator/qcom,smd-rpm-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,smd-rpm-regulator.txt
index d126df043403..dea4384f4c03 100644
--- a/Documentation/devicetree/bindings/regulator/qcom,smd-rpm-regulator.txt
+++ b/Documentation/devicetree/bindings/regulator/qcom,smd-rpm-regulator.txt
@@ -26,6 +26,7 @@ Regulator nodes are identified by their compatible:
"qcom,rpm-pm8994-regulators"
"qcom,rpm-pm8998-regulators"
"qcom,rpm-pma8084-regulators"
+ "qcom,rpm-pmi8994-regulators"
"qcom,rpm-pmi8998-regulators"
"qcom,rpm-pms405-regulators"
@@ -146,6 +147,15 @@ Regulator nodes are identified by their compatible:
- vdd_s1-supply:
- vdd_s2-supply:
- vdd_s3-supply:
+- vdd_bst_byp-supply:
+ Usage: optional (pmi8994 only)
+ Value type: <phandle>
+ Definition: reference to regulator supplying the input pin, as
+ described in the data sheet
+
+- vdd_s1-supply:
+- vdd_s2-supply:
+- vdd_s3-supply:
- vdd_s4-supply:
- vdd_s5-supply:
- vdd_s6-supply:
@@ -259,6 +269,9 @@ pma8084:
l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l20,
l21, l22, l23, l24, l25, l26, l27, lvs1, lvs2, lvs3, lvs4, 5vs1
+pmi8994:
+ s1, s2, s3, boost-bypass
+
pmi8998:
bob
diff --git a/Documentation/devicetree/bindings/regulator/vqmmc-ipq4019-regulator.yaml b/Documentation/devicetree/bindings/regulator/vqmmc-ipq4019-regulator.yaml
new file mode 100644
index 000000000000..d1a79d2ffa1e
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/vqmmc-ipq4019-regulator.yaml
@@ -0,0 +1,42 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/regulator/vqmmc-ipq4019-regulator.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Qualcomm IPQ4019 VQMMC SD LDO regulator
+
+maintainers:
+ - Robert Marko <robert.marko@sartura.hr>
+
+description: |
+ Qualcomm IPQ4019 SoC-s feature a built a build SD/EMMC controller,
+ in order to support both 1.8 and 3V I/O voltage levels an LDO
+ controller is also embedded.
+
+allOf:
+ - $ref: "regulator.yaml#"
+
+properties:
+ compatible:
+ const: qcom,vqmmc-ipq4019-regulator
+
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+examples:
+ - |
+ regulator@1948000 {
+ compatible = "qcom,vqmmc-ipq4019-regulator";
+ reg = <0x01948000 0x4>;
+ regulator-name = "vqmmc";
+ regulator-min-microvolt = <1500000>;
+ regulator-max-microvolt = <3000000>;
+ regulator-always-on;
+ status = "disabled";
+ };
+...
diff --git a/Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml b/Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml
index 49b617c98ae7..9147df29022a 100644
--- a/Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml
+++ b/Documentation/devicetree/bindings/spi/amlogic,meson-gx-spicc.yaml
@@ -22,6 +22,7 @@ properties:
enum:
- amlogic,meson-gx-spicc # SPICC controller on Amlogic GX and compatible SoCs
- amlogic,meson-axg-spicc # SPICC controller on Amlogic AXG and compatible SoCs
+ - amlogic,meson-g12a-spicc # SPICC controller on Amlogic G12A and compatible SoCs
interrupts:
maxItems: 1
@@ -40,6 +41,27 @@ properties:
items:
- const: core
+if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - amlogic,meson-g12a-spicc
+
+then:
+ properties:
+ clocks:
+ contains:
+ items:
+ - description: controller register bus clock
+ - description: baud rate generator and delay control clock
+
+ clock-names:
+ minItems: 2
+ items:
+ - const: core
+ - const: pclk
+
required:
- compatible
- reg
diff --git a/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt b/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
index 2d3264140cc5..33bc58f4cf4b 100644
--- a/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
+++ b/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
@@ -10,7 +10,10 @@ Required properties:
- "fsl,imx35-cspi" for SPI compatible with the one integrated on i.MX35
- "fsl,imx51-ecspi" for SPI compatible with the one integrated on i.MX51
- "fsl,imx53-ecspi" for SPI compatible with the one integrated on i.MX53 and later Soc
- - "fsl,imx8mq-ecspi" for SPI compatible with the one integrated on i.MX8M
+ - "fsl,imx8mq-ecspi" for SPI compatible with the one integrated on i.MX8MQ
+ - "fsl,imx8mm-ecspi" for SPI compatible with the one integrated on i.MX8MM
+ - "fsl,imx8mn-ecspi" for SPI compatible with the one integrated on i.MX8MN
+ - "fsl,imx8mp-ecspi" for SPI compatible with the one integrated on i.MX8MP
- reg : Offset and length of the register set for the device
- interrupts : Should contain CSPI/eCSPI interrupt
- clocks : Clock specifiers for both ipg and per clocks.
diff --git a/Documentation/devicetree/bindings/spi/qca,ar934x-spi.yaml b/Documentation/devicetree/bindings/spi/qca,ar934x-spi.yaml
new file mode 100644
index 000000000000..2aa766759d59
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/qca,ar934x-spi.yaml
@@ -0,0 +1,41 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/qca,ar934x-spi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Qualcomm Atheros AR934x/QCA95xx SoC SPI controller
+
+maintainers:
+ - Chuanhong Guo <gch981213@gmail.com>
+
+allOf:
+ - $ref: spi-controller.yaml#
+
+properties:
+ compatible:
+ const: qca,ar934x-spi
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - '#address-cells'
+ - '#size-cells'
+
+examples:
+ - |
+ #include <dt-bindings/clock/ath79-clk.h>
+ spi: spi@1f000000 {
+ compatible = "qca,ar934x-spi";
+ reg = <0x1f000000 0x1c>;
+ clocks = <&pll ATH79_CLK_AHB>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi-controller.yaml b/Documentation/devicetree/bindings/spi/spi-controller.yaml
index 1e0ca6ccf64b..d8e5509a7081 100644
--- a/Documentation/devicetree/bindings/spi/spi-controller.yaml
+++ b/Documentation/devicetree/bindings/spi/spi-controller.yaml
@@ -52,6 +52,12 @@ properties:
description:
The SPI controller acts as a slave, instead of a master.
+oneOf:
+ - required:
+ - "#address-cells"
+ - required:
+ - spi-slave
+
patternProperties:
"^slave$":
type: object
@@ -114,7 +120,7 @@ patternProperties:
- enum: [ 1, 2, 4, 8 ]
- default: 1
description:
- Bus width to the SPI bus used for MISO.
+ Bus width to the SPI bus used for read transfers.
spi-rx-delay-us:
description:
@@ -126,7 +132,7 @@ patternProperties:
- enum: [ 1, 2, 4, 8 ]
- default: 1
description:
- Bus width to the SPI bus used for MOSI.
+ Bus width to the SPI bus used for write transfers.
spi-tx-delay-us:
description:
diff --git a/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt b/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
index 162e024b95a0..30a79da9c039 100644
--- a/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-fsl-dspi.txt
@@ -1,12 +1,17 @@
ARM Freescale DSPI controller
Required properties:
-- compatible : "fsl,vf610-dspi", "fsl,ls1021a-v1.0-dspi",
- "fsl,ls2085a-dspi"
- or
- "fsl,ls2080a-dspi" followed by "fsl,ls2085a-dspi"
- "fsl,ls1012a-dspi" followed by "fsl,ls1021a-v1.0-dspi"
- "fsl,ls1088a-dspi" followed by "fsl,ls1021a-v1.0-dspi"
+- compatible : must be one of:
+ "fsl,vf610-dspi",
+ "fsl,ls1021a-v1.0-dspi",
+ "fsl,ls1012a-dspi" (optionally followed by "fsl,ls1021a-v1.0-dspi"),
+ "fsl,ls1028a-dspi",
+ "fsl,ls1043a-dspi" (optionally followed by "fsl,ls1021a-v1.0-dspi"),
+ "fsl,ls1046a-dspi" (optionally followed by "fsl,ls1021a-v1.0-dspi"),
+ "fsl,ls1088a-dspi" (optionally followed by "fsl,ls1021a-v1.0-dspi"),
+ "fsl,ls2080a-dspi" (optionally followed by "fsl,ls2085a-dspi"),
+ "fsl,ls2085a-dspi",
+ "fsl,lx2160a-dspi",
- reg : Offset and length of the register set for the device
- interrupts : Should contain SPI controller interrupt
- clocks: from common clock binding: handle to dspi clock.
@@ -14,11 +19,11 @@ Required properties:
- pinctrl-0: pin control group to be used for this controller.
- pinctrl-names: must contain a "default" entry.
- spi-num-chipselects : the number of the chipselect signals.
-- bus-num : the slave chip chipselect signal number.
Optional property:
- big-endian: If present the dspi device's registers are implemented
in big endian mode.
+- bus-num : the slave chip chipselect signal number.
Optional SPI slave node properties:
- fsl,spi-cs-sck-delay: a delay in nanoseconds between activating chip
diff --git a/Documentation/devicetree/bindings/mtd/mtk-quadspi.txt b/Documentation/devicetree/bindings/spi/spi-mtk-nor.txt
index a12e3b5c495d..984ae7fd4f94 100644
--- a/Documentation/devicetree/bindings/mtd/mtk-quadspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-mtk-nor.txt
@@ -1,4 +1,4 @@
-* Serial NOR flash controller for MediaTek SoCs
+* Serial NOR flash controller for MediaTek ARM SoCs
Required properties:
- compatible: For mt8173, compatible should be "mediatek,mt8173-nor",
@@ -13,6 +13,7 @@ Required properties:
"mediatek,mt7629-nor", "mediatek,mt8173-nor"
"mediatek,mt8173-nor"
- reg: physical base address and length of the controller's register
+- interrupts: Interrupt number used by the controller.
- clocks: the phandle of the clocks needed by the nor controller
- clock-names: the names of the clocks
the clocks should be named "spi" and "sf". "spi" is used for spi bus,
@@ -22,20 +23,16 @@ Required properties:
- #address-cells: should be <1>
- #size-cells: should be <0>
-The SPI flash must be a child of the nor_flash node and must have a
-compatible property. Also see jedec,spi-nor.txt.
-
-Required properties:
-- compatible: May include a device-specific string consisting of the manufacturer
- and name of the chip. Must also include "jedec,spi-nor" for any
- SPI NOR flash that can be identified by the JEDEC READ ID opcode (0x9F).
-- reg : Chip-Select number
+There should be only one spi slave device following generic spi bindings.
+It's not recommended to use this controller for devices other than SPI NOR
+flash due to limited transfer capability of this controller.
Example:
nor_flash: spi@1100d000 {
compatible = "mediatek,mt8173-nor";
reg = <0 0x1100d000 0 0xe0>;
+ interrupts = <&spi_flash_irq>;
clocks = <&pericfg CLK_PERI_SPI>,
<&topckgen CLK_TOP_SPINFI_IFR_SEL>;
clock-names = "spi", "sf";
diff --git a/Documentation/devicetree/bindings/spi/spi-mux.yaml b/Documentation/devicetree/bindings/spi/spi-mux.yaml
new file mode 100644
index 000000000000..0ae692dc28b5
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-mux.yaml
@@ -0,0 +1,89 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-mux.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic SPI Multiplexer
+
+description: |
+ This binding describes a SPI bus multiplexer to route the SPI chip select
+ signals. This can be used when you need more devices than the SPI controller
+ has chip selects available. An example setup is shown in ASCII art; the actual
+ setting of the multiplexer to a channel needs to be done by a specific SPI mux
+ driver.
+
+ MOSI /--------------------------------+--------+--------+--------\
+ MISO |/------------------------------+|-------+|-------+|-------\|
+ SCL ||/----------------------------+||------+||------+||------\||
+ ||| ||| ||| ||| |||
+ +------------+ ||| ||| ||| |||
+ | SoC ||| | +-+++-+ +-+++-+ +-+++-+ +-+++-+
+ | ||| | | dev | | dev | | dev | | dev |
+ | +--+++-+ | CS-X +------+\ +--+--+ +--+--+ +--+--+ +--+--+
+ | | SPI +-|-------+ Mux |\\ CS-0 | | | |
+ | +------+ | +--+---+\\\-------/ CS-1 | | |
+ | | | \\\----------------/ CS-2 | |
+ | +------+ | | \\-------------------------/ CS-3 |
+ | | ? +-|----------/ \----------------------------------/
+ | +------+ |
+ +------------+
+
+allOf:
+ - $ref: "/schemas/spi/spi-controller.yaml#"
+
+maintainers:
+ - Chris Packham <chris.packham@alliedtelesis.co.nz>
+
+properties:
+ compatible:
+ const: spi-mux
+
+ mux-controls:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+ - spi-max-frequency
+ - mux-controls
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ mux: mux-controller {
+ compatible = "gpio-mux";
+ #mux-control-cells = <0>;
+
+ mux-gpios = <&gpio0 3 GPIO_ACTIVE_HIGH>;
+ };
+
+ spi {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ spi@0 {
+ compatible = "spi-mux";
+ reg = <0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ spi-max-frequency = <100000000>;
+
+ mux-controls = <&mux>;
+
+ spi-flash@0 {
+ compatible = "jedec,spi-nor";
+ reg = <0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ spi-max-frequency = <40000000>;
+ };
+
+ spi-device@1 {
+ compatible = "lineartechnology,ltc2488";
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ spi-max-frequency = <10000000>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/spi/spi-nxp-fspi.txt b/Documentation/devicetree/bindings/spi/spi-nxp-fspi.txt
index 2cd67eb727d4..7ac60d9fe357 100644
--- a/Documentation/devicetree/bindings/spi/spi-nxp-fspi.txt
+++ b/Documentation/devicetree/bindings/spi/spi-nxp-fspi.txt
@@ -2,6 +2,9 @@
Required properties:
- compatible : Should be "nxp,lx2160a-fspi"
+ "nxp,imx8qxp-fspi"
+ "nxp,imx8mm-fspi"
+
- reg : First contains the register location and length,
Second contains the memory mapping address and length
- reg-names : Should contain the resource reg names:
diff --git a/Documentation/devicetree/bindings/spi/spi-rockchip.txt b/Documentation/devicetree/bindings/spi/spi-rockchip.txt
deleted file mode 100644
index a0edac12d8df..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-rockchip.txt
+++ /dev/null
@@ -1,58 +0,0 @@
-* Rockchip SPI Controller
-
-The Rockchip SPI controller is used to interface with various devices such as flash
-and display controllers using the SPI communication interface.
-
-Required Properties:
-
-- compatible: should be one of the following.
- "rockchip,rv1108-spi" for rv1108 SoCs.
- "rockchip,px30-spi", "rockchip,rk3066-spi" for px30 SoCs.
- "rockchip,rk3036-spi" for rk3036 SoCS.
- "rockchip,rk3066-spi" for rk3066 SoCs.
- "rockchip,rk3188-spi" for rk3188 SoCs.
- "rockchip,rk3228-spi" for rk3228 SoCS.
- "rockchip,rk3288-spi" for rk3288 SoCs.
- "rockchip,rk3368-spi" for rk3368 SoCs.
- "rockchip,rk3399-spi" for rk3399 SoCs.
-- reg: physical base address of the controller and length of memory mapped
- region.
-- interrupts: The interrupt number to the cpu. The interrupt specifier format
- depends on the interrupt controller.
-- clocks: Must contain an entry for each entry in clock-names.
-- clock-names: Shall be "spiclk" for the transfer-clock, and "apb_pclk" for
- the peripheral clock.
-- #address-cells: should be 1.
-- #size-cells: should be 0.
-
-Optional Properties:
-
-- dmas: DMA specifiers for tx and rx dma. See the DMA client binding,
- Documentation/devicetree/bindings/dma/dma.txt
-- dma-names: DMA request names should include "tx" and "rx" if present.
-- rx-sample-delay-ns: nanoseconds to delay after the SCLK edge before sampling
- Rx data (may need to be fine tuned for high capacitance lines).
- No delay (0) by default.
-- pinctrl-names: Names for the pin configuration(s); may be "default" or
- "sleep", where the "sleep" configuration may describe the state
- the pins should be in during system suspend. See also
- pinctrl/pinctrl-bindings.txt.
-
-
-Example:
-
- spi0: spi@ff110000 {
- compatible = "rockchip,rk3066-spi";
- reg = <0xff110000 0x1000>;
- dmas = <&pdma1 11>, <&pdma1 12>;
- dma-names = "tx", "rx";
- rx-sample-delay-ns = <10>;
- #address-cells = <1>;
- #size-cells = <0>;
- interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&cru SCLK_SPI0>, <&cru PCLK_SPI0>;
- clock-names = "spiclk", "apb_pclk";
- pinctrl-0 = <&spi1_pins>;
- pinctrl-1 = <&spi1_sleep>;
- pinctrl-names = "default", "sleep";
- };
diff --git a/Documentation/devicetree/bindings/spi/spi-rockchip.yaml b/Documentation/devicetree/bindings/spi/spi-rockchip.yaml
new file mode 100644
index 000000000000..81ad4b761502
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi-rockchip.yaml
@@ -0,0 +1,107 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/spi-rockchip.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Rockchip SPI Controller
+
+description:
+ The Rockchip SPI controller is used to interface with various devices such
+ as flash and display controllers using the SPI communication interface.
+
+allOf:
+ - $ref: "spi-controller.yaml#"
+
+maintainers:
+ - Heiko Stuebner <heiko@sntech.de>
+
+# Everything else is described in the common file
+properties:
+ compatible:
+ oneOf:
+ - const: rockchip,rk3036-spi
+ - const: rockchip,rk3066-spi
+ - const: rockchip,rk3228-spi
+ - const: rockchip,rv1108-spi
+ - items:
+ - enum:
+ - rockchip,px30-spi
+ - rockchip,rk3188-spi
+ - rockchip,rk3288-spi
+ - rockchip,rk3308-spi
+ - rockchip,rk3328-spi
+ - rockchip,rk3368-spi
+ - rockchip,rk3399-spi
+ - const: rockchip,rk3066-spi
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: transfer-clock
+ - description: peripheral clock
+
+ clock-names:
+ items:
+ - const: spiclk
+ - const: apb_pclk
+
+ dmas:
+ items:
+ - description: TX DMA Channel
+ - description: RX DMA Channel
+
+ dma-names:
+ items:
+ - const: tx
+ - const: rx
+
+ rx-sample-delay-ns:
+ default: 0
+ description:
+ Nano seconds to delay after the SCLK edge before sampling Rx data
+ (may need to be fine tuned for high capacitance lines).
+ If not specified 0 will be used.
+
+ pinctrl-names:
+ minItems: 1
+ items:
+ - const: default
+ - const: sleep
+ description:
+ Names for the pin configuration(s); may be "default" or "sleep",
+ where the "sleep" configuration may describe the state
+ the pins should be in during system suspend.
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ #include <dt-bindings/clock/rk3188-cru-common.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0: spi@ff110000 {
+ compatible = "rockchip,rk3066-spi";
+ reg = <0xff110000 0x1000>;
+ interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cru SCLK_SPI0>, <&cru PCLK_SPI0>;
+ clock-names = "spiclk", "apb_pclk";
+ dmas = <&pdma1 11>, <&pdma1 12>;
+ dma-names = "tx", "rx";
+ pinctrl-0 = <&spi1_pins>;
+ pinctrl-1 = <&spi1_sleep>;
+ pinctrl-names = "default", "sleep";
+ rx-sample-delay-ns = <10>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/trivial-devices.yaml b/Documentation/devicetree/bindings/trivial-devices.yaml
index 978de7d37c66..330cab25cc92 100644
--- a/Documentation/devicetree/bindings/trivial-devices.yaml
+++ b/Documentation/devicetree/bindings/trivial-devices.yaml
@@ -34,14 +34,6 @@ properties:
- adi,adt7461
# +/-1C TDM Extended Temp Range I.C
- adt7461
- # +/-1C TDM Extended Temp Range I.C
- - adi,adt7473
- # +/-1C TDM Extended Temp Range I.C
- - adi,adt7475
- # +/-1C TDM Extended Temp Range I.C
- - adi,adt7476
- # +/-1C TDM Extended Temp Range I.C
- - adi,adt7490
# Three-Axis Digital Accelerometer
- adi,adxl345
# Three-Axis Digital Accelerometer (backward-compatibility value "adi,adxl345" must be listed too)
@@ -350,6 +342,8 @@ properties:
- ti,ads7830
# Temperature Monitoring and Fan Control
- ti,amc6821
+ # Temperature sensor with 2-wire interface
+ - ti,lm73
# Temperature sensor with integrated fan control
- ti,lm96000
# I2C Touch-Screen Controller
diff --git a/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml b/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml
index 267fce165994..b0e5e0fe9386 100644
--- a/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml
+++ b/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml
@@ -22,10 +22,14 @@ description: |
The DWC3 Glue controls the PHY routing and power, an interrupt line is
connected to the Glue to serve as OTG ID change detection.
+ The Amlogic A1 embeds a DWC3 USB IP Core configured for USB2 in
+ host-only mode.
+
properties:
compatible:
enum:
- amlogic,meson-g12a-usb-ctrl
+ - amlogic,meson-a1-usb-ctrl
ranges: true
@@ -84,6 +88,25 @@ required:
- phys
- dr_mode
+allOf:
+ - if:
+ properties:
+ compatible:
+ enum:
+ - amlogic,meson-a1-usb-ctrl
+
+ then:
+ properties:
+ clocks:
+ minItems: 3
+ clock-names:
+ items:
+ - const: usb_ctrl
+ - const: usb_bus
+ - const: xtal_usb_ctrl
+ required:
+ - clock-names
+
examples:
- |
usb: usb@ffe09000 {
diff --git a/Documentation/devicetree/bindings/usb/aspeed,usb-vhub.yaml b/Documentation/devicetree/bindings/usb/aspeed,usb-vhub.yaml
new file mode 100644
index 000000000000..06399ba0d9e4
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/aspeed,usb-vhub.yaml
@@ -0,0 +1,77 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+# Copyright (c) 2020 Facebook Inc.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/aspeed,usb-vhub.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: ASPEED USB 2.0 Virtual Hub Controller
+
+maintainers:
+ - Benjamin Herrenschmidt <benh@kernel.crashing.org>
+
+description: |+
+ The ASPEED USB 2.0 Virtual Hub Controller implements 1 set of USB Hub
+ register and several sets of Device and Endpoint registers to support
+ the Virtual Hub's downstream USB devices.
+
+ Supported number of devices and endpoints vary depending on hardware
+ revisions. AST2400 and AST2500 Virtual Hub supports 5 downstream devices
+ and 15 generic endpoints, while AST2600 Virtual Hub supports 7 downstream
+ devices and 21 generic endpoints.
+
+properties:
+ compatible:
+ enum:
+ - aspeed,ast2400-usb-vhub
+ - aspeed,ast2500-usb-vhub
+ - aspeed,ast2600-usb-vhub
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ aspeed,vhub-downstream-ports:
+ description: Number of downstream ports supported by the Virtual Hub
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - default: 5
+ minimum: 1
+ maximum: 7
+
+ aspeed,vhub-generic-endpoints:
+ description: Number of generic endpoints supported by the Virtual Hub
+ allOf:
+ - $ref: /schemas/types.yaml#/definitions/uint32
+ - default: 15
+ minimum: 1
+ maximum: 21
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - interrupts
+ - aspeed,vhub-downstream-ports
+ - aspeed,vhub-generic-endpoints
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/aspeed-clock.h>
+ vhub: usb-vhub@1e6a0000 {
+ compatible = "aspeed,ast2500-usb-vhub";
+ reg = <0x1e6a0000 0x300>;
+ interrupts = <5>;
+ clocks = <&syscon ASPEED_CLK_GATE_USBPORT1CLK>;
+ aspeed,vhub-downstream-ports = <5>;
+ aspeed,vhub-generic-endpoints = <15>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&pinctrl_usb2ad_default>;
+ };
diff --git a/Documentation/devicetree/bindings/usb/dwc2.yaml b/Documentation/devicetree/bindings/usb/dwc2.yaml
index 71cf7ba32237..6baf00e7d0a9 100644
--- a/Documentation/devicetree/bindings/usb/dwc2.yaml
+++ b/Documentation/devicetree/bindings/usb/dwc2.yaml
@@ -18,27 +18,15 @@ properties:
- const: rockchip,rk3066-usb
- const: snps,dwc2
- items:
- - const: rockchip,px30-usb
- - const: rockchip,rk3066-usb
- - const: snps,dwc2
- - items:
- - const: rockchip,rk3036-usb
- - const: rockchip,rk3066-usb
- - const: snps,dwc2
- - items:
- - const: rockchip,rv1108-usb
- - const: rockchip,rk3066-usb
- - const: snps,dwc2
- - items:
- - const: rockchip,rk3188-usb
- - const: rockchip,rk3066-usb
- - const: snps,dwc2
- - items:
- - const: rockchip,rk3228-usb
- - const: rockchip,rk3066-usb
- - const: snps,dwc2
- - items:
- - const: rockchip,rk3288-usb
+ - enum:
+ - rockchip,px30-usb
+ - rockchip,rk3036-usb
+ - rockchip,rk3188-usb
+ - rockchip,rk3228-usb
+ - rockchip,rk3288-usb
+ - rockchip,rk3328-usb
+ - rockchip,rk3368-usb
+ - rockchip,rv1108-usb
- const: rockchip,rk3066-usb
- const: snps,dwc2
- const: lantiq,arx100-usb
diff --git a/Documentation/devicetree/bindings/usb/dwc3.txt b/Documentation/devicetree/bindings/usb/dwc3.txt
index 66780a47ad85..9946ff9ba735 100644
--- a/Documentation/devicetree/bindings/usb/dwc3.txt
+++ b/Documentation/devicetree/bindings/usb/dwc3.txt
@@ -7,7 +7,8 @@ Required properties:
- compatible: must be "snps,dwc3"
- reg : Address and length of the register set for the device
- interrupts: Interrupts used by the dwc3 controller.
- - clock-names: should contain "ref", "bus_early", "suspend"
+ - clock-names: list of clock names. Ideally should be "ref",
+ "bus_early", "suspend" but may be less or more.
- clocks: list of phandle and clock specifier pairs corresponding to
entries in the clock-names property.
@@ -36,7 +37,7 @@ Optional properties:
- phys: from the *Generic PHY* bindings
- phy-names: from the *Generic PHY* bindings; supported names are "usb2-phy"
or "usb3-phy".
- - resets: a single pair of phandle and reset specifier
+ - resets: set of phandle and reset specifier pairs
- snps,usb2-lpm-disable: indicate if we don't want to enable USB2 HW LPM
- snps,usb3_lpm_capable: determines if platform is USB3 LPM capable
- snps,dis-start-transfer-quirk: when set, disable isoc START TRANSFER command
@@ -75,6 +76,8 @@ Optional properties:
from P0 to P1/P2/P3 without delay.
- snps,dis-tx-ipgap-linecheck-quirk: when set, disable u2mac linestate check
during HS transmit.
+ - snps,parkmode-disable-ss-quirk: when set, all SuperSpeed bus instances in
+ park mode are disabled.
- snps,dis_metastability_quirk: when set, disable metastability workaround.
CAUTION: use only if you are absolutely sure of it.
- snps,is-utmi-l1-suspend: true when DWC3 asserts output signal
diff --git a/Documentation/devicetree/bindings/usb/generic.txt b/Documentation/devicetree/bindings/usb/generic.txt
index e6790d2a4da9..67c51759a642 100644
--- a/Documentation/devicetree/bindings/usb/generic.txt
+++ b/Documentation/devicetree/bindings/usb/generic.txt
@@ -35,6 +35,12 @@ Optional properties:
the USB data role (USB host or USB device) for a given
USB connector, such as Type-C, Type-B(micro).
see connector/usb-connector.txt.
+ - role-switch-default-mode: indicating if usb-role-switch is enabled, the
+ device default operation mode of controller while usb
+ role is USB_ROLE_NONE. Valid arguments are "host" and
+ "peripheral". Defaults to "peripheral" if not
+ specified.
+
This is an attribute to a USB controller such as:
diff --git a/Documentation/devicetree/bindings/usb/ingenic,jz4740-musb.txt b/Documentation/devicetree/bindings/usb/ingenic,jz4740-musb.txt
deleted file mode 100644
index 16808721f3ff..000000000000
--- a/Documentation/devicetree/bindings/usb/ingenic,jz4740-musb.txt
+++ /dev/null
@@ -1,32 +0,0 @@
-Ingenic JZ4740 MUSB driver
-
-Required properties:
-
-- compatible: Must be "ingenic,jz4740-musb"
-- reg: Address range of the UDC register set
-- interrupts: IRQ number related to the UDC hardware
-- interrupt-names: must be "mc"
-- clocks: phandle to the "udc" clock
-- clock-names: must be "udc"
-- phys: phandle to the USB PHY
-
-Example:
-
-usb_phy: usb-phy@0 {
- compatible = "usb-nop-xceiv";
- #phy-cells = <0>;
-};
-
-udc: usb@13040000 {
- compatible = "ingenic,jz4740-musb";
- reg = <0x13040000 0x10000>;
-
- interrupt-parent = <&intc>;
- interrupts = <24>;
- interrupt-names = "mc";
-
- clocks = <&cgu JZ4740_CLK_UDC>;
- clock-names = "udc";
-
- phys = <&usb_phy>;
-};
diff --git a/Documentation/devicetree/bindings/usb/ingenic,jz4770-phy.yaml b/Documentation/devicetree/bindings/usb/ingenic,jz4770-phy.yaml
new file mode 100644
index 000000000000..a81b0b1a2226
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/ingenic,jz4770-phy.yaml
@@ -0,0 +1,52 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/ingenic,jz4770-phy.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Ingenic JZ4770 USB PHY devicetree bindings
+
+maintainers:
+ - Paul Cercueil <paul@crapouillou.net>
+
+properties:
+ $nodename:
+ pattern: '^usb-phy@.*'
+
+ compatible:
+ enum:
+ - ingenic,jz4770-phy
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ vcc-supply:
+ description: VCC power supply
+
+ '#phy-cells':
+ const: 0
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - vcc-supply
+ - '#phy-cells'
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/jz4770-cgu.h>
+ otg_phy: usb-phy@3c {
+ compatible = "ingenic,jz4770-phy";
+ reg = <0x3c 0x10>;
+
+ vcc-supply = <&vcc>;
+ clocks = <&cgu JZ4770_CLK_OTG_PHY>;
+
+ #phy-cells = <0>;
+ };
diff --git a/Documentation/devicetree/bindings/usb/ingenic,musb.yaml b/Documentation/devicetree/bindings/usb/ingenic,musb.yaml
new file mode 100644
index 000000000000..1d6877875077
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/ingenic,musb.yaml
@@ -0,0 +1,76 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/ingenic,musb.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Ingenic JZ47xx USB IP DT bindings
+
+maintainers:
+ - Paul Cercueil <paul@crapouillou.net>
+
+properties:
+ $nodename:
+ pattern: '^usb@.*'
+
+ compatible:
+ oneOf:
+ - enum:
+ - ingenic,jz4770-musb
+ - ingenic,jz4740-musb
+ - items:
+ - const: ingenic,jz4725b-musb
+ - const: ingenic,jz4740-musb
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 1
+
+ clock-names:
+ items:
+ - const: udc
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-names:
+ items:
+ - const: mc
+
+ phys:
+ description: PHY specifier for the USB PHY
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - interrupts
+ - interrupt-names
+ - phys
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/jz4740-cgu.h>
+ usb_phy: usb-phy@0 {
+ compatible = "usb-nop-xceiv";
+ #phy-cells = <0>;
+ };
+
+ udc: usb@13040000 {
+ compatible = "ingenic,jz4740-musb";
+ reg = <0x13040000 0x10000>;
+
+ interrupt-parent = <&intc>;
+ interrupts = <24>;
+ interrupt-names = "mc";
+
+ clocks = <&cgu JZ4740_CLK_UDC>;
+ clock-names = "udc";
+
+ phys = <&usb_phy>;
+ };
diff --git a/Documentation/devicetree/bindings/usb/maxim,max3420-udc.yaml b/Documentation/devicetree/bindings/usb/maxim,max3420-udc.yaml
new file mode 100644
index 000000000000..4241d38d5864
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/maxim,max3420-udc.yaml
@@ -0,0 +1,69 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/maxim,max3420-udc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MAXIM MAX3420/1 USB Peripheral Controller
+
+maintainers:
+ - Jassi Brar <jaswinder.singh@linaro.org>
+
+description: |
+ The controller provices USB2.0 compliant FullSpeed peripheral
+ implementation over the SPI interface.
+
+ Specifications about the part can be found at:
+ http://datasheets.maximintegrated.com/en/ds/MAX3420E.pdf
+
+properties:
+ compatible:
+ enum:
+ - maxim,max3420-udc
+ - maxim,max3421-udc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ items:
+ - description: usb irq from max3420
+ - description: vbus detection irq
+ minItems: 1
+ maxItems: 2
+
+ interrupt-names:
+ items:
+ - const: udc
+ - const: vbus
+ minItems: 1
+ maxItems: 2
+
+ spi-max-frequency:
+ maximum: 26000000
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ spi0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ udc@0 {
+ compatible = "maxim,max3420-udc";
+ reg = <0>;
+ interrupt-parent = <&gpio>;
+ interrupts = <0 IRQ_TYPE_EDGE_FALLING>, <10 IRQ_TYPE_EDGE_BOTH>;
+ interrupt-names = "udc", "vbus";
+ spi-max-frequency = <12500000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.yaml b/Documentation/devicetree/bindings/vendor-prefixes.yaml
index 9e67944bec9c..fba343fa0205 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.yaml
+++ b/Documentation/devicetree/bindings/vendor-prefixes.yaml
@@ -205,6 +205,8 @@ patternProperties:
description: Colorful GRP, Shenzhen Xueyushi Technology Ltd.
"^compulab,.*":
description: CompuLab Ltd.
+ "^coreriver,.*":
+ description: CORERIVER Semiconductor Co.,Ltd.
"^corpro,.*":
description: Chengdu Corpro Technology Co., Ltd.
"^cortina,.*":
@@ -267,6 +269,8 @@ patternProperties:
description: Dragino Technology Co., Limited
"^dserve,.*":
description: dServe Technology B.V.
+ "^dynaimage,.*":
+ description: Dyna-Image
"^ea,.*":
description: Embedded Artists AB
"^ebs-systart,.*":
diff --git a/Documentation/driver-api/80211/mac80211-advanced.rst b/Documentation/driver-api/80211/mac80211-advanced.rst
index 9f1c5bb7ac35..24cb64b3b715 100644
--- a/Documentation/driver-api/80211/mac80211-advanced.rst
+++ b/Documentation/driver-api/80211/mac80211-advanced.rst
@@ -272,8 +272,8 @@ STA information lifetime rules
.. kernel-doc:: net/mac80211/sta_info.c
:doc: STA information lifetime rules
-Aggregation
-===========
+Aggregation Functions
+=====================
.. kernel-doc:: net/mac80211/sta_info.h
:functions: sta_ampdu_mlme
@@ -284,8 +284,8 @@ Aggregation
.. kernel-doc:: net/mac80211/sta_info.h
:functions: tid_ampdu_rx
-Synchronisation
-===============
+Synchronisation Functions
+=========================
TBD
diff --git a/Documentation/driver-api/dmaengine/index.rst b/Documentation/driver-api/dmaengine/index.rst
index b9df904d0a79..bdc45d8b4cfb 100644
--- a/Documentation/driver-api/dmaengine/index.rst
+++ b/Documentation/driver-api/dmaengine/index.rst
@@ -5,8 +5,8 @@ DMAEngine documentation
DMAEngine documentation provides documents for various aspects of DMAEngine
framework.
-DMAEngine documentation
------------------------
+DMAEngine development documentation
+-----------------------------------
This book helps with DMAengine internal APIs and guide for DMAEngine device
driver writers.
diff --git a/Documentation/driver-api/dmaengine/provider.rst b/Documentation/driver-api/dmaengine/provider.rst
index 790a15089f1f..56e5833e8a07 100644
--- a/Documentation/driver-api/dmaengine/provider.rst
+++ b/Documentation/driver-api/dmaengine/provider.rst
@@ -266,11 +266,15 @@ to use.
attached (via the dmaengine_desc_attach_metadata() helper to the descriptor.
From the DMA driver the following is expected for this mode:
+
- DMA_MEM_TO_DEV / DEV_MEM_TO_MEM
+
The data from the provided metadata buffer should be prepared for the DMA
controller to be sent alongside of the payload data. Either by copying to a
hardware descriptor, or highly coupled packet.
+
- DMA_DEV_TO_MEM
+
On transfer completion the DMA driver must copy the metadata to the client
provided metadata buffer before notifying the client about the completion.
After the transfer completion, DMA drivers must not touch the metadata
@@ -284,10 +288,14 @@ to use.
and dmaengine_desc_set_metadata_len() is provided as helper functions.
From the DMA driver the following is expected for this mode:
- - get_metadata_ptr
+
+ - get_metadata_ptr()
+
Should return a pointer for the metadata buffer, the maximum size of the
metadata buffer and the currently used / valid (if any) bytes in the buffer.
- - set_metadata_len
+
+ - set_metadata_len()
+
It is called by the clients after it have placed the metadata to the buffer
to let the DMA driver know the number of valid bytes provided.
diff --git a/Documentation/driver-api/driver-model/driver.rst b/Documentation/driver-api/driver-model/driver.rst
index baa6a85c8287..63887b813005 100644
--- a/Documentation/driver-api/driver-model/driver.rst
+++ b/Documentation/driver-api/driver-model/driver.rst
@@ -210,7 +210,7 @@ probed.
While the typical use case for sync_state() is to have the kernel cleanly take
over management of devices from the bootloader, the usage of sync_state() is
not restricted to that. Use it whenever it makes sense to take an action after
-all the consumers of a device have probed.
+all the consumers of a device have probed::
int (*remove) (struct device *dev);
diff --git a/Documentation/driver-api/firmware/fallback-mechanisms.rst b/Documentation/driver-api/firmware/fallback-mechanisms.rst
index 8b041d0ab426..036383dad6d6 100644
--- a/Documentation/driver-api/firmware/fallback-mechanisms.rst
+++ b/Documentation/driver-api/firmware/fallback-mechanisms.rst
@@ -202,3 +202,106 @@ the following file:
If you echo 0 into it means MAX_JIFFY_OFFSET will be used. The data type
for the timeout is an int.
+
+EFI embedded firmware fallback mechanism
+========================================
+
+On some devices the system's EFI code / ROM may contain an embedded copy
+of firmware for some of the system's integrated peripheral devices and
+the peripheral's Linux device-driver needs to access this firmware.
+
+Device drivers which need such firmware can use the
+firmware_request_platform() function for this, note that this is a
+separate fallback mechanism from the other fallback mechanisms and
+this does not use the sysfs interface.
+
+A device driver which needs this can describe the firmware it needs
+using an efi_embedded_fw_desc struct:
+
+.. kernel-doc:: include/linux/efi_embedded_fw.h
+ :functions: efi_embedded_fw_desc
+
+The EFI embedded-fw code works by scanning all EFI_BOOT_SERVICES_CODE memory
+segments for an eight byte sequence matching prefix; if the prefix is found it
+then does a sha256 over length bytes and if that matches makes a copy of length
+bytes and adds that to its list with found firmwares.
+
+To avoid doing this somewhat expensive scan on all systems, dmi matching is
+used. Drivers are expected to export a dmi_system_id array, with each entries'
+driver_data pointing to an efi_embedded_fw_desc.
+
+To register this array with the efi-embedded-fw code, a driver needs to:
+
+1. Always be builtin to the kernel or store the dmi_system_id array in a
+ separate object file which always gets builtin.
+
+2. Add an extern declaration for the dmi_system_id array to
+ include/linux/efi_embedded_fw.h.
+
+3. Add the dmi_system_id array to the embedded_fw_table in
+ drivers/firmware/efi/embedded-firmware.c wrapped in a #ifdef testing that
+ the driver is being builtin.
+
+4. Add "select EFI_EMBEDDED_FIRMWARE if EFI_STUB" to its Kconfig entry.
+
+The firmware_request_platform() function will always first try to load firmware
+with the specified name directly from the disk, so the EFI embedded-fw can
+always be overridden by placing a file under /lib/firmware.
+
+Note that:
+
+1. The code scanning for EFI embedded-firmware runs near the end
+ of start_kernel(), just before calling rest_init(). For normal drivers and
+ subsystems using subsys_initcall() to register themselves this does not
+ matter. This means that code running earlier cannot use EFI
+ embedded-firmware.
+
+2. At the moment the EFI embedded-fw code assumes that firmwares always start at
+ an offset which is a multiple of 8 bytes, if this is not true for your case
+ send in a patch to fix this.
+
+3. At the moment the EFI embedded-fw code only works on x86 because other archs
+ free EFI_BOOT_SERVICES_CODE before the EFI embedded-fw code gets a chance to
+ scan it.
+
+4. The current brute-force scanning of EFI_BOOT_SERVICES_CODE is an ad-hoc
+ brute-force solution. There has been discussion to use the UEFI Platform
+ Initialization (PI) spec's Firmware Volume protocol. This has been rejected
+ because the FV Protocol relies on *internal* interfaces of the PI spec, and:
+ 1. The PI spec does not define peripheral firmware at all
+ 2. The internal interfaces of the PI spec do not guarantee any backward
+ compatibility. Any implementation details in FV may be subject to change,
+ and may vary system to system. Supporting the FV Protocol would be
+ difficult as it is purposely ambiguous.
+
+Example how to check for and extract embedded firmware
+------------------------------------------------------
+
+To check for, for example Silead touchscreen controller embedded firmware,
+do the following:
+
+1. Boot the system with efi=debug on the kernel commandline
+
+2. cp /sys/kernel/debug/efi/boot_services_code? to your home dir
+
+3. Open the boot_services_code? files in a hex-editor, search for the
+ magic prefix for Silead firmware: F0 00 00 00 02 00 00 00, this gives you
+ the beginning address of the firmware inside the boot_services_code? file.
+
+4. The firmware has a specific pattern, it starts with a 8 byte page-address,
+ typically F0 00 00 00 02 00 00 00 for the first page followed by 32-bit
+ word-address + 32-bit value pairs. With the word-address incrementing 4
+ bytes (1 word) for each pair until a page is complete. A complete page is
+ followed by a new page-address, followed by more word + value pairs. This
+ leads to a very distinct pattern. Scroll down until this pattern stops,
+ this gives you the end of the firmware inside the boot_services_code? file.
+
+5. "dd if=boot_services_code? of=firmware bs=1 skip=<begin-addr> count=<len>"
+ will extract the firmware for you. Inspect the firmware file in a
+ hexeditor to make sure you got the dd parameters correct.
+
+6. Copy it to /lib/firmware under the expected name to test it.
+
+7. If the extracted firmware works, you can use the found info to fill an
+ efi_embedded_fw_desc struct to describe it, run "sha256sum firmware"
+ to get the sha256sum to put in the sha256 field.
diff --git a/Documentation/driver-api/firmware/lookup-order.rst b/Documentation/driver-api/firmware/lookup-order.rst
index 88c81739683c..6064672a782e 100644
--- a/Documentation/driver-api/firmware/lookup-order.rst
+++ b/Documentation/driver-api/firmware/lookup-order.rst
@@ -12,6 +12,8 @@ a driver issues a firmware API call.
return it immediately
* The ''Direct filesystem lookup'' is performed next, if found we
return it immediately
+* The ''Platform firmware fallback'' is performed next, but only when
+ firmware_request_platform() is used, if found we return it immediately
* If no firmware has been found and the fallback mechanism was enabled
the sysfs interface is created. After this either a kobject uevent
is issued or the custom firmware loading is relied upon for firmware
diff --git a/Documentation/driver-api/firmware/request_firmware.rst b/Documentation/driver-api/firmware/request_firmware.rst
index f62bdcbfed5b..cd076462d235 100644
--- a/Documentation/driver-api/firmware/request_firmware.rst
+++ b/Documentation/driver-api/firmware/request_firmware.rst
@@ -25,6 +25,11 @@ firmware_request_nowarn
.. kernel-doc:: drivers/base/firmware_loader/main.c
:functions: firmware_request_nowarn
+firmware_request_platform
+-------------------------
+.. kernel-doc:: drivers/base/firmware_loader/main.c
+ :functions: firmware_request_platform
+
request_firmware_direct
-----------------------
.. kernel-doc:: drivers/base/firmware_loader/main.c
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index 0ebe205efd0c..d4e78cb3ef4d 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -17,6 +17,7 @@ available subsections can be seen below.
driver-model/index
basics
infrastructure
+ ioctl
early-userspace/index
pm/index
clk
@@ -74,11 +75,12 @@ available subsections can be seen below.
connector
console
dcdbas
- edid
eisa
ipmb
isa
isapnp
+ io-mapping
+ io_ordering
generic-counter
lightnvm-pblk
memory-devices/index
diff --git a/Documentation/io-mapping.txt b/Documentation/driver-api/io-mapping.rst
index a966239f04e4..a966239f04e4 100644
--- a/Documentation/io-mapping.txt
+++ b/Documentation/driver-api/io-mapping.rst
diff --git a/Documentation/io_ordering.txt b/Documentation/driver-api/io_ordering.rst
index 2ab303ce9a0d..2ab303ce9a0d 100644
--- a/Documentation/io_ordering.txt
+++ b/Documentation/driver-api/io_ordering.rst
diff --git a/Documentation/core-api/ioctl.rst b/Documentation/driver-api/ioctl.rst
index c455db0e1627..c455db0e1627 100644
--- a/Documentation/core-api/ioctl.rst
+++ b/Documentation/driver-api/ioctl.rst
diff --git a/Documentation/driver-api/usb/typec_bus.rst b/Documentation/driver-api/usb/typec_bus.rst
index f47a69bff498..03dfa9c018b7 100644
--- a/Documentation/driver-api/usb/typec_bus.rst
+++ b/Documentation/driver-api/usb/typec_bus.rst
@@ -53,9 +53,7 @@ in need to reconfigure the pins on the connector, the alternate mode driver
needs to notify the bus using :c:func:`typec_altmode_notify()`. The driver
passes the negotiated SVID specific pin configuration value to the function as
parameter. The bus driver will then configure the mux behind the connector using
-that value as the state value for the mux, and also call blocking notification
-chain to notify the external drivers about the state of the connector that need
-to know it.
+that value as the state value for the mux.
NOTE: The SVID specific pin configuration values must always start from
``TYPEC_STATE_MODAL``. USB Type-C specification defines two default states for
@@ -80,19 +78,6 @@ Helper macro ``TYPEC_MODAL_STATE()`` can also be used::
#define ALTMODEX_CONF_A = TYPEC_MODAL_STATE(0);
#define ALTMODEX_CONF_B = TYPEC_MODAL_STATE(1);
-Notification chain
-~~~~~~~~~~~~~~~~~~
-
-The drivers for the components that the alternate modes are designed for need to
-get details regarding the results of the negotiation with the partner, and the
-pin configuration of the connector. In case of DisplayPort alternate mode for
-example, the GPU drivers will need to know those details. In case of
-Thunderbolt alternate mode, the thunderbolt drivers will need to know them, and
-so on.
-
-The notification chain is designed for this purpose. The drivers can register
-notifiers with :c:func:`typec_altmode_register_notifier()`.
-
Cable plug alternate modes
~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -129,8 +114,3 @@ Cable Plug operations
.. kernel-doc:: drivers/usb/typec/bus.c
:functions: typec_altmode_get_plug typec_altmode_put_plug
-
-Notifications
-~~~~~~~~~~~~~
-.. kernel-doc:: drivers/usb/typec/class.c
- :functions: typec_altmode_register_notifier typec_altmode_unregister_notifier
diff --git a/Documentation/features/vm/pte_special/arch-support.txt b/Documentation/features/vm/pte_special/arch-support.txt
index 2dc5df6a1cf5..3d492a34c8ee 100644
--- a/Documentation/features/vm/pte_special/arch-support.txt
+++ b/Documentation/features/vm/pte_special/arch-support.txt
@@ -23,7 +23,7 @@
| openrisc: | TODO |
| parisc: | TODO |
| powerpc: | ok |
- | riscv: | TODO |
+ | riscv: | ok |
| s390: | ok |
| sh: | ok |
| sparc: | ok |
diff --git a/Documentation/filesystems/9p.txt b/Documentation/filesystems/9p.rst
index fec7144e817c..f054d1c45e86 100644
--- a/Documentation/filesystems/9p.txt
+++ b/Documentation/filesystems/9p.rst
@@ -1,7 +1,10 @@
- v9fs: Plan 9 Resource Sharing for Linux
- =======================================
+.. SPDX-License-Identifier: GPL-2.0
-ABOUT
+=======================================
+v9fs: Plan 9 Resource Sharing for Linux
+=======================================
+
+About
=====
v9fs is a Unix implementation of the Plan 9 9p remote filesystem protocol.
@@ -14,32 +17,34 @@ and Maya Gokhale. Additional development by Greg Watson
The best detailed explanation of the Linux implementation and applications of
the 9p client is available in the form of a USENIX paper:
+
http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html
Other applications are described in the following papers:
+
* XCPU & Clustering
- http://xcpu.org/papers/xcpu-talk.pdf
+ http://xcpu.org/papers/xcpu-talk.pdf
* KVMFS: control file system for KVM
- http://xcpu.org/papers/kvmfs.pdf
+ http://xcpu.org/papers/kvmfs.pdf
* CellFS: A New Programming Model for the Cell BE
- http://xcpu.org/papers/cellfs-talk.pdf
+ http://xcpu.org/papers/cellfs-talk.pdf
* PROSE I/O: Using 9p to enable Application Partitions
- http://plan9.escet.urjc.es/iwp9/cready/PROSE_iwp9_2006.pdf
+ http://plan9.escet.urjc.es/iwp9/cready/PROSE_iwp9_2006.pdf
* VirtFS: A Virtualization Aware File System pass-through
- http://goo.gl/3WPDg
+ http://goo.gl/3WPDg
-USAGE
+Usage
=====
-For remote file server:
+For remote file server::
mount -t 9p 10.10.1.2 /mnt/9
-For Plan 9 From User Space applications (http://swtch.com/plan9)
+For Plan 9 From User Space applications (http://swtch.com/plan9)::
mount -t 9p `namespace`/acme /mnt/9 -o trans=unix,uname=$USER
-For server running on QEMU host with virtio transport:
+For server running on QEMU host with virtio transport::
mount -t 9p -o trans=virtio <mount_tag> /mnt/9
@@ -48,18 +53,22 @@ mount points. Each 9P export is seen by the client as a virtio device with an
associated "mount_tag" property. Available mount tags can be
seen by reading /sys/bus/virtio/drivers/9pnet_virtio/virtio<n>/mount_tag files.
-OPTIONS
+Options
=======
+ ============= ===============================================================
trans=name select an alternative transport. Valid options are
currently:
- unix - specifying a named pipe mount point
- tcp - specifying a normal TCP/IP connection
- fd - used passed file descriptors for connection
- (see rfdno and wfdno)
- virtio - connect to the next virtio channel available
- (from QEMU with trans_virtio module)
- rdma - connect to a specified RDMA channel
+
+ ======== ============================================
+ unix specifying a named pipe mount point
+ tcp specifying a normal TCP/IP connection
+ fd used passed file descriptors for connection
+ (see rfdno and wfdno)
+ virtio connect to the next virtio channel available
+ (from QEMU with trans_virtio module)
+ rdma connect to a specified RDMA channel
+ ======== ============================================
uname=name user name to attempt mount as on the remote server. The
server may override or ignore this value. Certain user
@@ -69,28 +78,36 @@ OPTIONS
offering several exported file systems.
cache=mode specifies a caching policy. By default, no caches are used.
- none = default no cache policy, metadata and data
+
+ none
+ default no cache policy, metadata and data
alike are synchronous.
- loose = no attempts are made at consistency,
+ loose
+ no attempts are made at consistency,
intended for exclusive, read-only mounts
- fscache = use FS-Cache for a persistent, read-only
+ fscache
+ use FS-Cache for a persistent, read-only
cache backend.
- mmap = minimal cache that is only used for read-write
+ mmap
+ minimal cache that is only used for read-write
mmap. Northing else is cached, like cache=none
debug=n specifies debug level. The debug level is a bitmask.
- 0x01 = display verbose error messages
- 0x02 = developer debug (DEBUG_CURRENT)
- 0x04 = display 9p trace
- 0x08 = display VFS trace
- 0x10 = display Marshalling debug
- 0x20 = display RPC debug
- 0x40 = display transport debug
- 0x80 = display allocation debug
- 0x100 = display protocol message debug
- 0x200 = display Fid debug
- 0x400 = display packet debug
- 0x800 = display fscache tracing debug
+
+ ===== ================================
+ 0x01 display verbose error messages
+ 0x02 developer debug (DEBUG_CURRENT)
+ 0x04 display 9p trace
+ 0x08 display VFS trace
+ 0x10 display Marshalling debug
+ 0x20 display RPC debug
+ 0x40 display transport debug
+ 0x80 display allocation debug
+ 0x100 display protocol message debug
+ 0x200 display Fid debug
+ 0x400 display packet debug
+ 0x800 display fscache tracing debug
+ ===== ================================
rfdno=n the file descriptor for reading with trans=fd
@@ -103,9 +120,12 @@ OPTIONS
noextend force legacy mode (no 9p2000.u or 9p2000.L semantics)
version=name Select 9P protocol version. Valid options are:
- 9p2000 - Legacy mode (same as noextend)
- 9p2000.u - Use 9P2000.u protocol
- 9p2000.L - Use 9P2000.L protocol
+
+ ======== ==============================
+ 9p2000 Legacy mode (same as noextend)
+ 9p2000.u Use 9P2000.u protocol
+ 9p2000.L Use 9P2000.L protocol
+ ======== ==============================
dfltuid attempt to mount as a particular uid
@@ -118,22 +138,27 @@ OPTIONS
hosts. This functionality will be expanded in later versions.
access there are four access modes.
- user = if a user tries to access a file on v9fs
+ user
+ if a user tries to access a file on v9fs
filesystem for the first time, v9fs sends an
attach command (Tattach) for that user.
This is the default mode.
- <uid> = allows only user with uid=<uid> to access
+ <uid>
+ allows only user with uid=<uid> to access
the files on the mounted filesystem
- any = v9fs does single attach and performs all
+ any
+ v9fs does single attach and performs all
operations as one user
- client = ACL based access check on the 9p client
+ clien
+ ACL based access check on the 9p client
side for access validation
cachetag cache tag to use the specified persistent cache.
cache tags for existing cache sessions can be listed at
/sys/fs/9p/caches. (applies only to cache=fscache)
+ ============= ===============================================================
-RESOURCES
+Resources
=========
Protocol specifications are maintained on github:
@@ -158,4 +183,3 @@ http://plan9.bell-labs.com/plan9
For information on Plan 9 from User Space (Plan 9 applications and libraries
ported to Linux/BSD/OSX/etc) check out http://swtch.com/plan9
-
diff --git a/Documentation/filesystems/adfs.txt b/Documentation/filesystems/adfs.rst
index 0baa8e8c1fc1..5b22cae38e5e 100644
--- a/Documentation/filesystems/adfs.txt
+++ b/Documentation/filesystems/adfs.rst
@@ -1,3 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============================
+Acorn Disc Filing System - ADFS
+===============================
+
Filesystems supported by ADFS
-----------------------------
@@ -25,6 +31,7 @@ directory updates, specifically updating the access mode and timestamp.
Mount options for ADFS
----------------------
+ ============ ======================================================
uid=nnn All files in the partition will be owned by
user id nnn. Default 0 (root).
gid=nnn All files in the partition will be in group
@@ -36,22 +43,23 @@ Mount options for ADFS
ftsuffix=n When ftsuffix=0, no file type suffix will be applied.
When ftsuffix=1, a hexadecimal suffix corresponding to
the RISC OS file type will be added. Default 0.
+ ============ ======================================================
Mapping of ADFS permissions to Linux permissions
------------------------------------------------
ADFS permissions consist of the following:
- Owner read
- Owner write
- Other read
- Other write
+ - Owner read
+ - Owner write
+ - Other read
+ - Other write
(In older versions, an 'execute' permission did exist, but this
- does not hold the same meaning as the Linux 'execute' permission
- and is now obsolete).
+ does not hold the same meaning as the Linux 'execute' permission
+ and is now obsolete).
- The mapping is performed as follows:
+ The mapping is performed as follows::
Owner read -> -r--r--r--
Owner write -> --w--w---w
@@ -66,17 +74,18 @@ Mapping of ADFS permissions to Linux permissions
Possible other mode permissions -> ----rwxrwx
Hence, with the default masks, if a file is owner read/write, and
- not a UnixExec filetype, then the permissions will be:
+ not a UnixExec filetype, then the permissions will be::
-rw-------
However, if the masks were ownmask=0770,othmask=0007, then this would
- be modified to:
+ be modified to::
+
-rw-rw----
There is no restriction on what you can do with these masks. You may
wish that either read bits give read access to the file for all, but
- keep the default write protection (ownmask=0755,othmask=0577):
+ keep the default write protection (ownmask=0755,othmask=0577)::
-rw-r--r--
diff --git a/Documentation/filesystems/affs.txt b/Documentation/filesystems/affs.rst
index 71b63c2b9841..7f1a40dce6d3 100644
--- a/Documentation/filesystems/affs.txt
+++ b/Documentation/filesystems/affs.rst
@@ -1,9 +1,13 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============================
Overview of Amiga Filesystems
=============================
Not all varieties of the Amiga filesystems are supported for reading and
writing. The Amiga currently knows six different filesystems:
+============== ===============================================================
DOS\0 The old or original filesystem, not really suited for
hard disks and normally not used on them, either.
Supported read/write.
@@ -23,6 +27,7 @@ DOS\4 The original filesystem with directory cache. The directory
sense on hard disks. Supported read only.
DOS\5 The Fast File System with directory cache. Supported read only.
+============== ===============================================================
All of the above filesystems allow block sizes from 512 to 32K bytes.
Supported block sizes are: 512, 1024, 2048 and 4096 bytes. Larger blocks
@@ -36,14 +41,18 @@ are supported, too.
Mount options for the AFFS
==========================
-protect If this option is set, the protection bits cannot be altered.
+protect
+ If this option is set, the protection bits cannot be altered.
-setuid[=uid] This sets the owner of all files and directories in the file
+setuid[=uid]
+ This sets the owner of all files and directories in the file
system to uid or the uid of the current user, respectively.
-setgid[=gid] Same as above, but for gid.
+setgid[=gid]
+ Same as above, but for gid.
-mode=mode Sets the mode flags to the given (octal) value, regardless
+mode=mode
+ Sets the mode flags to the given (octal) value, regardless
of the original permissions. Directories will get an x
permission if the corresponding r bit is set.
This is useful since most of the plain AmigaOS files
@@ -53,33 +62,41 @@ nofilenametruncate
The file system will return an error when filename exceeds
standard maximum filename length (30 characters).
-reserved=num Sets the number of reserved blocks at the start of the
+reserved=num
+ Sets the number of reserved blocks at the start of the
partition to num. You should never need this option.
Default is 2.
-root=block Sets the block number of the root block. This should never
+root=block
+ Sets the block number of the root block. This should never
be necessary.
-bs=blksize Sets the blocksize to blksize. Valid block sizes are 512,
+bs=blksize
+ Sets the blocksize to blksize. Valid block sizes are 512,
1024, 2048 and 4096. Like the root option, this should
never be necessary, as the affs can figure it out itself.
-quiet The file system will not return an error for disallowed
+quiet
+ The file system will not return an error for disallowed
mode changes.
-verbose The volume name, file system type and block size will
+verbose
+ The volume name, file system type and block size will
be written to the syslog when the filesystem is mounted.
-mufs The filesystem is really a muFS, also it doesn't
+mufs
+ The filesystem is really a muFS, also it doesn't
identify itself as one. This option is necessary if
the filesystem wasn't formatted as muFS, but is used
as one.
-prefix=path Path will be prefixed to every absolute path name of
+prefix=path
+ Path will be prefixed to every absolute path name of
symbolic links on an AFFS partition. Default = "/".
(See below.)
-volume=name When symbolic links with an absolute path are created
+volume=name
+ When symbolic links with an absolute path are created
on an AFFS partition, name will be prepended as the
volume name. Default = "" (empty string).
(See below.)
@@ -119,7 +136,7 @@ The Linux rwxrwxrwx file mode is handled as follows:
- All other flags (suid, sgid, ...) are ignored and will
not be retained.
-
+
Newly created files and directories will get the user and group ID
of the current user and a mode according to the umask.
@@ -148,11 +165,13 @@ might be "User", "WB" and "Graphics", the mount points /amiga/User,
Examples
========
-Command line:
+Command line::
+
mount Archive/Amiga/Workbench3.1.adf /mnt -t affs -o loop,verbose
mount /dev/sda3 /Amiga -t affs
-/etc/fstab entry:
+/etc/fstab entry::
+
/dev/sdb5 /amiga/Workbench affs noauto,user,exec,verbose 0 0
IMPORTANT NOTE
@@ -170,7 +189,8 @@ before booting Windows!
If the damage is already done, the following should fix the RDB
(where <disk> is the device name).
-DO AT YOUR OWN RISK:
+
+DO AT YOUR OWN RISK::
dd if=/dev/<disk> of=rdb.tmp count=1
cp rdb.tmp rdb.fixed
@@ -189,10 +209,14 @@ By default, filenames are truncated to 30 characters without warning.
'nofilenametruncate' mount option can change that behavior.
Case is ignored by the affs in filename matching, but Linux shells
-do care about the case. Example (with /wb being an affs mounted fs):
+do care about the case. Example (with /wb being an affs mounted fs)::
+
rm /wb/WRONGCASE
-will remove /mnt/wrongcase, but
+
+will remove /mnt/wrongcase, but::
+
rm /wb/WR*
+
will not since the names are matched by the shell.
The block allocation is designed for hard disk partitions. If more
@@ -219,4 +243,4 @@ due to an incompatibility with the Amiga floppy controller.
If you are interested in an Amiga Emulator for Linux, look at
-http://web.archive.org/web/*/http://www.freiburg.linux.de/~uae/
+http://web.archive.org/web/%2E/http://www.freiburg.linux.de/~uae/
diff --git a/Documentation/filesystems/afs.txt b/Documentation/filesystems/afs.rst
index 8c6ea7b41048..c4ec39a5966e 100644
--- a/Documentation/filesystems/afs.txt
+++ b/Documentation/filesystems/afs.rst
@@ -1,8 +1,10 @@
- ====================
- kAFS: AFS FILESYSTEM
- ====================
+.. SPDX-License-Identifier: GPL-2.0
-Contents:
+====================
+kAFS: AFS FILESYSTEM
+====================
+
+.. Contents:
- Overview.
- Usage.
@@ -14,8 +16,7 @@ Contents:
- The @sys substitution.
-========
-OVERVIEW
+Overview
========
This filesystem provides a fairly simple secure AFS filesystem driver. It is
@@ -35,35 +36,33 @@ It does not yet support the following AFS features:
(*) pioctl() system call.
-===========
-COMPILATION
+Compilation
===========
The filesystem should be enabled by turning on the kernel configuration
-options:
+options::
CONFIG_AF_RXRPC - The RxRPC protocol transport
CONFIG_RXKAD - The RxRPC Kerberos security handler
CONFIG_AFS - The AFS filesystem
-Additionally, the following can be turned on to aid debugging:
+Additionally, the following can be turned on to aid debugging::
CONFIG_AF_RXRPC_DEBUG - Permit AF_RXRPC debugging to be enabled
CONFIG_AFS_DEBUG - Permit AFS debugging to be enabled
They permit the debugging messages to be turned on dynamically by manipulating
-the masks in the following files:
+the masks in the following files::
/sys/module/af_rxrpc/parameters/debug
/sys/module/kafs/parameters/debug
-=====
-USAGE
+Usage
=====
When inserting the driver modules the root cell must be specified along with a
-list of volume location server IP addresses:
+list of volume location server IP addresses::
modprobe rxrpc
modprobe kafs rootcell=cambridge.redhat.com:172.16.18.73:172.16.18.91
@@ -77,14 +76,14 @@ The second module is the kerberos RxRPC security driver, and the third module
is the actual filesystem driver for the AFS filesystem.
Once the module has been loaded, more modules can be added by the following
-procedure:
+procedure::
echo add grand.central.org 18.9.48.14:128.2.203.61:130.237.48.87 >/proc/fs/afs/cells
Where the parameters to the "add" command are the name of a cell and a list of
volume location servers within that cell, with the latter separated by colons.
-Filesystems can be mounted anywhere by commands similar to the following:
+Filesystems can be mounted anywhere by commands similar to the following::
mount -t afs "%cambridge.redhat.com:root.afs." /afs
mount -t afs "#cambridge.redhat.com:root.cell." /afs/cambridge
@@ -104,8 +103,7 @@ named volume will be looked up in the cell specified during modprobe.
Additional cells can be added through /proc (see later section).
-===========
-MOUNTPOINTS
+Mountpoints
===========
AFS has a concept of mountpoints. In AFS terms, these are specially formatted
@@ -123,42 +121,40 @@ culled first. If all are culled, then the requested volume will also be
unmounted, otherwise error EBUSY will be returned.
This can be used by the administrator to attempt to unmount the whole AFS tree
-mounted on /afs in one go by doing:
+mounted on /afs in one go by doing::
umount /afs
-============
-DYNAMIC ROOT
+Dynamic Root
============
A mount option is available to create a serverless mount that is only usable
-for dynamic lookup. Creating such a mount can be done by, for example:
+for dynamic lookup. Creating such a mount can be done by, for example::
mount -t afs none /afs -o dyn
This creates a mount that just has an empty directory at the root. Attempting
to look up a name in this directory will cause a mountpoint to be created that
-looks up a cell of the same name, for example:
+looks up a cell of the same name, for example::
ls /afs/grand.central.org/
-===============
-PROC FILESYSTEM
+Proc Filesystem
===============
The AFS modules creates a "/proc/fs/afs/" directory and populates it:
(*) A "cells" file that lists cells currently known to the afs module and
- their usage counts:
+ their usage counts::
[root@andromeda ~]# cat /proc/fs/afs/cells
USE NAME
3 cambridge.redhat.com
(*) A directory per cell that contains files that list volume location
- servers, volumes, and active servers known within that cell.
+ servers, volumes, and active servers known within that cell::
[root@andromeda ~]# cat /proc/fs/afs/cambridge.redhat.com/servers
USE ADDR STATE
@@ -171,8 +167,7 @@ The AFS modules creates a "/proc/fs/afs/" directory and populates it:
1 Val 20000000 20000001 20000002 root.afs
-=================
-THE CELL DATABASE
+The Cell Database
=================
The filesystem maintains an internal database of all the cells it knows and the
@@ -181,7 +176,7 @@ the system belongs is added to the database when modprobe is performed by the
"rootcell=" argument or, if compiled in, using a "kafs.rootcell=" argument on
the kernel command line.
-Further cells can be added by commands similar to the following:
+Further cells can be added by commands similar to the following::
echo add CELLNAME VLADDR[:VLADDR][:VLADDR]... >/proc/fs/afs/cells
echo add grand.central.org 18.9.48.14:128.2.203.61:130.237.48.87 >/proc/fs/afs/cells
@@ -189,8 +184,7 @@ Further cells can be added by commands similar to the following:
No other cell database operations are available at this time.
-========
-SECURITY
+Security
========
Secure operations are initiated by acquiring a key using the klog program. A
@@ -198,17 +192,17 @@ very primitive klog program is available at:
http://people.redhat.com/~dhowells/rxrpc/klog.c
-This should be compiled by:
+This should be compiled by::
make klog LDLIBS="-lcrypto -lcrypt -lkrb4 -lkeyutils"
-And then run as:
+And then run as::
./klog
Assuming it's successful, this adds a key of type RxRPC, named for the service
and cell, eg: "afs@<cellname>". This can be viewed with the keyctl program or
-by cat'ing /proc/keys:
+by cat'ing /proc/keys::
[root@andromeda ~]# keyctl show
Session Keyring
@@ -232,20 +226,19 @@ socket), then the operations on the file will be made with key that was used to
open the file.
-=====================
-THE @SYS SUBSTITUTION
+The @sys Substitution
=====================
The list of up to 16 @sys substitutions for the current network namespace can
-be configured by writing a list to /proc/fs/afs/sysname:
+be configured by writing a list to /proc/fs/afs/sysname::
[root@andromeda ~]# echo foo amd64_linux_26 >/proc/fs/afs/sysname
-or cleared entirely by writing an empty list:
+or cleared entirely by writing an empty list::
[root@andromeda ~]# echo >/proc/fs/afs/sysname
-The current list for current network namespace can be retrieved by:
+The current list for current network namespace can be retrieved by::
[root@andromeda ~]# cat /proc/fs/afs/sysname
foo
diff --git a/Documentation/filesystems/autofs-mount-control.txt b/Documentation/filesystems/autofs-mount-control.rst
index acc02fc57993..2903aed92316 100644
--- a/Documentation/filesystems/autofs-mount-control.txt
+++ b/Documentation/filesystems/autofs-mount-control.rst
@@ -1,4 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+====================================================================
Miscellaneous Device control operations for the autofs kernel module
====================================================================
@@ -36,24 +38,24 @@ For example, there are two types of automount maps, direct (in the kernel
module source you will see a third type called an offset, which is just
a direct mount in disguise) and indirect.
-Here is a master map with direct and indirect map entries:
+Here is a master map with direct and indirect map entries::
-/- /etc/auto.direct
-/test /etc/auto.indirect
+ /- /etc/auto.direct
+ /test /etc/auto.indirect
-and the corresponding map files:
+and the corresponding map files::
-/etc/auto.direct:
+ /etc/auto.direct:
-/automount/dparse/g6 budgie:/autofs/export1
-/automount/dparse/g1 shark:/autofs/export1
-and so on.
+ /automount/dparse/g6 budgie:/autofs/export1
+ /automount/dparse/g1 shark:/autofs/export1
+ and so on.
-/etc/auto.indirect:
+/etc/auto.indirect::
-g1 shark:/autofs/export1
-g6 budgie:/autofs/export1
-and so on.
+ g1 shark:/autofs/export1
+ g6 budgie:/autofs/export1
+ and so on.
For the above indirect map an autofs file system is mounted on /test and
mounts are triggered for each sub-directory key by the inode lookup
@@ -69,23 +71,23 @@ use the follow_link inode operation to trigger the mount.
But, each entry in direct and indirect maps can have offsets (making
them multi-mount map entries).
-For example, an indirect mount map entry could also be:
+For example, an indirect mount map entry could also be::
-g1 \
- / shark:/autofs/export5/testing/test \
- /s1 shark:/autofs/export/testing/test/s1 \
- /s2 shark:/autofs/export5/testing/test/s2 \
- /s1/ss1 shark:/autofs/export1 \
- /s2/ss2 shark:/autofs/export2
+ g1 \
+ / shark:/autofs/export5/testing/test \
+ /s1 shark:/autofs/export/testing/test/s1 \
+ /s2 shark:/autofs/export5/testing/test/s2 \
+ /s1/ss1 shark:/autofs/export1 \
+ /s2/ss2 shark:/autofs/export2
-and a similarly a direct mount map entry could also be:
+and a similarly a direct mount map entry could also be::
-/automount/dparse/g1 \
- / shark:/autofs/export5/testing/test \
- /s1 shark:/autofs/export/testing/test/s1 \
- /s2 shark:/autofs/export5/testing/test/s2 \
- /s1/ss1 shark:/autofs/export2 \
- /s2/ss2 shark:/autofs/export2
+ /automount/dparse/g1 \
+ / shark:/autofs/export5/testing/test \
+ /s1 shark:/autofs/export/testing/test/s1 \
+ /s2 shark:/autofs/export5/testing/test/s2 \
+ /s1/ss1 shark:/autofs/export2 \
+ /s2/ss2 shark:/autofs/export2
One of the issues with version 4 of autofs was that, when mounting an
entry with a large number of offsets, possibly with nesting, we needed
@@ -170,32 +172,32 @@ autofs Miscellaneous Device mount control interface
The control interface is opening a device node, typically /dev/autofs.
All the ioctls use a common structure to pass the needed parameter
-information and return operation results:
-
-struct autofs_dev_ioctl {
- __u32 ver_major;
- __u32 ver_minor;
- __u32 size; /* total size of data passed in
- * including this struct */
- __s32 ioctlfd; /* automount command fd */
-
- /* Command parameters */
- union {
- struct args_protover protover;
- struct args_protosubver protosubver;
- struct args_openmount openmount;
- struct args_ready ready;
- struct args_fail fail;
- struct args_setpipefd setpipefd;
- struct args_timeout timeout;
- struct args_requester requester;
- struct args_expire expire;
- struct args_askumount askumount;
- struct args_ismountpoint ismountpoint;
- };
-
- char path[0];
-};
+information and return operation results::
+
+ struct autofs_dev_ioctl {
+ __u32 ver_major;
+ __u32 ver_minor;
+ __u32 size; /* total size of data passed in
+ * including this struct */
+ __s32 ioctlfd; /* automount command fd */
+
+ /* Command parameters */
+ union {
+ struct args_protover protover;
+ struct args_protosubver protosubver;
+ struct args_openmount openmount;
+ struct args_ready ready;
+ struct args_fail fail;
+ struct args_setpipefd setpipefd;
+ struct args_timeout timeout;
+ struct args_requester requester;
+ struct args_expire expire;
+ struct args_askumount askumount;
+ struct args_ismountpoint ismountpoint;
+ };
+
+ char path[0];
+ };
The ioctlfd field is a mount point file descriptor of an autofs mount
point. It is returned by the open call and is used by all calls except
@@ -212,7 +214,7 @@ is used account for the increased structure length when translating the
structure sent from user space.
This structure can be initialized before setting specific fields by using
-the void function call init_autofs_dev_ioctl(struct autofs_dev_ioctl *).
+the void function call init_autofs_dev_ioctl(``struct autofs_dev_ioctl *``).
All of the ioctls perform a copy of this structure from user space to
kernel space and return -EINVAL if the size parameter is smaller than
diff --git a/Documentation/filesystems/befs.txt b/Documentation/filesystems/befs.rst
index da45e6c842b8..79f9740d76ff 100644
--- a/Documentation/filesystems/befs.txt
+++ b/Documentation/filesystems/befs.rst
@@ -1,48 +1,54 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================
BeOS filesystem for Linux
+=========================
Document last updated: Dec 6, 2001
-WARNING
+Warning
=======
Make sure you understand that this is alpha software. This means that the
-implementation is neither complete nor well-tested.
+implementation is neither complete nor well-tested.
I DISCLAIM ALL RESPONSIBILITY FOR ANY POSSIBLE BAD EFFECTS OF THIS CODE!
-LICENSE
-=====
-This software is covered by the GNU General Public License.
+License
+=======
+This software is covered by the GNU General Public License.
See the file COPYING for the complete text of the license.
Or the GNU website: <http://www.gnu.org/licenses/licenses.html>
-AUTHOR
-=====
+Author
+======
The largest part of the code written by Will Dyson <will_dyson@pobox.com>
He has been working on the code since Aug 13, 2001. See the changelog for
details.
Original Author: Makoto Kato <m_kato@ga2.so-net.ne.jp>
+
His original code can still be found at:
<http://hp.vector.co.jp/authors/VA008030/bfs/>
+
Does anyone know of a more current email address for Makoto? He doesn't
respond to the address given above...
This filesystem doesn't have a maintainer.
-WHAT IS THIS DRIVER?
-==================
-This module implements the native filesystem of BeOS http://www.beincorporated.com/
+What is this Driver?
+====================
+This module implements the native filesystem of BeOS http://www.beincorporated.com/
for the linux 2.4.1 and later kernels. Currently it is a read-only
implementation.
Which is it, BFS or BEFS?
-================
-Be, Inc said, "BeOS Filesystem is officially called BFS, not BeFS".
+=========================
+Be, Inc said, "BeOS Filesystem is officially called BFS, not BeFS".
But Unixware Boot Filesystem is called bfs, too. And they are already in
the kernel. Because of this naming conflict, on Linux the BeOS
filesystem is called befs.
-HOW TO INSTALL
+How to Install
==============
step 1. Install the BeFS patch into the source code tree of linux.
@@ -54,16 +60,16 @@ is called patch-befs-xxx, you would do the following:
patch -p1 < /path/to/patch-befs-xxx
if the patching step fails (i.e. there are rejected hunks), you can try to
-figure it out yourself (it shouldn't be hard), or mail the maintainer
+figure it out yourself (it shouldn't be hard), or mail the maintainer
(Will Dyson <will_dyson@pobox.com>) for help.
step 2. Configuration & make kernel
The linux kernel has many compile-time options. Most of them are beyond the
scope of this document. I suggest the Kernel-HOWTO document as a good general
-reference on this topic. http://www.linuxdocs.org/HOWTOs/Kernel-HOWTO-4.html
+reference on this topic. http://www.linuxdocs.org/HOWTOs/Kernel-HOWTO-4.html
-However, to use the BeFS module, you must enable it at configure time.
+However, to use the BeFS module, you must enable it at configure time::
cd /foo/bar/linux
make menuconfig (or xconfig)
@@ -82,35 +88,40 @@ step 3. Install
See the kernel howto <http://www.linux.com/howto/Kernel-HOWTO.html> for
instructions on this critical step.
-USING BFS
+Using BFS
=========
To use the BeOS filesystem, use filesystem type 'befs'.
-ex)
+ex::
+
mount -t befs /dev/fd0 /beos
-MOUNT OPTIONS
+Mount Options
=============
+
+============= ===========================================================
uid=nnn All files in the partition will be owned by user id nnn.
gid=nnn All files in the partition will be in group nnn.
iocharset=xxx Use xxx as the name of the NLS translation table.
debug The driver will output debugging information to the syslog.
+============= ===========================================================
-HOW TO GET LASTEST VERSION
+How to Get Lastest Version
==========================
The latest version is currently available at:
<http://befs-driver.sourceforge.net/>
-ANY KNOWN BUGS?
-===========
+Any Known Bugs?
+===============
As of Jan 20, 2002:
-
+
None
-SPECIAL THANKS
+Special Thanks
==============
Dominic Giampalo ... Writing "Practical file system design with Be filesystem"
+
Hiroyuki Yamada ... Testing LinuxPPC.
diff --git a/Documentation/filesystems/bfs.txt b/Documentation/filesystems/bfs.rst
index 843ce91a2e40..ce14b9018807 100644
--- a/Documentation/filesystems/bfs.txt
+++ b/Documentation/filesystems/bfs.rst
@@ -1,4 +1,7 @@
-BFS FILESYSTEM FOR LINUX
+.. SPDX-License-Identifier: GPL-2.0
+
+========================
+BFS Filesystem for Linux
========================
The BFS filesystem is used by SCO UnixWare OS for the /stand slice, which
@@ -9,22 +12,22 @@ In order to access /stand partition under Linux you obviously need to
know the partition number and the kernel must support UnixWare disk slices
(CONFIG_UNIXWARE_DISKLABEL config option). However BFS support does not
depend on having UnixWare disklabel support because one can also mount
-BFS filesystem via loopback:
+BFS filesystem via loopback::
-# losetup /dev/loop0 stand.img
-# mount -t bfs /dev/loop0 /mnt/stand
+ # losetup /dev/loop0 stand.img
+ # mount -t bfs /dev/loop0 /mnt/stand
-where stand.img is a file containing the image of BFS filesystem.
+where stand.img is a file containing the image of BFS filesystem.
When you have finished using it and umounted you need to also deallocate
-/dev/loop0 device by:
+/dev/loop0 device by::
-# losetup -d /dev/loop0
+ # losetup -d /dev/loop0
-You can simplify mounting by just typing:
+You can simplify mounting by just typing::
-# mount -t bfs -o loop stand.img /mnt/stand
+ # mount -t bfs -o loop stand.img /mnt/stand
-this will allocate the first available loopback device (and load loop.o
+this will allocate the first available loopback device (and load loop.o
kernel module if necessary) automatically. If the loopback driver is not
loaded automatically, make sure that you have compiled the module and
that modprobe is functioning. Beware that umount will not deallocate
@@ -33,21 +36,21 @@ that modprobe is functioning. Beware that umount will not deallocate
losetup(8). Read losetup(8) manpage for more info.
To create the BFS image under UnixWare you need to find out first which
-slice contains it. The command prtvtoc(1M) is your friend:
+slice contains it. The command prtvtoc(1M) is your friend::
-# prtvtoc /dev/rdsk/c0b0t0d0s0
+ # prtvtoc /dev/rdsk/c0b0t0d0s0
(assuming your root disk is on target=0, lun=0, bus=0, controller=0). Then you
look for the slice with tag "STAND", which is usually slice 10. With this
-information you can use dd(1) to create the BFS image:
+information you can use dd(1) to create the BFS image::
-# umount /stand
-# dd if=/dev/rdsk/c0b0t0d0sa of=stand.img bs=512
+ # umount /stand
+ # dd if=/dev/rdsk/c0b0t0d0sa of=stand.img bs=512
Just in case, you can verify that you have done the right thing by checking
-the magic number:
+the magic number::
-# od -Ad -tx4 stand.img | more
+ # od -Ad -tx4 stand.img | more
The first 4 bytes should be 0x1badface.
diff --git a/Documentation/filesystems/btrfs.txt b/Documentation/filesystems/btrfs.rst
index f9dad22d95ce..d0904f602819 100644
--- a/Documentation/filesystems/btrfs.txt
+++ b/Documentation/filesystems/btrfs.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====
BTRFS
=====
diff --git a/Documentation/filesystems/ceph.txt b/Documentation/filesystems/ceph.rst
index b19b6a03f91c..b46a7218248f 100644
--- a/Documentation/filesystems/ceph.txt
+++ b/Documentation/filesystems/ceph.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+============================
Ceph Distributed File System
============================
@@ -15,6 +18,7 @@ Basic features include:
* Easy deployment: most FS components are userspace daemons
Also,
+
* Flexible snapshots (on any directory)
* Recursive accounting (nested files, directories, bytes)
@@ -63,7 +67,7 @@ no 'du' or similar recursive scan of the file system is required.
Finally, Ceph also allows quotas to be set on any directory in the system.
The quota can restrict the number of bytes or the number of files stored
beneath that point in the directory hierarchy. Quotas can be set using
-extended attributes 'ceph.quota.max_files' and 'ceph.quota.max_bytes', eg:
+extended attributes 'ceph.quota.max_files' and 'ceph.quota.max_bytes', eg::
setfattr -n ceph.quota.max_bytes -v 100000000 /some/dir
getfattr -n ceph.quota.max_bytes /some/dir
@@ -76,7 +80,7 @@ from writing as much data as it needs.
Mount Syntax
============
-The basic mount syntax is:
+The basic mount syntax is::
# mount -t ceph monip[:port][,monip2[:port]...]:/[subdir] mnt
@@ -84,7 +88,7 @@ You only need to specify a single monitor, as the client will get the
full list when it connects. (However, if the monitor you specify
happens to be down, the mount won't succeed.) The port can be left
off if the monitor is using the default. So if the monitor is at
-1.2.3.4,
+1.2.3.4::
# mount -t ceph 1.2.3.4:/ /mnt/ceph
@@ -163,14 +167,14 @@ Mount Options
available modes are "no" and "clean". The default is "no".
* no: never attempt to reconnect when client detects that it has been
- blacklisted. Operations will generally fail after being blacklisted.
+ blacklisted. Operations will generally fail after being blacklisted.
* clean: client reconnects to the ceph cluster automatically when it
- detects that it has been blacklisted. During reconnect, client drops
- dirty data/metadata, invalidates page caches and writable file handles.
- After reconnect, file locks become stale because the MDS loses track
- of them. If an inode contains any stale file locks, read/write on the
- inode is not allowed until applications release all stale file locks.
+ detects that it has been blacklisted. During reconnect, client drops
+ dirty data/metadata, invalidates page caches and writable file handles.
+ After reconnect, file locks become stale because the MDS loses track
+ of them. If an inode contains any stale file locks, read/write on the
+ inode is not allowed until applications release all stale file locks.
More Information
================
@@ -179,8 +183,8 @@ For more information on Ceph, see the home page at
https://ceph.com/
The Linux kernel client source tree is available at
- https://github.com/ceph/ceph-client.git
- git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client.git
+ - https://github.com/ceph/ceph-client.git
+ - git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client.git
and the source for the full system is at
https://github.com/ceph/ceph.git
diff --git a/Documentation/filesystems/cifs/cifsroot.txt b/Documentation/filesystems/cifs/cifsroot.txt
index 0fa1a2c36a40..947b7ec6ce9e 100644
--- a/Documentation/filesystems/cifs/cifsroot.txt
+++ b/Documentation/filesystems/cifs/cifsroot.txt
@@ -13,7 +13,7 @@ network by utilizing SMB or CIFS protocol.
In order to mount, the network stack will also need to be set up by
using 'ip=' config option. For more details, see
-Documentation/filesystems/nfs/nfsroot.txt.
+Documentation/admin-guide/nfs/nfsroot.rst.
A CIFS root mount currently requires the use of SMB1+UNIX Extensions
which is only supported by the Samba server. SMB1 is the older
diff --git a/Documentation/filesystems/cramfs.txt b/Documentation/filesystems/cramfs.rst
index 8e19a53d648b..afbdbde98bd2 100644
--- a/Documentation/filesystems/cramfs.txt
+++ b/Documentation/filesystems/cramfs.rst
@@ -1,12 +1,15 @@
+.. SPDX-License-Identifier: GPL-2.0
- Cramfs - cram a filesystem onto a small ROM
+===========================================
+Cramfs - cram a filesystem onto a small ROM
+===========================================
-cramfs is designed to be simple and small, and to compress things well.
+cramfs is designed to be simple and small, and to compress things well.
It uses the zlib routines to compress a file one page at a time, and
allows random page access. The meta-data is not compressed, but is
expressed in a very terse representation to make it use much less
-diskspace than traditional filesystems.
+diskspace than traditional filesystems.
You can't write to a cramfs filesystem (making it compressible and
compact also makes it _very_ hard to update on-the-fly), so you have to
@@ -28,9 +31,9 @@ issue.
Hard links are supported, but hard linked files
will still have a link count of 1 in the cramfs image.
-Cramfs directories have no `.' or `..' entries. Directories (like
+Cramfs directories have no ``.`` or ``..`` entries. Directories (like
every other file on cramfs) always have a link count of 1. (There's
-no need to use -noleaf in `find', btw.)
+no need to use -noleaf in ``find``, btw.)
No timestamps are stored in a cramfs, so these default to the epoch
(1970 GMT). Recently-accessed files may have updated timestamps, but
@@ -70,9 +73,9 @@ MTD drivers are cfi_cmdset_0001 (Intel/Sharp CFI flash) or physmap
(Flash device in physical memory map). MTD partitions based on such devices
are fine too. Then that device should be specified with the "mtd:" prefix
as the mount device argument. For example, to mount the MTD device named
-"fs_partition" on the /mnt directory:
+"fs_partition" on the /mnt directory::
-$ mount -t cramfs mtd:fs_partition /mnt
+ $ mount -t cramfs mtd:fs_partition /mnt
To boot a kernel with this as root filesystem, suffice to specify
something like "root=mtd:fs_partition" on the kernel command line.
@@ -90,6 +93,7 @@ https://github.com/npitre/cramfs-tools
For /usr/share/magic
--------------------
+===== ======================= =======================
0 ulelong 0x28cd3d45 Linux cramfs offset 0
>4 ulelong x size %d
>8 ulelong x flags 0x%x
@@ -110,6 +114,7 @@ For /usr/share/magic
>552 ulelong x fsid.blocks %d
>556 ulelong x fsid.files %d
>560 string >\0 name "%.16s"
+===== ======================= =======================
Hacker Notes
diff --git a/Documentation/filesystems/debugfs.txt b/Documentation/filesystems/debugfs.rst
index 55336a47a110..db9ea0854040 100644
--- a/Documentation/filesystems/debugfs.txt
+++ b/Documentation/filesystems/debugfs.rst
@@ -1,4 +1,11 @@
-Copyright 2009 Jonathan Corbet <corbet@lwn.net>
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+=======
+DebugFS
+=======
+
+Copyright |copy| 2009 Jonathan Corbet <corbet@lwn.net>
Debugfs exists as a simple way for kernel developers to make information
available to user space. Unlike /proc, which is only meant for information
@@ -6,11 +13,11 @@ about a process, or sysfs, which has strict one-value-per-file rules,
debugfs has no rules at all. Developers can put any information they want
there. The debugfs filesystem is also intended to not serve as a stable
ABI to user space; in theory, there are no stability constraints placed on
-files exported there. The real world is not always so simple, though [1];
+files exported there. The real world is not always so simple, though [1]_;
even debugfs interfaces are best designed with the idea that they will need
to be maintained forever.
-Debugfs is typically mounted with a command like:
+Debugfs is typically mounted with a command like::
mount -t debugfs none /sys/kernel/debug
@@ -23,7 +30,7 @@ Note that the debugfs API is exported GPL-only to modules.
Code using debugfs should include <linux/debugfs.h>. Then, the first order
of business will be to create at least one directory to hold a set of
-debugfs files:
+debugfs files::
struct dentry *debugfs_create_dir(const char *name, struct dentry *parent);
@@ -36,7 +43,7 @@ something went wrong. If ERR_PTR(-ENODEV) is returned, that is an
indication that the kernel has been built without debugfs support and none
of the functions described below will work.
-The most general way to create a file within a debugfs directory is with:
+The most general way to create a file within a debugfs directory is with::
struct dentry *debugfs_create_file(const char *name, umode_t mode,
struct dentry *parent, void *data,
@@ -53,12 +60,12 @@ ERR_PTR(-ERROR) on error, or ERR_PTR(-ENODEV) if debugfs support is
missing.
Create a file with an initial size, the following function can be used
-instead:
+instead::
- struct dentry *debugfs_create_file_size(const char *name, umode_t mode,
- struct dentry *parent, void *data,
- const struct file_operations *fops,
- loff_t file_size);
+ void debugfs_create_file_size(const char *name, umode_t mode,
+ struct dentry *parent, void *data,
+ const struct file_operations *fops,
+ loff_t file_size);
file_size is the initial file size. The other parameters are the same
as the function debugfs_create_file.
@@ -66,7 +73,7 @@ as the function debugfs_create_file.
In a number of cases, the creation of a set of file operations is not
actually necessary; the debugfs code provides a number of helper functions
for simple situations. Files containing a single integer value can be
-created with any of:
+created with any of::
void debugfs_create_u8(const char *name, umode_t mode,
struct dentry *parent, u8 *value);
@@ -80,7 +87,7 @@ created with any of:
These files support both reading and writing the given value; if a specific
file should not be written to, simply set the mode bits accordingly. The
values in these files are in decimal; if hexadecimal is more appropriate,
-the following functions can be used instead:
+the following functions can be used instead::
void debugfs_create_x8(const char *name, umode_t mode,
struct dentry *parent, u8 *value);
@@ -94,7 +101,7 @@ the following functions can be used instead:
These functions are useful as long as the developer knows the size of the
value to be exported. Some types can have different widths on different
architectures, though, complicating the situation somewhat. There are
-functions meant to help out in such special cases:
+functions meant to help out in such special cases::
void debugfs_create_size_t(const char *name, umode_t mode,
struct dentry *parent, size_t *value);
@@ -103,7 +110,7 @@ As might be expected, this function will create a debugfs file to represent
a variable of type size_t.
Similarly, there are helpers for variables of type unsigned long, in decimal
-and hexadecimal:
+and hexadecimal::
struct dentry *debugfs_create_ulong(const char *name, umode_t mode,
struct dentry *parent,
@@ -111,7 +118,7 @@ and hexadecimal:
void debugfs_create_xul(const char *name, umode_t mode,
struct dentry *parent, unsigned long *value);
-Boolean values can be placed in debugfs with:
+Boolean values can be placed in debugfs with::
struct dentry *debugfs_create_bool(const char *name, umode_t mode,
struct dentry *parent, bool *value);
@@ -120,7 +127,7 @@ A read on the resulting file will yield either Y (for non-zero values) or
N, followed by a newline. If written to, it will accept either upper- or
lower-case values, or 1 or 0. Any other input will be silently ignored.
-Also, atomic_t values can be placed in debugfs with:
+Also, atomic_t values can be placed in debugfs with::
void debugfs_create_atomic_t(const char *name, umode_t mode,
struct dentry *parent, atomic_t *value)
@@ -129,7 +136,7 @@ A read of this file will get atomic_t values, and a write of this file
will set atomic_t values.
Another option is exporting a block of arbitrary binary data, with
-this structure and function:
+this structure and function::
struct debugfs_blob_wrapper {
void *data;
@@ -151,7 +158,7 @@ If you want to dump a block of registers (something that happens quite
often during development, even if little such code reaches mainline.
Debugfs offers two functions: one to make a registers-only file, and
another to insert a register block in the middle of another sequential
-file.
+file::
struct debugfs_reg32 {
char *name;
@@ -175,7 +182,7 @@ The "base" argument may be 0, but you may want to build the reg32 array
using __stringify, and a number of register names (macros) are actually
byte offsets over a base for the register block.
-If you want to dump an u32 array in debugfs, you can create file with:
+If you want to dump an u32 array in debugfs, you can create file with::
void debugfs_create_u32_array(const char *name, umode_t mode,
struct dentry *parent,
@@ -185,7 +192,7 @@ The "array" argument provides data, and the "elements" argument is
the number of elements in the array. Note: Once array is created its
size can not be changed.
-There is a helper function to create device related seq_file:
+There is a helper function to create device related seq_file::
struct dentry *debugfs_create_devm_seqfile(struct device *dev,
const char *name,
@@ -197,14 +204,14 @@ The "dev" argument is the device related to this debugfs file, and
the "read_fn" is a function pointer which to be called to print the
seq_file content.
-There are a couple of other directory-oriented helper functions:
+There are a couple of other directory-oriented helper functions::
- struct dentry *debugfs_rename(struct dentry *old_dir,
+ struct dentry *debugfs_rename(struct dentry *old_dir,
struct dentry *old_dentry,
- struct dentry *new_dir,
+ struct dentry *new_dir,
const char *new_name);
- struct dentry *debugfs_create_symlink(const char *name,
+ struct dentry *debugfs_create_symlink(const char *name,
struct dentry *parent,
const char *target);
@@ -219,7 +226,7 @@ module is unloaded without explicitly removing debugfs entries, the result
will be a lot of stale pointers and no end of highly antisocial behavior.
So all debugfs users - at least those which can be built as modules - must
be prepared to remove all files and directories they create there. A file
-can be removed with:
+can be removed with::
void debugfs_remove(struct dentry *dentry);
@@ -229,7 +236,7 @@ be removed.
Once upon a time, debugfs users were required to remember the dentry
pointer for every debugfs file they created so that all files could be
cleaned up. We live in more civilized times now, though, and debugfs users
-can call:
+can call::
void debugfs_remove_recursive(struct dentry *dentry);
@@ -237,5 +244,4 @@ If this function is passed a pointer for the dentry corresponding to the
top-level directory, the entire hierarchy below that directory will be
removed.
-Notes:
- [1] http://lwn.net/Articles/309298/
+.. [1] http://lwn.net/Articles/309298/
diff --git a/Documentation/filesystems/dlmfs.txt b/Documentation/filesystems/dlmfs.rst
index fcf4d509d118..68daaa7facf9 100644
--- a/Documentation/filesystems/dlmfs.txt
+++ b/Documentation/filesystems/dlmfs.rst
@@ -1,20 +1,25 @@
-dlmfs
-==================
+.. SPDX-License-Identifier: GPL-2.0
+.. include:: <isonum.txt>
+
+=====
+DLMFS
+=====
+
A minimal DLM userspace interface implemented via a virtual file
system.
dlmfs is built with OCFS2 as it requires most of its infrastructure.
-Project web page: http://ocfs2.wiki.kernel.org
-Tools web page: https://github.com/markfasheh/ocfs2-tools
-OCFS2 mailing lists: http://oss.oracle.com/projects/ocfs2/mailman/
+:Project web page: http://ocfs2.wiki.kernel.org
+:Tools web page: https://github.com/markfasheh/ocfs2-tools
+:OCFS2 mailing lists: http://oss.oracle.com/projects/ocfs2/mailman/
All code copyright 2005 Oracle except when otherwise noted.
-CREDITS
+Credits
=======
-Some code taken from ramfs which is Copyright (C) 2000 Linus Torvalds
+Some code taken from ramfs which is Copyright |copy| 2000 Linus Torvalds
and Transmeta Corp.
Mark Fasheh <mark.fasheh@oracle.com>
@@ -96,14 +101,19 @@ operation. If the lock succeeds, you'll get an fd.
open(2) with O_CREAT to ensure the resource inode is created - dlmfs does
not automatically create inodes for existing lock resources.
+============ ===========================
Open Flag Lock Request Type
---------- -----------------
+============ ===========================
O_RDONLY Shared Read
O_RDWR Exclusive
+============ ===========================
+
+============ ===========================
Open Flag Resulting Locking Behavior
---------- --------------------------
+============ ===========================
O_NONBLOCK Trylock operation
+============ ===========================
You must provide exactly one of O_RDONLY or O_RDWR.
diff --git a/Documentation/filesystems/ecryptfs.txt b/Documentation/filesystems/ecryptfs.rst
index 01d8a08351ac..1f2edef4c57a 100644
--- a/Documentation/filesystems/ecryptfs.txt
+++ b/Documentation/filesystems/ecryptfs.rst
@@ -1,14 +1,18 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================================================
eCryptfs: A stacked cryptographic filesystem for Linux
+======================================================
eCryptfs is free software. Please see the file COPYING for details.
For documentation, please see the files in the doc/ subdirectory. For
building and installation instructions please see the INSTALL file.
-Maintainer: Phillip Hellewell
-Lead developer: Michael A. Halcrow <mhalcrow@us.ibm.com>
-Developers: Michael C. Thompson
- Kent Yoder
-Web Site: http://ecryptfs.sf.net
+:Maintainer: Phillip Hellewell
+:Lead developer: Michael A. Halcrow <mhalcrow@us.ibm.com>
+:Developers: Michael C. Thompson
+ Kent Yoder
+:Web Site: http://ecryptfs.sf.net
This software is currently undergoing development. Make sure to
maintain a backup copy of any data you write into eCryptfs.
@@ -19,34 +23,36 @@ SourceForge site:
http://sourceforge.net/projects/ecryptfs/
Userspace requirements include:
- - David Howells' userspace keyring headers and libraries (version
- 1.0 or higher), obtainable from
- http://people.redhat.com/~dhowells/keyutils/
- - Libgcrypt
+
+- David Howells' userspace keyring headers and libraries (version
+ 1.0 or higher), obtainable from
+ http://people.redhat.com/~dhowells/keyutils/
+- Libgcrypt
-NOTES
+.. note::
-In the beta/experimental releases of eCryptfs, when you upgrade
-eCryptfs, you should copy the files to an unencrypted location and
-then copy the files back into the new eCryptfs mount to migrate the
-files.
+ In the beta/experimental releases of eCryptfs, when you upgrade
+ eCryptfs, you should copy the files to an unencrypted location and
+ then copy the files back into the new eCryptfs mount to migrate the
+ files.
-MOUNT-WIDE PASSPHRASE
+Mount-wide Passphrase
+=====================
Create a new directory into which eCryptfs will write its encrypted
files (i.e., /root/crypt). Then, create the mount point directory
-(i.e., /mnt/crypt). Now it's time to mount eCryptfs:
+(i.e., /mnt/crypt). Now it's time to mount eCryptfs::
-mount -t ecryptfs /root/crypt /mnt/crypt
+ mount -t ecryptfs /root/crypt /mnt/crypt
You should be prompted for a passphrase and a salt (the salt may be
blank).
-Try writing a new file:
+Try writing a new file::
-echo "Hello, World" > /mnt/crypt/hello.txt
+ echo "Hello, World" > /mnt/crypt/hello.txt
The operation will complete. Notice that there is a new file in
/root/crypt that is at least 12288 bytes in size (depending on your
@@ -59,10 +65,13 @@ keyctl clear @u
Then umount /mnt/crypt and mount again per the instructions given
above.
-cat /mnt/crypt/hello.txt
+::
+
+ cat /mnt/crypt/hello.txt
-NOTES
+Notes
+=====
eCryptfs version 0.1 should only be mounted on (1) empty directories
or (2) directories containing files only created by eCryptfs. If you
diff --git a/Documentation/filesystems/efivarfs.txt b/Documentation/filesystems/efivarfs.rst
index 686a64bba775..90ac65683e7e 100644
--- a/Documentation/filesystems/efivarfs.txt
+++ b/Documentation/filesystems/efivarfs.rst
@@ -1,5 +1,8 @@
+.. SPDX-License-Identifier: GPL-2.0
+=======================================
efivarfs - a (U)EFI variable filesystem
+=======================================
The efivarfs filesystem was created to address the shortcomings of
using entries in sysfs to maintain EFI variables. The old sysfs EFI
@@ -11,7 +14,7 @@ than a single page, sysfs isn't the best interface for this.
Variables can be created, deleted and modified with the efivarfs
filesystem.
-efivarfs is typically mounted like this,
+efivarfs is typically mounted like this::
mount -t efivarfs none /sys/firmware/efi/efivars
diff --git a/Documentation/filesystems/erofs.txt b/Documentation/filesystems/erofs.rst
index db6d39c3ae71..bf145171c2bf 100644
--- a/Documentation/filesystems/erofs.txt
+++ b/Documentation/filesystems/erofs.rst
@@ -1,3 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======================================
+Enhanced Read-Only File System - EROFS
+======================================
+
Overview
========
@@ -6,6 +12,7 @@ from other read-only file systems, it aims to be designed for flexibility,
scalability, but be kept simple and high performance.
It is designed as a better filesystem solution for the following scenarios:
+
- read-only storage media or
- part of a fully trusted read-only solution, which means it needs to be
@@ -17,6 +24,7 @@ It is designed as a better filesystem solution for the following scenarios:
for those embedded devices with limited memory (ex, smartphone);
Here is the main features of EROFS:
+
- Little endian on-disk design;
- Currently 4KB block size (nobh) and therefore maximum 16TB address space;
@@ -24,13 +32,17 @@ Here is the main features of EROFS:
- Metadata & data could be mixed by design;
- 2 inode versions for different requirements:
+
+ ===================== ============ =====================================
compact (v1) extended (v2)
- Inode metadata size: 32 bytes 64 bytes
- Max file size: 4 GB 16 EB (also limited by max. vol size)
- Max uids/gids: 65536 4294967296
- File change time: no yes (64 + 32-bit timestamp)
- Max hardlinks: 65536 4294967296
- Metadata reserved: 4 bytes 14 bytes
+ ===================== ============ =====================================
+ Inode metadata size 32 bytes 64 bytes
+ Max file size 4 GB 16 EB (also limited by max. vol size)
+ Max uids/gids 65536 4294967296
+ File change time no yes (64 + 32-bit timestamp)
+ Max hardlinks 65536 4294967296
+ Metadata reserved 4 bytes 14 bytes
+ ===================== ============ =====================================
- Support extended attributes (xattrs) as an option;
@@ -43,29 +55,36 @@ Here is the main features of EROFS:
The following git tree provides the file system user-space tools under
development (ex, formatting tool mkfs.erofs):
->> git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git
+
+- git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git
Bugs and patches are welcome, please kindly help us and send to the following
linux-erofs mailing list:
->> linux-erofs mailing list <linux-erofs@lists.ozlabs.org>
+
+- linux-erofs mailing list <linux-erofs@lists.ozlabs.org>
Mount options
=============
+=================== =========================================================
(no)user_xattr Setup Extended User Attributes. Note: xattr is enabled
by default if CONFIG_EROFS_FS_XATTR is selected.
(no)acl Setup POSIX Access Control List. Note: acl is enabled
by default if CONFIG_EROFS_FS_POSIX_ACL is selected.
cache_strategy=%s Select a strategy for cached decompression from now on:
- disabled: In-place I/O decompression only;
- readahead: Cache the last incomplete compressed physical
+
+ ========== =============================================
+ disabled In-place I/O decompression only;
+ readahead Cache the last incomplete compressed physical
cluster for further reading. It still does
in-place I/O decompression for the rest
compressed physical clusters;
- readaround: Cache the both ends of incomplete compressed
+ readaround Cache the both ends of incomplete compressed
physical clusters for further reading.
It still does in-place I/O decompression
for the rest compressed physical clusters.
+ ========== =============================================
+=================== =========================================================
On-disk details
===============
@@ -73,7 +92,7 @@ On-disk details
Summary
-------
Different from other read-only file systems, an EROFS volume is designed
-to be as simple as possible:
+to be as simple as possible::
|-> aligned with the block size
____________________________________________________________
@@ -83,41 +102,45 @@ to be as simple as possible:
All data areas should be aligned with the block size, but metadata areas
may not. All metadatas can be now observed in two different spaces (views):
+
1. Inode metadata space
+
Each valid inode should be aligned with an inode slot, which is a fixed
value (32 bytes) and designed to be kept in line with compact inode size.
Each inode can be directly found with the following formula:
inode offset = meta_blkaddr * block_size + 32 * nid
- |-> aligned with 8B
- |-> followed closely
- + meta_blkaddr blocks |-> another slot
- _____________________________________________________________________
- | ... | inode | xattrs | extents | data inline | ... | inode ...
- |________|_______|(optional)|(optional)|__(optional)_|_____|__________
- |-> aligned with the inode slot size
- . .
- . .
- . .
- . .
- . .
- . .
- .____________________________________________________|-> aligned with 4B
- | xattr_ibody_header | shared xattrs | inline xattrs |
- |____________________|_______________|_______________|
- |-> 12 bytes <-|->x * 4 bytes<-| .
- . . .
- . . .
- . . .
- ._______________________________.______________________.
- | id | id | id | id | ... | id | ent | ... | ent| ... |
- |____|____|____|____|______|____|_____|_____|____|_____|
- |-> aligned with 4B
- |-> aligned with 4B
+ ::
+
+ |-> aligned with 8B
+ |-> followed closely
+ + meta_blkaddr blocks |-> another slot
+ _____________________________________________________________________
+ | ... | inode | xattrs | extents | data inline | ... | inode ...
+ |________|_______|(optional)|(optional)|__(optional)_|_____|__________
+ |-> aligned with the inode slot size
+ . .
+ . .
+ . .
+ . .
+ . .
+ . .
+ .____________________________________________________|-> aligned with 4B
+ | xattr_ibody_header | shared xattrs | inline xattrs |
+ |____________________|_______________|_______________|
+ |-> 12 bytes <-|->x * 4 bytes<-| .
+ . . .
+ . . .
+ . . .
+ ._______________________________.______________________.
+ | id | id | id | id | ... | id | ent | ... | ent| ... |
+ |____|____|____|____|______|____|_____|_____|____|_____|
+ |-> aligned with 4B
+ |-> aligned with 4B
Inode could be 32 or 64 bytes, which can be distinguished from a common
- field which all inode versions have -- i_format:
+ field which all inode versions have -- i_format::
__________________ __________________
| i_format | | i_format |
@@ -132,16 +155,19 @@ may not. All metadatas can be now observed in two different spaces (views):
proper alignment, and they could be optional for different data mappings.
_currently_ total 4 valid data mappings are supported:
+ == ====================================================================
0 flat file data without data inline (no extent);
1 fixed-sized output data compression (with non-compacted indexes);
2 flat file data with tail packing data inline (no extent);
3 fixed-sized output data compression (with compacted indexes, v5.3+).
+ == ====================================================================
The size of the optional xattrs is indicated by i_xattr_count in inode
header. Large xattrs or xattrs shared by many different files can be
stored in shared xattrs metadata rather than inlined right after inode.
2. Shared xattrs metadata space
+
Shared xattrs space is similar to the above inode space, started with
a specific block indicated by xattr_blkaddr, organized one by one with
proper align.
@@ -149,11 +175,13 @@ may not. All metadatas can be now observed in two different spaces (views):
Each share xattr can also be directly found by the following formula:
xattr offset = xattr_blkaddr * block_size + 4 * xattr_id
- |-> aligned by 4 bytes
- + xattr_blkaddr blocks |-> aligned with 4 bytes
- _________________________________________________________________________
- | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ...
- |________|_____________|_____________|_____|______________|_______________
+ ::
+
+ |-> aligned by 4 bytes
+ + xattr_blkaddr blocks |-> aligned with 4 bytes
+ _________________________________________________________________________
+ | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ...
+ |________|_____________|_____________|_____|______________|_______________
Directories
-----------
@@ -163,19 +191,21 @@ random file lookup, and all directory entries are _strictly_ recorded in
alphabetical order in order to support improved prefix binary search
algorithm (could refer to the related source code).
- ___________________________
- / |
- / ______________|________________
- / / | nameoff1 | nameoffN-1
- ____________.______________._______________v________________v__________
-| dirent | dirent | ... | dirent | filename | filename | ... | filename |
-|___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____|
- \ ^
- \ | * could have
- \ | trailing '\0'
- \________________________| nameoff0
+::
+
+ ___________________________
+ / |
+ / ______________|________________
+ / / | nameoff1 | nameoffN-1
+ ____________.______________._______________v________________v__________
+ | dirent | dirent | ... | dirent | filename | filename | ... | filename |
+ |___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____|
+ \ ^
+ \ | * could have
+ \ | trailing '\0'
+ \________________________| nameoff0
- Directory block
+ Directory block
Note that apart from the offset of the first filename, nameoff0 also indicates
the total number of directory entries in this block since it is no need to
@@ -184,28 +214,27 @@ introduce another on-disk field at all.
Compression
-----------
Currently, EROFS supports 4KB fixed-sized output transparent file compression,
-as illustrated below:
-
- |---- Variant-Length Extent ----|-------- VLE --------|----- VLE -----
- clusterofs clusterofs clusterofs
- | | | logical data
-_________v_______________________________v_____________________v_______________
-... | . | | . | | . | ...
-____|____.________|_____________|________.____|_____________|__.__________|____
- |-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|
- size size size size size
- . . . .
- . . . .
- . . . .
- _______._____________._____________._____________._____________________
- ... | | | | ... physical data
- _______|_____________|_____________|_____________|_____________________
- |-> cluster <-|-> cluster <-|-> cluster <-|
- size size size
+as illustrated below::
+
+ |---- Variant-Length Extent ----|-------- VLE --------|----- VLE -----
+ clusterofs clusterofs clusterofs
+ | | | logical data
+ _________v_______________________________v_____________________v_______________
+ ... | . | | . | | . | ...
+ ____|____.________|_____________|________.____|_____________|__.__________|____
+ |-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size size size
+ . . . .
+ . . . .
+ . . . .
+ _______._____________._____________._____________._____________________
+ ... | | | | ... physical data
+ _______|_____________|_____________|_____________|_____________________
+ |-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size
Currently each on-disk physical cluster can contain 4KB (un)compressed data
at most. For each logical cluster, there is a corresponding on-disk index to
describe its cluster type, physical cluster address, etc.
See "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details.
-
diff --git a/Documentation/filesystems/ext2.txt b/Documentation/filesystems/ext2.rst
index 94c2cf0292f5..d83dbbb162e2 100644
--- a/Documentation/filesystems/ext2.txt
+++ b/Documentation/filesystems/ext2.rst
@@ -1,3 +1,5 @@
+.. SPDX-License-Identifier: GPL-2.0
+
The Second Extended Filesystem
==============================
@@ -14,8 +16,9 @@ Options
Most defaults are determined by the filesystem superblock, and can be
set using tune2fs(8). Kernel-determined defaults are indicated by (*).
-bsddf (*) Makes `df' act like BSD.
-minixdf Makes `df' act like Minix.
+==================== === ================================================
+bsddf (*) Makes ``df`` act like BSD.
+minixdf Makes ``df`` act like Minix.
check=none, nocheck (*) Don't do extra checking of bitmaps on mount
(check=normal and check=strict options removed)
@@ -62,6 +65,7 @@ quota, usrquota Enable user disk quota support
grpquota Enable group disk quota support
(requires CONFIG_QUOTA).
+==================== === ================================================
noquota option ls silently ignored by ext2.
@@ -294,9 +298,9 @@ respective fsck programs.
If you're exceptionally paranoid, there are 3 ways of making metadata
writes synchronous on ext2:
-per-file if you have the program source: use the O_SYNC flag to open()
-per-file if you don't have the source: use "chattr +S" on the file
-per-filesystem: add the "sync" option to mount (or in /etc/fstab)
+- per-file if you have the program source: use the O_SYNC flag to open()
+- per-file if you don't have the source: use "chattr +S" on the file
+- per-filesystem: add the "sync" option to mount (or in /etc/fstab)
the first and last are not ext2 specific but do force the metadata to
be written synchronously. See also Journaling below.
@@ -316,10 +320,12 @@ Most of these limits could be overcome with slight changes in the on-disk
format and using a compatibility flag to signal the format change (at
the expense of some compatibility).
-Filesystem block size: 1kB 2kB 4kB 8kB
-
-File size limit: 16GB 256GB 2048GB 2048GB
-Filesystem size limit: 2047GB 8192GB 16384GB 32768GB
+===================== ======= ======= ======= ========
+Filesystem block size 1kB 2kB 4kB 8kB
+===================== ======= ======= ======= ========
+File size limit 16GB 256GB 2048GB 2048GB
+Filesystem size limit 2047GB 8192GB 16384GB 32768GB
+===================== ======= ======= ======= ========
There is a 2.4 kernel limit of 2048GB for a single block device, so no
filesystem larger than that can be created at this time. There is also
@@ -370,19 +376,24 @@ ext4 and journaling.
References
==========
+======================= ===============================================
The kernel source file:/usr/src/linux/fs/ext2/
e2fsprogs (e2fsck) http://e2fsprogs.sourceforge.net/
Design & Implementation http://e2fsprogs.sourceforge.net/ext2intro.html
Journaling (ext3) ftp://ftp.uk.linux.org/pub/linux/sct/fs/jfs/
Filesystem Resizing http://ext2resize.sourceforge.net/
-Compression (*) http://e2compr.sourceforge.net/
+Compression [1]_ http://e2compr.sourceforge.net/
+======================= ===============================================
Implementations for:
+
+======================= ===========================================================
Windows 95/98/NT/2000 http://www.chrysocome.net/explore2fs
-Windows 95 (*) http://www.yipton.net/content.html#FSDEXT2
-DOS client (*) ftp://metalab.unc.edu/pub/Linux/system/filesystems/ext2/
-OS/2 (+) ftp://metalab.unc.edu/pub/Linux/system/filesystems/ext2/
+Windows 95 [1]_ http://www.yipton.net/content.html#FSDEXT2
+DOS client [1]_ ftp://metalab.unc.edu/pub/Linux/system/filesystems/ext2/
+OS/2 [2]_ ftp://metalab.unc.edu/pub/Linux/system/filesystems/ext2/
RISC OS client http://www.esw-heim.tu-clausthal.de/~marco/smorbrod/IscaFS/
+======================= ===========================================================
-(*) no longer actively developed/supported (as of Apr 2001)
-(+) no longer actively developed/supported (as of Mar 2009)
+.. [1] no longer actively developed/supported (as of Apr 2001)
+.. [2] no longer actively developed/supported (as of Mar 2009)
diff --git a/Documentation/filesystems/ext3.txt b/Documentation/filesystems/ext3.rst
index 58758fbef9e0..c06cec3a8fdc 100644
--- a/Documentation/filesystems/ext3.txt
+++ b/Documentation/filesystems/ext3.rst
@@ -1,4 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+===============
Ext3 Filesystem
===============
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.rst
index 4eb3e2ddd00e..d681203728d7 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.rst
@@ -1,6 +1,8 @@
-================================================================================
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================================
WHAT IS Flash-Friendly File System (F2FS)?
-================================================================================
+==========================================
NAND flash memory-based storage devices, such as SSD, eMMC, and SD cards, have
been equipped on a variety systems ranging from mobile to server systems. Since
@@ -20,14 +22,15 @@ layout, but also for selecting allocation and cleaning algorithms.
The following git tree provides the file system formatting tool (mkfs.f2fs),
a consistency checking tool (fsck.f2fs), and a debugging tool (dump.f2fs).
->> git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git
+
+- git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git
For reporting bugs and sending patches, please use the following mailing list:
->> linux-f2fs-devel@lists.sourceforge.net
-================================================================================
-BACKGROUND AND DESIGN ISSUES
-================================================================================
+- linux-f2fs-devel@lists.sourceforge.net
+
+Background and Design issues
+============================
Log-structured File System (LFS)
--------------------------------
@@ -61,6 +64,7 @@ needs to reclaim these obsolete blocks seamlessly to users. This job is called
as a cleaning process.
The process consists of three operations as follows.
+
1. A victim segment is selected through referencing segment usage table.
2. It loads parent index structures of all the data in the victim identified by
segment summary blocks.
@@ -71,9 +75,8 @@ This cleaning job may cause unexpected long delays, so the most important goal
is to hide the latencies to users. And also definitely, it should reduce the
amount of valid data to be moved, and move them quickly as well.
-================================================================================
-KEY FEATURES
-================================================================================
+Key Features
+============
Flash Awareness
---------------
@@ -94,10 +97,11 @@ Cleaning Overhead
- Support multi-head logs for static/dynamic hot and cold data separation
- Introduce adaptive logging for efficient block allocation
-================================================================================
-MOUNT OPTIONS
-================================================================================
+Mount Options
+=============
+
+====================== ============================================================
background_gc=%s Turn on/off cleaning operations, namely garbage
collection, triggered in background when I/O subsystem is
idle. If background_gc=on, it will turn on the garbage
@@ -167,7 +171,10 @@ fault_injection=%d Enable fault injection in all supported types with
fault_type=%d Support configuring fault injection type, should be
enabled with fault_injection option, fault type value
is shown below, it supports single or combined type.
+
+ =================== ===========
Type_Name Type_Value
+ =================== ===========
FAULT_KMALLOC 0x000000001
FAULT_KVMALLOC 0x000000002
FAULT_PAGE_ALLOC 0x000000004
@@ -183,6 +190,7 @@ fault_type=%d Support configuring fault injection type, should be
FAULT_CHECKPOINT 0x000001000
FAULT_DISCARD 0x000002000
FAULT_WRITE_IO 0x000004000
+ =================== ===========
mode=%s Control block allocation mode which supports "adaptive"
and "lfs". In "lfs" mode, there should be no random
writes towards main area.
@@ -219,7 +227,7 @@ fsync_mode=%s Control the policy of fsync. Currently supports "posix",
non-atomic files likewise "nobarrier" mount option.
test_dummy_encryption Enable dummy encryption, which provides a fake fscrypt
context. The fake fscrypt context is used by xfstests.
-checkpoint=%s[:%u[%]] Set to "disable" to turn off checkpointing. Set to "enable"
+checkpoint=%s[:%u[%]] Set to "disable" to turn off checkpointing. Set to "enable"
to reenable checkpointing. Is enabled by default. While
disabled, any unmounting or unexpected shutdowns will cause
the filesystem contents to appear as they did when the
@@ -246,22 +254,22 @@ compress_extension=%s Support adding specified extension, so that f2fs can enab
on compression extension list and enable compression on
these file by default rather than to enable it via ioctl.
For other files, we can still enable compression via ioctl.
+====================== ============================================================
-================================================================================
-DEBUGFS ENTRIES
-================================================================================
+Debugfs Entries
+===============
/sys/kernel/debug/f2fs/ contains information about all the partitions mounted as
f2fs. Each file shows the whole f2fs information.
/sys/kernel/debug/f2fs/status includes:
+
- major file system information managed by f2fs currently
- average SIT information about whole segments
- current memory footprint consumed by f2fs.
-================================================================================
-SYSFS ENTRIES
-================================================================================
+Sysfs Entries
+=============
Information about mounted f2fs file systems can be found in
/sys/fs/f2fs. Each mounted filesystem will have a directory in
@@ -271,22 +279,24 @@ The files in each per-device directory are shown in table below.
Files in /sys/fs/f2fs/<devname>
(see also Documentation/ABI/testing/sysfs-fs-f2fs)
-================================================================================
-USAGE
-================================================================================
+Usage
+=====
1. Download userland tools and compile them.
2. Skip, if f2fs was compiled statically inside kernel.
- Otherwise, insert the f2fs.ko module.
- # insmod f2fs.ko
+ Otherwise, insert the f2fs.ko module::
+
+ # insmod f2fs.ko
-3. Create a directory trying to mount
- # mkdir /mnt/f2fs
+3. Create a directory trying to mount::
-4. Format the block device, and then mount as f2fs
- # mkfs.f2fs -l label /dev/block_device
- # mount -t f2fs /dev/block_device /mnt/f2fs
+ # mkdir /mnt/f2fs
+
+4. Format the block device, and then mount as f2fs::
+
+ # mkfs.f2fs -l label /dev/block_device
+ # mount -t f2fs /dev/block_device /mnt/f2fs
mkfs.f2fs
---------
@@ -294,18 +304,26 @@ The mkfs.f2fs is for the use of formatting a partition as the f2fs filesystem,
which builds a basic on-disk layout.
The options consist of:
--l [label] : Give a volume label, up to 512 unicode name.
--a [0 or 1] : Split start location of each area for heap-based allocation.
- 1 is set by default, which performs this.
--o [int] : Set overprovision ratio in percent over volume size.
- 5 is set by default.
--s [int] : Set the number of segments per section.
- 1 is set by default.
--z [int] : Set the number of sections per zone.
- 1 is set by default.
--e [str] : Set basic extension list. e.g. "mp3,gif,mov"
--t [0 or 1] : Disable discard command or not.
- 1 is set by default, which conducts discard.
+
+=============== ===========================================================
+``-l [label]`` Give a volume label, up to 512 unicode name.
+``-a [0 or 1]`` Split start location of each area for heap-based allocation.
+
+ 1 is set by default, which performs this.
+``-o [int]`` Set overprovision ratio in percent over volume size.
+
+ 5 is set by default.
+``-s [int]`` Set the number of segments per section.
+
+ 1 is set by default.
+``-z [int]`` Set the number of sections per zone.
+
+ 1 is set by default.
+``-e [str]`` Set basic extension list. e.g. "mp3,gif,mov"
+``-t [0 or 1]`` Disable discard command or not.
+
+ 1 is set by default, which conducts discard.
+=============== ===========================================================
fsck.f2fs
---------
@@ -314,7 +332,8 @@ partition, which examines whether the filesystem metadata and user-made data
are cross-referenced correctly or not.
Note that, initial version of the tool does not fix any inconsistency.
-The options consist of:
+The options consist of::
+
-d debug level [default:0]
dump.f2fs
@@ -327,20 +346,21 @@ It shows on-disk inode information recognized by a given inode number, and is
able to dump all the SSA and SIT entries into predefined files, ./dump_ssa and
./dump_sit respectively.
-The options consist of:
+The options consist of::
+
-d debug level [default:0]
-i inode no (hex)
-s [SIT dump segno from #1~#2 (decimal), for all 0~-1]
-a [SSA dump segno from #1~#2 (decimal), for all 0~-1]
-Examples:
-# dump.f2fs -i [ino] /dev/sdx
-# dump.f2fs -s 0~-1 /dev/sdx (SIT dump)
-# dump.f2fs -a 0~-1 /dev/sdx (SSA dump)
+Examples::
+
+ # dump.f2fs -i [ino] /dev/sdx
+ # dump.f2fs -s 0~-1 /dev/sdx (SIT dump)
+ # dump.f2fs -a 0~-1 /dev/sdx (SSA dump)
-================================================================================
-DESIGN
-================================================================================
+Design
+======
On-disk Layout
--------------
@@ -351,7 +371,7 @@ consists of a set of sections. By default, section and zone sizes are set to one
segment size identically, but users can easily modify the sizes by mkfs.
F2FS splits the entire volume into six areas, and all the areas except superblock
-consists of multiple segments as described below.
+consists of multiple segments as described below::
align with the zone size <-|
|-> align with the segment size
@@ -373,28 +393,28 @@ consists of multiple segments as described below.
|__zone__|
- Superblock (SB)
- : It is located at the beginning of the partition, and there exist two copies
+ It is located at the beginning of the partition, and there exist two copies
to avoid file system crash. It contains basic partition information and some
default parameters of f2fs.
- Checkpoint (CP)
- : It contains file system information, bitmaps for valid NAT/SIT sets, orphan
+ It contains file system information, bitmaps for valid NAT/SIT sets, orphan
inode lists, and summary entries of current active segments.
- Segment Information Table (SIT)
- : It contains segment information such as valid block count and bitmap for the
+ It contains segment information such as valid block count and bitmap for the
validity of all the blocks.
- Node Address Table (NAT)
- : It is composed of a block address table for all the node blocks stored in
+ It is composed of a block address table for all the node blocks stored in
Main area.
- Segment Summary Area (SSA)
- : It contains summary entries which contains the owner information of all the
+ It contains summary entries which contains the owner information of all the
data and node blocks stored in Main area.
- Main Area
- : It contains file and directory data including their indices.
+ It contains file and directory data including their indices.
In order to avoid misalignment between file system and flash-based storage, F2FS
aligns the start block address of CP with the segment size. Also, it aligns the
@@ -414,7 +434,7 @@ One of them always indicates the last valid data, which is called as shadow copy
mechanism. In addition to CP, NAT and SIT also adopt the shadow copy mechanism.
For file system consistency, each CP points to which NAT and SIT copies are
-valid, as shown as below.
+valid, as shown as below::
+--------+----------+---------+
| CP | SIT | NAT |
@@ -438,7 +458,7 @@ indirect node. F2FS assigns 4KB to an inode block which contains 923 data block
indices, two direct node pointers, two indirect node pointers, and one double
indirect node pointer as described below. One direct node block contains 1018
data blocks, and one indirect node block contains also 1018 node blocks. Thus,
-one inode block (i.e., a file) covers:
+one inode block (i.e., a file) covers::
4KB * (923 + 2 * 1018 + 2 * 1018 * 1018 + 1018 * 1018 * 1018) := 3.94TB.
@@ -473,6 +493,8 @@ A dentry block consists of 214 dentry slots and file names. Therein a bitmap is
used to represent whether each dentry is valid or not. A dentry block occupies
4KB with the following composition.
+::
+
Dentry Block(4 K) = bitmap (27 bytes) + reserved (3 bytes) +
dentries(11 * 214 bytes) + file name (8 * 214 bytes)
@@ -498,23 +520,25 @@ F2FS implements multi-level hash tables for directory structure. Each level has
a hash table with dedicated number of hash buckets as shown below. Note that
"A(2B)" means a bucket includes 2 data blocks.
-----------------------
-A : bucket
-B : block
-N : MAX_DIR_HASH_DEPTH
-----------------------
+::
+
+ ----------------------
+ A : bucket
+ B : block
+ N : MAX_DIR_HASH_DEPTH
+ ----------------------
-level #0 | A(2B)
- |
-level #1 | A(2B) - A(2B)
- |
-level #2 | A(2B) - A(2B) - A(2B) - A(2B)
- . | . . . .
-level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B)
- . | . . . .
-level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B)
+ level #0 | A(2B)
+ |
+ level #1 | A(2B) - A(2B)
+ |
+ level #2 | A(2B) - A(2B) - A(2B) - A(2B)
+ . | . . . .
+ level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B)
+ . | . . . .
+ level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B)
-The number of blocks and buckets are determined by,
+The number of blocks and buckets are determined by::
,- 2, if n < MAX_DIR_HASH_DEPTH / 2,
# of blocks in level #n = |
@@ -532,7 +556,7 @@ dentry consisting of the file name and its inode number. If not found, F2FS
scans the next hash table in level #1. In this way, F2FS scans hash tables in
each levels incrementally from 1 to N. In each levels F2FS needs to scan only
one bucket determined by the following equation, which shows O(log(# of files))
-complexity.
+complexity::
bucket number to scan in level #n = (hash value) % (# of buckets in level #n)
@@ -540,7 +564,8 @@ In the case of file creation, F2FS finds empty consecutive slots that cover the
file name. F2FS searches the empty slots in the hash tables of whole levels from
1 to N in the same way as the lookup operation.
-The following figure shows an example of two cases holding children.
+The following figure shows an example of two cases holding children::
+
--------------> Dir <--------------
| |
child child
@@ -611,14 +636,15 @@ Write-hint Policy
2) whint_mode=user-based. F2FS tries to pass down hints given by
users.
+===================== ======================== ===================
User F2FS Block
----- ---- -----
+===================== ======================== ===================
META WRITE_LIFE_NOT_SET
HOT_NODE "
WARM_NODE "
COLD_NODE "
-*ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
-*extension list " "
+ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
+extension list " "
-- buffered io
WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
@@ -635,11 +661,13 @@ WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
WRITE_LIFE_NONE " WRITE_LIFE_NONE
WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
WRITE_LIFE_LONG " WRITE_LIFE_LONG
+===================== ======================== ===================
3) whint_mode=fs-based. F2FS passes down hints with its policy.
+===================== ======================== ===================
User F2FS Block
----- ---- -----
+===================== ======================== ===================
META WRITE_LIFE_MEDIUM;
HOT_NODE WRITE_LIFE_NOT_SET
WARM_NODE "
@@ -662,6 +690,7 @@ WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
WRITE_LIFE_NONE " WRITE_LIFE_NONE
WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
WRITE_LIFE_LONG " WRITE_LIFE_LONG
+===================== ======================== ===================
Fallocate(2) Policy
-------------------
@@ -681,6 +710,7 @@ Allocating disk space
However, once F2FS receives ioctl(fd, F2FS_IOC_SET_PIN_FILE) in prior to
fallocate(fd, DEFAULT_MODE), it allocates on-disk blocks addressess having
zero or random data, which is useful to the below scenario where:
+
1. create(fd)
2. ioctl(fd, F2FS_IOC_SET_PIN_FILE)
3. fallocate(fd, 0, 0, size)
@@ -692,39 +722,41 @@ Compression implementation
--------------------------
- New term named cluster is defined as basic unit of compression, file can
-be divided into multiple clusters logically. One cluster includes 4 << n
-(n >= 0) logical pages, compression size is also cluster size, each of
-cluster can be compressed or not.
+ be divided into multiple clusters logically. One cluster includes 4 << n
+ (n >= 0) logical pages, compression size is also cluster size, each of
+ cluster can be compressed or not.
- In cluster metadata layout, one special block address is used to indicate
-cluster is compressed one or normal one, for compressed cluster, following
-metadata maps cluster to [1, 4 << n - 1] physical blocks, in where f2fs
-stores data including compress header and compressed data.
+ cluster is compressed one or normal one, for compressed cluster, following
+ metadata maps cluster to [1, 4 << n - 1] physical blocks, in where f2fs
+ stores data including compress header and compressed data.
- In order to eliminate write amplification during overwrite, F2FS only
-support compression on write-once file, data can be compressed only when
-all logical blocks in file are valid and cluster compress ratio is lower
-than specified threshold.
+ support compression on write-once file, data can be compressed only when
+ all logical blocks in file are valid and cluster compress ratio is lower
+ than specified threshold.
- To enable compression on regular inode, there are three ways:
-* chattr +c file
-* chattr +c dir; touch dir/file
-* mount w/ -o compress_extension=ext; touch file.ext
-
-Compress metadata layout:
- [Dnode Structure]
- +-----------------------------------------------+
- | cluster 1 | cluster 2 | ......... | cluster N |
- +-----------------------------------------------+
- . . . .
- . . . .
- . Compressed Cluster . . Normal Cluster .
-+----------+---------+---------+---------+ +---------+---------+---------+---------+
-|compr flag| block 1 | block 2 | block 3 | | block 1 | block 2 | block 3 | block 4 |
-+----------+---------+---------+---------+ +---------+---------+---------+---------+
- . .
- . .
- . .
- +-------------+-------------+----------+----------------------------+
- | data length | data chksum | reserved | compressed data |
- +-------------+-------------+----------+----------------------------+
+
+ * chattr +c file
+ * chattr +c dir; touch dir/file
+ * mount w/ -o compress_extension=ext; touch file.ext
+
+Compress metadata layout::
+
+ [Dnode Structure]
+ +-----------------------------------------------+
+ | cluster 1 | cluster 2 | ......... | cluster N |
+ +-----------------------------------------------+
+ . . . .
+ . . . .
+ . Compressed Cluster . . Normal Cluster .
+ +----------+---------+---------+---------+ +---------+---------+---------+---------+
+ |compr flag| block 1 | block 2 | block 3 | | block 1 | block 2 | block 3 | block 4 |
+ +----------+---------+---------+---------+ +---------+---------+---------+---------+
+ . .
+ . .
+ . .
+ +-------------+-------------+----------+----------------------------+
+ | data length | data chksum | reserved | compressed data |
+ +-------------+-------------+----------+----------------------------+
diff --git a/Documentation/filesystems/fuse.rst b/Documentation/filesystems/fuse.rst
index 8e455065ce9e..cd717f9bf940 100644
--- a/Documentation/filesystems/fuse.rst
+++ b/Documentation/filesystems/fuse.rst
@@ -1,7 +1,8 @@
.. SPDX-License-Identifier: GPL-2.0
-==============
+
+====
FUSE
-==============
+====
Definitions
===========
diff --git a/Documentation/filesystems/gfs2-uevents.txt b/Documentation/filesystems/gfs2-uevents.rst
index 19a19ebebc34..f162a2c76c69 100644
--- a/Documentation/filesystems/gfs2-uevents.txt
+++ b/Documentation/filesystems/gfs2-uevents.rst
@@ -1,14 +1,18 @@
- uevents and GFS2
- ==================
+.. SPDX-License-Identifier: GPL-2.0
+
+================
+uevents and GFS2
+================
During the lifetime of a GFS2 mount, a number of uevents are generated.
This document explains what the events are and what they are used
for (by gfs_controld in gfs2-utils).
A list of GFS2 uevents
------------------------
+======================
1. ADD
+------
The ADD event occurs at mount time. It will always be the first
uevent generated by the newly created filesystem. If the mount
@@ -21,6 +25,7 @@ with no journal assigned), and read-only (with journal assigned) status
of the filesystem respectively.
2. ONLINE
+---------
The ONLINE uevent is generated after a successful mount or remount. It
has the same environment variables as the ADD uevent. The ONLINE
@@ -29,6 +34,7 @@ RDONLY are a relatively recent addition (2.6.32-rc+) and will not
be generated by older kernels.
3. CHANGE
+---------
The CHANGE uevent is used in two places. One is when reporting the
successful mount of the filesystem by the first node (FIRSTMOUNT=Done).
@@ -52,6 +58,7 @@ cluster. For this reason the ONLINE uevent was used when adding a new
uevent for a successful mount or remount.
4. OFFLINE
+----------
The OFFLINE uevent is only generated due to filesystem errors and is used
as part of the "withdraw" mechanism. Currently this doesn't give any
@@ -59,6 +66,7 @@ information about what the error is, which is something that needs to
be fixed.
5. REMOVE
+---------
The REMOVE uevent is generated at the end of an unsuccessful mount
or at the end of a umount of the filesystem. All REMOVE uevents will
@@ -68,9 +76,10 @@ kobject subsystem.
Information common to all GFS2 uevents (uevent environment variables)
-----------------------------------------------------------------------
+=====================================================================
1. LOCKTABLE=
+--------------
The LOCKTABLE is a string, as supplied on the mount command
line (locktable=) or via fstab. It is used as a filesystem label
@@ -78,6 +87,7 @@ as well as providing the information for a lock_dlm mount to be
able to join the cluster.
2. LOCKPROTO=
+-------------
The LOCKPROTO is a string, and its value depends on what is set
on the mount command line, or via fstab. It will be either
@@ -85,12 +95,14 @@ lock_nolock or lock_dlm. In the future other lock managers
may be supported.
3. JOURNALID=
+-------------
If a journal is in use by the filesystem (journals are not
assigned for spectator mounts) then this will give the
numeric journal id in all GFS2 uevents.
4. UUID=
+--------
With recent versions of gfs2-utils, mkfs.gfs2 writes a UUID
into the filesystem superblock. If it exists, this will
diff --git a/Documentation/filesystems/gfs2.txt b/Documentation/filesystems/gfs2.rst
index cc4f2306609e..8d1ab589ce18 100644
--- a/Documentation/filesystems/gfs2.txt
+++ b/Documentation/filesystems/gfs2.rst
@@ -1,5 +1,8 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================
Global File System
-------------------
+==================
https://fedorahosted.org/cluster/wiki/HomePage
@@ -14,16 +17,18 @@ on one machine show up immediately on all other machines in the cluster.
GFS uses interchangeable inter-node locking mechanisms, the currently
supported mechanisms are:
- lock_nolock -- allows gfs to be used as a local file system
+ lock_nolock
+ - allows gfs to be used as a local file system
- lock_dlm -- uses a distributed lock manager (dlm) for inter-node locking
- The dlm is found at linux/fs/dlm/
+ lock_dlm
+ - uses a distributed lock manager (dlm) for inter-node locking.
+ The dlm is found at linux/fs/dlm/
Lock_dlm depends on user space cluster management systems found
at the URL above.
To use gfs as a local file system, no external clustering systems are
-needed, simply:
+needed, simply::
$ mkfs -t gfs2 -p lock_nolock -j 1 /dev/block_device
$ mount -t gfs2 /dev/block_device /dir
@@ -37,9 +42,12 @@ GFS2 is not on-disk compatible with previous versions of GFS, but it
is pretty close.
The following man pages can be found at the URL above:
+
+ ============ =============================================
fsck.gfs2 to repair a filesystem
gfs2_grow to expand a filesystem online
gfs2_jadd to add journals to a filesystem online
tunegfs2 to manipulate, examine and tune a filesystem
- gfs2_convert to convert a gfs filesystem to gfs2 in-place
+ gfs2_convert to convert a gfs filesystem to gfs2 in-place
mkfs.gfs2 to make a filesystem
+ ============ =============================================
diff --git a/Documentation/filesystems/hfs.txt b/Documentation/filesystems/hfs.rst
index d096df6db07a..ab17a005e9b1 100644
--- a/Documentation/filesystems/hfs.txt
+++ b/Documentation/filesystems/hfs.rst
@@ -1,11 +1,16 @@
-Note: This filesystem doesn't have a maintainer.
+.. SPDX-License-Identifier: GPL-2.0
+==================================
Macintosh HFS Filesystem for Linux
==================================
-HFS stands for ``Hierarchical File System'' and is the filesystem used
+
+.. Note:: This filesystem doesn't have a maintainer.
+
+
+HFS stands for ``Hierarchical File System`` and is the filesystem used
by the Mac Plus and all later Macintosh models. Earlier Macintosh
-models used MFS (``Macintosh File System''), which is not supported,
+models used MFS (``Macintosh File System``), which is not supported,
MacOS 8.1 and newer support a filesystem called HFS+ that's similar to
HFS but is extended in various areas. Use the hfsplus filesystem driver
to access such filesystems from Linux.
@@ -49,25 +54,25 @@ Writing to HFS Filesystems
HFS is not a UNIX filesystem, thus it does not have the usual features you'd
expect:
- o You can't modify the set-uid, set-gid, sticky or executable bits or the uid
+ * You can't modify the set-uid, set-gid, sticky or executable bits or the uid
and gid of files.
- o You can't create hard- or symlinks, device files, sockets or FIFOs.
+ * You can't create hard- or symlinks, device files, sockets or FIFOs.
HFS does on the other have the concepts of multiple forks per file. These
non-standard forks are represented as hidden additional files in the normal
filesystems namespace which is kind of a cludge and makes the semantics for
the a little strange:
- o You can't create, delete or rename resource forks of files or the
+ * You can't create, delete or rename resource forks of files or the
Finder's metadata.
- o They are however created (with default values), deleted and renamed
+ * They are however created (with default values), deleted and renamed
along with the corresponding data fork or directory.
- o Copying files to a different filesystem will loose those attributes
+ * Copying files to a different filesystem will loose those attributes
that are essential for MacOS to work.
Creating HFS filesystems
-===================================
+========================
The hfsutils package from Robert Leslie contains a program called
hformat that can be used to create HFS filesystem. See
diff --git a/Documentation/filesystems/hfsplus.txt b/Documentation/filesystems/hfsplus.rst
index 59f7569fc9ed..f02f4f5fc020 100644
--- a/Documentation/filesystems/hfsplus.txt
+++ b/Documentation/filesystems/hfsplus.rst
@@ -1,4 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+======================================
Macintosh HFSPlus Filesystem for Linux
======================================
diff --git a/Documentation/filesystems/hpfs.txt b/Documentation/filesystems/hpfs.rst
index 74630bd504fb..0db152278572 100644
--- a/Documentation/filesystems/hpfs.txt
+++ b/Documentation/filesystems/hpfs.rst
@@ -1,13 +1,21 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+====================
Read/Write HPFS 2.09
+====================
+
1998-2004, Mikulas Patocka
-email: mikulas@artax.karlin.mff.cuni.cz
-homepage: http://artax.karlin.mff.cuni.cz/~mikulas/vyplody/hpfs/index-e.cgi
+:email: mikulas@artax.karlin.mff.cuni.cz
+:homepage: http://artax.karlin.mff.cuni.cz/~mikulas/vyplody/hpfs/index-e.cgi
-CREDITS:
+Credits
+=======
Chris Smith, 1993, original read-only HPFS, some code and hpfs structures file
is taken from it
+
Jacques Gelinas, MSDos mmap, Inspired by fs/nfs/mmap.c (Jon Tombs 15 Aug 1993)
+
Werner Almesberger, 1992, 1993, MSDos option parser & CR/LF conversion
Mount options
@@ -50,6 +58,7 @@ timeshift=(-)nnn (default 0)
File names
+==========
As in OS/2, filenames are case insensitive. However, shell thinks that names
are case sensitive, so for example when you create a file FOO, you can use
@@ -64,6 +73,7 @@ access it under names 'a.', 'a..', 'a . . . ' etc.
Extended attributes
+===================
On HPFS partitions, OS/2 can associate to each file a special information called
extended attributes. Extended attributes are pairs of (key,value) where key is
@@ -88,6 +98,7 @@ values doesn't work.
Symlinks
+========
You can do symlinks on HPFS partition, symlinks are achieved by setting extended
attribute named "SYMLINK" with symlink value. Like on ext2, you can chown and
@@ -101,6 +112,7 @@ to analyze or change OS2SYS.INI.
Codepages
+=========
HPFS can contain several uppercasing tables for several codepages and each
file has a pointer to codepage its name is in. However OS/2 was created in
@@ -128,6 +140,7 @@ this codepage - if you don't try to do what I described above :-)
Known bugs
+==========
HPFS386 on OS/2 server is not supported. HPFS386 installed on normal OS/2 client
should work. If you have OS/2 server, use only read-only mode. I don't know how
@@ -152,7 +165,8 @@ would result in directory tree splitting, that takes disk space. Workaround is
to delete other files that are leaf (probability that the file is non-leaf is
about 1/50) or to truncate file first to make some space.
You encounter this problem only if you have many directories so that
-preallocated directory band is full i.e.
+preallocated directory band is full i.e.::
+
number_of_directories / size_of_filesystem_in_mb > 4.
You can't delete open directories.
@@ -174,6 +188,7 @@ anybody know what does it mean?
What does "unbalanced tree" message mean?
+=========================================
Old versions of this driver created sometimes unbalanced dnode trees. OS/2
chkdsk doesn't scream if the tree is unbalanced (and sometimes creates
@@ -187,6 +202,7 @@ whole created by this driver, it is BUG - let me know about it.
Bugs in OS/2
+============
When you have two (or more) lost directories pointing each to other, chkdsk
locks up when repairing filesystem.
@@ -199,98 +215,139 @@ File names like "a .b" are marked as 'long' by OS/2 but chkdsk "corrects" it and
marks them as short (and writes "minor fs error corrected"). This bug is not in
HPFS386.
-Codepage bugs described above.
+Codepage bugs described above
+=============================
If you don't install fixpacks, there are many, many more...
History
+=======
+
+====== =========================================================================
+0.90 First public release
+0.91 Fixed bug that caused shooting to memory when write_inode was called on
+ open inode (rarely happened)
+0.92 Fixed a little memory leak in freeing directory inodes
+0.93 Fixed bug that locked up the machine when there were too many filenames
+ with first 15 characters same
+ Fixed write_file to zero file when writing behind file end
+0.94 Fixed a little memory leak when trying to delete busy file or directory
+0.95 Fixed a bug that i_hpfs_parent_dir was not updated when moving files
+1.90 First version for 2.1.1xx kernels
+1.91 Fixed a bug that chk_sectors failed when sectors were at the end of disk
+ Fixed a race-condition when write_inode is called while deleting file
+ Fixed a bug that could possibly happen (with very low probability) when
+ using 0xff in filenames.
+
+ Rewritten locking to avoid race-conditions
+
+ Mount option 'eas' now works
+
+ Fsync no longer returns error
+
+ Files beginning with '.' are marked hidden
+
+ Remount support added
+
+ Alloc is not so slow when filesystem becomes full
+
+ Atimes are no more updated because it slows down operation
+
+ Code cleanup (removed all commented debug prints)
+1.92 Corrected a bug when sync was called just before closing file
+1.93 Modified, so that it works with kernels >= 2.1.131, I don't know if it
+ works with previous versions
+
+ Fixed a possible problem with disks > 64G (but I don't have one, so I can't
+ test it)
+
+ Fixed a file overflow at 2G
+
+ Added new option 'timeshift'
+
+ Changed behaviour on HPFS386: It is now possible to operate on HPFS386 in
+ read-only mode
+
+ Fixed a bug that slowed down alloc and prevented allocating 100% space
+ (this bug was not destructive)
+1.94 Added workaround for one bug in Linux
+
+ Fixed one buffer leak
+
+ Fixed some incompatibilities with large extended attributes (but it's still
+ not 100% ok, I have no info on it and OS/2 doesn't want to create them)
+
+ Rewritten allocation
-0.90 First public release
-0.91 Fixed bug that caused shooting to memory when write_inode was called on
- open inode (rarely happened)
-0.92 Fixed a little memory leak in freeing directory inodes
-0.93 Fixed bug that locked up the machine when there were too many filenames
- with first 15 characters same
- Fixed write_file to zero file when writing behind file end
-0.94 Fixed a little memory leak when trying to delete busy file or directory
-0.95 Fixed a bug that i_hpfs_parent_dir was not updated when moving files
-1.90 First version for 2.1.1xx kernels
-1.91 Fixed a bug that chk_sectors failed when sectors were at the end of disk
- Fixed a race-condition when write_inode is called while deleting file
- Fixed a bug that could possibly happen (with very low probability) when
- using 0xff in filenames
- Rewritten locking to avoid race-conditions
- Mount option 'eas' now works
- Fsync no longer returns error
- Files beginning with '.' are marked hidden
- Remount support added
- Alloc is not so slow when filesystem becomes full
- Atimes are no more updated because it slows down operation
- Code cleanup (removed all commented debug prints)
-1.92 Corrected a bug when sync was called just before closing file
-1.93 Modified, so that it works with kernels >= 2.1.131, I don't know if it
- works with previous versions
- Fixed a possible problem with disks > 64G (but I don't have one, so I can't
- test it)
- Fixed a file overflow at 2G
- Added new option 'timeshift'
- Changed behaviour on HPFS386: It is now possible to operate on HPFS386 in
- read-only mode
- Fixed a bug that slowed down alloc and prevented allocating 100% space
- (this bug was not destructive)
-1.94 Added workaround for one bug in Linux
- Fixed one buffer leak
- Fixed some incompatibilities with large extended attributes (but it's still
- not 100% ok, I have no info on it and OS/2 doesn't want to create them)
- Rewritten allocation
- Fixed a bug with i_blocks (du sometimes didn't display correct values)
- Directories have no longer archive attribute set (some programs don't like
- it)
- Fixed a bug that it set badly one flag in large anode tree (it was not
- destructive)
-1.95 Fixed one buffer leak, that could happen on corrupted filesystem
- Fixed one bug in allocation in 1.94
-1.96 Added workaround for one bug in OS/2 (HPFS locked up, HPFS386 reported
- error sometimes when opening directories in PMSHELL)
- Fixed a possible bitmap race
- Fixed possible problem on large disks
- You can now delete open files
- Fixed a nondestructive race in rename
-1.97 Support for HPFS v3 (on large partitions)
- Fixed a bug that it didn't allow creation of files > 128M (it should be 2G)
+ Fixed a bug with i_blocks (du sometimes didn't display correct values)
+
+ Directories have no longer archive attribute set (some programs don't like
+ it)
+
+ Fixed a bug that it set badly one flag in large anode tree (it was not
+ destructive)
+1.95 Fixed one buffer leak, that could happen on corrupted filesystem
+
+ Fixed one bug in allocation in 1.94
+1.96 Added workaround for one bug in OS/2 (HPFS locked up, HPFS386 reported
+ error sometimes when opening directories in PMSHELL)
+
+ Fixed a possible bitmap race
+
+ Fixed possible problem on large disks
+
+ You can now delete open files
+
+ Fixed a nondestructive race in rename
+1.97 Support for HPFS v3 (on large partitions)
+
+ ZFixed a bug that it didn't allow creation of files > 128M
+ (it should be 2G)
1.97.1 Changed names of global symbols
+
Fixed a bug when chmoding or chowning root directory
-1.98 Fixed a deadlock when using old_readdir
- Better directory handling; workaround for "unbalanced tree" bug in OS/2
-1.99 Corrected a possible problem when there's not enough space while deleting
- file
- Now it tries to truncate the file if there's not enough space when deleting
- Removed a lot of redundant code
-2.00 Fixed a bug in rename (it was there since 1.96)
- Better anti-fragmentation strategy
-2.01 Fixed problem with directory listing over NFS
- Directory lseek now checks for proper parameters
- Fixed race-condition in buffer code - it is in all filesystems in Linux;
- when reading device (cat /dev/hda) while creating files on it, files
- could be damaged
-2.02 Workaround for bug in breada in Linux. breada could cause accesses beyond
- end of partition
-2.03 Char, block devices and pipes are correctly created
- Fixed non-crashing race in unlink (Alexander Viro)
- Now it works with Japanese version of OS/2
-2.04 Fixed error when ftruncate used to extend file
-2.05 Fixed crash when got mount parameters without =
- Fixed crash when allocation of anode failed due to full disk
- Fixed some crashes when block io or inode allocation failed
-2.06 Fixed some crash on corrupted disk structures
- Better allocation strategy
- Reschedule points added so that it doesn't lock CPU long time
- It should work in read-only mode on Warp Server
-2.07 More fixes for Warp Server. Now it really works
-2.08 Creating new files is not so slow on large disks
- An attempt to sync deleted file does not generate filesystem error
-2.09 Fixed error on extremely fragmented files
-
-
- vim: set textwidth=80:
+1.98 Fixed a deadlock when using old_readdir
+ Better directory handling; workaround for "unbalanced tree" bug in OS/2
+1.99 Corrected a possible problem when there's not enough space while deleting
+ file
+
+ Now it tries to truncate the file if there's not enough space when
+ deleting
+
+ Removed a lot of redundant code
+2.00 Fixed a bug in rename (it was there since 1.96)
+ Better anti-fragmentation strategy
+2.01 Fixed problem with directory listing over NFS
+
+ Directory lseek now checks for proper parameters
+
+ Fixed race-condition in buffer code - it is in all filesystems in Linux;
+ when reading device (cat /dev/hda) while creating files on it, files
+ could be damaged
+2.02 Workaround for bug in breada in Linux. breada could cause accesses beyond
+ end of partition
+2.03 Char, block devices and pipes are correctly created
+
+ Fixed non-crashing race in unlink (Alexander Viro)
+
+ Now it works with Japanese version of OS/2
+2.04 Fixed error when ftruncate used to extend file
+2.05 Fixed crash when got mount parameters without =
+
+ Fixed crash when allocation of anode failed due to full disk
+
+ Fixed some crashes when block io or inode allocation failed
+2.06 Fixed some crash on corrupted disk structures
+
+ Better allocation strategy
+
+ Reschedule points added so that it doesn't lock CPU long time
+
+ It should work in read-only mode on Warp Server
+2.07 More fixes for Warp Server. Now it really works
+2.08 Creating new files is not so slow on large disks
+
+ An attempt to sync deleted file does not generate filesystem error
+2.09 Fixed error on extremely fragmented files
+====== =========================================================================
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 386eaad008b2..e7b46dac7079 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -1,3 +1,5 @@
+.. _filesystems_index:
+
===============================
Filesystems in the Linux kernel
===============================
@@ -46,8 +48,53 @@ Documentation for filesystem implementations.
.. toctree::
:maxdepth: 2
+ 9p
+ adfs
+ affs
+ afs
autofs
+ autofs-mount-control
+ befs
+ bfs
+ btrfs
+ ceph
+ cramfs
+ debugfs
+ dlmfs
+ ecryptfs
+ efivarfs
+ erofs
+ ext2
+ ext3
+ f2fs
+ gfs2
+ gfs2-uevents
+ hfs
+ hfsplus
+ hpfs
fuse
+ inotify
+ isofs
+ nilfs2
+ nfs/index
+ ntfs
+ ocfs2
+ ocfs2-online-filecheck
+ omfs
+ orangefs
overlayfs
+ proc
+ qnx6
+ ramfs-rootfs-initramfs
+ relay
+ romfs
+ squashfs
+ sysfs
+ sysv-fs
+ tmpfs
+ ubifs
+ ubifs-authentication.rst
+ udf
virtiofs
vfat
+ zonefs
diff --git a/Documentation/filesystems/inotify.txt b/Documentation/filesystems/inotify.rst
index 51f61db787fb..7f7ef8af0e1e 100644
--- a/Documentation/filesystems/inotify.txt
+++ b/Documentation/filesystems/inotify.rst
@@ -1,27 +1,36 @@
- inotify
- a powerful yet simple file change notification system
+.. SPDX-License-Identifier: GPL-2.0
+
+===============================================================
+Inotify - A Powerful yet Simple File Change Notification System
+===============================================================
Document started 15 Mar 2005 by Robert Love <rml@novell.com>
+
Document updated 4 Jan 2015 by Zhang Zhen <zhenzhang.zhang@huawei.com>
- --Deleted obsoleted interface, just refer to manpages for user interface.
+
+ - Deleted obsoleted interface, just refer to manpages for user interface.
(i) Rationale
-Q: What is the design decision behind not tying the watch to the open fd of
+Q:
+ What is the design decision behind not tying the watch to the open fd of
the watched object?
-A: Watches are associated with an open inotify device, not an open file.
+A:
+ Watches are associated with an open inotify device, not an open file.
This solves the primary problem with dnotify: keeping the file open pins
the file and thus, worse, pins the mount. Dnotify is therefore infeasible
for use on a desktop system with removable media as the media cannot be
unmounted. Watching a file should not require that it be open.
-Q: What is the design decision behind using an-fd-per-instance as opposed to
+Q:
+ What is the design decision behind using an-fd-per-instance as opposed to
an fd-per-watch?
-A: An fd-per-watch quickly consumes more file descriptors than are allowed,
+A:
+ An fd-per-watch quickly consumes more file descriptors than are allowed,
more fd's than are feasible to manage, and more fd's than are optimally
select()-able. Yes, root can bump the per-process fd limit and yes, users
can use epoll, but requiring both is a silly and extraneous requirement.
@@ -29,8 +38,8 @@ A: An fd-per-watch quickly consumes more file descriptors than are allowed,
spaces is thus sensible. The current design is what user-space developers
want: Users initialize inotify, once, and add n watches, requiring but one
fd and no twiddling with fd limits. Initializing an inotify instance two
- thousand times is silly. If we can implement user-space's preferences
- cleanly--and we can, the idr layer makes stuff like this trivial--then we
+ thousand times is silly. If we can implement user-space's preferences
+ cleanly--and we can, the idr layer makes stuff like this trivial--then we
should.
There are other good arguments. With a single fd, there is a single
@@ -65,9 +74,11 @@ A: An fd-per-watch quickly consumes more file descriptors than are allowed,
need not be a one-fd-per-process mapping; it is one-fd-per-queue and a
process can easily want more than one queue.
-Q: Why the system call approach?
+Q:
+ Why the system call approach?
-A: The poor user-space interface is the second biggest problem with dnotify.
+A:
+ The poor user-space interface is the second biggest problem with dnotify.
Signals are a terrible, terrible interface for file notification. Or for
anything, for that matter. The ideal solution, from all perspectives, is a
file descriptor-based one that allows basic file I/O and poll/select.
diff --git a/Documentation/filesystems/isofs.rst b/Documentation/filesystems/isofs.rst
new file mode 100644
index 000000000000..08fd469091d4
--- /dev/null
+++ b/Documentation/filesystems/isofs.rst
@@ -0,0 +1,64 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================
+ISO9660 Filesystem
+==================
+
+Mount options that are the same as for msdos and vfat partitions.
+
+ ========= ========================================================
+ gid=nnn All files in the partition will be in group nnn.
+ uid=nnn All files in the partition will be owned by user id nnn.
+ umask=nnn The permission mask (see umask(1)) for the partition.
+ ========= ========================================================
+
+Mount options that are the same as vfat partitions. These are only useful
+when using discs encoded using Microsoft's Joliet extensions.
+
+ ============== =============================================================
+ iocharset=name Character set to use for converting from Unicode to
+ ASCII. Joliet filenames are stored in Unicode format, but
+ Unix for the most part doesn't know how to deal with Unicode.
+ There is also an option of doing UTF-8 translations with the
+ utf8 option.
+ utf8 Encode Unicode names in UTF-8 format. Default is no.
+ ============== =============================================================
+
+Mount options unique to the isofs filesystem.
+
+ ================= ============================================================
+ block=512 Set the block size for the disk to 512 bytes
+ block=1024 Set the block size for the disk to 1024 bytes
+ block=2048 Set the block size for the disk to 2048 bytes
+ check=relaxed Matches filenames with different cases
+ check=strict Matches only filenames with the exact same case
+ cruft Try to handle badly formatted CDs.
+ map=off Do not map non-Rock Ridge filenames to lower case
+ map=normal Map non-Rock Ridge filenames to lower case
+ map=acorn As map=normal but also apply Acorn extensions if present
+ mode=xxx Sets the permissions on files to xxx unless Rock Ridge
+ extensions set the permissions otherwise
+ dmode=xxx Sets the permissions on directories to xxx unless Rock Ridge
+ extensions set the permissions otherwise
+ overriderockperm Set permissions on files and directories according to
+ 'mode' and 'dmode' even though Rock Ridge extensions are
+ present.
+ nojoliet Ignore Joliet extensions if they are present.
+ norock Ignore Rock Ridge extensions if they are present.
+ hide Completely strip hidden files from the file system.
+ showassoc Show files marked with the 'associated' bit
+ unhide Deprecated; showing hidden files is now default;
+ If given, it is a synonym for 'showassoc' which will
+ recreate previous unhide behavior
+ session=x Select number of session on multisession CD
+ sbsector=xxx Session begins from sector xxx
+ ================= ============================================================
+
+Recommended documents about ISO 9660 standard are located at:
+
+- http://www.y-adagio.com/
+- ftp://ftp.ecma.ch/ecma-st/Ecma-119.pdf
+
+Quoting from the PDF "This 2nd Edition of Standard ECMA-119 is technically
+identical with ISO 9660.", so it is a valid and gratis substitute of the
+official ISO specification.
diff --git a/Documentation/filesystems/isofs.txt b/Documentation/filesystems/isofs.txt
deleted file mode 100644
index ba0a93384de0..000000000000
--- a/Documentation/filesystems/isofs.txt
+++ /dev/null
@@ -1,48 +0,0 @@
-Mount options that are the same as for msdos and vfat partitions.
-
- gid=nnn All files in the partition will be in group nnn.
- uid=nnn All files in the partition will be owned by user id nnn.
- umask=nnn The permission mask (see umask(1)) for the partition.
-
-Mount options that are the same as vfat partitions. These are only useful
-when using discs encoded using Microsoft's Joliet extensions.
- iocharset=name Character set to use for converting from Unicode to
- ASCII. Joliet filenames are stored in Unicode format, but
- Unix for the most part doesn't know how to deal with Unicode.
- There is also an option of doing UTF-8 translations with the
- utf8 option.
- utf8 Encode Unicode names in UTF-8 format. Default is no.
-
-Mount options unique to the isofs filesystem.
- block=512 Set the block size for the disk to 512 bytes
- block=1024 Set the block size for the disk to 1024 bytes
- block=2048 Set the block size for the disk to 2048 bytes
- check=relaxed Matches filenames with different cases
- check=strict Matches only filenames with the exact same case
- cruft Try to handle badly formatted CDs.
- map=off Do not map non-Rock Ridge filenames to lower case
- map=normal Map non-Rock Ridge filenames to lower case
- map=acorn As map=normal but also apply Acorn extensions if present
- mode=xxx Sets the permissions on files to xxx unless Rock Ridge
- extensions set the permissions otherwise
- dmode=xxx Sets the permissions on directories to xxx unless Rock Ridge
- extensions set the permissions otherwise
- overriderockperm Set permissions on files and directories according to
- 'mode' and 'dmode' even though Rock Ridge extensions are
- present.
- nojoliet Ignore Joliet extensions if they are present.
- norock Ignore Rock Ridge extensions if they are present.
- hide Completely strip hidden files from the file system.
- showassoc Show files marked with the 'associated' bit
- unhide Deprecated; showing hidden files is now default;
- If given, it is a synonym for 'showassoc' which will
- recreate previous unhide behavior
- session=x Select number of session on multisession CD
- sbsector=xxx Session begins from sector xxx
-
-Recommended documents about ISO 9660 standard are located at:
-http://www.y-adagio.com/
-ftp://ftp.ecma.ch/ecma-st/Ecma-119.pdf
-Quoting from the PDF "This 2nd Edition of Standard ECMA-119 is technically
-identical with ISO 9660.", so it is a valid and gratis substitute of the
-official ISO specification.
diff --git a/Documentation/filesystems/nfs/index.rst b/Documentation/filesystems/nfs/index.rst
new file mode 100644
index 000000000000..65805624e39b
--- /dev/null
+++ b/Documentation/filesystems/nfs/index.rst
@@ -0,0 +1,13 @@
+===============================
+NFS
+===============================
+
+
+.. toctree::
+ :maxdepth: 1
+
+ pnfs
+ rpc-cache
+ rpc-server-gss
+ nfs41-server
+ knfsd-stats
diff --git a/Documentation/filesystems/nfs/knfsd-stats.txt b/Documentation/filesystems/nfs/knfsd-stats.rst
index 1a5d82180b84..80bcf13550de 100644
--- a/Documentation/filesystems/nfs/knfsd-stats.txt
+++ b/Documentation/filesystems/nfs/knfsd-stats.rst
@@ -1,7 +1,9 @@
-
+============================
Kernel NFS Server Statistics
============================
+:Authors: Greg Banks <gnb@sgi.com> - 26 Mar 2009
+
This document describes the format and semantics of the statistics
which the kernel NFS server makes available to userspace. These
statistics are available in several text form pseudo files, each of
@@ -18,7 +20,7 @@ by parsing routines. All other lines contain a sequence of fields
separated by whitespace.
/proc/fs/nfsd/pool_stats
-------------------------
+========================
This file is available in kernels from 2.6.30 onwards, if the
/proc/fs/nfsd filesystem is mounted (it almost always should be).
@@ -109,15 +111,12 @@ this case), or the transport can be enqueued for later attention
(sockets-enqueued counts this case), or the packet can be temporarily
deferred because the transport is currently being used by an nfsd
thread. This last case is not very interesting and is not explicitly
-counted, but can be inferred from the other counters thus:
+counted, but can be inferred from the other counters thus::
-packets-deferred = packets-arrived - ( sockets-enqueued + threads-woken )
+ packets-deferred = packets-arrived - ( sockets-enqueued + threads-woken )
More
-----
-Descriptions of the other statistics file should go here.
-
+====
-Greg Banks <gnb@sgi.com>
-26 Mar 2009
+Descriptions of the other statistics file should go here.
diff --git a/Documentation/filesystems/nfs/nfs41-server.rst b/Documentation/filesystems/nfs/nfs41-server.rst
new file mode 100644
index 000000000000..16b5f02f81c3
--- /dev/null
+++ b/Documentation/filesystems/nfs/nfs41-server.rst
@@ -0,0 +1,256 @@
+=============================
+NFSv4.1 Server Implementation
+=============================
+
+Server support for minorversion 1 can be controlled using the
+/proc/fs/nfsd/versions control file. The string output returned
+by reading this file will contain either "+4.1" or "-4.1"
+correspondingly.
+
+Currently, server support for minorversion 1 is enabled by default.
+It can be disabled at run time by writing the string "-4.1" to
+the /proc/fs/nfsd/versions control file. Note that to write this
+control file, the nfsd service must be taken down. You can use rpc.nfsd
+for this; see rpc.nfsd(8).
+
+(Warning: older servers will interpret "+4.1" and "-4.1" as "+4" and
+"-4", respectively. Therefore, code meant to work on both new and old
+kernels must turn 4.1 on or off *before* turning support for version 4
+on or off; rpc.nfsd does this correctly.)
+
+The NFSv4 minorversion 1 (NFSv4.1) implementation in nfsd is based
+on RFC 5661.
+
+From the many new features in NFSv4.1 the current implementation
+focuses on the mandatory-to-implement NFSv4.1 Sessions, providing
+"exactly once" semantics and better control and throttling of the
+resources allocated for each client.
+
+The table below, taken from the NFSv4.1 document, lists
+the operations that are mandatory to implement (REQ), optional
+(OPT), and NFSv4.0 operations that are required not to implement (MNI)
+in minor version 1. The first column indicates the operations that
+are not supported yet by the linux server implementation.
+
+The OPTIONAL features identified and their abbreviations are as follows:
+
+- **pNFS** Parallel NFS
+- **FDELG** File Delegations
+- **DDELG** Directory Delegations
+
+The following abbreviations indicate the linux server implementation status.
+
+- **I** Implemented NFSv4.1 operations.
+- **NS** Not Supported.
+- **NS\*** Unimplemented optional feature.
+
+Operations
+==========
+
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| Implementation status | Operation | REQ,REC, OPT or NMI | Feature (REQ, REC or OPT) | Definition |
++=======================+======================+=====================+===========================+================+
+| | ACCESS | REQ | | Section 18.1 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | BACKCHANNEL_CTL | REQ | | Section 18.33 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | BIND_CONN_TO_SESSION | REQ | | Section 18.34 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | CLOSE | REQ | | Section 18.2 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | COMMIT | REQ | | Section 18.3 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | CREATE | REQ | | Section 18.4 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | CREATE_SESSION | REQ | | Section 18.36 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| NS* | DELEGPURGE | OPT | FDELG (REQ) | Section 18.5 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | DELEGRETURN | OPT | FDELG, | Section 18.6 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | | | DDELG, pNFS | |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | | | (REQ) | |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | DESTROY_CLIENTID | REQ | | Section 18.50 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | DESTROY_SESSION | REQ | | Section 18.37 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | EXCHANGE_ID | REQ | | Section 18.35 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | FREE_STATEID | REQ | | Section 18.38 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | GETATTR | REQ | | Section 18.7 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | GETDEVICEINFO | OPT | pNFS (REQ) | Section 18.40 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| NS* | GETDEVICELIST | OPT | pNFS (OPT) | Section 18.41 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | GETFH | REQ | | Section 18.8 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| NS* | GET_DIR_DELEGATION | OPT | DDELG (REQ) | Section 18.39 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | LAYOUTCOMMIT | OPT | pNFS (REQ) | Section 18.42 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | LAYOUTGET | OPT | pNFS (REQ) | Section 18.43 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | LAYOUTRETURN | OPT | pNFS (REQ) | Section 18.44 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | LINK | OPT | | Section 18.9 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | LOCK | REQ | | Section 18.10 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | LOCKT | REQ | | Section 18.11 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | LOCKU | REQ | | Section 18.12 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | LOOKUP | REQ | | Section 18.13 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | LOOKUPP | REQ | | Section 18.14 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | NVERIFY | REQ | | Section 18.15 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | OPEN | REQ | | Section 18.16 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| NS* | OPENATTR | OPT | | Section 18.17 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | OPEN_CONFIRM | MNI | | N/A |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | OPEN_DOWNGRADE | REQ | | Section 18.18 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | PUTFH | REQ | | Section 18.19 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | PUTPUBFH | REQ | | Section 18.20 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | PUTROOTFH | REQ | | Section 18.21 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | READ | REQ | | Section 18.22 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | READDIR | REQ | | Section 18.23 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | READLINK | OPT | | Section 18.24 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | RECLAIM_COMPLETE | REQ | | Section 18.51 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | RELEASE_LOCKOWNER | MNI | | N/A |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | REMOVE | REQ | | Section 18.25 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | RENAME | REQ | | Section 18.26 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | RENEW | MNI | | N/A |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | RESTOREFH | REQ | | Section 18.27 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | SAVEFH | REQ | | Section 18.28 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | SECINFO | REQ | | Section 18.29 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | SECINFO_NO_NAME | REC | pNFS files | Section 18.45, |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | | | layout (REQ) | Section 13.12 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | SEQUENCE | REQ | | Section 18.46 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | SETATTR | REQ | | Section 18.30 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | SETCLIENTID | MNI | | N/A |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | SETCLIENTID_CONFIRM | MNI | | N/A |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| NS | SET_SSV | REQ | | Section 18.47 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| I | TEST_STATEID | REQ | | Section 18.48 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | VERIFY | REQ | | Section 18.31 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| NS* | WANT_DELEGATION | OPT | FDELG (OPT) | Section 18.49 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+| | WRITE | REQ | | Section 18.32 |
++-----------------------+----------------------+---------------------+---------------------------+----------------+
+
+
+Callback Operations
+===================
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| Implementation status | Operation | REQ,REC, OPT or NMI | Feature (REQ, REC or OPT) | Definition |
++=======================+=========================+=====================+===========================+===============+
+| | CB_GETATTR | OPT | FDELG (REQ) | Section 20.1 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| I | CB_LAYOUTRECALL | OPT | pNFS (REQ) | Section 20.3 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS* | CB_NOTIFY | OPT | DDELG (REQ) | Section 20.4 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS* | CB_NOTIFY_DEVICEID | OPT | pNFS (OPT) | Section 20.12 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS* | CB_NOTIFY_LOCK | OPT | | Section 20.11 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS* | CB_PUSH_DELEG | OPT | FDELG (OPT) | Section 20.5 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | CB_RECALL | OPT | FDELG, | Section 20.2 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | DDELG, pNFS | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | (REQ) | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS* | CB_RECALL_ANY | OPT | FDELG, | Section 20.6 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | DDELG, pNFS | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | (REQ) | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS | CB_RECALL_SLOT | REQ | | Section 20.8 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS* | CB_RECALLABLE_OBJ_AVAIL | OPT | DDELG, pNFS | Section 20.7 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | (REQ) | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| I | CB_SEQUENCE | OPT | FDELG, | Section 20.9 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | DDELG, pNFS | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | (REQ) | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| NS* | CB_WANTS_CANCELLED | OPT | FDELG, | Section 20.10 |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | DDELG, pNFS | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+| | | | (REQ) | |
++-----------------------+-------------------------+---------------------+---------------------------+---------------+
+
+
+Implementation notes:
+=====================
+
+SSV:
+ The spec claims this is mandatory, but we don't actually know of any
+ implementations, so we're ignoring it for now. The server returns
+ NFS4ERR_ENCR_ALG_UNSUPP on EXCHANGE_ID, which should be future-proof.
+
+GSS on the backchannel:
+ Again, theoretically required but not widely implemented (in
+ particular, the current Linux client doesn't request it). We return
+ NFS4ERR_ENCR_ALG_UNSUPP on CREATE_SESSION.
+
+DELEGPURGE:
+ mandatory only for servers that support CLAIM_DELEGATE_PREV and/or
+ CLAIM_DELEG_PREV_FH (which allows clients to keep delegations that
+ persist across client reboots). Thus we need not implement this for
+ now.
+
+EXCHANGE_ID:
+ implementation ids are ignored
+
+CREATE_SESSION:
+ backchannel attributes are ignored
+
+SEQUENCE:
+ no support for dynamic slot table renegotiation (optional)
+
+Nonstandard compound limitations:
+ No support for a sessions fore channel RPC compound that requires both a
+ ca_maxrequestsize request and a ca_maxresponsesize reply, so we may
+ fail to live up to the promise we made in CREATE_SESSION fore channel
+ negotiation.
+
+See also http://wiki.linux-nfs.org/wiki/index.php/Server_4.0_and_4.1_issues.
diff --git a/Documentation/filesystems/nfs/nfs41-server.txt b/Documentation/filesystems/nfs/nfs41-server.txt
deleted file mode 100644
index 682a59fabe3f..000000000000
--- a/Documentation/filesystems/nfs/nfs41-server.txt
+++ /dev/null
@@ -1,173 +0,0 @@
-NFSv4.1 Server Implementation
-
-Server support for minorversion 1 can be controlled using the
-/proc/fs/nfsd/versions control file. The string output returned
-by reading this file will contain either "+4.1" or "-4.1"
-correspondingly.
-
-Currently, server support for minorversion 1 is enabled by default.
-It can be disabled at run time by writing the string "-4.1" to
-the /proc/fs/nfsd/versions control file. Note that to write this
-control file, the nfsd service must be taken down. You can use rpc.nfsd
-for this; see rpc.nfsd(8).
-
-(Warning: older servers will interpret "+4.1" and "-4.1" as "+4" and
-"-4", respectively. Therefore, code meant to work on both new and old
-kernels must turn 4.1 on or off *before* turning support for version 4
-on or off; rpc.nfsd does this correctly.)
-
-The NFSv4 minorversion 1 (NFSv4.1) implementation in nfsd is based
-on RFC 5661.
-
-From the many new features in NFSv4.1 the current implementation
-focuses on the mandatory-to-implement NFSv4.1 Sessions, providing
-"exactly once" semantics and better control and throttling of the
-resources allocated for each client.
-
-The table below, taken from the NFSv4.1 document, lists
-the operations that are mandatory to implement (REQ), optional
-(OPT), and NFSv4.0 operations that are required not to implement (MNI)
-in minor version 1. The first column indicates the operations that
-are not supported yet by the linux server implementation.
-
-The OPTIONAL features identified and their abbreviations are as follows:
- pNFS Parallel NFS
- FDELG File Delegations
- DDELG Directory Delegations
-
-The following abbreviations indicate the linux server implementation status.
- I Implemented NFSv4.1 operations.
- NS Not Supported.
- NS* Unimplemented optional feature.
-
-Operations
-
- +----------------------+------------+--------------+----------------+
- | Operation | REQ, REC, | Feature | Definition |
- | | OPT, or | (REQ, REC, | |
- | | MNI | or OPT) | |
- +----------------------+------------+--------------+----------------+
- | ACCESS | REQ | | Section 18.1 |
-I | BACKCHANNEL_CTL | REQ | | Section 18.33 |
-I | BIND_CONN_TO_SESSION | REQ | | Section 18.34 |
- | CLOSE | REQ | | Section 18.2 |
- | COMMIT | REQ | | Section 18.3 |
- | CREATE | REQ | | Section 18.4 |
-I | CREATE_SESSION | REQ | | Section 18.36 |
-NS*| DELEGPURGE | OPT | FDELG (REQ) | Section 18.5 |
- | DELEGRETURN | OPT | FDELG, | Section 18.6 |
- | | | DDELG, pNFS | |
- | | | (REQ) | |
-I | DESTROY_CLIENTID | REQ | | Section 18.50 |
-I | DESTROY_SESSION | REQ | | Section 18.37 |
-I | EXCHANGE_ID | REQ | | Section 18.35 |
-I | FREE_STATEID | REQ | | Section 18.38 |
- | GETATTR | REQ | | Section 18.7 |
-I | GETDEVICEINFO | OPT | pNFS (REQ) | Section 18.40 |
-NS*| GETDEVICELIST | OPT | pNFS (OPT) | Section 18.41 |
- | GETFH | REQ | | Section 18.8 |
-NS*| GET_DIR_DELEGATION | OPT | DDELG (REQ) | Section 18.39 |
-I | LAYOUTCOMMIT | OPT | pNFS (REQ) | Section 18.42 |
-I | LAYOUTGET | OPT | pNFS (REQ) | Section 18.43 |
-I | LAYOUTRETURN | OPT | pNFS (REQ) | Section 18.44 |
- | LINK | OPT | | Section 18.9 |
- | LOCK | REQ | | Section 18.10 |
- | LOCKT | REQ | | Section 18.11 |
- | LOCKU | REQ | | Section 18.12 |
- | LOOKUP | REQ | | Section 18.13 |
- | LOOKUPP | REQ | | Section 18.14 |
- | NVERIFY | REQ | | Section 18.15 |
- | OPEN | REQ | | Section 18.16 |
-NS*| OPENATTR | OPT | | Section 18.17 |
- | OPEN_CONFIRM | MNI | | N/A |
- | OPEN_DOWNGRADE | REQ | | Section 18.18 |
- | PUTFH | REQ | | Section 18.19 |
- | PUTPUBFH | REQ | | Section 18.20 |
- | PUTROOTFH | REQ | | Section 18.21 |
- | READ | REQ | | Section 18.22 |
- | READDIR | REQ | | Section 18.23 |
- | READLINK | OPT | | Section 18.24 |
- | RECLAIM_COMPLETE | REQ | | Section 18.51 |
- | RELEASE_LOCKOWNER | MNI | | N/A |
- | REMOVE | REQ | | Section 18.25 |
- | RENAME | REQ | | Section 18.26 |
- | RENEW | MNI | | N/A |
- | RESTOREFH | REQ | | Section 18.27 |
- | SAVEFH | REQ | | Section 18.28 |
- | SECINFO | REQ | | Section 18.29 |
-I | SECINFO_NO_NAME | REC | pNFS files | Section 18.45, |
- | | | layout (REQ) | Section 13.12 |
-I | SEQUENCE | REQ | | Section 18.46 |
- | SETATTR | REQ | | Section 18.30 |
- | SETCLIENTID | MNI | | N/A |
- | SETCLIENTID_CONFIRM | MNI | | N/A |
-NS | SET_SSV | REQ | | Section 18.47 |
-I | TEST_STATEID | REQ | | Section 18.48 |
- | VERIFY | REQ | | Section 18.31 |
-NS*| WANT_DELEGATION | OPT | FDELG (OPT) | Section 18.49 |
- | WRITE | REQ | | Section 18.32 |
-
-Callback Operations
-
- +-------------------------+-----------+-------------+---------------+
- | Operation | REQ, REC, | Feature | Definition |
- | | OPT, or | (REQ, REC, | |
- | | MNI | or OPT) | |
- +-------------------------+-----------+-------------+---------------+
- | CB_GETATTR | OPT | FDELG (REQ) | Section 20.1 |
-I | CB_LAYOUTRECALL | OPT | pNFS (REQ) | Section 20.3 |
-NS*| CB_NOTIFY | OPT | DDELG (REQ) | Section 20.4 |
-NS*| CB_NOTIFY_DEVICEID | OPT | pNFS (OPT) | Section 20.12 |
-NS*| CB_NOTIFY_LOCK | OPT | | Section 20.11 |
-NS*| CB_PUSH_DELEG | OPT | FDELG (OPT) | Section 20.5 |
- | CB_RECALL | OPT | FDELG, | Section 20.2 |
- | | | DDELG, pNFS | |
- | | | (REQ) | |
-NS*| CB_RECALL_ANY | OPT | FDELG, | Section 20.6 |
- | | | DDELG, pNFS | |
- | | | (REQ) | |
-NS | CB_RECALL_SLOT | REQ | | Section 20.8 |
-NS*| CB_RECALLABLE_OBJ_AVAIL | OPT | DDELG, pNFS | Section 20.7 |
- | | | (REQ) | |
-I | CB_SEQUENCE | OPT | FDELG, | Section 20.9 |
- | | | DDELG, pNFS | |
- | | | (REQ) | |
-NS*| CB_WANTS_CANCELLED | OPT | FDELG, | Section 20.10 |
- | | | DDELG, pNFS | |
- | | | (REQ) | |
- +-------------------------+-----------+-------------+---------------+
-
-Implementation notes:
-
-SSV:
-* The spec claims this is mandatory, but we don't actually know of any
- implementations, so we're ignoring it for now. The server returns
- NFS4ERR_ENCR_ALG_UNSUPP on EXCHANGE_ID, which should be future-proof.
-
-GSS on the backchannel:
-* Again, theoretically required but not widely implemented (in
- particular, the current Linux client doesn't request it). We return
- NFS4ERR_ENCR_ALG_UNSUPP on CREATE_SESSION.
-
-DELEGPURGE:
-* mandatory only for servers that support CLAIM_DELEGATE_PREV and/or
- CLAIM_DELEG_PREV_FH (which allows clients to keep delegations that
- persist across client reboots). Thus we need not implement this for
- now.
-
-EXCHANGE_ID:
-* implementation ids are ignored
-
-CREATE_SESSION:
-* backchannel attributes are ignored
-
-SEQUENCE:
-* no support for dynamic slot table renegotiation (optional)
-
-Nonstandard compound limitations:
-* No support for a sessions fore channel RPC compound that requires both a
- ca_maxrequestsize request and a ca_maxresponsesize reply, so we may
- fail to live up to the promise we made in CREATE_SESSION fore channel
- negotiation.
-
-See also http://wiki.linux-nfs.org/wiki/index.php/Server_4.0_and_4.1_issues.
diff --git a/Documentation/filesystems/nfs/pnfs.txt b/Documentation/filesystems/nfs/pnfs.rst
index 80dc0bdc302a..7c470ecdc3a9 100644
--- a/Documentation/filesystems/nfs/pnfs.txt
+++ b/Documentation/filesystems/nfs/pnfs.rst
@@ -1,15 +1,17 @@
-Reference counting in pnfs:
+==========================
+Reference counting in pnfs
==========================
The are several inter-related caches. We have layouts which can
reference multiple devices, each of which can reference multiple data servers.
Each data server can be referenced by multiple devices. Each device
-can be referenced by multiple layouts. To keep all of this straight,
+can be referenced by multiple layouts. To keep all of this straight,
we need to reference count.
struct pnfs_layout_hdr
-----------------------
+======================
+
The on-the-wire command LAYOUTGET corresponds to struct
pnfs_layout_segment, usually referred to by the variable name lseg.
Each nfs_inode may hold a pointer to a cache of these layout
@@ -25,7 +27,8 @@ the reference count, as the layout is kept around by the lseg that
keeps it in the list.
deviceid_cache
---------------
+==============
+
lsegs reference device ids, which are resolved per nfs_client and
layout driver type. The device ids are held in a RCU cache (struct
nfs4_deviceid_cache). The cache itself is referenced across each
@@ -38,24 +41,26 @@ justification, but seems reasonable given that we can have multiple
deviceid's per filesystem, and multiple filesystems per nfs_client.
The hash code is copied from the nfsd code base. A discussion of
-hashing and variations of this algorithm can be found at:
-http://groups.google.com/group/comp.lang.c/browse_thread/thread/9522965e2b8d3809
+hashing and variations of this algorithm can be found `here.
+<http://groups.google.com/group/comp.lang.c/browse_thread/thread/9522965e2b8d3809>`_
data server cache
------------------
+=================
+
file driver devices refer to data servers, which are kept in a module
level cache. Its reference is held over the lifetime of the deviceid
pointing to it.
lseg
-----
+====
+
lseg maintains an extra reference corresponding to the NFS_LSEG_VALID
bit which holds it in the pnfs_layout_hdr's list. When the final lseg
is removed from the pnfs_layout_hdr's list, the NFS_LAYOUT_DESTROYED
bit is set, preventing any new lsegs from being added.
layout drivers
---------------
+==============
PNFS utilizes what is called layout drivers. The STD defines 4 basic
layout types: "files", "objects", "blocks", and "flexfiles". For each
@@ -68,6 +73,6 @@ Blocks-layout-driver code is in: fs/nfs/blocklayout/.. directory
Flexfiles-layout-driver code is in: fs/nfs/flexfilelayout/.. directory
blocks-layout setup
--------------------
+===================
TODO: Document the setup needs of the blocks layout driver
diff --git a/Documentation/filesystems/nfs/rpc-cache.txt b/Documentation/filesystems/nfs/rpc-cache.rst
index c4dac829db0f..bb164eea969b 100644
--- a/Documentation/filesystems/nfs/rpc-cache.txt
+++ b/Documentation/filesystems/nfs/rpc-cache.rst
@@ -1,9 +1,14 @@
- This document gives a brief introduction to the caching
+=========
+RPC Cache
+=========
+
+This document gives a brief introduction to the caching
mechanisms in the sunrpc layer that is used, in particular,
for NFS authentication.
-CACHES
+Caches
======
+
The caching replaces the old exports table and allows for
a wide variety of values to be caches.
@@ -12,6 +17,7 @@ quite possibly very different in content and use. There is a corpus
of common code for managing these caches.
Examples of caches that are likely to be needed are:
+
- mapping from IP address to client name
- mapping from client name and filesystem to export options
- mapping from UID to list of GIDs, to work around NFS's limitation
@@ -21,6 +27,7 @@ Examples of caches that are likely to be needed are:
- mapping from network identify to public key for crypto authentication.
The common code handles such things as:
+
- general cache lookup with correct locking
- supporting 'NEGATIVE' as well as positive entries
- allowing an EXPIRED time on cache items, and removing
@@ -35,60 +42,66 @@ The common code handles such things as:
Creating a Cache
----------------
-1/ A cache needs a datum to store. This is in the form of a
- structure definition that must contain a
- struct cache_head
+- A cache needs a datum to store. This is in the form of a
+ structure definition that must contain a struct cache_head
as an element, usually the first.
It will also contain a key and some content.
Each cache element is reference counted and contains
expiry and update times for use in cache management.
-2/ A cache needs a "cache_detail" structure that
+- A cache needs a "cache_detail" structure that
describes the cache. This stores the hash table, some
parameters for cache management, and some operations detailing how
to work with particular cache items.
- The operations requires are:
- struct cache_head *alloc(void)
- This simply allocates appropriate memory and returns
- a pointer to the cache_detail embedded within the
- structure
- void cache_put(struct kref *)
- This is called when the last reference to an item is
- dropped. The pointer passed is to the 'ref' field
- in the cache_head. cache_put should release any
- references create by 'cache_init' and, if CACHE_VALID
- is set, any references created by cache_update.
- It should then release the memory allocated by
- 'alloc'.
- int match(struct cache_head *orig, struct cache_head *new)
- test if the keys in the two structures match. Return
- 1 if they do, 0 if they don't.
- void init(struct cache_head *orig, struct cache_head *new)
- Set the 'key' fields in 'new' from 'orig'. This may
- include taking references to shared objects.
- void update(struct cache_head *orig, struct cache_head *new)
- Set the 'content' fileds in 'new' from 'orig'.
- int cache_show(struct seq_file *m, struct cache_detail *cd,
- struct cache_head *h)
- Optional. Used to provide a /proc file that lists the
- contents of a cache. This should show one item,
- usually on just one line.
- int cache_request(struct cache_detail *cd, struct cache_head *h,
- char **bpp, int *blen)
- Format a request to be send to user-space for an item
- to be instantiated. *bpp is a buffer of size *blen.
- bpp should be moved forward over the encoded message,
- and *blen should be reduced to show how much free
- space remains. Return 0 on success or <0 if not
- enough room or other problem.
- int cache_parse(struct cache_detail *cd, char *buf, int len)
- A message from user space has arrived to fill out a
- cache entry. It is in 'buf' of length 'len'.
- cache_parse should parse this, find the item in the
- cache with sunrpc_cache_lookup_rcu, and update the item
- with sunrpc_cache_update.
-
-
-3/ A cache needs to be registered using cache_register(). This
+
+ The operations are:
+
+ struct cache_head \*alloc(void)
+ This simply allocates appropriate memory and returns
+ a pointer to the cache_detail embedded within the
+ structure
+
+ void cache_put(struct kref \*)
+ This is called when the last reference to an item is
+ dropped. The pointer passed is to the 'ref' field
+ in the cache_head. cache_put should release any
+ references create by 'cache_init' and, if CACHE_VALID
+ is set, any references created by cache_update.
+ It should then release the memory allocated by
+ 'alloc'.
+
+ int match(struct cache_head \*orig, struct cache_head \*new)
+ test if the keys in the two structures match. Return
+ 1 if they do, 0 if they don't.
+
+ void init(struct cache_head \*orig, struct cache_head \*new)
+ Set the 'key' fields in 'new' from 'orig'. This may
+ include taking references to shared objects.
+
+ void update(struct cache_head \*orig, struct cache_head \*new)
+ Set the 'content' fileds in 'new' from 'orig'.
+
+ int cache_show(struct seq_file \*m, struct cache_detail \*cd, struct cache_head \*h)
+ Optional. Used to provide a /proc file that lists the
+ contents of a cache. This should show one item,
+ usually on just one line.
+
+ int cache_request(struct cache_detail \*cd, struct cache_head \*h, char \*\*bpp, int \*blen)
+ Format a request to be send to user-space for an item
+ to be instantiated. \*bpp is a buffer of size \*blen.
+ bpp should be moved forward over the encoded message,
+ and \*blen should be reduced to show how much free
+ space remains. Return 0 on success or <0 if not
+ enough room or other problem.
+
+ int cache_parse(struct cache_detail \*cd, char \*buf, int len)
+ A message from user space has arrived to fill out a
+ cache entry. It is in 'buf' of length 'len'.
+ cache_parse should parse this, find the item in the
+ cache with sunrpc_cache_lookup_rcu, and update the item
+ with sunrpc_cache_update.
+
+
+- A cache needs to be registered using cache_register(). This
includes it on a list of caches that will be regularly
cleaned to discard old data.
@@ -107,7 +120,7 @@ cache_check will return -ENOENT in the entry is negative or if an up
call is needed but not possible, -EAGAIN if an upcall is pending,
or 0 if the data is valid;
-cache_check can be passed a "struct cache_req *". This structure is
+cache_check can be passed a "struct cache_req\*". This structure is
typically embedded in the actual request and can be used to create a
deferred copy of the request (struct cache_deferred_req). This is
done when the found cache item is not uptodate, but the is reason to
@@ -139,9 +152,11 @@ The 'channel' works a bit like a datagram socket. Each 'write' is
passed as a whole to the cache for parsing and interpretation.
Each cache can treat the write requests differently, but it is
expected that a message written will contain:
+
- a key
- an expiry time
- a content.
+
with the intention that an item in the cache with the give key
should be create or updated to have the given content, and the
expiry time should be set on that item.
@@ -156,7 +171,8 @@ If there are no more requests to return, read will return EOF, but a
select or poll for read will block waiting for another request to be
added.
-Thus a user-space helper is likely to:
+Thus a user-space helper is likely to::
+
open the channel.
select for readable
read a request
@@ -175,12 +191,13 @@ Each cache should also define a "cache_request" method which
takes a cache item and encodes a request into the buffer
provided.
-Note: If a cache has no active readers on the channel, and has had not
-active readers for more than 60 seconds, further requests will not be
-added to the channel but instead all lookups that do not find a valid
-entry will fail. This is partly for backward compatibility: The
-previous nfs exports table was deemed to be authoritative and a
-failed lookup meant a definite 'no'.
+.. note::
+ If a cache has no active readers on the channel, and has had not
+ active readers for more than 60 seconds, further requests will not be
+ added to the channel but instead all lookups that do not find a valid
+ entry will fail. This is partly for backward compatibility: The
+ previous nfs exports table was deemed to be authoritative and a
+ failed lookup meant a definite 'no'.
request/response format
-----------------------
@@ -193,10 +210,11 @@ with precisely one newline character which should be at the end.
Fields within the record should be separated by spaces, normally one.
If spaces, newlines, or nul characters are needed in a field they
much be quoted. two mechanisms are available:
-1/ If a field begins '\x' then it must contain an even number of
+
+- If a field begins '\x' then it must contain an even number of
hex digits, and pairs of these digits provide the bytes in the
field.
-2/ otherwise a \ in the field must be followed by 3 octal digits
+- otherwise a \ in the field must be followed by 3 octal digits
which give the code for a byte. Other characters are treated
as them selves. At the very least, space, newline, nul, and
'\' must be quoted in this way.
diff --git a/Documentation/filesystems/nfs/rpc-server-gss.txt b/Documentation/filesystems/nfs/rpc-server-gss.rst
index 310bbbaf9080..812754576845 100644
--- a/Documentation/filesystems/nfs/rpc-server-gss.txt
+++ b/Documentation/filesystems/nfs/rpc-server-gss.rst
@@ -1,4 +1,4 @@
-
+=========================================
rpcsec_gss support for kernel RPC servers
=========================================
@@ -9,14 +9,17 @@ NFSv4.1 and higher don't require the client to act as a server for the
purposes of authentication.)
RPCGSS is specified in a few IETF documents:
+
- RFC2203 v1: http://tools.ietf.org/rfc/rfc2203.txt
- RFC5403 v2: http://tools.ietf.org/rfc/rfc5403.txt
+
and there is a 3rd version being proposed:
+
- http://tools.ietf.org/id/draft-williams-rpcsecgssv3.txt
(At draft n. 02 at the time of writing)
Background
-----------
+==========
The RPCGSS Authentication method describes a way to perform GSSAPI
Authentication for NFS. Although GSSAPI is itself completely mechanism
@@ -29,6 +32,7 @@ depends on GSSAPI extensions that are KRB5 specific.
GSSAPI is a complex library, and implementing it completely in kernel is
unwarranted. However GSSAPI operations are fundementally separable in 2
parts:
+
- initial context establishment
- integrity/privacy protection (signing and encrypting of individual
packets)
@@ -41,7 +45,7 @@ kernel, but leave the initial context establishment to userspace. We
need upcalls to request userspace to perform context establishment.
NFS Server Legacy Upcall Mechanism
-----------------------------------
+==================================
The classic upcall mechanism uses a custom text based upcall mechanism
to talk to a custom daemon called rpc.svcgssd that is provide by the
@@ -62,21 +66,20 @@ groups) due to limitation on the size of the buffer that can be send
back to the kernel (4KiB).
NFS Server New RPC Upcall Mechanism
------------------------------------
+===================================
The newer upcall mechanism uses RPC over a unix socket to a daemon
called gss-proxy, implemented by a userspace program called Gssproxy.
-The gss_proxy RPC protocol is currently documented here:
-
- https://fedorahosted.org/gss-proxy/wiki/ProtocolDocumentation
+The gss_proxy RPC protocol is currently documented `here
+<https://fedorahosted.org/gss-proxy/wiki/ProtocolDocumentation>`_.
This upcall mechanism uses the kernel rpc client and connects to the gssproxy
userspace program over a regular unix socket. The gssproxy protocol does not
suffer from the size limitations of the legacy protocol.
Negotiating Upcall Mechanisms
------------------------------
+=============================
To provide backward compatibility, the kernel defaults to using the
legacy mechanism. To switch to the new mechanism, gss-proxy must bind
diff --git a/Documentation/filesystems/nilfs2.txt b/Documentation/filesystems/nilfs2.rst
index f2f3f8592a6f..6c49f04e9e0a 100644
--- a/Documentation/filesystems/nilfs2.txt
+++ b/Documentation/filesystems/nilfs2.rst
@@ -1,5 +1,8 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+======
NILFS2
-------
+======
NILFS2 is a log-structured file system (LFS) supporting continuous
snapshotting. In addition to versioning capability of the entire file
@@ -25,9 +28,9 @@ available from the following download page. At least "mkfs.nilfs2",
cleaner or garbage collector) are required. Details on the tools are
described in the man pages included in the package.
-Project web page: https://nilfs.sourceforge.io/
-Download page: https://nilfs.sourceforge.io/en/download.html
-List info: http://vger.kernel.org/vger-lists.html#linux-nilfs
+:Project web page: https://nilfs.sourceforge.io/
+:Download page: https://nilfs.sourceforge.io/en/download.html
+:List info: http://vger.kernel.org/vger-lists.html#linux-nilfs
Caveats
=======
@@ -47,6 +50,7 @@ Mount options
NILFS2 supports the following mount options:
(*) == default
+======================= =======================================================
barrier(*) This enables/disables the use of write barriers. This
nobarrier requires an IO stack which can support barriers, and
if nilfs gets an error on a barrier write, it will
@@ -79,6 +83,7 @@ discard This enables/disables the use of discard/TRIM commands.
nodiscard(*) The discard/TRIM commands are sent to the underlying
block device when blocks are freed. This is useful
for SSD devices and sparse/thinly-provisioned LUNs.
+======================= =======================================================
Ioctls
======
@@ -87,9 +92,11 @@ There is some NILFS2 specific functionality which can be accessed by application
through the system call interfaces. The list of all NILFS2 specific ioctls are
shown in the table below.
-Table of NILFS2 specific ioctls
-..............................................................................
+Table of NILFS2 specific ioctls:
+
+ ============================== ===============================================
Ioctl Description
+ ============================== ===============================================
NILFS_IOCTL_CHANGE_CPMODE Change mode of given checkpoint between
checkpoint and snapshot state. This ioctl is
used in chcp and mkcp utilities.
@@ -142,11 +149,12 @@ Table of NILFS2 specific ioctls
NILFS_IOCTL_SET_ALLOC_RANGE Define lower limit of segments in bytes and
upper limit of segments in bytes. This ioctl
is used by nilfs_resize utility.
+ ============================== ===============================================
NILFS2 usage
============
-To use nilfs2 as a local file system, simply:
+To use nilfs2 as a local file system, simply::
# mkfs -t nilfs2 /dev/block_device
# mount -t nilfs2 /dev/block_device /dir
@@ -157,18 +165,20 @@ This will also invoke the cleaner through the mount helper program
Checkpoints and snapshots are managed by the following commands.
Their manpages are included in the nilfs-utils package above.
+ ==== ===========================================================
lscp list checkpoints or snapshots.
mkcp make a checkpoint or a snapshot.
chcp change an existing checkpoint to a snapshot or vice versa.
rmcp invalidate specified checkpoint(s).
+ ==== ===========================================================
-To mount a snapshot,
+To mount a snapshot::
# mount -t nilfs2 -r -o cp=<cno> /dev/block_device /snap_dir
where <cno> is the checkpoint number of the snapshot.
-To unmount the NILFS2 mount point or snapshot, simply:
+To unmount the NILFS2 mount point or snapshot, simply::
# umount /dir
@@ -181,7 +191,7 @@ Disk format
A nilfs2 volume is equally divided into a number of segments except
for the super block (SB) and segment #0. A segment is the container
of logs. Each log is composed of summary information blocks, payload
-blocks, and an optional super root block (SR):
+blocks, and an optional super root block (SR)::
______________________________________________________
| |SB| | Segment | Segment | Segment | ... | Segment | |
@@ -200,7 +210,7 @@ blocks, and an optional super root block (SR):
|_blocks__|_________________|__|
The payload blocks are organized per file, and each file consists of
-data blocks and B-tree node blocks:
+data blocks and B-tree node blocks::
|<--- File-A --->|<--- File-B --->|
_______________________________________________________________
@@ -213,7 +223,7 @@ files without data blocks or B-tree node blocks.
The organization of the blocks is recorded in the summary information
blocks, which contains a header structure (nilfs_segment_summary), per
-file structures (nilfs_finfo), and per block structures (nilfs_binfo):
+file structures (nilfs_finfo), and per block structures (nilfs_binfo)::
_________________________________________________________________________
| Summary | finfo | binfo | ... | binfo | finfo | binfo | ... | binfo |...
@@ -223,7 +233,7 @@ file structures (nilfs_finfo), and per block structures (nilfs_binfo):
The logs include regular files, directory files, symbolic link files
and several meta data files. The mata data files are the files used
to maintain file system meta data. The current version of NILFS2 uses
-the following meta data files:
+the following meta data files::
1) Inode file (ifile) -- Stores on-disk inodes
2) Checkpoint file (cpfile) -- Stores checkpoints
@@ -232,7 +242,7 @@ the following meta data files:
(DAT) block numbers. This file serves to
make on-disk blocks relocatable.
-The following figure shows a typical organization of the logs:
+The following figure shows a typical organization of the logs::
_________________________________________________________________________
| Summary | regular file | file | ... | ifile | cpfile | sufile | DAT |SR|
@@ -250,7 +260,7 @@ three special inodes, inodes for the DAT, cpfile, and sufile. Inodes
of regular files, directories, symlinks and other special files, are
included in the ifile. The inode of ifile itself is included in the
corresponding checkpoint entry in the cpfile. Thus, the hierarchy
-among NILFS2 files can be depicted as follows:
+among NILFS2 files can be depicted as follows::
Super block (SB)
|
diff --git a/Documentation/filesystems/ntfs.txt b/Documentation/filesystems/ntfs.rst
index 553f10d03076..5bb093a26485 100644
--- a/Documentation/filesystems/ntfs.txt
+++ b/Documentation/filesystems/ntfs.rst
@@ -1,19 +1,21 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================================
The Linux NTFS filesystem driver
================================
-Table of contents
-=================
+.. Table of contents
-- Overview
-- Web site
-- Features
-- Supported mount options
-- Known bugs and (mis-)features
-- Using NTFS volume and stripe sets
- - The Device-Mapper driver
- - The Software RAID / MD driver
- - Limitations when using the MD driver
+ - Overview
+ - Web site
+ - Features
+ - Supported mount options
+ - Known bugs and (mis-)features
+ - Using NTFS volume and stripe sets
+ - The Device-Mapper driver
+ - The Software RAID / MD driver
+ - Limitations when using the MD driver
Overview
@@ -66,8 +68,10 @@ Features
partition by creating a large file while in Windows and then loopback
mounting the file while in Linux and creating a Linux filesystem on it that
is used to install Linux on it.
-- A comparison of the two drivers using:
+- A comparison of the two drivers using::
+
time find . -type f -exec md5sum "{}" \;
+
run three times in sequence with each driver (after a reboot) on a 1.4GiB
NTFS partition, showed the new driver to be 20% faster in total time elapsed
(from 9:43 minutes on average down to 7:53). The time spent in user space
@@ -104,6 +108,7 @@ In addition to the generic mount options described by the manual page for the
mount command (man 8 mount, also see man 5 fstab), the NTFS driver supports the
following mount options:
+======================= =======================================================
iocharset=name Deprecated option. Still supported but please use
nls=name in the future. See description for nls=name.
@@ -175,16 +180,22 @@ disable_sparse=<BOOL> If disable_sparse is specified, creation of sparse
errors=opt What to do when critical filesystem errors are found.
Following values can be used for "opt":
- continue: DEFAULT, try to clean-up as much as
+
+ ======== =========================================
+ continue DEFAULT, try to clean-up as much as
possible, e.g. marking a corrupt inode as
bad so it is no longer accessed, and then
continue.
- recover: At present only supported is recovery of
+ recover At present only supported is recovery of
the boot sector from the backup copy.
If read-only mount, the recovery is done
in memory only and not written to disk.
- Note that the options are additive, i.e. specifying:
+ ======== =========================================
+
+ Note that the options are additive, i.e. specifying::
+
errors=continue,errors=recover
+
means the driver will attempt to recover and if that
fails it will clean-up as much as possible and
continue.
@@ -202,12 +213,18 @@ mft_zone_multiplier= Set the MFT zone multiplier for the volume (this
In general use the default. If you have a lot of small
files then use a higher value. The values have the
following meaning:
+
+ ===== =================================
Value MFT zone size (% of volume size)
+ ===== =================================
1 12.5%
2 25%
3 37.5%
4 50%
+ ===== =================================
+
Note this option is irrelevant for read-only mounts.
+======================= =======================================================
Known bugs and (mis-)features
@@ -252,18 +269,18 @@ To create the table describing your volume you will need to know each of its
components and their sizes in sectors, i.e. multiples of 512-byte blocks.
For NT4 fault tolerant volumes you can obtain the sizes using fdisk. So for
-example if one of your partitions is /dev/hda2 you would do:
+example if one of your partitions is /dev/hda2 you would do::
-$ fdisk -ul /dev/hda
+ $ fdisk -ul /dev/hda
-Disk /dev/hda: 81.9 GB, 81964302336 bytes
-255 heads, 63 sectors/track, 9964 cylinders, total 160086528 sectors
-Units = sectors of 1 * 512 = 512 bytes
+ Disk /dev/hda: 81.9 GB, 81964302336 bytes
+ 255 heads, 63 sectors/track, 9964 cylinders, total 160086528 sectors
+ Units = sectors of 1 * 512 = 512 bytes
- Device Boot Start End Blocks Id System
- /dev/hda1 * 63 4209029 2104483+ 83 Linux
- /dev/hda2 4209030 37768814 16779892+ 86 NTFS
- /dev/hda3 37768815 46170809 4200997+ 83 Linux
+ Device Boot Start End Blocks Id System
+ /dev/hda1 * 63 4209029 2104483+ 83 Linux
+ /dev/hda2 4209030 37768814 16779892+ 86 NTFS
+ /dev/hda3 37768815 46170809 4200997+ 83 Linux
And you would know that /dev/hda2 has a size of 37768814 - 4209030 + 1 =
33559785 sectors.
@@ -271,15 +288,17 @@ And you would know that /dev/hda2 has a size of 37768814 - 4209030 + 1 =
For Win2k and later dynamic disks, you can for example use the ldminfo utility
which is part of the Linux LDM tools (the latest version at the time of
writing is linux-ldm-0.0.8.tar.bz2). You can download it from:
+
http://www.linux-ntfs.org/
+
Simply extract the downloaded archive (tar xvjf linux-ldm-0.0.8.tar.bz2), go
into it (cd linux-ldm-0.0.8) and change to the test directory (cd test). You
will find the precompiled (i386) ldminfo utility there. NOTE: You will not be
able to compile this yourself easily so use the binary version!
-Then you would use ldminfo in dump mode to obtain the necessary information:
+Then you would use ldminfo in dump mode to obtain the necessary information::
-$ ./ldminfo --dump /dev/hda
+ $ ./ldminfo --dump /dev/hda
This would dump the LDM database found on /dev/hda which describes all of your
dynamic disks and all the volumes on them. At the bottom you will see the
@@ -305,42 +324,36 @@ give you the correct information to do this.
Assuming you know all your devices and their sizes things are easy.
For a linear raid the table would look like this (note all values are in
-512-byte sectors):
+512-byte sectors)::
---- cut here ---
-# Offset into Size of this Raid type Device Start sector
-# volume device of device
-0 1028161 linear /dev/hda1 0
-1028161 3903762 linear /dev/hdb2 0
-4931923 2103211 linear /dev/hdc1 0
---- cut here ---
+ # Offset into Size of this Raid type Device Start sector
+ # volume device of device
+ 0 1028161 linear /dev/hda1 0
+ 1028161 3903762 linear /dev/hdb2 0
+ 4931923 2103211 linear /dev/hdc1 0
For a striped volume, i.e. raid level 0, you will need to know the chunk size
you used when creating the volume. Windows uses 64kiB as the default, so it
will probably be this unless you changes the defaults when creating the array.
For a raid level 0 the table would look like this (note all values are in
-512-byte sectors):
+512-byte sectors)::
---- cut here ---
-# Offset Size Raid Number Chunk 1st Start 2nd Start
-# into of the type of size Device in Device in
-# volume volume stripes device device
-0 2056320 striped 2 128 /dev/hda1 0 /dev/hdb1 0
---- cut here ---
+ # Offset Size Raid Number Chunk 1st Start 2nd Start
+ # into of the type of size Device in Device in
+ # volume volume stripes device device
+ 0 2056320 striped 2 128 /dev/hda1 0 /dev/hdb1 0
If there are more than two devices, just add each of them to the end of the
line.
Finally, for a mirrored volume, i.e. raid level 1, the table would look like
-this (note all values are in 512-byte sectors):
+this (note all values are in 512-byte sectors)::
---- cut here ---
-# Ofs Size Raid Log Number Region Should Number Source Start Target Start
-# in of the type type of log size sync? of Device in Device in
-# vol volume params mirrors Device Device
-0 2056320 mirror core 2 16 nosync 2 /dev/hda1 0 /dev/hdb1 0
---- cut here ---
+ # Ofs Size Raid Log Number Region Should Number Source Start Target Start
+ # in of the type type of log size sync? of Device in Device in
+ # vol volume params mirrors Device Device
+ 0 2056320 mirror core 2 16 nosync 2 /dev/hda1 0 /dev/hdb1 0
If you are mirroring to multiple devices you can specify further targets at the
end of the line.
@@ -353,17 +366,17 @@ to the "Target Device" or if you specified multiple target devices to all of
them.
Once you have your table, save it in a file somewhere (e.g. /etc/ntfsvolume1),
-and hand it over to dmsetup to work with, like so:
+and hand it over to dmsetup to work with, like so::
-$ dmsetup create myvolume1 /etc/ntfsvolume1
+ $ dmsetup create myvolume1 /etc/ntfsvolume1
You can obviously replace "myvolume1" with whatever name you like.
If it all worked, you will now have the device /dev/device-mapper/myvolume1
which you can then just use as an argument to the mount command as usual to
-mount the ntfs volume. For example:
+mount the ntfs volume. For example::
-$ mount -t ntfs -o ro /dev/device-mapper/myvolume1 /mnt/myvol1
+ $ mount -t ntfs -o ro /dev/device-mapper/myvolume1 /mnt/myvol1
(You need to create the directory /mnt/myvol1 first and of course you can use
anything you like instead of /mnt/myvol1 as long as it is an existing
@@ -395,18 +408,18 @@ Windows by default uses a stripe chunk size of 64k, so you probably want the
"chunk-size 64k" option for each raid-disk, too.
For example, if you have a stripe set consisting of two partitions /dev/hda5
-and /dev/hdb1 your /etc/raidtab would look like this:
-
-raiddev /dev/md0
- raid-level 0
- nr-raid-disks 2
- nr-spare-disks 0
- persistent-superblock 0
- chunk-size 64k
- device /dev/hda5
- raid-disk 0
- device /dev/hdb1
- raid-disk 1
+and /dev/hdb1 your /etc/raidtab would look like this::
+
+ raiddev /dev/md0
+ raid-level 0
+ nr-raid-disks 2
+ nr-spare-disks 0
+ persistent-superblock 0
+ chunk-size 64k
+ device /dev/hda5
+ raid-disk 0
+ device /dev/hdb1
+ raid-disk 1
For linear raid, just change the raid-level above to "raid-level linear", for
mirrors, change it to "raid-level 1", and for stripe sets with parity, change
@@ -427,7 +440,9 @@ Once the raidtab is setup, run for example raid0run -a to start all devices or
raid0run /dev/md0 to start a particular md device, in this case /dev/md0.
Then just use the mount command as usual to mount the ntfs volume using for
-example: mount -t ntfs -o ro /dev/md0 /mnt/myntfsvolume
+example::
+
+ mount -t ntfs -o ro /dev/md0 /mnt/myntfsvolume
It is advisable to do the mount read-only to see if the md volume has been
setup correctly to avoid the possibility of causing damage to the data on the
diff --git a/Documentation/filesystems/ocfs2-online-filecheck.txt b/Documentation/filesystems/ocfs2-online-filecheck.rst
index 139fab175c8a..2257bb53edc1 100644
--- a/Documentation/filesystems/ocfs2-online-filecheck.txt
+++ b/Documentation/filesystems/ocfs2-online-filecheck.rst
@@ -1,5 +1,8 @@
- OCFS2 online file check
- -----------------------
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================================
+OCFS2 file system - online file check
+=====================================
This document will describe OCFS2 online file check feature.
@@ -40,7 +43,7 @@ When there are errors in the OCFS2 filesystem, they are usually accompanied
by the inode number which caused the error. This inode number would be the
input to check/fix the file.
-There is a sysfs directory for each OCFS2 file system mounting:
+There is a sysfs directory for each OCFS2 file system mounting::
/sys/fs/ocfs2/<devname>/filecheck
@@ -50,34 +53,36 @@ communicate with kernel space, tell which file(inode number) will be checked or
fixed. Currently, three operations are supported, which includes checking
inode, fixing inode and setting the size of result record history.
-1. If you want to know what error exactly happened to <inode> before fixing, do
+1. If you want to know what error exactly happened to <inode> before fixing, do::
+
+ # echo "<inode>" > /sys/fs/ocfs2/<devname>/filecheck/check
+ # cat /sys/fs/ocfs2/<devname>/filecheck/check
+
+The output is like this::
- # echo "<inode>" > /sys/fs/ocfs2/<devname>/filecheck/check
- # cat /sys/fs/ocfs2/<devname>/filecheck/check
+ INO DONE ERROR
+ 39502 1 GENERATION
-The output is like this:
- INO DONE ERROR
-39502 1 GENERATION
+ <INO> lists the inode numbers.
+ <DONE> indicates whether the operation has been finished.
+ <ERROR> says what kind of errors was found. For the detailed error numbers,
+ please refer to the file linux/fs/ocfs2/filecheck.h.
-<INO> lists the inode numbers.
-<DONE> indicates whether the operation has been finished.
-<ERROR> says what kind of errors was found. For the detailed error numbers,
-please refer to the file linux/fs/ocfs2/filecheck.h.
+2. If you determine to fix this inode, do::
-2. If you determine to fix this inode, do
+ # echo "<inode>" > /sys/fs/ocfs2/<devname>/filecheck/fix
+ # cat /sys/fs/ocfs2/<devname>/filecheck/fix
- # echo "<inode>" > /sys/fs/ocfs2/<devname>/filecheck/fix
- # cat /sys/fs/ocfs2/<devname>/filecheck/fix
+The output is like this:::
-The output is like this:
- INO DONE ERROR
-39502 1 SUCCESS
+ INO DONE ERROR
+ 39502 1 SUCCESS
This time, the <ERROR> column indicates whether this fix is successful or not.
3. The record cache is used to store the history of check/fix results. It's
default size is 10, and can be adjust between the range of 10 ~ 100. You can
-adjust the size like this:
+adjust the size like this::
# echo "<size>" > /sys/fs/ocfs2/<devname>/filecheck/set
diff --git a/Documentation/filesystems/ocfs2.txt b/Documentation/filesystems/ocfs2.rst
index 4c49e5410595..412386bc6506 100644
--- a/Documentation/filesystems/ocfs2.txt
+++ b/Documentation/filesystems/ocfs2.rst
@@ -1,5 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================
OCFS2 filesystem
-==================
+================
+
OCFS2 is a general purpose extent based shared disk cluster file
system with many similarities to ext3. It supports 64 bit inode
numbers, and has automatically extending metadata groups which may
@@ -14,22 +18,26 @@ OCFS2 mailing lists: http://oss.oracle.com/projects/ocfs2/mailman/
All code copyright 2005 Oracle except when otherwise noted.
-CREDITS:
+Credits
+=======
+
Lots of code taken from ext3 and other projects.
Authors in alphabetical order:
-Joel Becker <joel.becker@oracle.com>
-Zach Brown <zach.brown@oracle.com>
-Mark Fasheh <mfasheh@suse.com>
-Kurt Hackel <kurt.hackel@oracle.com>
-Tao Ma <tao.ma@oracle.com>
-Sunil Mushran <sunil.mushran@oracle.com>
-Manish Singh <manish.singh@oracle.com>
-Tiger Yang <tiger.yang@oracle.com>
+
+- Joel Becker <joel.becker@oracle.com>
+- Zach Brown <zach.brown@oracle.com>
+- Mark Fasheh <mfasheh@suse.com>
+- Kurt Hackel <kurt.hackel@oracle.com>
+- Tao Ma <tao.ma@oracle.com>
+- Sunil Mushran <sunil.mushran@oracle.com>
+- Manish Singh <manish.singh@oracle.com>
+- Tiger Yang <tiger.yang@oracle.com>
Caveats
=======
Features which OCFS2 does not support yet:
+
- Directory change notification (F_NOTIFY)
- Distributed Caching (F_SETLEASE/F_GETLEASE/break_lease)
@@ -37,8 +45,10 @@ Mount options
=============
OCFS2 supports the following mount options:
+
(*) == default
+======================= ========================================================
barrier=1 This enables/disables barriers. barrier=0 disables it,
barrier=1 enables it.
errors=remount-ro(*) Remount the filesystem read-only on an error.
@@ -104,3 +114,4 @@ journal_async_commit Commit block can be written to disk without waiting
for descriptor blocks. If enabled older kernels cannot
mount the device. This will enable 'journal_checksum'
internally.
+======================= ========================================================
diff --git a/Documentation/filesystems/omfs.rst b/Documentation/filesystems/omfs.rst
new file mode 100644
index 000000000000..4c8bb3074169
--- /dev/null
+++ b/Documentation/filesystems/omfs.rst
@@ -0,0 +1,112 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================================
+Optimized MPEG Filesystem (OMFS)
+================================
+
+Overview
+========
+
+OMFS is a filesystem created by SonicBlue for use in the ReplayTV DVR
+and Rio Karma MP3 player. The filesystem is extent-based, utilizing
+block sizes from 2k to 8k, with hash-based directories. This
+filesystem driver may be used to read and write disks from these
+devices.
+
+Note, it is not recommended that this FS be used in place of a general
+filesystem for your own streaming media device. Native Linux filesystems
+will likely perform better.
+
+More information is available at:
+
+ http://linux-karma.sf.net/
+
+Various utilities, including mkomfs and omfsck, are included with
+omfsprogs, available at:
+
+ http://bobcopeland.com/karma/
+
+Instructions are included in its README.
+
+Options
+=======
+
+OMFS supports the following mount-time options:
+
+ ============ ========================================
+ uid=n make all files owned by specified user
+ gid=n make all files owned by specified group
+ umask=xxx set permission umask to xxx
+ fmask=xxx set umask to xxx for files
+ dmask=xxx set umask to xxx for directories
+ ============ ========================================
+
+Disk format
+===========
+
+OMFS discriminates between "sysblocks" and normal data blocks. The sysblock
+group consists of super block information, file metadata, directory structures,
+and extents. Each sysblock has a header containing CRCs of the entire
+sysblock, and may be mirrored in successive blocks on the disk. A sysblock may
+have a smaller size than a data block, but since they are both addressed by the
+same 64-bit block number, any remaining space in the smaller sysblock is
+unused.
+
+Sysblock header information::
+
+ struct omfs_header {
+ __be64 h_self; /* FS block where this is located */
+ __be32 h_body_size; /* size of useful data after header */
+ __be16 h_crc; /* crc-ccitt of body_size bytes */
+ char h_fill1[2];
+ u8 h_version; /* version, always 1 */
+ char h_type; /* OMFS_INODE_X */
+ u8 h_magic; /* OMFS_IMAGIC */
+ u8 h_check_xor; /* XOR of header bytes before this */
+ __be32 h_fill2;
+ };
+
+Files and directories are both represented by omfs_inode::
+
+ struct omfs_inode {
+ struct omfs_header i_head; /* header */
+ __be64 i_parent; /* parent containing this inode */
+ __be64 i_sibling; /* next inode in hash bucket */
+ __be64 i_ctime; /* ctime, in milliseconds */
+ char i_fill1[35];
+ char i_type; /* OMFS_[DIR,FILE] */
+ __be32 i_fill2;
+ char i_fill3[64];
+ char i_name[OMFS_NAMELEN]; /* filename */
+ __be64 i_size; /* size of file, in bytes */
+ };
+
+Directories in OMFS are implemented as a large hash table. Filenames are
+hashed then prepended into the bucket list beginning at OMFS_DIR_START.
+Lookup requires hashing the filename, then seeking across i_sibling pointers
+until a match is found on i_name. Empty buckets are represented by block
+pointers with all-1s (~0).
+
+A file is an omfs_inode structure followed by an extent table beginning at
+OMFS_EXTENT_START::
+
+ struct omfs_extent_entry {
+ __be64 e_cluster; /* start location of a set of blocks */
+ __be64 e_blocks; /* number of blocks after e_cluster */
+ };
+
+ struct omfs_extent {
+ __be64 e_next; /* next extent table location */
+ __be32 e_extent_count; /* total # extents in this table */
+ __be32 e_fill;
+ struct omfs_extent_entry e_entry; /* start of extent entries */
+ };
+
+Each extent holds the block offset followed by number of blocks allocated to
+the extent. The final extent in each table is a terminator with e_cluster
+being ~0 and e_blocks being ones'-complement of the total number of blocks
+in the table.
+
+If this table overflows, a continuation inode is written and pointed to by
+e_next. These have a header but lack the rest of the inode structure.
+
diff --git a/Documentation/filesystems/omfs.txt b/Documentation/filesystems/omfs.txt
deleted file mode 100644
index 1d0d41ff5c65..000000000000
--- a/Documentation/filesystems/omfs.txt
+++ /dev/null
@@ -1,106 +0,0 @@
-Optimized MPEG Filesystem (OMFS)
-
-Overview
-========
-
-OMFS is a filesystem created by SonicBlue for use in the ReplayTV DVR
-and Rio Karma MP3 player. The filesystem is extent-based, utilizing
-block sizes from 2k to 8k, with hash-based directories. This
-filesystem driver may be used to read and write disks from these
-devices.
-
-Note, it is not recommended that this FS be used in place of a general
-filesystem for your own streaming media device. Native Linux filesystems
-will likely perform better.
-
-More information is available at:
-
- http://linux-karma.sf.net/
-
-Various utilities, including mkomfs and omfsck, are included with
-omfsprogs, available at:
-
- http://bobcopeland.com/karma/
-
-Instructions are included in its README.
-
-Options
-=======
-
-OMFS supports the following mount-time options:
-
- uid=n - make all files owned by specified user
- gid=n - make all files owned by specified group
- umask=xxx - set permission umask to xxx
- fmask=xxx - set umask to xxx for files
- dmask=xxx - set umask to xxx for directories
-
-Disk format
-===========
-
-OMFS discriminates between "sysblocks" and normal data blocks. The sysblock
-group consists of super block information, file metadata, directory structures,
-and extents. Each sysblock has a header containing CRCs of the entire
-sysblock, and may be mirrored in successive blocks on the disk. A sysblock may
-have a smaller size than a data block, but since they are both addressed by the
-same 64-bit block number, any remaining space in the smaller sysblock is
-unused.
-
-Sysblock header information:
-
-struct omfs_header {
- __be64 h_self; /* FS block where this is located */
- __be32 h_body_size; /* size of useful data after header */
- __be16 h_crc; /* crc-ccitt of body_size bytes */
- char h_fill1[2];
- u8 h_version; /* version, always 1 */
- char h_type; /* OMFS_INODE_X */
- u8 h_magic; /* OMFS_IMAGIC */
- u8 h_check_xor; /* XOR of header bytes before this */
- __be32 h_fill2;
-};
-
-Files and directories are both represented by omfs_inode:
-
-struct omfs_inode {
- struct omfs_header i_head; /* header */
- __be64 i_parent; /* parent containing this inode */
- __be64 i_sibling; /* next inode in hash bucket */
- __be64 i_ctime; /* ctime, in milliseconds */
- char i_fill1[35];
- char i_type; /* OMFS_[DIR,FILE] */
- __be32 i_fill2;
- char i_fill3[64];
- char i_name[OMFS_NAMELEN]; /* filename */
- __be64 i_size; /* size of file, in bytes */
-};
-
-Directories in OMFS are implemented as a large hash table. Filenames are
-hashed then prepended into the bucket list beginning at OMFS_DIR_START.
-Lookup requires hashing the filename, then seeking across i_sibling pointers
-until a match is found on i_name. Empty buckets are represented by block
-pointers with all-1s (~0).
-
-A file is an omfs_inode structure followed by an extent table beginning at
-OMFS_EXTENT_START:
-
-struct omfs_extent_entry {
- __be64 e_cluster; /* start location of a set of blocks */
- __be64 e_blocks; /* number of blocks after e_cluster */
-};
-
-struct omfs_extent {
- __be64 e_next; /* next extent table location */
- __be32 e_extent_count; /* total # extents in this table */
- __be32 e_fill;
- struct omfs_extent_entry e_entry; /* start of extent entries */
-};
-
-Each extent holds the block offset followed by number of blocks allocated to
-the extent. The final extent in each table is a terminator with e_cluster
-being ~0 and e_blocks being ones'-complement of the total number of blocks
-in the table.
-
-If this table overflows, a continuation inode is written and pointed to by
-e_next. These have a header but lack the rest of the inode structure.
-
diff --git a/Documentation/filesystems/orangefs.txt b/Documentation/filesystems/orangefs.rst
index f4ba94950e3f..7d6d4cad73c4 100644
--- a/Documentation/filesystems/orangefs.txt
+++ b/Documentation/filesystems/orangefs.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========
ORANGEFS
========
@@ -21,25 +24,25 @@ Orangefs features include:
* Stateless
-MAILING LIST ARCHIVES
+Mailing List Archives
=====================
http://lists.orangefs.org/pipermail/devel_lists.orangefs.org/
-MAILING LIST SUBMISSIONS
+Mailing List Submissions
========================
devel@lists.orangefs.org
-DOCUMENTATION
+Documentation
=============
http://www.orangefs.org/documentation/
-USERSPACE FILESYSTEM SOURCE
+Userspace Filesystem Source
===========================
http://www.orangefs.org/download
@@ -48,16 +51,16 @@ Orangefs versions prior to 2.9.3 would not be compatible with the
upstream version of the kernel client.
-RUNNING ORANGEFS ON A SINGLE SERVER
+Running ORANGEFS On a Single Server
===================================
OrangeFS is usually run in large installations with multiple servers and
clients, but a complete filesystem can be run on a single machine for
development and testing.
-On Fedora, install orangefs and orangefs-server.
+On Fedora, install orangefs and orangefs-server::
-dnf -y install orangefs orangefs-server
+ dnf -y install orangefs orangefs-server
There is an example server configuration file in
/etc/orangefs/orangefs.conf. Change localhost to your hostname if
@@ -70,29 +73,29 @@ single line. Uncomment it and change the hostname if necessary. This
controls clients which use libpvfs2. This does not control the
pvfs2-client-core.
-Create the filesystem.
+Create the filesystem::
-pvfs2-server -f /etc/orangefs/orangefs.conf
+ pvfs2-server -f /etc/orangefs/orangefs.conf
-Start the server.
+Start the server::
-systemctl start orangefs-server
+ systemctl start orangefs-server
-Test the server.
+Test the server::
-pvfs2-ping -m /pvfsmnt
+ pvfs2-ping -m /pvfsmnt
Start the client. The module must be compiled in or loaded before this
-point.
+point::
-systemctl start orangefs-client
+ systemctl start orangefs-client
-Mount the filesystem.
+Mount the filesystem::
-mount -t pvfs2 tcp://localhost:3334/orangefs /pvfsmnt
+ mount -t pvfs2 tcp://localhost:3334/orangefs /pvfsmnt
-BUILDING ORANGEFS ON A SINGLE SERVER
+Building ORANGEFS on a Single Server
====================================
Where OrangeFS cannot be installed from distribution packages, it may be
@@ -102,49 +105,51 @@ You can omit --prefix if you don't care that things are sprinkled around
in /usr/local. As of version 2.9.6, OrangeFS uses Berkeley DB by
default, we will probably be changing the default to LMDB soon.
-./configure --prefix=/opt/ofs --with-db-backend=lmdb
+::
-make
+ ./configure --prefix=/opt/ofs --with-db-backend=lmdb
-make install
+ make
-Create an orangefs config file.
+ make install
-/opt/ofs/bin/pvfs2-genconfig /etc/pvfs2.conf
+Create an orangefs config file::
-Create an /etc/pvfs2tab file.
+ /opt/ofs/bin/pvfs2-genconfig /etc/pvfs2.conf
-echo tcp://localhost:3334/orangefs /pvfsmnt pvfs2 defaults,noauto 0 0 > \
- /etc/pvfs2tab
+Create an /etc/pvfs2tab file::
-Create the mount point you specified in the tab file if needed.
+ echo tcp://localhost:3334/orangefs /pvfsmnt pvfs2 defaults,noauto 0 0 > \
+ /etc/pvfs2tab
-mkdir /pvfsmnt
+Create the mount point you specified in the tab file if needed::
-Bootstrap the server.
+ mkdir /pvfsmnt
-/opt/ofs/sbin/pvfs2-server -f /etc/pvfs2.conf
+Bootstrap the server::
-Start the server.
+ /opt/ofs/sbin/pvfs2-server -f /etc/pvfs2.conf
-/opt/osf/sbin/pvfs2-server /etc/pvfs2.conf
+Start the server::
+
+ /opt/osf/sbin/pvfs2-server /etc/pvfs2.conf
Now the server should be running. Pvfs2-ls is a simple
-test to verify that the server is running.
+test to verify that the server is running::
-/opt/ofs/bin/pvfs2-ls /pvfsmnt
+ /opt/ofs/bin/pvfs2-ls /pvfsmnt
If stuff seems to be working, load the kernel module and
-turn on the client core.
+turn on the client core::
-/opt/ofs/sbin/pvfs2-client -p /opt/osf/sbin/pvfs2-client-core
+ /opt/ofs/sbin/pvfs2-client -p /opt/osf/sbin/pvfs2-client-core
-Mount your filesystem.
+Mount your filesystem::
-mount -t pvfs2 tcp://localhost:3334/orangefs /pvfsmnt
+ mount -t pvfs2 tcp://localhost:3334/orangefs /pvfsmnt
-RUNNING XFSTESTS
+Running xfstests
================
It is useful to use a scratch filesystem with xfstests. This can be
@@ -159,21 +164,23 @@ Then there are two FileSystem sections: orangefs and scratch.
This change should be made before creating the filesystem.
-pvfs2-server -f /etc/orangefs/orangefs.conf
+::
+
+ pvfs2-server -f /etc/orangefs/orangefs.conf
-To run xfstests, create /etc/xfsqa.config.
+To run xfstests, create /etc/xfsqa.config::
-TEST_DIR=/orangefs
-TEST_DEV=tcp://localhost:3334/orangefs
-SCRATCH_MNT=/scratch
-SCRATCH_DEV=tcp://localhost:3334/scratch
+ TEST_DIR=/orangefs
+ TEST_DEV=tcp://localhost:3334/orangefs
+ SCRATCH_MNT=/scratch
+ SCRATCH_DEV=tcp://localhost:3334/scratch
-Then xfstests can be run
+Then xfstests can be run::
-./check -pvfs2
+ ./check -pvfs2
-OPTIONS
+Options
=======
The following mount options are accepted:
@@ -193,32 +200,32 @@ The following mount options are accepted:
Distributed locking is being worked on for the future.
-DEBUGGING
+Debugging
=========
If you want the debug (GOSSIP) statements in a particular
-source file (inode.c for example) go to syslog:
+source file (inode.c for example) go to syslog::
echo inode > /sys/kernel/debug/orangefs/kernel-debug
-No debugging (the default):
+No debugging (the default)::
echo none > /sys/kernel/debug/orangefs/kernel-debug
-Debugging from several source files:
+Debugging from several source files::
echo inode,dir > /sys/kernel/debug/orangefs/kernel-debug
-All debugging:
+All debugging::
echo all > /sys/kernel/debug/orangefs/kernel-debug
-Get a list of all debugging keywords:
+Get a list of all debugging keywords::
cat /sys/kernel/debug/orangefs/debug-help
-PROTOCOL BETWEEN KERNEL MODULE AND USERSPACE
+Protocol between Kernel Module and Userspace
============================================
Orangefs is a user space filesystem and an associated kernel module.
@@ -234,7 +241,8 @@ The kernel module implements a pseudo device that userspace
can read from and write to. Userspace can also manipulate the
kernel module through the pseudo device with ioctl.
-THE BUFMAP:
+The Bufmap
+----------
At startup userspace allocates two page-size-aligned (posix_memalign)
mlocked memory buffers, one is used for IO and one is used for readdir
@@ -250,7 +258,8 @@ copied from user space to kernel space with copy_from_user and is used
to initialize the kernel module's "bufmap" (struct orangefs_bufmap), which
then contains:
- * refcnt - a reference counter
+ * refcnt
+ - a reference counter
* desc_size - PVFS2_BUFMAP_DEFAULT_DESC_SIZE (4194304) - the IO buffer's
partition size, which represents the filesystem's block size and
is used for s_blocksize in super blocks.
@@ -259,17 +268,19 @@ then contains:
* desc_shift - log2(desc_size), used for s_blocksize_bits in super blocks.
* total_size - the total size of the IO buffer.
* page_count - the number of 4096 byte pages in the IO buffer.
- * page_array - a pointer to page_count * (sizeof(struct page*)) bytes
+ * page_array - a pointer to ``page_count * (sizeof(struct page*))`` bytes
of kcalloced memory. This memory is used as an array of pointers
to each of the pages in the IO buffer through a call to get_user_pages.
- * desc_array - a pointer to desc_count * (sizeof(struct orangefs_bufmap_desc))
+ * desc_array - a pointer to ``desc_count * (sizeof(struct orangefs_bufmap_desc))``
bytes of kcalloced memory. This memory is further intialized:
user_desc is the kernel's copy of the IO buffer's ORANGEFS_dev_map_desc
structure. user_desc->ptr points to the IO buffer.
- pages_per_desc = bufmap->desc_size / PAGE_SIZE
- offset = 0
+ ::
+
+ pages_per_desc = bufmap->desc_size / PAGE_SIZE
+ offset = 0
bufmap->desc_array[0].page_array = &bufmap->page_array[offset]
bufmap->desc_array[0].array_count = pages_per_desc = 1024
@@ -293,7 +304,8 @@ then contains:
* readdir_index_lock - a spinlock to protect readdir_index_array during
update.
-OPERATIONS:
+Operations
+----------
The kernel module builds an "op" (struct orangefs_kernel_op_s) when it
needs to communicate with userspace. Part of the op contains the "upcall"
@@ -308,13 +320,19 @@ in flight at any given time.
Ops are stateful:
- * unknown - op was just initialized
- * waiting - op is on request_list (upward bound)
- * inprogr - op is in progress (waiting for downcall)
- * serviced - op has matching downcall; ok
- * purged - op has to start a timer since client-core
+ * unknown
+ - op was just initialized
+ * waiting
+ - op is on request_list (upward bound)
+ * inprogr
+ - op is in progress (waiting for downcall)
+ * serviced
+ - op has matching downcall; ok
+ * purged
+ - op has to start a timer since client-core
exited uncleanly before servicing op
- * given up - submitter has given up waiting for it
+ * given up
+ - submitter has given up waiting for it
When some arbitrary userspace program needs to perform a
filesystem operation on Orangefs (readdir, I/O, create, whatever)
@@ -389,10 +407,15 @@ union of structs, each of which is associated with a particular
response type.
The several members outside of the union are:
- - int32_t type - type of operation.
- - int32_t status - return code for the operation.
- - int64_t trailer_size - 0 unless readdir operation.
- - char *trailer_buf - initialized to NULL, used during readdir operations.
+
+ ``int32_t type``
+ - type of operation.
+ ``int32_t status``
+ - return code for the operation.
+ ``int64_t trailer_size``
+ - 0 unless readdir operation.
+ ``char *trailer_buf``
+ - initialized to NULL, used during readdir operations.
The appropriate member inside the union is filled out for any
particular response.
@@ -449,18 +472,20 @@ Userspace uses writev() on /dev/pvfs2-req to pass responses to the requests
made by the kernel side.
A buffer_list containing:
+
- a pointer to the prepared response to the request from the
kernel (struct pvfs2_downcall_t).
- and also, in the case of a readdir request, a pointer to a
buffer containing descriptors for the objects in the target
directory.
+
... is sent to the function (PINT_dev_write_list) which performs
the writev.
PINT_dev_write_list has a local iovec array: struct iovec io_array[10];
The first four elements of io_array are initialized like this for all
-responses:
+responses::
io_array[0].iov_base = address of local variable "proto_ver" (int32_t)
io_array[0].iov_len = sizeof(int32_t)
@@ -475,7 +500,7 @@ responses:
of global variable vfs_request (vfs_request_t)
io_array[3].iov_len = sizeof(pvfs2_downcall_t)
-Readdir responses initialize the fifth element io_array like this:
+Readdir responses initialize the fifth element io_array like this::
io_array[4].iov_base = contents of member trailer_buf (char *)
from out_downcall member of global variable
@@ -517,13 +542,13 @@ from a dentry is cheap, obtaining it from userspace is relatively expensive,
hence the motivation to use the dentry when possible.
The timeout values d_time and getattr_time are jiffy based, and the
-code is designed to avoid the jiffy-wrap problem:
+code is designed to avoid the jiffy-wrap problem::
-"In general, if the clock may have wrapped around more than once, there
-is no way to tell how much time has elapsed. However, if the times t1
-and t2 are known to be fairly close, we can reliably compute the
-difference in a way that takes into account the possibility that the
-clock may have wrapped between times."
+ "In general, if the clock may have wrapped around more than once, there
+ is no way to tell how much time has elapsed. However, if the times t1
+ and t2 are known to be fairly close, we can reliably compute the
+ difference in a way that takes into account the possibility that the
+ clock may have wrapped between times."
- from course notes by instructor Andy Wang
+from course notes by instructor Andy Wang
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.rst
index 99ca040e3f90..38b606991065 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.rst
@@ -1,19 +1,20 @@
-------------------------------------------------------------------------------
- T H E /proc F I L E S Y S T E M
-------------------------------------------------------------------------------
-/proc/sys Terrehon Bowden <terrehon@pacbell.net> October 7 1999
- Bodo Bauer <bb@ricochet.net>
+.. SPDX-License-Identifier: GPL-2.0
+
+====================
+The /proc Filesystem
+====================
+
+===================== ======================================= ================
+/proc/sys Terrehon Bowden <terrehon@pacbell.net>, October 7 1999
+ Bodo Bauer <bb@ricochet.net>
+2.4.x update Jorge Nerin <comandante@zaralinux.com> November 14 2000
+move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009
+fixes/update part 1.1 Stefani Seibold <stefani@seibold.net> June 9 2009
+===================== ======================================= ================
+
-2.4.x update Jorge Nerin <comandante@zaralinux.com> November 14 2000
-move /proc/sys Shen Feng <shen@cn.fujitsu.com> April 1 2009
-------------------------------------------------------------------------------
-Version 1.3 Kernel version 2.2.12
- Kernel version 2.4.0-test11-pre4
-------------------------------------------------------------------------------
-fixes/update part 1.1 Stefani Seibold <stefani@seibold.net> June 9 2009
-Table of Contents
------------------
+.. Table of Contents
0 Preface
0.1 Introduction/Credits
@@ -50,9 +51,8 @@ Table of Contents
4 Configuring procfs
4.1 Mount options
-------------------------------------------------------------------------------
Preface
-------------------------------------------------------------------------------
+=======
0.1 Introduction/Credits
------------------------
@@ -95,20 +95,18 @@ We don't guarantee the correctness of this document, and if you come to us
complaining about how you screwed up your system because of incorrect
documentation, we won't feel responsible...
-------------------------------------------------------------------------------
-CHAPTER 1: COLLECTING SYSTEM INFORMATION
-------------------------------------------------------------------------------
+Chapter 1: Collecting System Information
+========================================
-------------------------------------------------------------------------------
In This Chapter
-------------------------------------------------------------------------------
+---------------
* Investigating the properties of the pseudo file system /proc and its
ability to provide information on the running Linux system
* Examining /proc's structure
* Uncovering various information about the kernel and the processes running
on the system
-------------------------------------------------------------------------------
+------------------------------------------------------------------------------
The proc file system acts as an interface to internal data structures in the
kernel. It can be used to obtain information about the system and to change
@@ -134,9 +132,11 @@ never act on any new process that the kernel may, through chance, have
also assigned the process ID <pid>. Instead, operations on these FDs
usually fail with ESRCH.
-Table 1-1: Process specific entries in /proc
-..............................................................................
+.. table:: Table 1-1: Process specific entries in /proc
+
+ ============= ===============================================================
File Content
+ ============= ===============================================================
clear_refs Clears page referenced bits shown in smaps output
cmdline Command line arguments
cpu Current and last cpu in which it was executed (2.4)(smp)
@@ -160,10 +160,10 @@ Table 1-1: Process specific entries in /proc
can be derived from smaps, but is faster and more convenient
numa_maps An extension based on maps, showing the memory locality and
binding policy as well as mem usage (in pages) of each mapping.
-..............................................................................
+ ============= ===============================================================
For example, to get the status information of a process, all you have to do is
-read the file /proc/PID/status:
+read the file /proc/PID/status::
>cat /proc/self/status
Name: cat
@@ -222,14 +222,17 @@ contains details information about the process itself. Its fields are
explained in Table 1-4.
(for SMP CONFIG users)
+
For making accounting scalable, RSS related information are handled in an
asynchronous manner and the value may not be very precise. To see a precise
snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table.
It's slow but very precise.
-Table 1-2: Contents of the status files (as of 4.19)
-..............................................................................
+.. table:: Table 1-2: Contents of the status files (as of 4.19)
+
+ ========================== ===================================================
Field Content
+ ========================== ===================================================
Name filename of the executable
Umask file mode creation mask
State state (R is running, S is sleeping, D is sleeping
@@ -254,7 +257,8 @@ Table 1-2: Contents of the status files (as of 4.19)
VmPin pinned memory size
VmHWM peak resident set size ("high water mark")
VmRSS size of memory portions. It contains the three
- following parts (VmRSS = RssAnon + RssFile + RssShmem)
+ following parts
+ (VmRSS = RssAnon + RssFile + RssShmem)
RssAnon size of resident anonymous memory
RssFile size of resident file mappings
RssShmem size of resident shmem memory (includes SysV shm,
@@ -292,27 +296,32 @@ Table 1-2: Contents of the status files (as of 4.19)
Mems_allowed_list Same as previous, but in "list format"
voluntary_ctxt_switches number of voluntary context switches
nonvoluntary_ctxt_switches number of non voluntary context switches
-..............................................................................
+ ========================== ===================================================
-Table 1-3: Contents of the statm files (as of 2.6.8-rc3)
-..............................................................................
+
+.. table:: Table 1-3: Contents of the statm files (as of 2.6.8-rc3)
+
+ ======== =============================== ==============================
Field Content
+ ======== =============================== ==============================
size total program size (pages) (same as VmSize in status)
resident size of memory portions (pages) (same as VmRSS in status)
shared number of pages that are shared (i.e. backed by a file, same
as RssFile+RssShmem in status)
trs number of pages that are 'code' (not including libs; broken,
- includes data segment)
+ includes data segment)
lrs number of pages of library (always 0 on 2.6)
drs number of pages of data/stack (including libs; broken,
- includes library text)
+ includes library text)
dt number of dirty pages (always 0 on 2.6)
-..............................................................................
+ ======== =============================== ==============================
+
+.. table:: Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
-Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
-..............................................................................
- Field Content
+ ============= ===============================================================
+ Field Content
+ ============= ===============================================================
pid process id
tcomm filename of the executable
state state (R is running, S is sleeping, D is sleeping in an
@@ -348,7 +357,8 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
blocked bitmap of blocked signals
sigign bitmap of ignored signals
sigcatch bitmap of caught signals
- 0 (place holder, used to be the wchan address, use /proc/PID/wchan instead)
+ 0 (place holder, used to be the wchan address,
+ use /proc/PID/wchan instead)
0 (place holder)
0 (place holder)
exit_signal signal to send to parent thread on exit
@@ -365,39 +375,40 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7)
arg_end address below which program command line is placed
env_start address above which program environment is placed
env_end address below which program environment is placed
- exit_code the thread's exit_code in the form reported by the waitpid system call
-..............................................................................
+ exit_code the thread's exit_code in the form reported by the waitpid
+ system call
+ ============= ===============================================================
The /proc/PID/maps file contains the currently mapped memory regions and
their access permissions.
-The format is:
-
-address perms offset dev inode pathname
-
-08048000-08049000 r-xp 00000000 03:00 8312 /opt/test
-08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
-0804a000-0806b000 rw-p 00000000 00:00 0 [heap]
-a7cb1000-a7cb2000 ---p 00000000 00:00 0
-a7cb2000-a7eb2000 rw-p 00000000 00:00 0
-a7eb2000-a7eb3000 ---p 00000000 00:00 0
-a7eb3000-a7ed5000 rw-p 00000000 00:00 0
-a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
-a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6
-a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6
-a800b000-a800e000 rw-p 00000000 00:00 0
-a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0
-a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0
-a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0
-a8024000-a8027000 rw-p 00000000 00:00 0
-a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2
-a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2
-a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2
-aff35000-aff4a000 rw-p 00000000 00:00 0 [stack]
-ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
+The format is::
+
+ address perms offset dev inode pathname
+
+ 08048000-08049000 r-xp 00000000 03:00 8312 /opt/test
+ 08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
+ 0804a000-0806b000 rw-p 00000000 00:00 0 [heap]
+ a7cb1000-a7cb2000 ---p 00000000 00:00 0
+ a7cb2000-a7eb2000 rw-p 00000000 00:00 0
+ a7eb2000-a7eb3000 ---p 00000000 00:00 0
+ a7eb3000-a7ed5000 rw-p 00000000 00:00 0
+ a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
+ a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6
+ a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6
+ a800b000-a800e000 rw-p 00000000 00:00 0
+ a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0
+ a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0
+ a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0
+ a8024000-a8027000 rw-p 00000000 00:00 0
+ a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2
+ a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2
+ a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2
+ aff35000-aff4a000 rw-p 00000000 00:00 0 [stack]
+ ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]
where "address" is the address space in the process that it occupies, "perms"
-is a set of permissions:
+is a set of permissions::
r = read
w = write
@@ -411,42 +422,44 @@ with the memory region, as the case would be with BSS (uninitialized data).
The "pathname" shows the name associated file for this mapping. If the mapping
is not associated with a file:
- [heap] = the heap of the program
- [stack] = the stack of the main process
- [vdso] = the "virtual dynamic shared object",
+ ======= ====================================
+ [heap] the heap of the program
+ [stack] the stack of the main process
+ [vdso] the "virtual dynamic shared object",
the kernel system call handler
+ ======= ====================================
or if empty, the mapping is anonymous.
The /proc/PID/smaps is an extension based on maps, showing the memory
consumption for each of the process's mappings. For each mapping (aka Virtual
-Memory Area, or VMA) there is a series of lines such as the following:
-
-08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash
-
-Size: 1084 kB
-KernelPageSize: 4 kB
-MMUPageSize: 4 kB
-Rss: 892 kB
-Pss: 374 kB
-Shared_Clean: 892 kB
-Shared_Dirty: 0 kB
-Private_Clean: 0 kB
-Private_Dirty: 0 kB
-Referenced: 892 kB
-Anonymous: 0 kB
-LazyFree: 0 kB
-AnonHugePages: 0 kB
-ShmemPmdMapped: 0 kB
-Shared_Hugetlb: 0 kB
-Private_Hugetlb: 0 kB
-Swap: 0 kB
-SwapPss: 0 kB
-KernelPageSize: 4 kB
-MMUPageSize: 4 kB
-Locked: 0 kB
-THPeligible: 0
-VmFlags: rd ex mr mw me dw
+Memory Area, or VMA) there is a series of lines such as the following::
+
+ 08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash
+
+ Size: 1084 kB
+ KernelPageSize: 4 kB
+ MMUPageSize: 4 kB
+ Rss: 892 kB
+ Pss: 374 kB
+ Shared_Clean: 892 kB
+ Shared_Dirty: 0 kB
+ Private_Clean: 0 kB
+ Private_Dirty: 0 kB
+ Referenced: 892 kB
+ Anonymous: 0 kB
+ LazyFree: 0 kB
+ AnonHugePages: 0 kB
+ ShmemPmdMapped: 0 kB
+ Shared_Hugetlb: 0 kB
+ Private_Hugetlb: 0 kB
+ Swap: 0 kB
+ SwapPss: 0 kB
+ KernelPageSize: 4 kB
+ MMUPageSize: 4 kB
+ Locked: 0 kB
+ THPeligible: 0
+ VmFlags: rd ex mr mw me dw
The first of these lines shows the same information as is displayed for the
mapping in /proc/PID/maps. Following lines show the size of the mapping
@@ -461,26 +474,35 @@ The "proportional set size" (PSS) of a process is the count of pages it has
in memory, where each page is divided by the number of processes sharing it.
So if a process has 1000 pages all to itself, and 1000 shared with one other
process, its PSS will be 1500.
+
Note that even a page which is part of a MAP_SHARED mapping, but has only
a single pte mapped, i.e. is currently used by only one process, is accounted
as private and not as shared.
+
"Referenced" indicates the amount of memory currently marked as referenced or
accessed.
+
"Anonymous" shows the amount of memory that does not belong to any file. Even
a mapping associated with a file may contain anonymous pages: when MAP_PRIVATE
and a page is modified, the file page is replaced by a private anonymous copy.
+
"LazyFree" shows the amount of memory which is marked by madvise(MADV_FREE).
The memory isn't freed immediately with madvise(). It's freed in memory
pressure if the memory is clean. Please note that the printed value might
be lower than the real value due to optimizations used in the current
implementation. If this is not desirable please file a bug report.
+
"AnonHugePages" shows the ammount of memory backed by transparent hugepage.
+
"ShmemPmdMapped" shows the ammount of shared (shmem/tmpfs) memory backed by
huge pages.
+
"Shared_Hugetlb" and "Private_Hugetlb" show the ammounts of memory backed by
hugetlbfs page which is *not* counted in "RSS" or "PSS" field for historical
reasons. And these are not included in {Shared,Private}_{Clean,Dirty} field.
+
"Swap" shows how much would-be-anonymous memory is also used, but out on swap.
+
For shmem mappings, "Swap" includes also the size of the mapped (and not
replaced by copy-on-write) part of the underlying shmem object out on swap.
"SwapPss" shows proportional swap share of this mapping. Unlike "Swap", this
@@ -489,36 +511,39 @@ does not take into account swapped out page of underlying shmem objects.
"THPeligible" indicates whether the mapping is eligible for allocating THP
pages - 1 if true, 0 otherwise. It just shows the current status.
-"VmFlags" field deserves a separate description. This member represents the kernel
-flags associated with the particular virtual memory area in two letter encoded
-manner. The codes are the following:
- rd - readable
- wr - writeable
- ex - executable
- sh - shared
- mr - may read
- mw - may write
- me - may execute
- ms - may share
- gd - stack segment growns down
- pf - pure PFN range
- dw - disabled write to the mapped file
- lo - pages are locked in memory
- io - memory mapped I/O area
- sr - sequential read advise provided
- rr - random read advise provided
- dc - do not copy area on fork
- de - do not expand area on remapping
- ac - area is accountable
- nr - swap space is not reserved for the area
- ht - area uses huge tlb pages
- ar - architecture specific flag
- dd - do not include area into core dump
- sd - soft-dirty flag
- mm - mixed map area
- hg - huge page advise flag
- nh - no-huge page advise flag
- mg - mergable advise flag
+"VmFlags" field deserves a separate description. This member represents the
+kernel flags associated with the particular virtual memory area in two letter
+encoded manner. The codes are the following:
+
+ == =======================================
+ rd readable
+ wr writeable
+ ex executable
+ sh shared
+ mr may read
+ mw may write
+ me may execute
+ ms may share
+ gd stack segment growns down
+ pf pure PFN range
+ dw disabled write to the mapped file
+ lo pages are locked in memory
+ io memory mapped I/O area
+ sr sequential read advise provided
+ rr random read advise provided
+ dc do not copy area on fork
+ de do not expand area on remapping
+ ac area is accountable
+ nr swap space is not reserved for the area
+ ht area uses huge tlb pages
+ ar architecture specific flag
+ dd do not include area into core dump
+ sd soft dirty flag
+ mm mixed map area
+ hg huge page advise flag
+ nh no huge page advise flag
+ mg mergable advise flag
+ == =======================================
Note that there is no guarantee that every flag and associated mnemonic will
be present in all further kernel releases. Things get changed, the flags may
@@ -531,6 +556,7 @@ enabled.
Note: reading /proc/PID/maps or /proc/PID/smaps is inherently racy (consistent
output can be achieved only in the single read call).
+
This typically manifests when doing partial reads of these files while the
memory map is being modified. Despite the races, we do provide the following
guarantees:
@@ -544,9 +570,9 @@ The /proc/PID/smaps_rollup file includes the same fields as /proc/PID/smaps,
but their values are the sums of the corresponding values for all mappings of
the process. Additionally, it contains these fields:
-Pss_Anon
-Pss_File
-Pss_Shmem
+- Pss_Anon
+- Pss_File
+- Pss_Shmem
They represent the proportional shares of anonymous, file, and shmem pages, as
described for smaps above. These fields are omitted in smaps since each
@@ -558,20 +584,25 @@ The /proc/PID/clear_refs is used to reset the PG_Referenced and ACCESSED/YOUNG
bits on both physical and virtual pages associated with a process, and the
soft-dirty bit on pte (see Documentation/admin-guide/mm/soft-dirty.rst
for details).
-To clear the bits for all the pages associated with the process
+To clear the bits for all the pages associated with the process::
+
> echo 1 > /proc/PID/clear_refs
-To clear the bits for the anonymous pages associated with the process
+To clear the bits for the anonymous pages associated with the process::
+
> echo 2 > /proc/PID/clear_refs
-To clear the bits for the file mapped pages associated with the process
+To clear the bits for the file mapped pages associated with the process::
+
> echo 3 > /proc/PID/clear_refs
-To clear the soft-dirty bit
+To clear the soft-dirty bit::
+
> echo 4 > /proc/PID/clear_refs
To reset the peak resident set size ("high water mark") to the process's
-current value:
+current value::
+
> echo 5 > /proc/PID/clear_refs
Any other value written to /proc/PID/clear_refs will have no effect.
@@ -584,30 +615,33 @@ Documentation/admin-guide/mm/pagemap.rst.
The /proc/pid/numa_maps is an extension based on maps, showing the memory
locality and binding policy, as well as the memory usage (in pages) of
each mapping. The output follows a general format where mapping details get
-summarized separated by blank spaces, one mapping per each file line:
-
-address policy mapping details
-
-00400000 default file=/usr/local/bin/app mapped=1 active=0 N3=1 kernelpagesize_kB=4
-00600000 default file=/usr/local/bin/app anon=1 dirty=1 N3=1 kernelpagesize_kB=4
-3206000000 default file=/lib64/ld-2.12.so mapped=26 mapmax=6 N0=24 N3=2 kernelpagesize_kB=4
-320621f000 default file=/lib64/ld-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4
-3206220000 default file=/lib64/ld-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4
-3206221000 default anon=1 dirty=1 N3=1 kernelpagesize_kB=4
-3206800000 default file=/lib64/libc-2.12.so mapped=59 mapmax=21 active=55 N0=41 N3=18 kernelpagesize_kB=4
-320698b000 default file=/lib64/libc-2.12.so
-3206b8a000 default file=/lib64/libc-2.12.so anon=2 dirty=2 N3=2 kernelpagesize_kB=4
-3206b8e000 default file=/lib64/libc-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4
-3206b8f000 default anon=3 dirty=3 active=1 N3=3 kernelpagesize_kB=4
-7f4dc10a2000 default anon=3 dirty=3 N3=3 kernelpagesize_kB=4
-7f4dc10b4000 default anon=2 dirty=2 active=1 N3=2 kernelpagesize_kB=4
-7f4dc1200000 default file=/anon_hugepage\040(deleted) huge anon=1 dirty=1 N3=1 kernelpagesize_kB=2048
-7fff335f0000 default stack anon=3 dirty=3 N3=3 kernelpagesize_kB=4
-7fff3369d000 default mapped=1 mapmax=35 active=0 N3=1 kernelpagesize_kB=4
+summarized separated by blank spaces, one mapping per each file line::
+
+ address policy mapping details
+
+ 00400000 default file=/usr/local/bin/app mapped=1 active=0 N3=1 kernelpagesize_kB=4
+ 00600000 default file=/usr/local/bin/app anon=1 dirty=1 N3=1 kernelpagesize_kB=4
+ 3206000000 default file=/lib64/ld-2.12.so mapped=26 mapmax=6 N0=24 N3=2 kernelpagesize_kB=4
+ 320621f000 default file=/lib64/ld-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4
+ 3206220000 default file=/lib64/ld-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4
+ 3206221000 default anon=1 dirty=1 N3=1 kernelpagesize_kB=4
+ 3206800000 default file=/lib64/libc-2.12.so mapped=59 mapmax=21 active=55 N0=41 N3=18 kernelpagesize_kB=4
+ 320698b000 default file=/lib64/libc-2.12.so
+ 3206b8a000 default file=/lib64/libc-2.12.so anon=2 dirty=2 N3=2 kernelpagesize_kB=4
+ 3206b8e000 default file=/lib64/libc-2.12.so anon=1 dirty=1 N3=1 kernelpagesize_kB=4
+ 3206b8f000 default anon=3 dirty=3 active=1 N3=3 kernelpagesize_kB=4
+ 7f4dc10a2000 default anon=3 dirty=3 N3=3 kernelpagesize_kB=4
+ 7f4dc10b4000 default anon=2 dirty=2 active=1 N3=2 kernelpagesize_kB=4
+ 7f4dc1200000 default file=/anon_hugepage\040(deleted) huge anon=1 dirty=1 N3=1 kernelpagesize_kB=2048
+ 7fff335f0000 default stack anon=3 dirty=3 N3=3 kernelpagesize_kB=4
+ 7fff3369d000 default mapped=1 mapmax=35 active=0 N3=1 kernelpagesize_kB=4
Where:
+
"address" is the starting address for the mapping;
+
"policy" reports the NUMA memory policy set for the mapping (see Documentation/admin-guide/mm/numa_memory_policy.rst);
+
"mapping details" summarizes mapping data such as mapping type, page usage counters,
node locality page counters (N0 == node0, N1 == node1, ...) and the kernel page
size, in KB, that is backing the mapping up.
@@ -621,81 +655,83 @@ the running kernel. The files used to obtain this information are contained in
system. It depends on the kernel configuration and the loaded modules, which
files are there, and which are missing.
-Table 1-5: Kernel info in /proc
-..............................................................................
- File Content
- apm Advanced power management info
- buddyinfo Kernel memory allocator information (see text) (2.5)
- bus Directory containing bus specific information
- cmdline Kernel command line
- cpuinfo Info about the CPU
- devices Available devices (block and character)
- dma Used DMS channels
- filesystems Supported filesystems
- driver Various drivers grouped here, currently rtc (2.4)
- execdomains Execdomains, related to security (2.4)
- fb Frame Buffer devices (2.4)
- fs File system parameters, currently nfs/exports (2.4)
- ide Directory containing info about the IDE subsystem
- interrupts Interrupt usage
- iomem Memory map (2.4)
- ioports I/O port usage
- irq Masks for irq to cpu affinity (2.4)(smp?)
- isapnp ISA PnP (Plug&Play) Info (2.4)
- kcore Kernel core image (can be ELF or A.OUT(deprecated in 2.4))
- kmsg Kernel messages
- ksyms Kernel symbol table
- loadavg Load average of last 1, 5 & 15 minutes
- locks Kernel locks
- meminfo Memory info
- misc Miscellaneous
- modules List of loaded modules
- mounts Mounted filesystems
- net Networking info (see text)
+.. table:: Table 1-5: Kernel info in /proc
+
+ ============ ===============================================================
+ File Content
+ ============ ===============================================================
+ apm Advanced power management info
+ buddyinfo Kernel memory allocator information (see text) (2.5)
+ bus Directory containing bus specific information
+ cmdline Kernel command line
+ cpuinfo Info about the CPU
+ devices Available devices (block and character)
+ dma Used DMS channels
+ filesystems Supported filesystems
+ driver Various drivers grouped here, currently rtc (2.4)
+ execdomains Execdomains, related to security (2.4)
+ fb Frame Buffer devices (2.4)
+ fs File system parameters, currently nfs/exports (2.4)
+ ide Directory containing info about the IDE subsystem
+ interrupts Interrupt usage
+ iomem Memory map (2.4)
+ ioports I/O port usage
+ irq Masks for irq to cpu affinity (2.4)(smp?)
+ isapnp ISA PnP (Plug&Play) Info (2.4)
+ kcore Kernel core image (can be ELF or A.OUT(deprecated in 2.4))
+ kmsg Kernel messages
+ ksyms Kernel symbol table
+ loadavg Load average of last 1, 5 & 15 minutes
+ locks Kernel locks
+ meminfo Memory info
+ misc Miscellaneous
+ modules List of loaded modules
+ mounts Mounted filesystems
+ net Networking info (see text)
pagetypeinfo Additional page allocator information (see text) (2.5)
- partitions Table of partitions known to the system
- pci Deprecated info of PCI bus (new way -> /proc/bus/pci/,
- decoupled by lspci (2.4)
- rtc Real time clock
- scsi SCSI info (see text)
- slabinfo Slab pool info
- softirqs softirq usage
- stat Overall statistics
- swaps Swap space utilization
- sys See chapter 2
- sysvipc Info of SysVIPC Resources (msg, sem, shm) (2.4)
- tty Info of tty drivers
- uptime Wall clock since boot, combined idle time of all cpus
- version Kernel version
- video bttv info of video resources (2.4)
- vmallocinfo Show vmalloced areas
-..............................................................................
+ partitions Table of partitions known to the system
+ pci Deprecated info of PCI bus (new way -> /proc/bus/pci/,
+ decoupled by lspci (2.4)
+ rtc Real time clock
+ scsi SCSI info (see text)
+ slabinfo Slab pool info
+ softirqs softirq usage
+ stat Overall statistics
+ swaps Swap space utilization
+ sys See chapter 2
+ sysvipc Info of SysVIPC Resources (msg, sem, shm) (2.4)
+ tty Info of tty drivers
+ uptime Wall clock since boot, combined idle time of all cpus
+ version Kernel version
+ video bttv info of video resources (2.4)
+ vmallocinfo Show vmalloced areas
+ ============ ===============================================================
You can, for example, check which interrupts are currently in use and what
-they are used for by looking in the file /proc/interrupts:
-
- > cat /proc/interrupts
- CPU0
- 0: 8728810 XT-PIC timer
- 1: 895 XT-PIC keyboard
- 2: 0 XT-PIC cascade
- 3: 531695 XT-PIC aha152x
- 4: 2014133 XT-PIC serial
- 5: 44401 XT-PIC pcnet_cs
- 8: 2 XT-PIC rtc
- 11: 8 XT-PIC i82365
- 12: 182918 XT-PIC PS/2 Mouse
- 13: 1 XT-PIC fpu
- 14: 1232265 XT-PIC ide0
- 15: 7 XT-PIC ide1
- NMI: 0
+they are used for by looking in the file /proc/interrupts::
+
+ > cat /proc/interrupts
+ CPU0
+ 0: 8728810 XT-PIC timer
+ 1: 895 XT-PIC keyboard
+ 2: 0 XT-PIC cascade
+ 3: 531695 XT-PIC aha152x
+ 4: 2014133 XT-PIC serial
+ 5: 44401 XT-PIC pcnet_cs
+ 8: 2 XT-PIC rtc
+ 11: 8 XT-PIC i82365
+ 12: 182918 XT-PIC PS/2 Mouse
+ 13: 1 XT-PIC fpu
+ 14: 1232265 XT-PIC ide0
+ 15: 7 XT-PIC ide1
+ NMI: 0
In 2.4.* a couple of lines where added to this file LOC & ERR (this time is the
-output of a SMP machine):
+output of a SMP machine)::
- > cat /proc/interrupts
+ > cat /proc/interrupts
- CPU0 CPU1
+ CPU0 CPU1
0: 1243498 1214548 IO-APIC-edge timer
1: 8949 8958 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
@@ -708,8 +744,8 @@ output of a SMP machine):
15: 2183 2415 IO-APIC-edge ide1
17: 30564 30414 IO-APIC-level eth0
18: 177 164 IO-APIC-level bttv
- NMI: 2457961 2457959
- LOC: 2457882 2457881
+ NMI: 2457961 2457959
+ LOC: 2457882 2457881
ERR: 2155
NMI is incremented in this case because every timer interrupt generates a NMI
@@ -726,21 +762,25 @@ In 2.6.2* /proc/interrupts was expanded again. This time the goal was for
/proc/interrupts to display every IRQ vector in use by the system, not
just those considered 'most important'. The new vectors are:
- THR -- interrupt raised when a machine check threshold counter
+THR
+ interrupt raised when a machine check threshold counter
(typically counting ECC corrected errors of memory or cache) exceeds
a configurable threshold. Only available on some systems.
- TRM -- a thermal event interrupt occurs when a temperature threshold
+TRM
+ a thermal event interrupt occurs when a temperature threshold
has been exceeded for the CPU. This interrupt may also be generated
when the temperature drops back to normal.
- SPU -- a spurious interrupt is some interrupt that was raised then lowered
+SPU
+ a spurious interrupt is some interrupt that was raised then lowered
by some IO device before it could be fully processed by the APIC. Hence
the APIC sees the interrupt but does not know what device it came from.
For this case the APIC will generate the interrupt with a IRQ vector
of 0xff. This might also be generated by chipset bugs.
- RES, CAL, TLB -- rescheduling, call and TLB flush interrupts are
+RES, CAL, TLB]
+ rescheduling, call and TLB flush interrupts are
sent from one CPU to another per the needs of the OS. Typically,
their statistics are used by kernel developers and interested users to
determine the occurrence of interrupts of the given type.
@@ -756,7 +796,8 @@ IRQ to only one CPU, or to exclude a CPU of handling IRQs. The contents of the
irq subdir is one subdir for each IRQ, and two files; default_smp_affinity and
prof_cpu_mask.
-For example
+For example::
+
> ls /proc/irq/
0 10 12 14 16 18 2 4 6 8 prof_cpu_mask
1 11 13 15 17 19 3 5 7 9 default_smp_affinity
@@ -764,20 +805,20 @@ For example
smp_affinity
smp_affinity is a bitmask, in which you can specify which CPUs can handle the
-IRQ, you can set it by doing:
+IRQ, you can set it by doing::
> echo 1 > /proc/irq/10/smp_affinity
This means that only the first CPU will handle the IRQ, but you can also echo
5 which means that only the first and third CPU can handle the IRQ.
-The contents of each smp_affinity file is the same by default:
+The contents of each smp_affinity file is the same by default::
> cat /proc/irq/0/smp_affinity
ffffffff
There is an alternate interface, smp_affinity_list which allows specifying
-a cpu range instead of a bitmask:
+a cpu range instead of a bitmask::
> cat /proc/irq/0/smp_affinity_list
1024-1031
@@ -810,46 +851,46 @@ Linux uses slab pools for memory management above page level in version 2.2.
Commonly used objects have their own slab pool (such as network buffers,
directory cache, and so on).
-..............................................................................
+::
-> cat /proc/buddyinfo
+ > cat /proc/buddyinfo
-Node 0, zone DMA 0 4 5 4 4 3 ...
-Node 0, zone Normal 1 0 0 1 101 8 ...
-Node 0, zone HighMem 2 0 0 1 1 0 ...
+ Node 0, zone DMA 0 4 5 4 4 3 ...
+ Node 0, zone Normal 1 0 0 1 101 8 ...
+ Node 0, zone HighMem 2 0 0 1 1 0 ...
External fragmentation is a problem under some workloads, and buddyinfo is a
-useful tool for helping diagnose these problems. Buddyinfo will give you a
+useful tool for helping diagnose these problems. Buddyinfo will give you a
clue as to how big an area you can safely allocate, or why a previous
allocation failed.
-Each column represents the number of pages of a certain order which are
-available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
-ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
-available in ZONE_NORMAL, etc...
+Each column represents the number of pages of a certain order which are
+available. In this case, there are 0 chunks of 2^0*PAGE_SIZE available in
+ZONE_DMA, 4 chunks of 2^1*PAGE_SIZE in ZONE_DMA, 101 chunks of 2^4*PAGE_SIZE
+available in ZONE_NORMAL, etc...
More information relevant to external fragmentation can be found in
-pagetypeinfo.
-
-> cat /proc/pagetypeinfo
-Page block order: 9
-Pages per block: 512
-
-Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
-Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0
-Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
-Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2
-Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0
-Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0
-Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9
-Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0
-Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452
-Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0
-Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0
-
-Number of blocks type Unmovable Reclaimable Movable Reserve Isolate
-Node 0, zone DMA 2 0 5 1 0
-Node 0, zone DMA32 41 6 967 2 0
+pagetypeinfo::
+
+ > cat /proc/pagetypeinfo
+ Page block order: 9
+ Pages per block: 512
+
+ Free pages count per migrate type at order 0 1 2 3 4 5 6 7 8 9 10
+ Node 0, zone DMA, type Unmovable 0 0 0 1 1 1 1 1 1 1 0
+ Node 0, zone DMA, type Reclaimable 0 0 0 0 0 0 0 0 0 0 0
+ Node 0, zone DMA, type Movable 1 1 2 1 2 1 1 0 1 0 2
+ Node 0, zone DMA, type Reserve 0 0 0 0 0 0 0 0 0 1 0
+ Node 0, zone DMA, type Isolate 0 0 0 0 0 0 0 0 0 0 0
+ Node 0, zone DMA32, type Unmovable 103 54 77 1 1 1 11 8 7 1 9
+ Node 0, zone DMA32, type Reclaimable 0 0 2 1 0 0 0 0 1 0 0
+ Node 0, zone DMA32, type Movable 169 152 113 91 77 54 39 13 6 1 452
+ Node 0, zone DMA32, type Reserve 1 2 2 2 2 0 1 1 1 1 0
+ Node 0, zone DMA32, type Isolate 0 0 0 0 0 0 0 0 0 0 0
+
+ Number of blocks type Unmovable Reclaimable Movable Reserve Isolate
+ Node 0, zone DMA 2 0 5 1 0
+ Node 0, zone DMA32 41 6 967 2 0
Fragmentation avoidance in the kernel works by grouping pages of different
migrate types into the same contiguous regions of memory called page blocks.
@@ -870,59 +911,63 @@ unless memory has been mlock()'d. Some of the Reclaimable blocks should
also be allocatable although a lot of filesystem metadata may have to be
reclaimed to achieve this.
-..............................................................................
-meminfo:
+meminfo
+~~~~~~~
Provides information about distribution and utilization of memory. This
varies by architecture and compile options. The following is from a
16GB PIII, which has highmem enabled. You may not have all of these fields.
-> cat /proc/meminfo
-
-MemTotal: 16344972 kB
-MemFree: 13634064 kB
-MemAvailable: 14836172 kB
-Buffers: 3656 kB
-Cached: 1195708 kB
-SwapCached: 0 kB
-Active: 891636 kB
-Inactive: 1077224 kB
-HighTotal: 15597528 kB
-HighFree: 13629632 kB
-LowTotal: 747444 kB
-LowFree: 4432 kB
-SwapTotal: 0 kB
-SwapFree: 0 kB
-Dirty: 968 kB
-Writeback: 0 kB
-AnonPages: 861800 kB
-Mapped: 280372 kB
-Shmem: 644 kB
-KReclaimable: 168048 kB
-Slab: 284364 kB
-SReclaimable: 159856 kB
-SUnreclaim: 124508 kB
-PageTables: 24448 kB
-NFS_Unstable: 0 kB
-Bounce: 0 kB
-WritebackTmp: 0 kB
-CommitLimit: 7669796 kB
-Committed_AS: 100056 kB
-VmallocTotal: 112216 kB
-VmallocUsed: 428 kB
-VmallocChunk: 111088 kB
-Percpu: 62080 kB
-HardwareCorrupted: 0 kB
-AnonHugePages: 49152 kB
-ShmemHugePages: 0 kB
-ShmemPmdMapped: 0 kB
-
-
- MemTotal: Total usable ram (i.e. physical ram minus a few reserved
+::
+
+ > cat /proc/meminfo
+
+ MemTotal: 16344972 kB
+ MemFree: 13634064 kB
+ MemAvailable: 14836172 kB
+ Buffers: 3656 kB
+ Cached: 1195708 kB
+ SwapCached: 0 kB
+ Active: 891636 kB
+ Inactive: 1077224 kB
+ HighTotal: 15597528 kB
+ HighFree: 13629632 kB
+ LowTotal: 747444 kB
+ LowFree: 4432 kB
+ SwapTotal: 0 kB
+ SwapFree: 0 kB
+ Dirty: 968 kB
+ Writeback: 0 kB
+ AnonPages: 861800 kB
+ Mapped: 280372 kB
+ Shmem: 644 kB
+ KReclaimable: 168048 kB
+ Slab: 284364 kB
+ SReclaimable: 159856 kB
+ SUnreclaim: 124508 kB
+ PageTables: 24448 kB
+ NFS_Unstable: 0 kB
+ Bounce: 0 kB
+ WritebackTmp: 0 kB
+ CommitLimit: 7669796 kB
+ Committed_AS: 100056 kB
+ VmallocTotal: 112216 kB
+ VmallocUsed: 428 kB
+ VmallocChunk: 111088 kB
+ Percpu: 62080 kB
+ HardwareCorrupted: 0 kB
+ AnonHugePages: 49152 kB
+ ShmemHugePages: 0 kB
+ ShmemPmdMapped: 0 kB
+
+MemTotal
+ Total usable ram (i.e. physical ram minus a few reserved
bits and the kernel binary code)
- MemFree: The sum of LowFree+HighFree
-MemAvailable: An estimate of how much memory is available for starting new
+MemFree
+ The sum of LowFree+HighFree
+MemAvailable
+ An estimate of how much memory is available for starting new
applications, without swapping. Calculated from MemFree,
SReclaimable, the size of the file LRU lists, and the low
watermarks in each zone.
@@ -930,69 +975,99 @@ MemAvailable: An estimate of how much memory is available for starting new
page cache to function well, and that not all reclaimable
slab will be reclaimable, due to items being in use. The
impact of those factors will vary from system to system.
- Buffers: Relatively temporary storage for raw disk blocks
+Buffers
+ Relatively temporary storage for raw disk blocks
shouldn't get tremendously large (20MB or so)
- Cached: in-memory cache for files read from the disk (the
+Cached
+ in-memory cache for files read from the disk (the
pagecache). Doesn't include SwapCached
- SwapCached: Memory that once was swapped out, is swapped back in but
+SwapCached
+ Memory that once was swapped out, is swapped back in but
still also is in the swapfile (if memory is needed it
doesn't need to be swapped out AGAIN because it is already
in the swapfile. This saves I/O)
- Active: Memory that has been used more recently and usually not
+Active
+ Memory that has been used more recently and usually not
reclaimed unless absolutely necessary.
- Inactive: Memory which has been less recently used. It is more
+Inactive
+ Memory which has been less recently used. It is more
eligible to be reclaimed for other purposes
- HighTotal:
- HighFree: Highmem is all memory above ~860MB of physical memory
+HighTotal, HighFree
+ Highmem is all memory above ~860MB of physical memory
Highmem areas are for use by userspace programs, or
for the pagecache. The kernel must use tricks to access
this memory, making it slower to access than lowmem.
- LowTotal:
- LowFree: Lowmem is memory which can be used for everything that
+LowTotal, LowFree
+ Lowmem is memory which can be used for everything that
highmem can be used for, but it is also available for the
kernel's use for its own data structures. Among many
other things, it is where everything from the Slab is
allocated. Bad things happen when you're out of lowmem.
- SwapTotal: total amount of swap space available
- SwapFree: Memory which has been evicted from RAM, and is temporarily
+SwapTotal
+ total amount of swap space available
+SwapFree
+ Memory which has been evicted from RAM, and is temporarily
on the disk
- Dirty: Memory which is waiting to get written back to the disk
- Writeback: Memory which is actively being written back to the disk
- AnonPages: Non-file backed pages mapped into userspace page tables
-HardwareCorrupted: The amount of RAM/memory in KB, the kernel identifies as
+Dirty
+ Memory which is waiting to get written back to the disk
+Writeback
+ Memory which is actively being written back to the disk
+AnonPages
+ Non-file backed pages mapped into userspace page tables
+HardwareCorrupted
+ The amount of RAM/memory in KB, the kernel identifies as
corrupted.
-AnonHugePages: Non-file backed huge pages mapped into userspace page tables
- Mapped: files which have been mmaped, such as libraries
- Shmem: Total memory used by shared memory (shmem) and tmpfs
-ShmemHugePages: Memory used by shared memory (shmem) and tmpfs allocated
+AnonHugePages
+ Non-file backed huge pages mapped into userspace page tables
+Mapped
+ files which have been mmaped, such as libraries
+Shmem
+ Total memory used by shared memory (shmem) and tmpfs
+ShmemHugePages
+ Memory used by shared memory (shmem) and tmpfs allocated
with huge pages
-ShmemPmdMapped: Shared memory mapped into userspace with huge pages
-KReclaimable: Kernel allocations that the kernel will attempt to reclaim
+ShmemPmdMapped
+ Shared memory mapped into userspace with huge pages
+KReclaimable
+ Kernel allocations that the kernel will attempt to reclaim
under memory pressure. Includes SReclaimable (below), and other
direct allocations with a shrinker.
- Slab: in-kernel data structures cache
-SReclaimable: Part of Slab, that might be reclaimed, such as caches
- SUnreclaim: Part of Slab, that cannot be reclaimed on memory pressure
- PageTables: amount of memory dedicated to the lowest level of page
+Slab
+ in-kernel data structures cache
+SReclaimable
+ Part of Slab, that might be reclaimed, such as caches
+SUnreclaim
+ Part of Slab, that cannot be reclaimed on memory pressure
+PageTables
+ amount of memory dedicated to the lowest level of page
tables.
-NFS_Unstable: NFS pages sent to the server, but not yet committed to stable
+NFS_Unstable
+ NFS pages sent to the server, but not yet committed to stable
storage
- Bounce: Memory used for block device "bounce buffers"
-WritebackTmp: Memory used by FUSE for temporary writeback buffers
- CommitLimit: Based on the overcommit ratio ('vm.overcommit_ratio'),
+Bounce
+ Memory used for block device "bounce buffers"
+WritebackTmp
+ Memory used by FUSE for temporary writeback buffers
+CommitLimit
+ Based on the overcommit ratio ('vm.overcommit_ratio'),
this is the total amount of memory currently available to
be allocated on the system. This limit is only adhered to
if strict overcommit accounting is enabled (mode 2 in
'vm.overcommit_memory').
- The CommitLimit is calculated with the following formula:
- CommitLimit = ([total RAM pages] - [total huge TLB pages]) *
- overcommit_ratio / 100 + [total swap pages]
+
+ The CommitLimit is calculated with the following formula::
+
+ CommitLimit = ([total RAM pages] - [total huge TLB pages]) *
+ overcommit_ratio / 100 + [total swap pages]
+
For example, on a system with 1G of physical RAM and 7G
of swap with a `vm.overcommit_ratio` of 30 it would
yield a CommitLimit of 7.3G.
+
For more details, see the memory overcommit documentation
in vm/overcommit-accounting.
-Committed_AS: The amount of memory presently allocated on the system.
+Committed_AS
+ The amount of memory presently allocated on the system.
The committed memory is a sum of all of the memory which
has been allocated by processes, even if it has not been
"used" by them as of yet. A process which malloc()'s 1G
@@ -1005,21 +1080,25 @@ Committed_AS: The amount of memory presently allocated on the system.
This is useful if one needs to guarantee that processes will
not fail due to lack of memory once that memory has been
successfully allocated.
-VmallocTotal: total size of vmalloc memory area
- VmallocUsed: amount of vmalloc area which is used
-VmallocChunk: largest contiguous block of vmalloc area which is free
- Percpu: Memory allocated to the percpu allocator used to back percpu
+VmallocTotal
+ total size of vmalloc memory area
+VmallocUsed
+ amount of vmalloc area which is used
+VmallocChunk
+ largest contiguous block of vmalloc area which is free
+Percpu
+ Memory allocated to the percpu allocator used to back percpu
allocations. This stat excludes the cost of metadata.
-..............................................................................
-
-vmallocinfo:
+vmallocinfo
+~~~~~~~~~~~
Provides information about vmalloced/vmaped areas. One line per area,
containing the virtual address range of the area, size in bytes,
caller information of the creator, and optional information depending
on the kind of area :
+ ========== ===================================================
pages=nr number of pages
phys=addr if a physical address was specified
ioremap I/O mapping (ioremap() and friends)
@@ -1029,49 +1108,54 @@ on the kind of area :
vpages buffer for pages pointers was vmalloced (huge area)
N<node>=nr (Only on NUMA kernels)
Number of pages allocated on memory node <node>
-
-> cat /proc/vmallocinfo
-0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
- /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
-0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
- /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
-0xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f...
- phys=7fee8000 ioremap
-0xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f...
- phys=7fee7000 ioremap
-0xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210
-0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ...
- /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
-0xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ...
- pages=2 vmalloc N1=2
-0xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ...
- /0x130 [x_tables] pages=4 vmalloc N0=4
-0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ...
- pages=14 vmalloc N2=14
-0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ...
- pages=4 vmalloc N1=4
-0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ...
- pages=2 vmalloc N1=2
-0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ...
- pages=10 vmalloc N0=10
-
-..............................................................................
-
-softirqs:
+ ========== ===================================================
+
+::
+
+ > cat /proc/vmallocinfo
+ 0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
+ /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
+ 0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
+ /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
+ 0xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f...
+ phys=7fee8000 ioremap
+ 0xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f...
+ phys=7fee7000 ioremap
+ 0xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210
+ 0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ...
+ /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
+ 0xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ...
+ pages=2 vmalloc N1=2
+ 0xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ...
+ /0x130 [x_tables] pages=4 vmalloc N0=4
+ 0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ...
+ pages=14 vmalloc N2=14
+ 0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ...
+ pages=4 vmalloc N1=4
+ 0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ...
+ pages=2 vmalloc N1=2
+ 0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ...
+ pages=10 vmalloc N0=10
+
+
+softirqs
+~~~~~~~~
Provides counts of softirq handlers serviced since boot time, for each cpu.
-> cat /proc/softirqs
- CPU0 CPU1 CPU2 CPU3
- HI: 0 0 0 0
- TIMER: 27166 27120 27097 27034
- NET_TX: 0 0 0 17
- NET_RX: 42 0 0 39
- BLOCK: 0 0 107 1121
- TASKLET: 0 0 0 290
- SCHED: 27035 26983 26971 26746
- HRTIMER: 0 0 0 0
- RCU: 1678 1769 2178 2250
+::
+
+ > cat /proc/softirqs
+ CPU0 CPU1 CPU2 CPU3
+ HI: 0 0 0 0
+ TIMER: 27166 27120 27097 27034
+ NET_TX: 0 0 0 17
+ NET_RX: 42 0 0 39
+ BLOCK: 0 0 107 1121
+ TASKLET: 0 0 0 290
+ SCHED: 27035 26983 26971 26746
+ HRTIMER: 0 0 0 0
+ RCU: 1678 1769 2178 2250
1.3 IDE devices in /proc/ide
@@ -1083,7 +1167,7 @@ file drivers and a link for each IDE device, pointing to the device directory
in the controller specific subtree.
The file drivers contains general information about the drivers used for the
-IDE devices:
+IDE devices::
> cat /proc/ide/drivers
ide-cdrom version 4.53
@@ -1094,57 +1178,61 @@ subdirectories. These are named ide0, ide1 and so on. Each of these
directories contains the files shown in table 1-6.
-Table 1-6: IDE controller info in /proc/ide/ide?
-..............................................................................
- File Content
- channel IDE channel (0 or 1)
- config Configuration (only for PCI/IDE bridge)
- mate Mate name
- model Type/Chipset of IDE controller
-..............................................................................
+.. table:: Table 1-6: IDE controller info in /proc/ide/ide?
+
+ ======= =======================================
+ File Content
+ ======= =======================================
+ channel IDE channel (0 or 1)
+ config Configuration (only for PCI/IDE bridge)
+ mate Mate name
+ model Type/Chipset of IDE controller
+ ======= =======================================
Each device connected to a controller has a separate subdirectory in the
controllers directory. The files listed in table 1-7 are contained in these
directories.
-Table 1-7: IDE device information
-..............................................................................
- File Content
- cache The cache
- capacity Capacity of the medium (in 512Byte blocks)
- driver driver and version
- geometry physical and logical geometry
- identify device identify block
- media media type
- model device identifier
- settings device setup
- smart_thresholds IDE disk management thresholds
- smart_values IDE disk management values
-..............................................................................
-
-The most interesting file is settings. This file contains a nice overview of
-the drive parameters:
-
- # cat /proc/ide/ide0/hda/settings
- name value min max mode
- ---- ----- --- --- ----
- bios_cyl 526 0 65535 rw
- bios_head 255 0 255 rw
- bios_sect 63 0 63 rw
- breada_readahead 4 0 127 rw
- bswap 0 0 1 r
- file_readahead 72 0 2097151 rw
- io_32bit 0 0 3 rw
- keepsettings 0 0 1 rw
- max_kb_per_request 122 1 127 rw
- multcount 0 0 8 rw
- nice1 1 0 1 rw
- nowerr 0 0 1 rw
- pio_mode write-only 0 255 w
- slow 0 0 1 rw
- unmaskirq 0 0 1 rw
- using_dma 0 0 1 rw
+.. table:: Table 1-7: IDE device information
+
+ ================ ==========================================
+ File Content
+ ================ ==========================================
+ cache The cache
+ capacity Capacity of the medium (in 512Byte blocks)
+ driver driver and version
+ geometry physical and logical geometry
+ identify device identify block
+ media media type
+ model device identifier
+ settings device setup
+ smart_thresholds IDE disk management thresholds
+ smart_values IDE disk management values
+ ================ ==========================================
+
+The most interesting file is ``settings``. This file contains a nice
+overview of the drive parameters::
+
+ # cat /proc/ide/ide0/hda/settings
+ name value min max mode
+ ---- ----- --- --- ----
+ bios_cyl 526 0 65535 rw
+ bios_head 255 0 255 rw
+ bios_sect 63 0 63 rw
+ breada_readahead 4 0 127 rw
+ bswap 0 0 1 r
+ file_readahead 72 0 2097151 rw
+ io_32bit 0 0 3 rw
+ keepsettings 0 0 1 rw
+ max_kb_per_request 122 1 127 rw
+ multcount 0 0 8 rw
+ nice1 1 0 1 rw
+ nowerr 0 0 1 rw
+ pio_mode write-only 0 255 w
+ slow 0 0 1 rw
+ unmaskirq 0 0 1 rw
+ using_dma 0 0 1 rw
1.4 Networking info in /proc/net
@@ -1155,67 +1243,70 @@ additional values you get for IP version 6 if you configure the kernel to
support this. Table 1-9 lists the files and their meaning.
-Table 1-8: IPv6 info in /proc/net
-..............................................................................
- File Content
- udp6 UDP sockets (IPv6)
- tcp6 TCP sockets (IPv6)
- raw6 Raw device statistics (IPv6)
- igmp6 IP multicast addresses, which this host joined (IPv6)
- if_inet6 List of IPv6 interface addresses
- ipv6_route Kernel routing table for IPv6
- rt6_stats Global IPv6 routing tables statistics
- sockstat6 Socket statistics (IPv6)
- snmp6 Snmp data (IPv6)
-..............................................................................
-
-
-Table 1-9: Network info in /proc/net
-..............................................................................
- File Content
- arp Kernel ARP table
- dev network devices with statistics
+.. table:: Table 1-8: IPv6 info in /proc/net
+
+ ========== =====================================================
+ File Content
+ ========== =====================================================
+ udp6 UDP sockets (IPv6)
+ tcp6 TCP sockets (IPv6)
+ raw6 Raw device statistics (IPv6)
+ igmp6 IP multicast addresses, which this host joined (IPv6)
+ if_inet6 List of IPv6 interface addresses
+ ipv6_route Kernel routing table for IPv6
+ rt6_stats Global IPv6 routing tables statistics
+ sockstat6 Socket statistics (IPv6)
+ snmp6 Snmp data (IPv6)
+ ========== =====================================================
+
+.. table:: Table 1-9: Network info in /proc/net
+
+ ============= ================================================================
+ File Content
+ ============= ================================================================
+ arp Kernel ARP table
+ dev network devices with statistics
dev_mcast the Layer2 multicast groups a device is listening too
(interface index, label, number of references, number of bound
- addresses).
- dev_stat network device status
- ip_fwchains Firewall chain linkage
- ip_fwnames Firewall chain names
- ip_masq Directory containing the masquerading tables
- ip_masquerade Major masquerading table
- netstat Network statistics
- raw raw device statistics
- route Kernel routing table
- rpc Directory containing rpc info
- rt_cache Routing cache
- snmp SNMP data
- sockstat Socket statistics
- tcp TCP sockets
- udp UDP sockets
- unix UNIX domain sockets
- wireless Wireless interface data (Wavelan etc)
- igmp IP multicast addresses, which this host joined
- psched Global packet scheduler parameters.
- netlink List of PF_NETLINK sockets
- ip_mr_vifs List of multicast virtual interfaces
- ip_mr_cache List of multicast routing cache
-..............................................................................
+ addresses).
+ dev_stat network device status
+ ip_fwchains Firewall chain linkage
+ ip_fwnames Firewall chain names
+ ip_masq Directory containing the masquerading tables
+ ip_masquerade Major masquerading table
+ netstat Network statistics
+ raw raw device statistics
+ route Kernel routing table
+ rpc Directory containing rpc info
+ rt_cache Routing cache
+ snmp SNMP data
+ sockstat Socket statistics
+ tcp TCP sockets
+ udp UDP sockets
+ unix UNIX domain sockets
+ wireless Wireless interface data (Wavelan etc)
+ igmp IP multicast addresses, which this host joined
+ psched Global packet scheduler parameters.
+ netlink List of PF_NETLINK sockets
+ ip_mr_vifs List of multicast virtual interfaces
+ ip_mr_cache List of multicast routing cache
+ ============= ================================================================
You can use this information to see which network devices are available in
-your system and how much traffic was routed over those devices:
-
- > cat /proc/net/dev
- Inter-|Receive |[...
- face |bytes packets errs drop fifo frame compressed multicast|[...
- lo: 908188 5596 0 0 0 0 0 0 [...
- ppp0:15475140 20721 410 0 0 410 0 0 [...
- eth0: 614530 7085 0 0 0 0 0 1 [...
-
- ...] Transmit
- ...] bytes packets errs drop fifo colls carrier compressed
- ...] 908188 5596 0 0 0 0 0 0
- ...] 1375103 17405 0 0 0 0 0 0
- ...] 1703981 5535 0 0 0 3 0 0
+your system and how much traffic was routed over those devices::
+
+ > cat /proc/net/dev
+ Inter-|Receive |[...
+ face |bytes packets errs drop fifo frame compressed multicast|[...
+ lo: 908188 5596 0 0 0 0 0 0 [...
+ ppp0:15475140 20721 410 0 0 410 0 0 [...
+ eth0: 614530 7085 0 0 0 0 0 1 [...
+
+ ...] Transmit
+ ...] bytes packets errs drop fifo colls carrier compressed
+ ...] 908188 5596 0 0 0 0 0 0
+ ...] 1375103 17405 0 0 0 0 0 0
+ ...] 1703981 5535 0 0 0 3 0 0
In addition, each Channel Bond interface has its own directory. For
example, the bond0 device will have a directory called /proc/net/bond0/.
@@ -1228,62 +1319,62 @@ many times the slaves link has failed.
If you have a SCSI host adapter in your system, you'll find a subdirectory
named after the driver for this adapter in /proc/scsi. You'll also see a list
-of all recognized SCSI devices in /proc/scsi:
+of all recognized SCSI devices in /proc/scsi::
- >cat /proc/scsi/scsi
- Attached devices:
- Host: scsi0 Channel: 00 Id: 00 Lun: 00
- Vendor: IBM Model: DGHS09U Rev: 03E0
- Type: Direct-Access ANSI SCSI revision: 03
- Host: scsi0 Channel: 00 Id: 06 Lun: 00
- Vendor: PIONEER Model: CD-ROM DR-U06S Rev: 1.04
- Type: CD-ROM ANSI SCSI revision: 02
+ >cat /proc/scsi/scsi
+ Attached devices:
+ Host: scsi0 Channel: 00 Id: 00 Lun: 00
+ Vendor: IBM Model: DGHS09U Rev: 03E0
+ Type: Direct-Access ANSI SCSI revision: 03
+ Host: scsi0 Channel: 00 Id: 06 Lun: 00
+ Vendor: PIONEER Model: CD-ROM DR-U06S Rev: 1.04
+ Type: CD-ROM ANSI SCSI revision: 02
The directory named after the driver has one file for each adapter found in
the system. These files contain information about the controller, including
the used IRQ and the IO address range. The amount of information shown is
dependent on the adapter you use. The example shows the output for an Adaptec
-AHA-2940 SCSI adapter:
-
- > cat /proc/scsi/aic7xxx/0
-
- Adaptec AIC7xxx driver version: 5.1.19/3.2.4
- Compile Options:
- TCQ Enabled By Default : Disabled
- AIC7XXX_PROC_STATS : Disabled
- AIC7XXX_RESET_DELAY : 5
- Adapter Configuration:
- SCSI Adapter: Adaptec AHA-294X Ultra SCSI host adapter
- Ultra Wide Controller
- PCI MMAPed I/O Base: 0xeb001000
- Adapter SEEPROM Config: SEEPROM found and used.
- Adaptec SCSI BIOS: Enabled
- IRQ: 10
- SCBs: Active 0, Max Active 2,
- Allocated 15, HW 16, Page 255
- Interrupts: 160328
- BIOS Control Word: 0x18b6
- Adapter Control Word: 0x005b
- Extended Translation: Enabled
- Disconnect Enable Flags: 0xffff
- Ultra Enable Flags: 0x0001
- Tag Queue Enable Flags: 0x0000
- Ordered Queue Tag Flags: 0x0000
- Default Tag Queue Depth: 8
- Tagged Queue By Device array for aic7xxx host instance 0:
- {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}
- Actual queue depth per device for aic7xxx host instance 0:
- {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
- Statistics:
- (scsi0:0:0:0)
- Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8
- Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0)
- Total transfers 160151 (74577 reads and 85574 writes)
- (scsi0:0:6:0)
- Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15
- Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0)
- Total transfers 0 (0 reads and 0 writes)
+AHA-2940 SCSI adapter::
+
+ > cat /proc/scsi/aic7xxx/0
+
+ Adaptec AIC7xxx driver version: 5.1.19/3.2.4
+ Compile Options:
+ TCQ Enabled By Default : Disabled
+ AIC7XXX_PROC_STATS : Disabled
+ AIC7XXX_RESET_DELAY : 5
+ Adapter Configuration:
+ SCSI Adapter: Adaptec AHA-294X Ultra SCSI host adapter
+ Ultra Wide Controller
+ PCI MMAPed I/O Base: 0xeb001000
+ Adapter SEEPROM Config: SEEPROM found and used.
+ Adaptec SCSI BIOS: Enabled
+ IRQ: 10
+ SCBs: Active 0, Max Active 2,
+ Allocated 15, HW 16, Page 255
+ Interrupts: 160328
+ BIOS Control Word: 0x18b6
+ Adapter Control Word: 0x005b
+ Extended Translation: Enabled
+ Disconnect Enable Flags: 0xffff
+ Ultra Enable Flags: 0x0001
+ Tag Queue Enable Flags: 0x0000
+ Ordered Queue Tag Flags: 0x0000
+ Default Tag Queue Depth: 8
+ Tagged Queue By Device array for aic7xxx host instance 0:
+ {255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255}
+ Actual queue depth per device for aic7xxx host instance 0:
+ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
+ Statistics:
+ (scsi0:0:0:0)
+ Device using Wide/Sync transfers at 40.0 MByte/sec, offset 8
+ Transinfo settings: current(12/8/1/0), goal(12/8/1/0), user(12/15/1/0)
+ Total transfers 160151 (74577 reads and 85574 writes)
+ (scsi0:0:6:0)
+ Device using Narrow/Sync transfers at 5.0 MByte/sec, offset 15
+ Transinfo settings: current(50/15/0/0), goal(50/15/0/0), user(50/15/0/0)
+ Total transfers 0 (0 reads and 0 writes)
1.6 Parallel port info in /proc/parport
@@ -1296,18 +1387,20 @@ number (0,1,2,...).
These directories contain the four files shown in Table 1-10.
-Table 1-10: Files in /proc/parport
-..............................................................................
- File Content
- autoprobe Any IEEE-1284 device ID information that has been acquired.
+.. table:: Table 1-10: Files in /proc/parport
+
+ ========= ====================================================================
+ File Content
+ ========= ====================================================================
+ autoprobe Any IEEE-1284 device ID information that has been acquired.
devices list of the device drivers using that port. A + will appear by the
name of the device currently using the port (it might not appear
- against any).
- hardware Parallel port's base address, IRQ line and DMA channel.
+ against any).
+ hardware Parallel port's base address, IRQ line and DMA channel.
irq IRQ that parport is using for that port. This is in a separate
file to allow you to alter it by writing a new value in (IRQ
- number or none).
-..............................................................................
+ number or none).
+ ========= ====================================================================
1.7 TTY info in /proc/tty
-------------------------
@@ -1317,29 +1410,31 @@ directory /proc/tty.You'll find entries for drivers and line disciplines in
this directory, as shown in Table 1-11.
-Table 1-11: Files in /proc/tty
-..............................................................................
- File Content
- drivers list of drivers and their usage
- ldiscs registered line disciplines
- driver/serial usage statistic and status of single tty lines
-..............................................................................
+.. table:: Table 1-11: Files in /proc/tty
+
+ ============= ==============================================
+ File Content
+ ============= ==============================================
+ drivers list of drivers and their usage
+ ldiscs registered line disciplines
+ driver/serial usage statistic and status of single tty lines
+ ============= ==============================================
To see which tty's are currently in use, you can simply look into the file
-/proc/tty/drivers:
-
- > cat /proc/tty/drivers
- pty_slave /dev/pts 136 0-255 pty:slave
- pty_master /dev/ptm 128 0-255 pty:master
- pty_slave /dev/ttyp 3 0-255 pty:slave
- pty_master /dev/pty 2 0-255 pty:master
- serial /dev/cua 5 64-67 serial:callout
- serial /dev/ttyS 4 64-67 serial
- /dev/tty0 /dev/tty0 4 0 system:vtmaster
- /dev/ptmx /dev/ptmx 5 2 system
- /dev/console /dev/console 5 1 system:console
- /dev/tty /dev/tty 5 0 system:/dev/tty
- unknown /dev/tty 4 1-63 console
+/proc/tty/drivers::
+
+ > cat /proc/tty/drivers
+ pty_slave /dev/pts 136 0-255 pty:slave
+ pty_master /dev/ptm 128 0-255 pty:master
+ pty_slave /dev/ttyp 3 0-255 pty:slave
+ pty_master /dev/pty 2 0-255 pty:master
+ serial /dev/cua 5 64-67 serial:callout
+ serial /dev/ttyS 4 64-67 serial
+ /dev/tty0 /dev/tty0 4 0 system:vtmaster
+ /dev/ptmx /dev/ptmx 5 2 system
+ /dev/console /dev/console 5 1 system:console
+ /dev/tty /dev/tty 5 0 system:/dev/tty
+ unknown /dev/tty 4 1-63 console
1.8 Miscellaneous kernel statistics in /proc/stat
@@ -1347,7 +1442,7 @@ To see which tty's are currently in use, you can simply look into the file
Various pieces of information about kernel activity are available in the
/proc/stat file. All of the numbers reported in this file are aggregates
-since the system first booted. For a quick look, simply cat the file:
+since the system first booted. For a quick look, simply cat the file::
> cat /proc/stat
cpu 2255 34 2290 22625563 6290 127 456 0 0 0
@@ -1372,6 +1467,7 @@ second). The meanings of the columns are as follows, from left to right:
- idle: twiddling thumbs
- iowait: In a word, iowait stands for waiting for I/O to complete. But there
are several problems:
+
1. Cpu will not wait for I/O to complete, iowait is the time that a task is
waiting for I/O to complete. When cpu goes into idle state for
outstanding task io, another task will be scheduled on this CPU.
@@ -1379,6 +1475,7 @@ second). The meanings of the columns are as follows, from left to right:
on any CPU, so the iowait of each CPU is difficult to calculate.
3. The value of iowait field in /proc/stat will decrease in certain
conditions.
+
So, the iowait is not reliable by reading from /proc/stat.
- irq: servicing interrupts
- softirq: servicing softirqs
@@ -1422,18 +1519,19 @@ Information about mounted ext4 file systems can be found in
/proc/fs/ext4/dm-0). The files in each per-device directory are shown
in Table 1-12, below.
-Table 1-12: Files in /proc/fs/ext4/<devname>
-..............................................................................
- File Content
+.. table:: Table 1-12: Files in /proc/fs/ext4/<devname>
+
+ ============== ==========================================================
+ File Content
mb_groups details of multiblock allocator buddy cache of free blocks
-..............................................................................
+ ============== ==========================================================
2.0 /proc/consoles
------------------
Shows registered system console lines.
To see which character device lines are currently used for the system console
-/dev/console, you may simply look into the file /proc/consoles:
+/dev/console, you may simply look into the file /proc/consoles::
> cat /proc/consoles
tty0 -WU (ECp) 4:7
@@ -1441,41 +1539,45 @@ To see which character device lines are currently used for the system console
The columns are:
- device name of the device
- operations R = can do read operations
- W = can do write operations
- U = can do unblank
- flags E = it is enabled
- C = it is preferred console
- B = it is primary boot console
- p = it is used for printk buffer
- b = it is not a TTY but a Braille device
- a = it is safe to use when cpu is offline
- major:minor major and minor number of the device separated by a colon
++--------------------+-------------------------------------------------------+
+| device | name of the device |
++====================+=======================================================+
+| operations | * R = can do read operations |
+| | * W = can do write operations |
+| | * U = can do unblank |
++--------------------+-------------------------------------------------------+
+| flags | * E = it is enabled |
+| | * C = it is preferred console |
+| | * B = it is primary boot console |
+| | * p = it is used for printk buffer |
+| | * b = it is not a TTY but a Braille device |
+| | * a = it is safe to use when cpu is offline |
++--------------------+-------------------------------------------------------+
+| major:minor | major and minor number of the device separated by a |
+| | colon |
++--------------------+-------------------------------------------------------+
-------------------------------------------------------------------------------
Summary
-------------------------------------------------------------------------------
+-------
+
The /proc file system serves information about the running system. It not only
allows access to process data but also allows you to request the kernel status
by reading files in the hierarchy.
The directory structure of /proc reflects the types of information and makes
it easy, if not obvious, where to look for specific data.
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
-CHAPTER 2: MODIFYING SYSTEM PARAMETERS
-------------------------------------------------------------------------------
+Chapter 2: Modifying System Parameters
+======================================
-------------------------------------------------------------------------------
In This Chapter
-------------------------------------------------------------------------------
+---------------
+
* Modifying kernel parameters by writing into files found in /proc/sys
* Exploring the files which modify certain parameters
* Review of the /proc/sys file tree
-------------------------------------------------------------------------------
+------------------------------------------------------------------------------
A very interesting part of /proc is the directory /proc/sys. This is not only
a source of information, it also allows you to change parameters within the
@@ -1503,19 +1605,18 @@ kernels, and became part of it in version 2.2.1 of the Linux kernel.
Please see: Documentation/admin-guide/sysctl/ directory for descriptions of these
entries.
-------------------------------------------------------------------------------
Summary
-------------------------------------------------------------------------------
+-------
+
Certain aspects of kernel behavior can be modified at runtime, without the
need to recompile the kernel, or even to reboot the system. The files in the
/proc/sys tree can not only be read, but also modified. You can use the echo
command to write value into these files, thereby changing the default settings
of the kernel.
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
-CHAPTER 3: PER-PROCESS PARAMETERS
-------------------------------------------------------------------------------
+
+Chapter 3: Per-process Parameters
+=================================
3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj- Adjust the oom-killer score
--------------------------------------------------------------------------------
@@ -1588,26 +1689,28 @@ process should be killed in an out-of-memory situation.
This file contains IO statistics for each running process
Example
--------
+~~~~~~~
+
+::
-test:/tmp # dd if=/dev/zero of=/tmp/test.dat &
-[1] 3828
+ test:/tmp # dd if=/dev/zero of=/tmp/test.dat &
+ [1] 3828
-test:/tmp # cat /proc/3828/io
-rchar: 323934931
-wchar: 323929600
-syscr: 632687
-syscw: 632675
-read_bytes: 0
-write_bytes: 323932160
-cancelled_write_bytes: 0
+ test:/tmp # cat /proc/3828/io
+ rchar: 323934931
+ wchar: 323929600
+ syscr: 632687
+ syscw: 632675
+ read_bytes: 0
+ write_bytes: 323932160
+ cancelled_write_bytes: 0
Description
------------
+~~~~~~~~~~~
rchar
------
+^^^^^
I/O counter: chars read
The number of bytes which this task has caused to be read from storage. This
@@ -1618,7 +1721,7 @@ pagecache)
wchar
------
+^^^^^
I/O counter: chars written
The number of bytes which this task has caused, or shall cause to be written
@@ -1626,7 +1729,7 @@ to disk. Similar caveats apply here as with rchar.
syscr
------
+^^^^^
I/O counter: read syscalls
Attempt to count the number of read I/O operations, i.e. syscalls like read()
@@ -1634,7 +1737,7 @@ and pread().
syscw
------
+^^^^^
I/O counter: write syscalls
Attempt to count the number of write I/O operations, i.e. syscalls like
@@ -1642,7 +1745,7 @@ write() and pwrite().
read_bytes
-----------
+^^^^^^^^^^
I/O counter: bytes read
Attempt to count the number of bytes which this process really did cause to
@@ -1652,7 +1755,7 @@ CIFS at a later time>
write_bytes
------------
+^^^^^^^^^^^
I/O counter: bytes written
Attempt to count the number of bytes which this process caused to be sent to
@@ -1660,7 +1763,7 @@ the storage layer. This is done at page-dirtying time.
cancelled_write_bytes
----------------------
+^^^^^^^^^^^^^^^^^^^^^
The big inaccuracy here is truncate. If a process writes 1MB to a file and
then deletes the file, it will in fact perform no writeout. But it will have
@@ -1673,12 +1776,11 @@ from the truncating task's write_bytes, but there is information loss in doing
that.
-Note
-----
+.. Note::
-At its current implementation state, this is a bit racy on 32-bit machines: if
-process A reads process B's /proc/pid/io while process B is updating one of
-those 64-bit counters, process A could see an intermediate result.
+ At its current implementation state, this is a bit racy on 32-bit machines:
+ if process A reads process B's /proc/pid/io while process B is updating one
+ of those 64-bit counters, process A could see an intermediate result.
More information about this can be found within the taskstats documentation in
@@ -1698,12 +1800,13 @@ of memory types. If a bit of the bitmask is set, memory segments of the
corresponding memory type are dumped, otherwise they are not dumped.
The following 9 memory types are supported:
+
- (bit 0) anonymous private memory
- (bit 1) anonymous shared memory
- (bit 2) file-backed private memory
- (bit 3) file-backed shared memory
- (bit 4) ELF header pages in file-backed private memory areas (it is
- effective only if the bit 2 is cleared)
+ effective only if the bit 2 is cleared)
- (bit 5) hugetlb private memory
- (bit 6) hugetlb shared memory
- (bit 7) DAX private memory
@@ -1719,13 +1822,13 @@ The default value of coredump_filter is 0x33; this means all anonymous memory
segments, ELF header pages and hugetlb private memory are dumped.
If you don't want to dump all shared memory segments attached to pid 1234,
-write 0x31 to the process's proc file.
+write 0x31 to the process's proc file::
$ echo 0x31 > /proc/1234/coredump_filter
When a new process is created, the process inherits the bitmask status from its
parent. It is useful to set up coredump_filter before the program runs.
-For example:
+For example::
$ echo 0x7 > /proc/self/coredump_filter
$ ./some_program
@@ -1733,35 +1836,37 @@ For example:
3.5 /proc/<pid>/mountinfo - Information about mounts
--------------------------------------------------------
-This file contains lines of the form:
+This file contains lines of the form::
-36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
-(1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
+ 36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
+ (1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
-(1) mount ID: unique identifier of the mount (may be reused after umount)
-(2) parent ID: ID of parent (or of self for the top of the mount tree)
-(3) major:minor: value of st_dev for files on filesystem
-(4) root: root of the mount within the filesystem
-(5) mount point: mount point relative to the process's root
-(6) mount options: per mount options
-(7) optional fields: zero or more fields of the form "tag[:value]"
-(8) separator: marks the end of the optional fields
-(9) filesystem type: name of filesystem of the form "type[.subtype]"
-(10) mount source: filesystem specific information or "none"
-(11) super options: per super block options
+ (1) mount ID: unique identifier of the mount (may be reused after umount)
+ (2) parent ID: ID of parent (or of self for the top of the mount tree)
+ (3) major:minor: value of st_dev for files on filesystem
+ (4) root: root of the mount within the filesystem
+ (5) mount point: mount point relative to the process's root
+ (6) mount options: per mount options
+ (7) optional fields: zero or more fields of the form "tag[:value]"
+ (8) separator: marks the end of the optional fields
+ (9) filesystem type: name of filesystem of the form "type[.subtype]"
+ (10) mount source: filesystem specific information or "none"
+ (11) super options: per super block options
Parsers should ignore all unrecognised optional fields. Currently the
possible optional fields are:
-shared:X mount is shared in peer group X
-master:X mount is slave to peer group X
-propagate_from:X mount is slave and receives propagation from peer group X (*)
-unbindable mount is unbindable
+================ ==============================================================
+shared:X mount is shared in peer group X
+master:X mount is slave to peer group X
+propagate_from:X mount is slave and receives propagation from peer group X [#]_
+unbindable mount is unbindable
+================ ==============================================================
-(*) X is the closest dominant peer group under the process's root. If
-X is the immediate master of the mount, or if there's no dominant peer
-group under the same root, then only the "master:X" field is present
-and not the "propagate_from:X" field.
+.. [#] X is the closest dominant peer group under the process's root. If
+ X is the immediate master of the mount, or if there's no dominant peer
+ group under the same root, then only the "master:X" field is present
+ and not the "propagate_from:X" field.
For more information on mount propagation see:
@@ -1804,77 +1909,86 @@ created with [see open(2) for details] and 'mnt_id' represents mount ID of
the file system containing the opened file [see 3.5 /proc/<pid>/mountinfo
for details].
-A typical output is
+A typical output is::
pos: 0
flags: 0100002
mnt_id: 19
-All locks associated with a file descriptor are shown in its fdinfo too.
+All locks associated with a file descriptor are shown in its fdinfo too::
-lock: 1: FLOCK ADVISORY WRITE 359 00:13:11691 0 EOF
+ lock: 1: FLOCK ADVISORY WRITE 359 00:13:11691 0 EOF
The files such as eventfd, fsnotify, signalfd, epoll among the regular pos/flags
pair provide additional information particular to the objects they represent.
- Eventfd files
- ~~~~~~~~~~~~~
+Eventfd files
+~~~~~~~~~~~~~
+
+::
+
pos: 0
flags: 04002
mnt_id: 9
eventfd-count: 5a
- where 'eventfd-count' is hex value of a counter.
+where 'eventfd-count' is hex value of a counter.
+
+Signalfd files
+~~~~~~~~~~~~~~
+
+::
- Signalfd files
- ~~~~~~~~~~~~~~
pos: 0
flags: 04002
mnt_id: 9
sigmask: 0000000000000200
- where 'sigmask' is hex value of the signal mask associated
- with a file.
+where 'sigmask' is hex value of the signal mask associated
+with a file.
+
+Epoll files
+~~~~~~~~~~~
+
+::
- Epoll files
- ~~~~~~~~~~~
pos: 0
flags: 02
mnt_id: 9
tfd: 5 events: 1d data: ffffffffffffffff pos:0 ino:61af sdev:7
- where 'tfd' is a target file descriptor number in decimal form,
- 'events' is events mask being watched and the 'data' is data
- associated with a target [see epoll(7) for more details].
+where 'tfd' is a target file descriptor number in decimal form,
+'events' is events mask being watched and the 'data' is data
+associated with a target [see epoll(7) for more details].
- The 'pos' is current offset of the target file in decimal form
- [see lseek(2)], 'ino' and 'sdev' are inode and device numbers
- where target file resides, all in hex format.
+The 'pos' is current offset of the target file in decimal form
+[see lseek(2)], 'ino' and 'sdev' are inode and device numbers
+where target file resides, all in hex format.
- Fsnotify files
- ~~~~~~~~~~~~~~
- For inotify files the format is the following
+Fsnotify files
+~~~~~~~~~~~~~~
+For inotify files the format is the following::
pos: 0
flags: 02000000
inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:7e9e0000640d1b6d
- where 'wd' is a watch descriptor in decimal form, ie a target file
- descriptor number, 'ino' and 'sdev' are inode and device where the
- target file resides and the 'mask' is the mask of events, all in hex
- form [see inotify(7) for more details].
+where 'wd' is a watch descriptor in decimal form, ie a target file
+descriptor number, 'ino' and 'sdev' are inode and device where the
+target file resides and the 'mask' is the mask of events, all in hex
+form [see inotify(7) for more details].
- If the kernel was built with exportfs support, the path to the target
- file is encoded as a file handle. The file handle is provided by three
- fields 'fhandle-bytes', 'fhandle-type' and 'f_handle', all in hex
- format.
+If the kernel was built with exportfs support, the path to the target
+file is encoded as a file handle. The file handle is provided by three
+fields 'fhandle-bytes', 'fhandle-type' and 'f_handle', all in hex
+format.
- If the kernel is built without exportfs support the file handle won't be
- printed out.
+If the kernel is built without exportfs support the file handle won't be
+printed out.
- If there is no inotify mark attached yet the 'inotify' line will be omitted.
+If there is no inotify mark attached yet the 'inotify' line will be omitted.
- For fanotify files the format is
+For fanotify files the format is::
pos: 0
flags: 02
@@ -1883,20 +1997,22 @@ pair provide additional information particular to the objects they represent.
fanotify mnt_id:12 mflags:40 mask:38 ignored_mask:40000003
fanotify ino:4f969 sdev:800013 mflags:0 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:69f90400c275b5b4
- where fanotify 'flags' and 'event-flags' are values used in fanotify_init
- call, 'mnt_id' is the mount point identifier, 'mflags' is the value of
- flags associated with mark which are tracked separately from events
- mask. 'ino', 'sdev' are target inode and device, 'mask' is the events
- mask and 'ignored_mask' is the mask of events which are to be ignored.
- All in hex format. Incorporation of 'mflags', 'mask' and 'ignored_mask'
- does provide information about flags and mask used in fanotify_mark
- call [see fsnotify manpage for details].
+where fanotify 'flags' and 'event-flags' are values used in fanotify_init
+call, 'mnt_id' is the mount point identifier, 'mflags' is the value of
+flags associated with mark which are tracked separately from events
+mask. 'ino', 'sdev' are target inode and device, 'mask' is the events
+mask and 'ignored_mask' is the mask of events which are to be ignored.
+All in hex format. Incorporation of 'mflags', 'mask' and 'ignored_mask'
+does provide information about flags and mask used in fanotify_mark
+call [see fsnotify manpage for details].
+
+While the first three lines are mandatory and always printed, the rest is
+optional and may be omitted if no marks created yet.
- While the first three lines are mandatory and always printed, the rest is
- optional and may be omitted if no marks created yet.
+Timerfd files
+~~~~~~~~~~~~~
- Timerfd files
- ~~~~~~~~~~~~~
+::
pos: 0
flags: 02
@@ -1907,18 +2023,18 @@ pair provide additional information particular to the objects they represent.
it_value: (0, 49406829)
it_interval: (1, 0)
- where 'clockid' is the clock type and 'ticks' is the number of the timer expirations
- that have occurred [see timerfd_create(2) for details]. 'settime flags' are
- flags in octal form been used to setup the timer [see timerfd_settime(2) for
- details]. 'it_value' is remaining time until the timer exiration.
- 'it_interval' is the interval for the timer. Note the timer might be set up
- with TIMER_ABSTIME option which will be shown in 'settime flags', but 'it_value'
- still exhibits timer's remaining time.
+where 'clockid' is the clock type and 'ticks' is the number of the timer expirations
+that have occurred [see timerfd_create(2) for details]. 'settime flags' are
+flags in octal form been used to setup the timer [see timerfd_settime(2) for
+details]. 'it_value' is remaining time until the timer exiration.
+'it_interval' is the interval for the timer. Note the timer might be set up
+with TIMER_ABSTIME option which will be shown in 'settime flags', but 'it_value'
+still exhibits timer's remaining time.
3.9 /proc/<pid>/map_files - Information about memory mapped files
---------------------------------------------------------------------
This directory contains symbolic links which represent memory mapped files
-the process is maintaining. Example output:
+the process is maintaining. Example output::
| lr-------- 1 root root 64 Jan 27 11:24 333c600000-333c620000 -> /usr/lib64/ld-2.18.so
| lr-------- 1 root root 64 Jan 27 11:24 333c81f000-333c820000 -> /usr/lib64/ld-2.18.so
@@ -1976,17 +2092,22 @@ When CONFIG_PROC_PID_ARCH_STATUS is enabled, this file displays the
architecture specific status of the task.
Example
--------
+~~~~~~~
+
+::
+
$ cat /proc/6753/arch_status
AVX512_elapsed_ms: 8
Description
------------
+~~~~~~~~~~~
x86 specific entries:
----------------------
- AVX512_elapsed_ms:
- ------------------
+~~~~~~~~~~~~~~~~~~~~~
+
+AVX512_elapsed_ms:
+^^^^^^^^^^^^^^^^^^
+
If AVX512 is supported on the machine, this entry shows the milliseconds
elapsed since the last time AVX512 usage was recorded. The recording
happens on a best effort basis when a task is scheduled out. This means
@@ -2010,17 +2131,18 @@ x86 specific entries:
the task is unlikely an AVX512 user, but depends on the workload and the
scheduling scenario, it also could be a false negative mentioned above.
-------------------------------------------------------------------------------
Configuring procfs
-------------------------------------------------------------------------------
+------------------
4.1 Mount options
---------------------
The following mount options are supported:
+ ========= ========================================================
hidepid= Set /proc/<pid>/ access mode.
gid= Set the group authorized to learn processes information.
+ ========= ========================================================
hidepid=0 means classic mode - everybody may access all /proc/<pid>/ directories
(default).
diff --git a/Documentation/filesystems/qnx6.txt b/Documentation/filesystems/qnx6.rst
index 48ea68f15845..b71308314070 100644
--- a/Documentation/filesystems/qnx6.txt
+++ b/Documentation/filesystems/qnx6.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================
The QNX6 Filesystem
===================
@@ -14,10 +17,12 @@ Specification
qnx6fs shares many properties with traditional Unix filesystems. It has the
concepts of blocks, inodes and directories.
+
On QNX it is possible to create little endian and big endian qnx6 filesystems.
This feature makes it possible to create and use a different endianness fs
for the target (QNX is used on quite a range of embedded systems) platform
running on a different endianness.
+
The Linux driver handles endianness transparently. (LE and BE)
Blocks
@@ -26,6 +31,7 @@ Blocks
The space in the device or file is split up into blocks. These are a fixed
size of 512, 1024, 2048 or 4096, which is decided when the filesystem is
created.
+
Blockpointers are 32bit, so the maximum space that can be addressed is
2^32 * 4096 bytes or 16TB
@@ -50,6 +56,7 @@ Each of these root nodes holds information like total size of the stored
data and the addressing levels in that specific tree.
If the level value is 0, up to 16 direct blocks can be addressed by each
node.
+
Level 1 adds an additional indirect addressing level where each indirect
addressing block holds up to blocksize / 4 bytes pointers to data blocks.
Level 2 adds an additional indirect addressing block level (so, already up
@@ -57,11 +64,13 @@ to 16 * 256 * 256 = 1048576 blocks that can be addressed by such a tree).
Unused block pointers are always set to ~0 - regardless of root node,
indirect addressing blocks or inodes.
+
Data leaves are always on the lowest level. So no data is stored on upper
tree levels.
The first Superblock is located at 0x2000. (0x2000 is the bootblock size)
The Audi MMI 3G first superblock directly starts at byte 0.
+
Second superblock position can either be calculated from the superblock
information (total number of filesystem blocks) or by taking the highest
device address, zeroing the last 3 bytes and then subtracting 0x1000 from
@@ -84,6 +93,7 @@ Object mode field is POSIX format. (which makes things easier)
There are also pointers to the first 16 blocks, if the object data can be
addressed with 16 direct blocks.
+
For more than 16 blocks an indirect addressing in form of another tree is
used. (scheme is the same as the one used for the superblock root nodes)
@@ -96,13 +106,18 @@ Directories
A directory is a filesystem object and has an inode just like a file.
It is a specially formatted file containing records which associate each
name with an inode number.
+
'.' inode number points to the directory inode
+
'..' inode number points to the parent directory inode
+
Eeach filename record additionally got a filename length field.
One special case are long filenames or subdirectory names.
+
These got set a filename length field of 0xff in the corresponding directory
record plus the longfile inode number also stored in that record.
+
With that longfilename inode number, the longfilename tree can be walked
starting with the superblock longfilename root node pointers.
@@ -111,6 +126,7 @@ Special files
Symbolic links are also filesystem objects with inodes. They got a specific
bit in the inode mode field identifying them as symbolic link.
+
The directory entry file inode pointer points to the target file inode.
Hard links got an inode, a directory entry, but a specific mode bit set,
@@ -126,9 +142,11 @@ Long filenames
Long filenames are stored in a separate addressing tree. The staring point
is the longfilename root node in the active superblock.
+
Each data block (tree leaves) holds one long filename. That filename is
limited to 510 bytes. The first two starting bytes are used as length field
for the actual filename.
+
If that structure shall fit for all allowed blocksizes, it is clear why there
is a limit of 510 bytes for the actual filename stored.
@@ -138,6 +156,7 @@ Bitmap
The qnx6fs filesystem allocation bitmap is stored in a tree under bitmap
root node in the superblock and each bit in the bitmap represents one
filesystem block.
+
The first block is block 0, which starts 0x1000 after superblock start.
So for a normal qnx6fs 0x3000 (bootblock + superblock) is the physical
address at which block 0 is located.
@@ -149,11 +168,14 @@ Bitmap system area
------------------
The bitmap itself is divided into three parts.
+
First the system area, that is split into two halves.
+
Then userspace.
The requirement for a static, fixed preallocated system area comes from how
qnx6fs deals with writes.
+
Each superblock got it's own half of the system area. So superblock #1
always uses blocks from the lower half while superblock #2 just writes to
blocks represented by the upper half bitmap system area bits.
diff --git a/Documentation/filesystems/ramfs-rootfs-initramfs.txt b/Documentation/filesystems/ramfs-rootfs-initramfs.rst
index 97d42ccaa92d..6c576e241d86 100644
--- a/Documentation/filesystems/ramfs-rootfs-initramfs.txt
+++ b/Documentation/filesystems/ramfs-rootfs-initramfs.rst
@@ -1,5 +1,11 @@
-ramfs, rootfs and initramfs
+.. SPDX-License-Identifier: GPL-2.0
+
+===========================
+Ramfs, rootfs and initramfs
+===========================
+
October 17, 2005
+
Rob Landley <rob@landley.net>
=============================
@@ -99,14 +105,14 @@ out of that.
All this differs from the old initrd in several ways:
- The old initrd was always a separate file, while the initramfs archive is
- linked into the linux kernel image. (The directory linux-*/usr is devoted
- to generating this archive during the build.)
+ linked into the linux kernel image. (The directory ``linux-*/usr`` is
+ devoted to generating this archive during the build.)
- The old initrd file was a gzipped filesystem image (in some file format,
such as ext2, that needed a driver built into the kernel), while the new
initramfs archive is a gzipped cpio archive (like tar only simpler,
- see cpio(1) and Documentation/driver-api/early-userspace/buffer-format.rst). The
- kernel's cpio extraction code is not only extremely small, it's also
+ see cpio(1) and Documentation/driver-api/early-userspace/buffer-format.rst).
+ The kernel's cpio extraction code is not only extremely small, it's also
__init text and data that can be discarded during the boot process.
- The program run by the old initrd (which was called /initrd, not /init) did
@@ -139,7 +145,7 @@ and living in usr/Kconfig) can be used to specify a source for the
initramfs archive, which will automatically be incorporated into the
resulting binary. This option can point to an existing gzipped cpio
archive, a directory containing files to be archived, or a text file
-specification such as the following example:
+specification such as the following example::
dir /dev 755 0 0
nod /dev/console 644 0 0 c 5 1
@@ -175,12 +181,12 @@ or extracting your own preprepared cpio files to feed to the kernel build
(instead of a config file or directory).
The following command line can extract a cpio image (either by the above script
-or by the kernel build) back into its component files:
+or by the kernel build) back into its component files::
cpio -i -d -H newc -F initramfs_data.cpio --no-absolute-filenames
The following shell script can create a prebuilt cpio archive you can
-use in place of the above config file:
+use in place of the above config file::
#!/bin/sh
@@ -202,14 +208,17 @@ use in place of the above config file:
exit 1
fi
-Note: The cpio man page contains some bad advice that will break your initramfs
-archive if you follow it. It says "A typical way to generate the list
-of filenames is with the find command; you should give find the -depth option
-to minimize problems with permissions on directories that are unwritable or not
-searchable." Don't do this when creating initramfs.cpio.gz images, it won't
-work. The Linux kernel cpio extractor won't create files in a directory that
-doesn't exist, so the directory entries must go before the files that go in
-those directories. The above script gets them in the right order.
+.. Note::
+
+ The cpio man page contains some bad advice that will break your initramfs
+ archive if you follow it. It says "A typical way to generate the list
+ of filenames is with the find command; you should give find the -depth
+ option to minimize problems with permissions on directories that are
+ unwritable or not searchable." Don't do this when creating
+ initramfs.cpio.gz images, it won't work. The Linux kernel cpio extractor
+ won't create files in a directory that doesn't exist, so the directory
+ entries must go before the files that go in those directories.
+ The above script gets them in the right order.
External initramfs images:
--------------------------
@@ -236,9 +245,10 @@ An initramfs archive is a complete self-contained root filesystem for Linux.
If you don't already understand what shared libraries, devices, and paths
you need to get a minimal root filesystem up and running, here are some
references:
-http://www.tldp.org/HOWTO/Bootdisk-HOWTO/
-http://www.tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html
-http://www.linuxfromscratch.org/lfs/view/stable/
+
+- http://www.tldp.org/HOWTO/Bootdisk-HOWTO/
+- http://www.tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html
+- http://www.linuxfromscratch.org/lfs/view/stable/
The "klibc" package (http://www.kernel.org/pub/linux/libs/klibc) is
designed to be a tiny C library to statically link early userspace
@@ -255,7 +265,7 @@ name lookups, even when otherwise statically linked.)
A good first step is to get initramfs to run a statically linked "hello world"
program as init, and test it under an emulator like qemu (www.qemu.org) or
-User Mode Linux, like so:
+User Mode Linux, like so::
cat > hello.c << EOF
#include <stdio.h>
@@ -326,8 +336,8 @@ the above threads) is:
explained his reasoning:
- http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1550.html
- http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1638.html
+ - http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1550.html
+ - http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1638.html
and, most importantly, designed and implemented the initramfs code.
diff --git a/Documentation/filesystems/relay.txt b/Documentation/filesystems/relay.rst
index cd709a94d054..04ad083cfe62 100644
--- a/Documentation/filesystems/relay.txt
+++ b/Documentation/filesystems/relay.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================================
relay interface (formerly relayfs)
==================================
@@ -108,6 +111,7 @@ The relay interface implements basic file operations for user space
access to relay channel buffer data. Here are the file operations
that are available and some comments regarding their behavior:
+=========== ============================================================
open() enables user to open an _existing_ channel buffer.
mmap() results in channel buffer being mapped into the caller's
@@ -136,13 +140,16 @@ poll() POLLIN/POLLRDNORM/POLLERR supported. User applications are
close() decrements the channel buffer's refcount. When the refcount
reaches 0, i.e. when no process or kernel client has the
buffer open, the channel buffer is freed.
+=========== ============================================================
In order for a user application to make use of relay files, the
-host filesystem must be mounted. For example,
+host filesystem must be mounted. For example::
mount -t debugfs debugfs /sys/kernel/debug
-NOTE: the host filesystem doesn't need to be mounted for kernel
+.. Note::
+
+ the host filesystem doesn't need to be mounted for kernel
clients to create or use channels - it only needs to be
mounted when user space applications need access to the buffer
data.
@@ -154,7 +161,7 @@ The relay interface kernel API
Here's a summary of the API the relay interface provides to in-kernel clients:
TBD(curr. line MT:/API/)
- channel management functions:
+ channel management functions::
relay_open(base_filename, parent, subbuf_size, n_subbufs,
callbacks, private_data)
@@ -162,17 +169,17 @@ TBD(curr. line MT:/API/)
relay_flush(chan)
relay_reset(chan)
- channel management typically called on instigation of userspace:
+ channel management typically called on instigation of userspace::
relay_subbufs_consumed(chan, cpu, subbufs_consumed)
- write functions:
+ write functions::
relay_write(chan, data, length)
__relay_write(chan, data, length)
relay_reserve(chan, length)
- callbacks:
+ callbacks::
subbuf_start(buf, subbuf, prev_subbuf, prev_padding)
buf_mapped(buf, filp)
@@ -180,7 +187,7 @@ TBD(curr. line MT:/API/)
create_buf_file(filename, parent, mode, buf, is_global)
remove_buf_file(dentry)
- helper functions:
+ helper functions::
relay_buf_full(buf)
subbuf_start_reserve(buf, length)
@@ -215,41 +222,41 @@ the file(s) created in create_buf_file() and is called during
relay_close().
Here are some typical definitions for these callbacks, in this case
-using debugfs:
-
-/*
- * create_buf_file() callback. Creates relay file in debugfs.
- */
-static struct dentry *create_buf_file_handler(const char *filename,
- struct dentry *parent,
- umode_t mode,
- struct rchan_buf *buf,
- int *is_global)
-{
- return debugfs_create_file(filename, mode, parent, buf,
- &relay_file_operations);
-}
-
-/*
- * remove_buf_file() callback. Removes relay file from debugfs.
- */
-static int remove_buf_file_handler(struct dentry *dentry)
-{
- debugfs_remove(dentry);
-
- return 0;
-}
-
-/*
- * relay interface callbacks
- */
-static struct rchan_callbacks relay_callbacks =
-{
- .create_buf_file = create_buf_file_handler,
- .remove_buf_file = remove_buf_file_handler,
-};
-
-And an example relay_open() invocation using them:
+using debugfs::
+
+ /*
+ * create_buf_file() callback. Creates relay file in debugfs.
+ */
+ static struct dentry *create_buf_file_handler(const char *filename,
+ struct dentry *parent,
+ umode_t mode,
+ struct rchan_buf *buf,
+ int *is_global)
+ {
+ return debugfs_create_file(filename, mode, parent, buf,
+ &relay_file_operations);
+ }
+
+ /*
+ * remove_buf_file() callback. Removes relay file from debugfs.
+ */
+ static int remove_buf_file_handler(struct dentry *dentry)
+ {
+ debugfs_remove(dentry);
+
+ return 0;
+ }
+
+ /*
+ * relay interface callbacks
+ */
+ static struct rchan_callbacks relay_callbacks =
+ {
+ .create_buf_file = create_buf_file_handler,
+ .remove_buf_file = remove_buf_file_handler,
+ };
+
+And an example relay_open() invocation using them::
chan = relay_open("cpu", NULL, SUBBUF_SIZE, N_SUBBUFS, &relay_callbacks, NULL);
@@ -339,23 +346,23 @@ whether or not to actually move on to the next sub-buffer.
To implement 'no-overwrite' mode, the userspace client would provide
an implementation of the subbuf_start() callback something like the
-following:
+following::
-static int subbuf_start(struct rchan_buf *buf,
- void *subbuf,
- void *prev_subbuf,
- unsigned int prev_padding)
-{
- if (prev_subbuf)
- *((unsigned *)prev_subbuf) = prev_padding;
+ static int subbuf_start(struct rchan_buf *buf,
+ void *subbuf,
+ void *prev_subbuf,
+ unsigned int prev_padding)
+ {
+ if (prev_subbuf)
+ *((unsigned *)prev_subbuf) = prev_padding;
- if (relay_buf_full(buf))
- return 0;
+ if (relay_buf_full(buf))
+ return 0;
- subbuf_start_reserve(buf, sizeof(unsigned int));
+ subbuf_start_reserve(buf, sizeof(unsigned int));
- return 1;
-}
+ return 1;
+ }
If the current buffer is full, i.e. all sub-buffers remain unconsumed,
the callback returns 0 to indicate that the buffer switch should not
@@ -370,20 +377,20 @@ ready sub-buffers will relay_buf_full() return 0, in which case the
buffer switch can continue.
The implementation of the subbuf_start() callback for 'overwrite' mode
-would be very similar:
+would be very similar::
-static int subbuf_start(struct rchan_buf *buf,
- void *subbuf,
- void *prev_subbuf,
- size_t prev_padding)
-{
- if (prev_subbuf)
- *((unsigned *)prev_subbuf) = prev_padding;
+ static int subbuf_start(struct rchan_buf *buf,
+ void *subbuf,
+ void *prev_subbuf,
+ size_t prev_padding)
+ {
+ if (prev_subbuf)
+ *((unsigned *)prev_subbuf) = prev_padding;
- subbuf_start_reserve(buf, sizeof(unsigned int));
+ subbuf_start_reserve(buf, sizeof(unsigned int));
- return 1;
-}
+ return 1;
+ }
In this case, the relay_buf_full() check is meaningless and the
callback always returns 1, causing the buffer switch to occur
diff --git a/Documentation/filesystems/romfs.txt b/Documentation/filesystems/romfs.rst
index e2b07cc9120a..465b11efa9be 100644
--- a/Documentation/filesystems/romfs.txt
+++ b/Documentation/filesystems/romfs.rst
@@ -1,4 +1,8 @@
-ROMFS - ROM FILE SYSTEM
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================
+ROMFS - ROM File System
+=======================
This is a quite dumb, read only filesystem, mainly for initial RAM
disks of installation disks. It has grown up by the need of having
@@ -51,9 +55,9 @@ the 16 byte padding for the name and the contents, also 16+14+15 = 45
bytes. This is quite rare however, since most file names are longer
than 3 bytes, and shorter than 15 bytes.
-The layout of the filesystem is the following:
+The layout of the filesystem is the following::
-offset content
+ offset content
+---+---+---+---+
0 | - | r | o | m | \
@@ -84,9 +88,9 @@ the source. This algorithm was chosen because although it's not quite
reliable, it does not require any tables, and it is very simple.
The following bytes are now part of the file system; each file header
-must begin on a 16 byte boundary.
+must begin on a 16 byte boundary::
-offset content
+ offset content
+---+---+---+---+
0 | next filehdr|X| The offset of the next file header
@@ -114,7 +118,9 @@ file is user and group 0, this should never be a problem for the
intended use. The mapping of the 8 possible values to file types is
the following:
+== =============== ============================================
mapping spec.info means
+== =============== ============================================
0 hard link link destination [file header]
1 directory first file's header
2 regular file unused, must be zero [MBZ]
@@ -123,6 +129,7 @@ the following:
5 char device - " -
6 socket unused, MBZ
7 fifo unused, MBZ
+== =============== ============================================
Note that hard links are specifically marked in this filesystem, but
they will behave as you can expect (i.e. share the inode number).
@@ -158,24 +165,24 @@ to romfs-subscribe@shadow.banki.hu, the content is irrelevant.
Pending issues:
- Permissions and owner information are pretty essential features of a
-Un*x like system, but romfs does not provide the full possibilities.
-I have never found this limiting, but others might.
+ Un*x like system, but romfs does not provide the full possibilities.
+ I have never found this limiting, but others might.
- The file system is read only, so it can be very small, but in case
-one would want to write _anything_ to a file system, he still needs
-a writable file system, thus negating the size advantages. Possible
-solutions: implement write access as a compile-time option, or a new,
-similarly small writable filesystem for RAM disks.
+ one would want to write _anything_ to a file system, he still needs
+ a writable file system, thus negating the size advantages. Possible
+ solutions: implement write access as a compile-time option, or a new,
+ similarly small writable filesystem for RAM disks.
- Since the files are only required to have alignment on a 16 byte
-boundary, it is currently possibly suboptimal to read or execute files
-from the filesystem. It might be resolved by reordering file data to
-have most of it (i.e. except the start and the end) laying at "natural"
-boundaries, thus it would be possible to directly map a big portion of
-the file contents to the mm subsystem.
+ boundary, it is currently possibly suboptimal to read or execute files
+ from the filesystem. It might be resolved by reordering file data to
+ have most of it (i.e. except the start and the end) laying at "natural"
+ boundaries, thus it would be possible to directly map a big portion of
+ the file contents to the mm subsystem.
- Compression might be an useful feature, but memory is quite a
-limiting factor in my eyes.
+ limiting factor in my eyes.
- Where it is used?
@@ -183,4 +190,5 @@ limiting factor in my eyes.
Have fun,
+
Janos Farkas <chexum@shadow.banki.hu>
diff --git a/Documentation/filesystems/squashfs.txt b/Documentation/filesystems/squashfs.rst
index e5274f84dc56..df42106bae71 100644
--- a/Documentation/filesystems/squashfs.txt
+++ b/Documentation/filesystems/squashfs.rst
@@ -1,7 +1,11 @@
-SQUASHFS 4.0 FILESYSTEM
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================
+Squashfs 4.0 Filesystem
=======================
Squashfs is a compressed read-only filesystem for Linux.
+
It uses zlib, lz4, lzo, or xz compression to compress files, inodes and
directories. Inodes in the system are very small and all blocks are packed to
minimise data overhead. Block sizes greater than 4K are supported up to a
@@ -15,31 +19,33 @@ needed.
Mailing list: squashfs-devel@lists.sourceforge.net
Web site: www.squashfs.org
-1. FILESYSTEM FEATURES
+1. Filesystem Features
----------------------
Squashfs filesystem features versus Cramfs:
+============================== ========= ==========
Squashfs Cramfs
-
-Max filesystem size: 2^64 256 MiB
-Max file size: ~ 2 TiB 16 MiB
-Max files: unlimited unlimited
-Max directories: unlimited unlimited
-Max entries per directory: unlimited unlimited
-Max block size: 1 MiB 4 KiB
-Metadata compression: yes no
-Directory indexes: yes no
-Sparse file support: yes no
-Tail-end packing (fragments): yes no
-Exportable (NFS etc.): yes no
-Hard link support: yes no
-"." and ".." in readdir: yes no
-Real inode numbers: yes no
-32-bit uids/gids: yes no
-File creation time: yes no
-Xattr support: yes no
-ACL support: no no
+============================== ========= ==========
+Max filesystem size 2^64 256 MiB
+Max file size ~ 2 TiB 16 MiB
+Max files unlimited unlimited
+Max directories unlimited unlimited
+Max entries per directory unlimited unlimited
+Max block size 1 MiB 4 KiB
+Metadata compression yes no
+Directory indexes yes no
+Sparse file support yes no
+Tail-end packing (fragments) yes no
+Exportable (NFS etc.) yes no
+Hard link support yes no
+"." and ".." in readdir yes no
+Real inode numbers yes no
+32-bit uids/gids yes no
+File creation time yes no
+Xattr support yes no
+ACL support no no
+============================== ========= ==========
Squashfs compresses data, inodes and directories. In addition, inode and
directory data are highly compacted, and packed on byte boundaries. Each
@@ -47,7 +53,7 @@ compressed inode is on average 8 bytes in length (the exact length varies on
file type, i.e. regular file, directory, symbolic link, and block/char device
inodes have different sizes).
-2. USING SQUASHFS
+2. Using Squashfs
-----------------
As squashfs is a read-only filesystem, the mksquashfs program must be used to
@@ -58,11 +64,11 @@ obtained from this site also.
The squashfs-tools development tree is now located on kernel.org
git://git.kernel.org/pub/scm/fs/squashfs/squashfs-tools.git
-3. SQUASHFS FILESYSTEM DESIGN
+3. Squashfs Filesystem Design
-----------------------------
A squashfs filesystem consists of a maximum of nine parts, packed together on a
-byte alignment:
+byte alignment::
---------------
| superblock |
@@ -229,15 +235,15 @@ location of the xattr list inside each inode, a 32-bit xattr id
is stored. This xattr id is mapped into the location of the xattr
list using a second xattr id lookup table.
-4. TODOS AND OUTSTANDING ISSUES
+4. TODOs and Outstanding Issues
-------------------------------
-4.1 Todo list
+4.1 TODO list
-------------
Implement ACL support.
-4.2 Squashfs internal cache
+4.2 Squashfs Internal Cache
---------------------------
Blocks in Squashfs are compressed. To avoid repeatedly decompressing
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.rst
index ddf15b1b0d5a..290891c3fecb 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.rst
@@ -1,32 +1,36 @@
+.. SPDX-License-Identifier: GPL-2.0
-sysfs - _The_ filesystem for exporting kernel objects.
+=====================================================
+sysfs - _The_ filesystem for exporting kernel objects
+=====================================================
Patrick Mochel <mochel@osdl.org>
+
Mike Murphy <mamurph@cs.clemson.edu>
-Revised: 16 August 2011
-Original: 10 January 2003
+:Revised: 16 August 2011
+:Original: 10 January 2003
What it is:
~~~~~~~~~~~
sysfs is a ram-based filesystem initially based on ramfs. It provides
-a means to export kernel data structures, their attributes, and the
-linkages between them to userspace.
+a means to export kernel data structures, their attributes, and the
+linkages between them to userspace.
sysfs is tied inherently to the kobject infrastructure. Please read
Documentation/kobject.txt for more information concerning the kobject
-interface.
+interface.
Using sysfs
~~~~~~~~~~~
sysfs is always compiled in if CONFIG_SYSFS is defined. You can access
-it by doing:
+it by doing::
- mount -t sysfs sysfs /sys
+ mount -t sysfs sysfs /sys
Directory Creation
@@ -37,7 +41,7 @@ created for it in sysfs. That directory is created as a subdirectory
of the kobject's parent, expressing internal object hierarchies to
userspace. Top-level directories in sysfs represent the common
ancestors of object hierarchies; i.e. the subsystems the objects
-belong to.
+belong to.
Sysfs internally stores a pointer to the kobject that implements a
directory in the kernfs_node object associated with the directory. In
@@ -58,63 +62,63 @@ attributes.
Attributes should be ASCII text files, preferably with only one value
per file. It is noted that it may not be efficient to contain only one
value per file, so it is socially acceptable to express an array of
-values of the same type.
+values of the same type.
Mixing types, expressing multiple lines of data, and doing fancy
formatting of data is heavily frowned upon. Doing these things may get
-you publicly humiliated and your code rewritten without notice.
+you publicly humiliated and your code rewritten without notice.
-An attribute definition is simply:
+An attribute definition is simply::
-struct attribute {
- char * name;
- struct module *owner;
- umode_t mode;
-};
+ struct attribute {
+ char * name;
+ struct module *owner;
+ umode_t mode;
+ };
-int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
-void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);
+ int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
+ void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);
A bare attribute contains no means to read or write the value of the
attribute. Subsystems are encouraged to define their own attribute
structure and wrapper functions for adding and removing attributes for
-a specific object type.
+a specific object type.
-For example, the driver model defines struct device_attribute like:
+For example, the driver model defines struct device_attribute like::
-struct device_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device *dev, struct device_attribute *attr,
- char *buf);
- ssize_t (*store)(struct device *dev, struct device_attribute *attr,
- const char *buf, size_t count);
-};
+ struct device_attribute {
+ struct attribute attr;
+ ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+ char *buf);
+ ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count);
+ };
-int device_create_file(struct device *, const struct device_attribute *);
-void device_remove_file(struct device *, const struct device_attribute *);
+ int device_create_file(struct device *, const struct device_attribute *);
+ void device_remove_file(struct device *, const struct device_attribute *);
-It also defines this helper for defining device attributes:
+It also defines this helper for defining device attributes::
-#define DEVICE_ATTR(_name, _mode, _show, _store) \
-struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
+ #define DEVICE_ATTR(_name, _mode, _show, _store) \
+ struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
-For example, declaring
+For example, declaring::
-static DEVICE_ATTR(foo, S_IWUSR | S_IRUGO, show_foo, store_foo);
+ static DEVICE_ATTR(foo, S_IWUSR | S_IRUGO, show_foo, store_foo);
-is equivalent to doing:
+is equivalent to doing::
-static struct device_attribute dev_attr_foo = {
- .attr = {
- .name = "foo",
- .mode = S_IWUSR | S_IRUGO,
- },
- .show = show_foo,
- .store = store_foo,
-};
+ static struct device_attribute dev_attr_foo = {
+ .attr = {
+ .name = "foo",
+ .mode = S_IWUSR | S_IRUGO,
+ },
+ .show = show_foo,
+ .store = store_foo,
+ };
Note as stated in include/linux/kernel.h "OTHER_WRITABLE? Generally
considered a bad idea." so trying to set a sysfs file writable for
@@ -127,15 +131,21 @@ readable. The above case could be shortened to:
static struct device_attribute dev_attr_foo = __ATTR_RW(foo);
the list of helpers available to define your wrapper function is:
-__ATTR_RO(name): assumes default name_show and mode 0444
-__ATTR_WO(name): assumes a name_store only and is restricted to mode
+
+__ATTR_RO(name):
+ assumes default name_show and mode 0444
+__ATTR_WO(name):
+ assumes a name_store only and is restricted to mode
0200 that is root write access only.
-__ATTR_RO_MODE(name, mode): fore more restrictive RO access currently
+__ATTR_RO_MODE(name, mode):
+ fore more restrictive RO access currently
only use case is the EFI System Resource Table
(see drivers/firmware/efi/esrt.c)
-__ATTR_RW(name): assumes default name_show, name_store and setting
+__ATTR_RW(name):
+ assumes default name_show, name_store and setting
mode to 0644.
-__ATTR_NULL: which sets the name to NULL and is used as end of list
+__ATTR_NULL:
+ which sets the name to NULL and is used as end of list
indicator (see: kernel/workqueue.c)
Subsystem-Specific Callbacks
@@ -143,12 +153,12 @@ Subsystem-Specific Callbacks
When a subsystem defines a new attribute type, it must implement a
set of sysfs operations for forwarding read and write calls to the
-show and store methods of the attribute owners.
+show and store methods of the attribute owners::
-struct sysfs_ops {
- ssize_t (*show)(struct kobject *, struct attribute *, char *);
- ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t);
-};
+ struct sysfs_ops {
+ ssize_t (*show)(struct kobject *, struct attribute *, char *);
+ ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t);
+ };
[ Subsystems should have already defined a struct kobj_type as a
descriptor for this type, which is where the sysfs_ops pointer is
@@ -157,29 +167,29 @@ stored. See the kobject documentation for more information. ]
When a file is read or written, sysfs calls the appropriate method
for the type. The method then translates the generic struct kobject
and struct attribute pointers to the appropriate pointer types, and
-calls the associated methods.
+calls the associated methods.
-To illustrate:
+To illustrate::
-#define to_dev(obj) container_of(obj, struct device, kobj)
-#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
+ #define to_dev(obj) container_of(obj, struct device, kobj)
+ #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
-static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
- char *buf)
-{
- struct device_attribute *dev_attr = to_dev_attr(attr);
- struct device *dev = to_dev(kobj);
- ssize_t ret = -EIO;
+ static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
+ char *buf)
+ {
+ struct device_attribute *dev_attr = to_dev_attr(attr);
+ struct device *dev = to_dev(kobj);
+ ssize_t ret = -EIO;
- if (dev_attr->show)
- ret = dev_attr->show(dev, dev_attr, buf);
- if (ret >= (ssize_t)PAGE_SIZE) {
- printk("dev_attr_show: %pS returned bad count\n",
- dev_attr->show);
- }
- return ret;
-}
+ if (dev_attr->show)
+ ret = dev_attr->show(dev, dev_attr, buf);
+ if (ret >= (ssize_t)PAGE_SIZE) {
+ printk("dev_attr_show: %pS returned bad count\n",
+ dev_attr->show);
+ }
+ return ret;
+ }
@@ -188,11 +198,11 @@ Reading/Writing Attribute Data
To read or write attributes, show() or store() methods must be
specified when declaring the attribute. The method types should be as
-simple as those defined for device attributes:
+simple as those defined for device attributes::
-ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf);
-ssize_t (*store)(struct device *dev, struct device_attribute *attr,
- const char *buf, size_t count);
+ ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf);
+ ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count);
IOW, they should take only an object, an attribute, and a buffer as parameters.
@@ -200,11 +210,11 @@ IOW, they should take only an object, an attribute, and a buffer as parameters.
sysfs allocates a buffer of size (PAGE_SIZE) and passes it to the
method. Sysfs will call the method exactly once for each read or
write. This forces the following behavior on the method
-implementations:
+implementations:
-- On read(2), the show() method should fill the entire buffer.
+- On read(2), the show() method should fill the entire buffer.
Recall that an attribute should only be exporting one value, or an
- array of similar values, so this shouldn't be that expensive.
+ array of similar values, so this shouldn't be that expensive.
This allows userspace to do partial reads and forward seeks
arbitrarily over the entire file at will. If userspace seeks back to
@@ -218,10 +228,10 @@ implementations:
When writing sysfs files, userspace processes should first read the
entire file, modify the values it wishes to change, then write the
- entire buffer back.
+ entire buffer back.
Attribute method implementations should operate on an identical
- buffer when reading and writing values.
+ buffer when reading and writing values.
Other notes:
@@ -229,7 +239,7 @@ Other notes:
file position.
- The buffer will always be PAGE_SIZE bytes in length. On i386, this
- is 4096.
+ is 4096.
- show() methods should return the number of bytes printed into the
buffer. This is the return value of scnprintf().
@@ -246,31 +256,31 @@ Other notes:
through, be sure to return an error.
- The object passed to the methods will be pinned in memory via sysfs
- referencing counting its embedded object. However, the physical
- entity (e.g. device) the object represents may not be present. Be
- sure to have a way to check this, if necessary.
+ referencing counting its embedded object. However, the physical
+ entity (e.g. device) the object represents may not be present. Be
+ sure to have a way to check this, if necessary.
-A very simple (and naive) implementation of a device attribute is:
+A very simple (and naive) implementation of a device attribute is::
-static ssize_t show_name(struct device *dev, struct device_attribute *attr,
- char *buf)
-{
- return scnprintf(buf, PAGE_SIZE, "%s\n", dev->name);
-}
+ static ssize_t show_name(struct device *dev, struct device_attribute *attr,
+ char *buf)
+ {
+ return scnprintf(buf, PAGE_SIZE, "%s\n", dev->name);
+ }
-static ssize_t store_name(struct device *dev, struct device_attribute *attr,
- const char *buf, size_t count)
-{
- snprintf(dev->name, sizeof(dev->name), "%.*s",
- (int)min(count, sizeof(dev->name) - 1), buf);
- return count;
-}
+ static ssize_t store_name(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count)
+ {
+ snprintf(dev->name, sizeof(dev->name), "%.*s",
+ (int)min(count, sizeof(dev->name) - 1), buf);
+ return count;
+ }
-static DEVICE_ATTR(name, S_IRUGO, show_name, store_name);
+ static DEVICE_ATTR(name, S_IRUGO, show_name, store_name);
-(Note that the real implementation doesn't allow userspace to set the
+(Note that the real implementation doesn't allow userspace to set the
name for a device.)
@@ -278,25 +288,25 @@ Top Level Directory Layout
~~~~~~~~~~~~~~~~~~~~~~~~~~
The sysfs directory arrangement exposes the relationship of kernel
-data structures.
+data structures.
-The top level sysfs directory looks like:
+The top level sysfs directory looks like::
-block/
-bus/
-class/
-dev/
-devices/
-firmware/
-net/
-fs/
+ block/
+ bus/
+ class/
+ dev/
+ devices/
+ firmware/
+ net/
+ fs/
devices/ contains a filesystem representation of the device tree. It maps
directly to the internal kernel device tree, which is a hierarchy of
-struct device.
+struct device.
bus/ contains flat directory layout of the various bus types in the
-kernel. Each bus's directory contains two subdirectories:
+kernel. Each bus's directory contains two subdirectories::
devices/
drivers/
@@ -331,71 +341,71 @@ Current Interfaces
The following interface layers currently exist in sysfs:
-- devices (include/linux/device.h)
-----------------------------------
-Structure:
+devices (include/linux/device.h)
+--------------------------------
+Structure::
-struct device_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device *dev, struct device_attribute *attr,
- char *buf);
- ssize_t (*store)(struct device *dev, struct device_attribute *attr,
- const char *buf, size_t count);
-};
+ struct device_attribute {
+ struct attribute attr;
+ ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+ char *buf);
+ ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count);
+ };
-Declaring:
+Declaring::
-DEVICE_ATTR(_name, _mode, _show, _store);
+ DEVICE_ATTR(_name, _mode, _show, _store);
-Creation/Removal:
+Creation/Removal::
-int device_create_file(struct device *dev, const struct device_attribute * attr);
-void device_remove_file(struct device *dev, const struct device_attribute * attr);
+ int device_create_file(struct device *dev, const struct device_attribute * attr);
+ void device_remove_file(struct device *dev, const struct device_attribute * attr);
-- bus drivers (include/linux/device.h)
---------------------------------------
-Structure:
+bus drivers (include/linux/device.h)
+------------------------------------
+Structure::
-struct bus_attribute {
- struct attribute attr;
- ssize_t (*show)(struct bus_type *, char * buf);
- ssize_t (*store)(struct bus_type *, const char * buf, size_t count);
-};
+ struct bus_attribute {
+ struct attribute attr;
+ ssize_t (*show)(struct bus_type *, char * buf);
+ ssize_t (*store)(struct bus_type *, const char * buf, size_t count);
+ };
-Declaring:
+Declaring::
-static BUS_ATTR_RW(name);
-static BUS_ATTR_RO(name);
-static BUS_ATTR_WO(name);
+ static BUS_ATTR_RW(name);
+ static BUS_ATTR_RO(name);
+ static BUS_ATTR_WO(name);
-Creation/Removal:
+Creation/Removal::
-int bus_create_file(struct bus_type *, struct bus_attribute *);
-void bus_remove_file(struct bus_type *, struct bus_attribute *);
+ int bus_create_file(struct bus_type *, struct bus_attribute *);
+ void bus_remove_file(struct bus_type *, struct bus_attribute *);
-- device drivers (include/linux/device.h)
------------------------------------------
+device drivers (include/linux/device.h)
+---------------------------------------
-Structure:
+Structure::
-struct driver_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device_driver *, char * buf);
- ssize_t (*store)(struct device_driver *, const char * buf,
- size_t count);
-};
+ struct driver_attribute {
+ struct attribute attr;
+ ssize_t (*show)(struct device_driver *, char * buf);
+ ssize_t (*store)(struct device_driver *, const char * buf,
+ size_t count);
+ };
-Declaring:
+Declaring::
-DRIVER_ATTR_RO(_name)
-DRIVER_ATTR_RW(_name)
+ DRIVER_ATTR_RO(_name)
+ DRIVER_ATTR_RW(_name)
-Creation/Removal:
+Creation/Removal::
-int driver_create_file(struct device_driver *, const struct driver_attribute *);
-void driver_remove_file(struct device_driver *, const struct driver_attribute *);
+ int driver_create_file(struct device_driver *, const struct driver_attribute *);
+ void driver_remove_file(struct device_driver *, const struct driver_attribute *);
Documentation
diff --git a/Documentation/filesystems/sysv-fs.txt b/Documentation/filesystems/sysv-fs.rst
index 253b50d1328e..89e40911ad7c 100644
--- a/Documentation/filesystems/sysv-fs.txt
+++ b/Documentation/filesystems/sysv-fs.rst
@@ -1,25 +1,40 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================
+SystemV Filesystem
+==================
+
It implements all of
- Xenix FS,
- SystemV/386 FS,
- Coherent FS.
To install:
+
* Answer the 'System V and Coherent filesystem support' question with 'y'
when configuring the kernel.
-* To mount a disk or a partition, use
+* To mount a disk or a partition, use::
+
mount [-r] -t sysv device mountpoint
- The file system type names
+
+ The file system type names::
+
-t sysv
-t xenix
-t coherent
+
may be used interchangeably, but the last two will eventually disappear.
Bugs in the present implementation:
+
- Coherent FS:
+
- The "free list interleave" n:m is currently ignored.
- Only file systems with no filesystem name and no pack name are recognized.
- (See Coherent "man mkfs" for a description of these features.)
+ (See Coherent "man mkfs" for a description of these features.)
+
- SystemV Release 2 FS:
+
The superblock is only searched in the blocks 9, 15, 18, which
corresponds to the beginning of track 1 on floppy disks. No support
for this FS on hard disk yet.
@@ -28,12 +43,14 @@ Bugs in the present implementation:
These filesystems are rather similar. Here is a comparison with Minix FS:
* Linux fdisk reports on partitions
+
- Minix FS 0x81 Linux/Minix
- Xenix FS ??
- SystemV FS ??
- Coherent FS 0x08 AIX bootable
* Size of a block or zone (data allocation unit on disk)
+
- Minix FS 1024
- Xenix FS 1024 (also 512 ??)
- SystemV FS 1024 (also 512 and 2048)
@@ -45,37 +62,51 @@ These filesystems are rather similar. Here is a comparison with Minix FS:
all the block numbers (including the super block) are offset by one track.
* Byte ordering of "short" (16 bit entities) on disk:
+
- Minix FS little endian 0 1
- Xenix FS little endian 0 1
- SystemV FS little endian 0 1
- Coherent FS little endian 0 1
+
Of course, this affects only the file system, not the data of files on it!
* Byte ordering of "long" (32 bit entities) on disk:
+
- Minix FS little endian 0 1 2 3
- Xenix FS little endian 0 1 2 3
- SystemV FS little endian 0 1 2 3
- Coherent FS PDP-11 2 3 0 1
+
Of course, this affects only the file system, not the data of files on it!
* Inode on disk: "short", 0 means non-existent, the root dir ino is:
- - Minix FS 1
- - Xenix FS, SystemV FS, Coherent FS 2
+
+ ================================= ==
+ Minix FS 1
+ Xenix FS, SystemV FS, Coherent FS 2
+ ================================= ==
* Maximum number of hard links to a file:
- - Minix FS 250
- - Xenix FS ??
- - SystemV FS ??
- - Coherent FS >=10000
+
+ =========== =========
+ Minix FS 250
+ Xenix FS ??
+ SystemV FS ??
+ Coherent FS >=10000
+ =========== =========
* Free inode management:
- - Minix FS a bitmap
+
+ - Minix FS
+ a bitmap
- Xenix FS, SystemV FS, Coherent FS
There is a cache of a certain number of free inodes in the super-block.
When it is exhausted, new free inodes are found using a linear search.
* Free block management:
- - Minix FS a bitmap
+
+ - Minix FS
+ a bitmap
- Xenix FS, SystemV FS, Coherent FS
Free blocks are organized in a "free list". Maybe a misleading term,
since it is not true that every free block contains a pointer to
@@ -86,13 +117,18 @@ These filesystems are rather similar. Here is a comparison with Minix FS:
0 on Xenix FS and SystemV FS, with a block zeroed out on Coherent FS.
* Super-block location:
- - Minix FS block 1 = bytes 1024..2047
- - Xenix FS block 1 = bytes 1024..2047
- - SystemV FS bytes 512..1023
- - Coherent FS block 1 = bytes 512..1023
+
+ =========== ==========================
+ Minix FS block 1 = bytes 1024..2047
+ Xenix FS block 1 = bytes 1024..2047
+ SystemV FS bytes 512..1023
+ Coherent FS block 1 = bytes 512..1023
+ =========== ==========================
* Super-block layout:
- - Minix FS
+
+ - Minix FS::
+
unsigned short s_ninodes;
unsigned short s_nzones;
unsigned short s_imap_blocks;
@@ -101,7 +137,9 @@ These filesystems are rather similar. Here is a comparison with Minix FS:
unsigned short s_log_zone_size;
unsigned long s_max_size;
unsigned short s_magic;
- - Xenix FS, SystemV FS, Coherent FS
+
+ - Xenix FS, SystemV FS, Coherent FS::
+
unsigned short s_firstdatazone;
unsigned long s_nzones;
unsigned short s_fzone_count;
@@ -120,23 +158,33 @@ These filesystems are rather similar. Here is a comparison with Minix FS:
unsigned short s_interleave_m,s_interleave_n; -- Coherent FS only
char s_fname[6];
char s_fpack[6];
+
then they differ considerably:
- Xenix FS
+
+ Xenix FS::
+
char s_clean;
char s_fill[371];
long s_magic;
long s_type;
- SystemV FS
+
+ SystemV FS::
+
long s_fill[12 or 14];
long s_state;
long s_magic;
long s_type;
- Coherent FS
+
+ Coherent FS::
+
unsigned long s_unique;
+
Note that Coherent FS has no magic.
* Inode layout:
- - Minix FS
+
+ - Minix FS::
+
unsigned short i_mode;
unsigned short i_uid;
unsigned long i_size;
@@ -144,7 +192,9 @@ These filesystems are rather similar. Here is a comparison with Minix FS:
unsigned char i_gid;
unsigned char i_nlinks;
unsigned short i_zone[7+1+1];
- - Xenix FS, SystemV FS, Coherent FS
+
+ - Xenix FS, SystemV FS, Coherent FS::
+
unsigned short i_mode;
unsigned short i_nlink;
unsigned short i_uid;
@@ -155,38 +205,55 @@ These filesystems are rather similar. Here is a comparison with Minix FS:
unsigned long i_mtime;
unsigned long i_ctime;
+
* Regular file data blocks are organized as
- - Minix FS
- 7 direct blocks
- 1 indirect block (pointers to blocks)
- 1 double-indirect block (pointer to pointers to blocks)
- - Xenix FS, SystemV FS, Coherent FS
- 10 direct blocks
- 1 indirect block (pointers to blocks)
- 1 double-indirect block (pointer to pointers to blocks)
- 1 triple-indirect block (pointer to pointers to pointers to blocks)
-* Inode size, inodes per block
- - Minix FS 32 32
- - Xenix FS 64 16
- - SystemV FS 64 16
- - Coherent FS 64 8
+ - Minix FS:
+
+ - 7 direct blocks
+ - 1 indirect block (pointers to blocks)
+ - 1 double-indirect block (pointer to pointers to blocks)
+
+ - Xenix FS, SystemV FS, Coherent FS:
+
+ - 10 direct blocks
+ - 1 indirect block (pointers to blocks)
+ - 1 double-indirect block (pointer to pointers to blocks)
+ - 1 triple-indirect block (pointer to pointers to pointers to blocks)
+
+
+ =========== ========== ================
+ Inode size inodes per block
+ =========== ========== ================
+ Minix FS 32 32
+ Xenix FS 64 16
+ SystemV FS 64 16
+ Coherent FS 64 8
+ =========== ========== ================
* Directory entry on disk
- - Minix FS
+
+ - Minix FS::
+
unsigned short inode;
char name[14/30];
- - Xenix FS, SystemV FS, Coherent FS
+
+ - Xenix FS, SystemV FS, Coherent FS::
+
unsigned short inode;
char name[14];
-* Dir entry size, dir entries per block
- - Minix FS 16/32 64/32
- - Xenix FS 16 64
- - SystemV FS 16 64
- - Coherent FS 16 32
+ =========== ============== =====================
+ Dir entry size dir entries per block
+ =========== ============== =====================
+ Minix FS 16/32 64/32
+ Xenix FS 16 64
+ SystemV FS 16 64
+ Coherent FS 16 32
+ =========== ============== =====================
* How to implement symbolic links such that the host fsck doesn't scream:
+
- Minix FS normal
- Xenix FS kludge: as regular files with chmod 1000
- SystemV FS ??
diff --git a/Documentation/filesystems/tmpfs.txt b/Documentation/filesystems/tmpfs.rst
index 5ecbc03e6b2f..4e95929301a5 100644
--- a/Documentation/filesystems/tmpfs.txt
+++ b/Documentation/filesystems/tmpfs.rst
@@ -1,3 +1,9 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====
+Tmpfs
+=====
+
Tmpfs is a file system which keeps all files in virtual memory.
@@ -14,7 +20,7 @@ If you compare it to ramfs (which was the template to create tmpfs)
you gain swapping and limit checking. Another similar thing is the RAM
disk (/dev/ram*), which simulates a fixed size hard disk in physical
RAM, where you have to create an ordinary filesystem on top. Ramdisks
-cannot swap and you do not have the possibility to resize them.
+cannot swap and you do not have the possibility to resize them.
Since tmpfs lives completely in the page cache and on swap, all tmpfs
pages will be shown as "Shmem" in /proc/meminfo and "Shared" in
@@ -26,7 +32,7 @@ tmpfs has the following uses:
1) There is always a kernel internal mount which you will not see at
all. This is used for shared anonymous mappings and SYSV shared
- memory.
+ memory.
This mount does not depend on CONFIG_TMPFS. If CONFIG_TMPFS is not
set, the user visible part of tmpfs is not build. But the internal
@@ -34,7 +40,7 @@ tmpfs has the following uses:
2) glibc 2.2 and above expects tmpfs to be mounted at /dev/shm for
POSIX shared memory (shm_open, shm_unlink). Adding the following
- line to /etc/fstab should take care of this:
+ line to /etc/fstab should take care of this::
tmpfs /dev/shm tmpfs defaults 0 0
@@ -56,15 +62,17 @@ tmpfs has the following uses:
tmpfs has three mount options for sizing:
-size: The limit of allocated bytes for this tmpfs instance. The
+========= ============================================================
+size The limit of allocated bytes for this tmpfs instance. The
default is half of your physical RAM without swap. If you
oversize your tmpfs instances the machine will deadlock
since the OOM handler will not be able to free that memory.
-nr_blocks: The same as size, but in blocks of PAGE_SIZE.
-nr_inodes: The maximum number of inodes for this instance. The default
+nr_blocks The same as size, but in blocks of PAGE_SIZE.
+nr_inodes The maximum number of inodes for this instance. The default
is half of the number of your physical RAM pages, or (on a
machine with highmem) the number of lowmem RAM pages,
whichever is the lower.
+========= ============================================================
These parameters accept a suffix k, m or g for kilo, mega and giga and
can be changed on remount. The size parameter also accepts a suffix %
@@ -82,6 +90,7 @@ tmpfs has a mount option to set the NUMA memory allocation policy for
all files in that instance (if CONFIG_NUMA is enabled) - which can be
adjusted on the fly via 'mount -o remount ...'
+======================== ==============================================
mpol=default use the process allocation policy
(see set_mempolicy(2))
mpol=prefer:Node prefers to allocate memory from the given Node
@@ -89,6 +98,7 @@ mpol=bind:NodeList allocates memory only from nodes in NodeList
mpol=interleave prefers to allocate from each node in turn
mpol=interleave:NodeList allocates from each node of NodeList in turn
mpol=local prefers to allocate memory from the local node
+======================== ==============================================
NodeList format is a comma-separated list of decimal numbers and ranges,
a range being two hyphen-separated decimal numbers, the smallest and
@@ -98,9 +108,9 @@ A memory policy with a valid NodeList will be saved, as specified, for
use at file creation time. When a task allocates a file in the file
system, the mount option memory policy will be applied with a NodeList,
if any, modified by the calling task's cpuset constraints
-[See Documentation/admin-guide/cgroup-v1/cpusets.rst] and any optional flags, listed
-below. If the resulting NodeLists is the empty set, the effective memory
-policy for the file will revert to "default" policy.
+[See Documentation/admin-guide/cgroup-v1/cpusets.rst] and any optional flags,
+listed below. If the resulting NodeLists is the empty set, the effective
+memory policy for the file will revert to "default" policy.
NUMA memory allocation policies have optional flags that can be used in
conjunction with their modes. These optional flags can be specified
@@ -109,6 +119,8 @@ See Documentation/admin-guide/mm/numa_memory_policy.rst for a list of
all available memory allocation policy mode flags and their effect on
memory policy.
+::
+
=static is equivalent to MPOL_F_STATIC_NODES
=relative is equivalent to MPOL_F_RELATIVE_NODES
@@ -128,9 +140,11 @@ on MountPoint, by 'mount -o remount,mpol=Policy:NodeList MountPoint'.
To specify the initial root directory you can use the following mount
options:
-mode: The permissions as an octal number
-uid: The user id
-gid: The group id
+==== ==================================
+mode The permissions as an octal number
+uid The user id
+gid The group id
+==== ==================================
These options do not have any effect on remount. You can change these
parameters with chmod(1), chown(1) and chgrp(1) on a mounted filesystem.
@@ -141,9 +155,9 @@ will give you tmpfs instance on /mytmpfs which can allocate 10GB
RAM/SWAP in 10240 inodes and it is only accessible by root.
-Author:
+:Author:
Christoph Rohland <cr@sap.com>, 1.12.01
-Updated:
+:Updated:
Hugh Dickins, 4 June 2007
-Updated:
+:Updated:
KOSAKI Motohiro, 16 Mar 2010
diff --git a/Documentation/filesystems/ubifs-authentication.rst b/Documentation/filesystems/ubifs-authentication.rst
index 6a9584f6ff46..16efd729bf7c 100644
--- a/Documentation/filesystems/ubifs-authentication.rst
+++ b/Documentation/filesystems/ubifs-authentication.rst
@@ -1,3 +1,5 @@
+.. SPDX-License-Identifier: GPL-2.0
+
:orphan:
.. UBIFS Authentication
@@ -92,11 +94,11 @@ UBIFS Index & Tree Node Cache
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Basic on-flash UBIFS entities are called *nodes*. UBIFS knows different types
-of nodes. Eg. data nodes (`struct ubifs_data_node`) which store chunks of file
-contents or inode nodes (`struct ubifs_ino_node`) which represent VFS inodes.
-Almost all types of nodes share a common header (`ubifs_ch`) containing basic
+of nodes. Eg. data nodes (``struct ubifs_data_node``) which store chunks of file
+contents or inode nodes (``struct ubifs_ino_node``) which represent VFS inodes.
+Almost all types of nodes share a common header (``ubifs_ch``) containing basic
information like node type, node length, a sequence number, etc. (see
-`fs/ubifs/ubifs-media.h`in kernel source). Exceptions are entries of the LPT
+``fs/ubifs/ubifs-media.h`` in kernel source). Exceptions are entries of the LPT
and some less important node types like padding nodes which are used to pad
unusable content at the end of LEBs.
diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.rst
index acc80442a3bb..e6ee99762534 100644
--- a/Documentation/filesystems/ubifs.txt
+++ b/Documentation/filesystems/ubifs.rst
@@ -1,5 +1,11 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+UBI File System
+===============
+
Introduction
-=============
+============
UBIFS file-system stands for UBI File System. UBI stands for "Unsorted
Block Images". UBIFS is a flash file system, which means it is designed
@@ -79,6 +85,7 @@ Mount options
(*) == default.
+==================== =======================================================
bulk_read read more in one go to take advantage of flash
media that read faster sequentially
no_bulk_read (*) do not bulk-read
@@ -98,6 +105,7 @@ auth_key= specify the key used for authenticating the filesystem.
auth_hash_name= The hash algorithm used for authentication. Used for
both hashing and for creating HMACs. Typical values
include "sha256" or "sha512"
+==================== =======================================================
Quick usage instructions
@@ -107,12 +115,14 @@ The UBI volume to mount is specified using "ubiX_Y" or "ubiX:NAME" syntax,
where "X" is UBI device number, "Y" is UBI volume number, and "NAME" is
UBI volume name.
-Mount volume 0 on UBI device 0 to /mnt/ubifs:
-$ mount -t ubifs ubi0_0 /mnt/ubifs
+Mount volume 0 on UBI device 0 to /mnt/ubifs::
+
+ $ mount -t ubifs ubi0_0 /mnt/ubifs
Mount "rootfs" volume of UBI device 0 to /mnt/ubifs ("rootfs" is volume
-name):
-$ mount -t ubifs ubi0:rootfs /mnt/ubifs
+name)::
+
+ $ mount -t ubifs ubi0:rootfs /mnt/ubifs
The following is an example of the kernel boot arguments to attach mtd0
to UBI and mount volume "rootfs":
@@ -122,5 +132,6 @@ References
==========
UBIFS documentation and FAQ/HOWTO at the MTD web site:
-http://www.linux-mtd.infradead.org/doc/ubifs.html
-http://www.linux-mtd.infradead.org/faq/ubifs.html
+
+- http://www.linux-mtd.infradead.org/doc/ubifs.html
+- http://www.linux-mtd.infradead.org/faq/ubifs.html
diff --git a/Documentation/filesystems/udf.txt b/Documentation/filesystems/udf.rst
index e2f2faf32f18..d9badbf285b2 100644
--- a/Documentation/filesystems/udf.txt
+++ b/Documentation/filesystems/udf.rst
@@ -1,6 +1,8 @@
-*
-* Documentation/filesystems/udf.txt
-*
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+UDF file system
+===============
If you encounter problems with reading UDF discs using this driver,
please report them according to MAINTAINERS file.
@@ -18,8 +20,10 @@ performance due to very poor read-modify-write support supplied internally
by drive firmware.
-------------------------------------------------------------------------------
+
The following mount options are supported:
+ =========== ======================================
gid= Set the default group.
umask= Set the default umask.
mode= Set the default file permissions.
@@ -34,6 +38,7 @@ The following mount options are supported:
longad Use long ad's (default)
nostrict Unset strict conformance
iocharset= Set the NLS character set
+ =========== ======================================
The uid= and gid= options need a bit more explaining. They will accept a
decimal numeric value and all inodes on that mount will then appear as
@@ -47,13 +52,17 @@ the interactive user will always see the files on the disk as belonging to him.
The remaining are for debugging and disaster recovery:
- novrs Skip volume sequence recognition
+ ===== ================================
+ novrs Skip volume sequence recognition
+ ===== ================================
The following expect a offset from 0.
+ ========== =================================================
session= Set the CDROM session (default= last session)
anchor= Override standard anchor location. (default= 256)
lastblock= Set the last block of the filesystem/
+ ========== =================================================
-------------------------------------------------------------------------------
@@ -62,5 +71,5 @@ For the latest version and toolset see:
https://github.com/pali/udftools
Documentation on UDF and ECMA 167 is available FREE from:
- http://www.osta.org/
- http://www.ecma-international.org/
+ - http://www.osta.org/
+ - http://www.ecma-international.org/
diff --git a/Documentation/filesystems/virtiofs.rst b/Documentation/filesystems/virtiofs.rst
index 4f338e3cb3f7..e06e4951cb39 100644
--- a/Documentation/filesystems/virtiofs.rst
+++ b/Documentation/filesystems/virtiofs.rst
@@ -1,5 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0
+.. _virtiofs_index:
+
===================================================
virtiofs: virtio-fs host<->guest shared file system
===================================================
diff --git a/Documentation/filesystems/zonefs.txt b/Documentation/filesystems/zonefs.rst
index d54fa98ac158..71d845c6a700 100644
--- a/Documentation/filesystems/zonefs.txt
+++ b/Documentation/filesystems/zonefs.rst
@@ -1,4 +1,8 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+================================================
ZoneFS - Zone filesystem for Zoned block devices
+================================================
Introduction
============
@@ -29,6 +33,7 @@ Zoned block devices
Zoned storage devices belong to a class of storage devices with an address
space that is divided into zones. A zone is a group of consecutive LBAs and all
zones are contiguous (there are no LBA gaps). Zones may have different types.
+
* Conventional zones: there are no access constraints to LBAs belonging to
conventional zones. Any read or write access can be executed, similarly to a
regular block device.
@@ -158,6 +163,7 @@ Format options
--------------
Several optional features of zonefs can be enabled at format time.
+
* Conventional zone aggregation: ranges of contiguous conventional zones can be
aggregated into a single larger file instead of the default one file per zone.
* File ownership: The owner UID and GID of zone files is by default 0 (root)
@@ -249,7 +255,7 @@ permissions.
Further action taken by zonefs I/O error recovery can be controlled by the user
with the "errors=xxx" mount option. The table below summarizes the result of
zonefs I/O error processing depending on the mount option and on the zone
-conditions.
+conditions::
+--------------+-----------+-----------------------------------------+
| | | Post error state |
@@ -258,11 +264,11 @@ conditions.
| option | condition | size read write read write |
+--------------+-----------+-----------------------------------------+
| | good | fixed yes no yes yes |
- | remount-ro | read-only | fixed yes no yes no |
+ | remount-ro | read-only | as is yes no yes no |
| (default) | offline | 0 no no no no |
+--------------+-----------+-----------------------------------------+
| | good | fixed yes no yes yes |
- | zone-ro | read-only | fixed yes no yes no |
+ | zone-ro | read-only | as is yes no yes no |
| | offline | 0 no no no no |
+--------------+-----------+-----------------------------------------+
| | good | 0 no no yes yes |
@@ -270,11 +276,12 @@ conditions.
| | offline | 0 no no no no |
+--------------+-----------+-----------------------------------------+
| | good | fixed yes yes yes yes |
- | repair | read-only | fixed yes no yes no |
+ | repair | read-only | as is yes no yes no |
| | offline | 0 no no no no |
+--------------+-----------+-----------------------------------------+
Further notes:
+
* The "errors=remount-ro" mount option is the default behavior of zonefs I/O
error processing if no errors mount option is specified.
* With the "errors=remount-ro" mount option, the change of the file access
@@ -302,13 +309,22 @@ Mount options
zonefs define the "errors=<behavior>" mount option to allow the user to specify
zonefs behavior in response to I/O errors, inode size inconsistencies or zone
condition changes. The defined behaviors are as follow:
+
* remount-ro (default)
* zone-ro
* zone-offline
* repair
-The I/O error actions defined for each behavior are detailed in the previous
-section.
+The run-time I/O error actions defined for each behavior are detailed in the
+previous section. Mount time I/O errors will cause the mount operation to fail.
+The handling of read-only zones also differs between mount-time and run-time.
+If a read-only zone is found at mount time, the zone is always treated in the
+same manner as offline zones, that is, all accesses are disabled and the zone
+file size set to 0. This is necessary as the write pointer of read-only zones
+is defined as invalib by the ZBC and ZAC standards, making it impossible to
+discover the amount of data that has been written to the zone. In the case of a
+read-only zone discovered at run-time, as indicated in the previous section.
+the size of the zone file is left unchanged from its last updated value.
Zonefs User Space Tools
=======================
@@ -325,78 +341,78 @@ Examples
--------
The following formats a 15TB host-managed SMR HDD with 256 MB zones
-with the conventional zones aggregation feature enabled.
+with the conventional zones aggregation feature enabled::
-# mkzonefs -o aggr_cnv /dev/sdX
-# mount -t zonefs /dev/sdX /mnt
-# ls -l /mnt/
-total 0
-dr-xr-xr-x 2 root root 1 Nov 25 13:23 cnv
-dr-xr-xr-x 2 root root 55356 Nov 25 13:23 seq
+ # mkzonefs -o aggr_cnv /dev/sdX
+ # mount -t zonefs /dev/sdX /mnt
+ # ls -l /mnt/
+ total 0
+ dr-xr-xr-x 2 root root 1 Nov 25 13:23 cnv
+ dr-xr-xr-x 2 root root 55356 Nov 25 13:23 seq
The size of the zone files sub-directories indicate the number of files
existing for each type of zones. In this example, there is only one
conventional zone file (all conventional zones are aggregated under a single
-file).
+file)::
-# ls -l /mnt/cnv
-total 137101312
--rw-r----- 1 root root 140391743488 Nov 25 13:23 0
+ # ls -l /mnt/cnv
+ total 137101312
+ -rw-r----- 1 root root 140391743488 Nov 25 13:23 0
-This aggregated conventional zone file can be used as a regular file.
+This aggregated conventional zone file can be used as a regular file::
-# mkfs.ext4 /mnt/cnv/0
-# mount -o loop /mnt/cnv/0 /data
+ # mkfs.ext4 /mnt/cnv/0
+ # mount -o loop /mnt/cnv/0 /data
The "seq" sub-directory grouping files for sequential write zones has in this
-example 55356 zones.
+example 55356 zones::
-# ls -lv /mnt/seq
-total 14511243264
--rw-r----- 1 root root 0 Nov 25 13:23 0
--rw-r----- 1 root root 0 Nov 25 13:23 1
--rw-r----- 1 root root 0 Nov 25 13:23 2
-...
--rw-r----- 1 root root 0 Nov 25 13:23 55354
--rw-r----- 1 root root 0 Nov 25 13:23 55355
+ # ls -lv /mnt/seq
+ total 14511243264
+ -rw-r----- 1 root root 0 Nov 25 13:23 0
+ -rw-r----- 1 root root 0 Nov 25 13:23 1
+ -rw-r----- 1 root root 0 Nov 25 13:23 2
+ ...
+ -rw-r----- 1 root root 0 Nov 25 13:23 55354
+ -rw-r----- 1 root root 0 Nov 25 13:23 55355
For sequential write zone files, the file size changes as data is appended at
-the end of the file, similarly to any regular file system.
+the end of the file, similarly to any regular file system::
-# dd if=/dev/zero of=/mnt/seq/0 bs=4096 count=1 conv=notrunc oflag=direct
-1+0 records in
-1+0 records out
-4096 bytes (4.1 kB, 4.0 KiB) copied, 0.00044121 s, 9.3 MB/s
+ # dd if=/dev/zero of=/mnt/seq/0 bs=4096 count=1 conv=notrunc oflag=direct
+ 1+0 records in
+ 1+0 records out
+ 4096 bytes (4.1 kB, 4.0 KiB) copied, 0.00044121 s, 9.3 MB/s
-# ls -l /mnt/seq/0
--rw-r----- 1 root root 4096 Nov 25 13:23 /mnt/seq/0
+ # ls -l /mnt/seq/0
+ -rw-r----- 1 root root 4096 Nov 25 13:23 /mnt/seq/0
The written file can be truncated to the zone size, preventing any further
-write operation.
+write operation::
-# truncate -s 268435456 /mnt/seq/0
-# ls -l /mnt/seq/0
--rw-r----- 1 root root 268435456 Nov 25 13:49 /mnt/seq/0
+ # truncate -s 268435456 /mnt/seq/0
+ # ls -l /mnt/seq/0
+ -rw-r----- 1 root root 268435456 Nov 25 13:49 /mnt/seq/0
Truncation to 0 size allows freeing the file zone storage space and restart
-append-writes to the file.
+append-writes to the file::
-# truncate -s 0 /mnt/seq/0
-# ls -l /mnt/seq/0
--rw-r----- 1 root root 0 Nov 25 13:49 /mnt/seq/0
+ # truncate -s 0 /mnt/seq/0
+ # ls -l /mnt/seq/0
+ -rw-r----- 1 root root 0 Nov 25 13:49 /mnt/seq/0
Since files are statically mapped to zones on the disk, the number of blocks of
-a file as reported by stat() and fstat() indicates the size of the file zone.
-
-# stat /mnt/seq/0
- File: /mnt/seq/0
- Size: 0 Blocks: 524288 IO Block: 4096 regular empty file
-Device: 870h/2160d Inode: 50431 Links: 1
-Access: (0640/-rw-r-----) Uid: ( 0/ root) Gid: ( 0/ root)
-Access: 2019-11-25 13:23:57.048971997 +0900
-Modify: 2019-11-25 13:52:25.553805765 +0900
-Change: 2019-11-25 13:52:25.553805765 +0900
- Birth: -
+a file as reported by stat() and fstat() indicates the size of the file zone::
+
+ # stat /mnt/seq/0
+ File: /mnt/seq/0
+ Size: 0 Blocks: 524288 IO Block: 4096 regular empty file
+ Device: 870h/2160d Inode: 50431 Links: 1
+ Access: (0640/-rw-r-----) Uid: ( 0/ root) Gid: ( 0/ root)
+ Access: 2019-11-25 13:23:57.048971997 +0900
+ Modify: 2019-11-25 13:52:25.553805765 +0900
+ Change: 2019-11-25 13:52:25.553805765 +0900
+ Birth: -
The number of blocks of the file ("Blocks") in units of 512B blocks gives the
maximum file size of 524288 * 512 B = 256 MB, corresponding to the device zone
diff --git a/Documentation/gpu/i915.rst b/Documentation/gpu/i915.rst
index e539c42a3e78..cc74e24ca3b5 100644
--- a/Documentation/gpu/i915.rst
+++ b/Documentation/gpu/i915.rst
@@ -207,10 +207,10 @@ DPIO
CSR firmware support for DMC
----------------------------
-.. kernel-doc:: drivers/gpu/drm/i915/intel_csr.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_csr.c
:doc: csr support for dmc
-.. kernel-doc:: drivers/gpu/drm/i915/intel_csr.c
+.. kernel-doc:: drivers/gpu/drm/i915/display/intel_csr.c
:internal:
Video BIOS Table (VBT)
diff --git a/Documentation/hwmon/index.rst b/Documentation/hwmon/index.rst
index b24adb67ddca..8ef62fd39787 100644
--- a/Documentation/hwmon/index.rst
+++ b/Documentation/hwmon/index.rst
@@ -162,6 +162,7 @@ Hardware Monitoring Kernel Drivers
tmp421
tmp513
tps40422
+ tps53679
twl4030-madc-hwmon
ucd9000
ucd9200
diff --git a/Documentation/hwmon/isl68137.rst b/Documentation/hwmon/isl68137.rst
index a5a7c8545c9e..cc4b61447b63 100644
--- a/Documentation/hwmon/isl68137.rst
+++ b/Documentation/hwmon/isl68137.rst
@@ -3,7 +3,7 @@ Kernel driver isl68137
Supported chips:
- * Intersil ISL68137
+ * Renesas ISL68137
Prefix: 'isl68137'
@@ -11,19 +11,405 @@ Supported chips:
Datasheet:
- Publicly available at the Intersil website
- https://www.intersil.com/content/dam/Intersil/documents/isl6/isl68137.pdf
+ Publicly available at the Renesas website
+ https://www.renesas.com/us/en/www/doc/datasheet/isl68137.pdf
+
+ * Renesas ISL68220
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68221
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68222
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68223
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68224
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68225
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68226
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68227
+
+ Prefix: 'raa_dmpvr2_1rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68229
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68233
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL68239
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69222
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69223
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69224
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69225
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69227
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69228
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69234
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69236
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69239
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69242
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69243
+
+ Prefix: 'raa_dmpvr2_1rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69247
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69248
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69254
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69255
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69256
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69259
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69260
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69268
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69269
+
+ Prefix: 'raa_dmpvr2_3rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas ISL69298
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas RAA228000
+
+ Prefix: 'raa_dmpvr2_hv'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas RAA228004
+
+ Prefix: 'raa_dmpvr2_hv'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas RAA228006
+
+ Prefix: 'raa_dmpvr2_hv'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas RAA228228
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas RAA229001
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
+
+ * Renesas RAA229004
+
+ Prefix: 'raa_dmpvr2_2rail'
+
+ Addresses scanned: -
+
+ Datasheet:
+
+ Publicly available (after August 2020 launch) at the Renesas website
Authors:
- Maxim Sloyko <maxims@google.com>
- Robert Lippert <rlippert@google.com>
- Patrick Venture <venture@google.com>
+ - Grant Peltier <grant.peltier.jg@renesas.com>
Description
-----------
-Intersil ISL68137 is a digital output 7-phase configurable PWM
-controller with an AVSBus interface.
+This driver supports the Renesas ISL68137 and all 2nd generation Renesas
+digital multiphase voltage regulators (raa_dmpvr2). The ISL68137 is a digital
+output 7-phase configurable PWM controller with an AVSBus interface. 2nd
+generation devices are grouped into 4 distinct configurations: '1rail' for
+single-rail devices, '2rail' for dual-rail devices, '3rail' for 3-rail devices,
+and 'hv' for high voltage single-rail devices. Consult the individual datasheets
+for more information.
Usage Notes
-----------
@@ -33,10 +419,14 @@ devices explicitly.
The ISL68137 AVS operation mode must be enabled/disabled at runtime.
-Beyond the normal sysfs pmbus attributes, the driver exposes a control attribute.
+Beyond the normal sysfs pmbus attributes, the driver exposes a control attribute
+for the ISL68137.
+
+For 2nd generation Renesas digital multiphase voltage regulators, only the
+normal sysfs pmbus attributes are supported.
-Additional Sysfs attributes
----------------------------
+ISL68137 sysfs attributes
+-------------------------
======================= ====================================
avs(0|1)_enable Controls the AVS state of each rail.
@@ -78,3 +468,138 @@ temp[1-3]_crit_alarm Chip temperature critical high alarm
temp[1-3]_max Maximum temperature
temp[1-3]_max_alarm Chip temperature high alarm
======================= ====================================
+
+raa_dmpvr2_1rail/hv sysfs attributes
+------------------------------------
+
+======================= ==========================================
+curr1_label "iin"
+curr1_input Measured input current
+curr1_crit Critical maximum current
+curr1_crit_alarm Current critical high alarm
+
+curr2_label "iout"
+curr2_input Measured output current
+curr2_crit Critical maximum current
+curr2_crit_alarm Current critical high alarm
+
+in1_label "vin"
+in1_input Measured input voltage
+in1_lcrit Critical minimum input voltage
+in1_lcrit_alarm Input voltage critical low alarm
+in1_crit Critical maximum input voltage
+in1_crit_alarm Input voltage critical high alarm
+
+in2_label "vmon"
+in2_input Scaled VMON voltage read from the VMON pin
+
+in3_label "vout"
+in3_input Measured output voltage
+in3_lcrit Critical minimum output voltage
+in3_lcrit_alarm Output voltage critical low alarm
+in3_crit Critical maximum output voltage
+in3_crit_alarm Output voltage critical high alarm
+
+power1_label "pin"
+power1_input Measured input power
+power1_alarm Input power high alarm
+
+power2_label "pout"
+power2_input Measured output power
+
+temp[1-3]_input Measured temperature
+temp[1-3]_crit Critical high temperature
+temp[1-3]_crit_alarm Chip temperature critical high alarm
+temp[1-3]_max Maximum temperature
+temp[1-3]_max_alarm Chip temperature high alarm
+======================= ==========================================
+
+raa_dmpvr2_2rail sysfs attributes
+---------------------------------
+
+======================= ==========================================
+curr[1-2]_label "iin[1-2]"
+curr[1-2]_input Measured input current
+curr[1-2]_crit Critical maximum current
+curr[1-2]_crit_alarm Current critical high alarm
+
+curr[3-4]_label "iout[1-2]"
+curr[3-4]_input Measured output current
+curr[3-4]_crit Critical maximum current
+curr[3-4]_crit_alarm Current critical high alarm
+
+in1_label "vin"
+in1_input Measured input voltage
+in1_lcrit Critical minimum input voltage
+in1_lcrit_alarm Input voltage critical low alarm
+in1_crit Critical maximum input voltage
+in1_crit_alarm Input voltage critical high alarm
+
+in2_label "vmon"
+in2_input Scaled VMON voltage read from the VMON pin
+
+in[3-4]_label "vout[1-2]"
+in[3-4]_input Measured output voltage
+in[3-4]_lcrit Critical minimum output voltage
+in[3-4]_lcrit_alarm Output voltage critical low alarm
+in[3-4]_crit Critical maximum output voltage
+in[3-4]_crit_alarm Output voltage critical high alarm
+
+power[1-2]_label "pin[1-2]"
+power[1-2]_input Measured input power
+power[1-2]_alarm Input power high alarm
+
+power[3-4]_label "pout[1-2]"
+power[3-4]_input Measured output power
+
+temp[1-5]_input Measured temperature
+temp[1-5]_crit Critical high temperature
+temp[1-5]_crit_alarm Chip temperature critical high alarm
+temp[1-5]_max Maximum temperature
+temp[1-5]_max_alarm Chip temperature high alarm
+======================= ==========================================
+
+raa_dmpvr2_3rail sysfs attributes
+---------------------------------
+
+======================= ==========================================
+curr[1-3]_label "iin[1-3]"
+curr[1-3]_input Measured input current
+curr[1-3]_crit Critical maximum current
+curr[1-3]_crit_alarm Current critical high alarm
+
+curr[4-6]_label "iout[1-3]"
+curr[4-6]_input Measured output current
+curr[4-6]_crit Critical maximum current
+curr[4-6]_crit_alarm Current critical high alarm
+
+in1_label "vin"
+in1_input Measured input voltage
+in1_lcrit Critical minimum input voltage
+in1_lcrit_alarm Input voltage critical low alarm
+in1_crit Critical maximum input voltage
+in1_crit_alarm Input voltage critical high alarm
+
+in2_label "vmon"
+in2_input Scaled VMON voltage read from the VMON pin
+
+in[3-5]_label "vout[1-3]"
+in[3-5]_input Measured output voltage
+in[3-5]_lcrit Critical minimum output voltage
+in[3-5]_lcrit_alarm Output voltage critical low alarm
+in[3-5]_crit Critical maximum output voltage
+in[3-5]_crit_alarm Output voltage critical high alarm
+
+power[1-3]_label "pin[1-3]"
+power[1-3]_input Measured input power
+power[1-3]_alarm Input power high alarm
+
+power[4-6]_label "pout[1-3]"
+power[4-6]_input Measured output power
+
+temp[1-7]_input Measured temperature
+temp[1-7]_crit Critical high temperature
+temp[1-7]_crit_alarm Chip temperature critical high alarm
+temp[1-7]_max Maximum temperature
+temp[1-7]_max_alarm Chip temperature high alarm
+======================= ==========================================
diff --git a/Documentation/hwmon/k10temp.rst b/Documentation/hwmon/k10temp.rst
index 4451d59b9425..8557e26281c3 100644
--- a/Documentation/hwmon/k10temp.rst
+++ b/Documentation/hwmon/k10temp.rst
@@ -100,9 +100,10 @@ socket type, not the processor's actual capabilities. Therefore, if you
are using an AM3 processor on an AM2+ mainboard, you can safely use the
"force=1" parameter.
-There is one temperature measurement value, available as temp1_input in
-sysfs. It is measured in degrees Celsius with a resolution of 1/8th degree.
-Please note that it is defined as a relative value; to quote the AMD manual::
+For CPUs older than Family 17h, there is one temperature measurement value,
+available as temp1_input in sysfs. It is measured in degrees Celsius with a
+resolution of 1/8th degree. Please note that it is defined as a relative
+value; to quote the AMD manual::
Tctl is the processor temperature control value, used by the platform to
control cooling systems. Tctl is a non-physical temperature on an
@@ -126,3 +127,25 @@ it.
Models from 17h family report relative temperature, the driver aims to
compensate and report the real temperature.
+
+On Family 17h and Family 18h CPUs, additional temperature sensors may report
+Core Complex Die (CCD) temperatures. Up to 8 such temperatures are reported
+as temp{3..10}_input, labeled Tccd{1..8}. Actual support depends on the CPU
+variant.
+
+Various Family 17h and 18h CPUs report voltage and current telemetry
+information. The following attributes may be reported.
+
+Attribute Label Description
+=============== ======= ================
+in0_input Vcore Core voltage
+in1_input Vsoc SoC voltage
+curr1_input Icore Core current
+curr2_input Isoc SoC current
+=============== ======= ================
+
+Current values are raw (unscaled) as reported by the CPU. Core current is
+reported as multiples of 1A / LSB. SoC is reported as multiples of 0.25A
+/ LSB. The real current is board specific. Reported currents should be seen
+as rough guidance, and should be scaled using sensors3.conf as appropriate
+for a given board.
diff --git a/Documentation/hwmon/ltc2978.rst b/Documentation/hwmon/ltc2978.rst
index 01a24fd6d5fe..bc5270e5a477 100644
--- a/Documentation/hwmon/ltc2978.rst
+++ b/Documentation/hwmon/ltc2978.rst
@@ -3,13 +3,21 @@ Kernel driver ltc2978
Supported chips:
+ * Linear Technology LTC2972
+
+ Prefix: 'ltc2972'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltc2972.html
+
* Linear Technology LTC2974
Prefix: 'ltc2974'
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc2974
+ Datasheet: https://www.analog.com/en/products/ltc2974
* Linear Technology LTC2975
@@ -17,7 +25,7 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc2975
+ Datasheet: https://www.analog.com/en/products/ltc2975
* Linear Technology LTC2977
@@ -25,7 +33,7 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc2977
+ Datasheet: https://www.analog.com/en/products/ltc2977
* Linear Technology LTC2978, LTC2978A
@@ -33,9 +41,17 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc2978
+ Datasheet: https://www.analog.com/en/products/ltc2978
+
+ https://www.analog.com/en/products/ltc2978a
+
+ * Linear Technology LTC2979
- http://www.linear.com/product/ltc2978a
+ Prefix: 'ltc2979'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltc2979
* Linear Technology LTC2980
@@ -43,7 +59,7 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc2980
+ Datasheet: https://www.analog.com/en/products/ltc2980
* Linear Technology LTC3880
@@ -51,7 +67,7 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc3880
+ Datasheet: https://www.analog.com/en/products/ltc3880
* Linear Technology LTC3882
@@ -59,7 +75,7 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc3882
+ Datasheet: https://www.analog.com/en/products/ltc3882
* Linear Technology LTC3883
@@ -67,7 +83,15 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc3883
+ Datasheet: https://www.analog.com/en/products/ltc3883
+
+ * Linear Technology LTC3884
+
+ Prefix: 'ltc3884'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltc3884
* Linear Technology LTC3886
@@ -75,7 +99,7 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc3886
+ Datasheet: https://www.analog.com/en/products/ltc3886
* Linear Technology LTC3887
@@ -83,7 +107,23 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltc3887
+ Datasheet: https://www.analog.com/en/products/ltc3887
+
+ * Linear Technology LTC3889
+
+ Prefix: 'ltc3889'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltc3889
+
+ * Linear Technology LTC7880
+
+ Prefix: 'ltc7880'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltc7880
* Linear Technology LTM2987
@@ -91,15 +131,23 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltm2987
+ Datasheet: https://www.analog.com/en/products/ltm2987
- * Linear Technology LTM4675
+ * Linear Technology LTM4644
+
+ Prefix: 'ltm4644'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltm4644
+
+ * Linear Technology LTM4675
Prefix: 'ltm4675'
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltm4675
+ Datasheet: https://www.analog.com/en/products/ltm4675
* Linear Technology LTM4676
@@ -107,7 +155,31 @@ Supported chips:
Addresses scanned: -
- Datasheet: http://www.linear.com/product/ltm4676
+ Datasheet: https://www.analog.com/en/products/ltm4676
+
+ * Linear Technology LTM4677
+
+ Prefix: 'ltm4677'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltm4677
+
+ * Linear Technology LTM4678
+
+ Prefix: 'ltm4678'
+
+ Addresses scanned: -
+
+ Datasheet: https://www.analog.com/en/products/ltm4678
+
+ * Analog Devices LTM4680
+
+ Prefix: 'ltm4680'
+
+ Addresses scanned: -
+
+ Datasheet: http://www.analog.com/ltm4680
* Analog Devices LTM4686
@@ -117,6 +189,15 @@ Supported chips:
Datasheet: http://www.analog.com/ltm4686
+ * Analog Devices LTM4700
+
+ Prefix: 'ltm4700'
+
+ Addresses scanned: -
+
+ Datasheet: http://www.analog.com/ltm4700
+
+
Author: Guenter Roeck <linux@roeck-us.net>
@@ -166,13 +247,13 @@ in1_min Minimum input voltage.
in1_max Maximum input voltage.
- LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
- LTM2987 only.
+ LTC2974, LTC2975, LTC2977, LTC2980, LTC2978,
+ LTC2979 and LTM2987 only.
in1_lcrit Critical minimum input voltage.
- LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
- LTM2987 only.
+ LTC2972, LTC2974, LTC2975, LTC2977, LTC2980, LTC2978,
+ LTC2979 and LTM2987 only.
in1_crit Critical maximum input voltage.
@@ -180,29 +261,34 @@ in1_min_alarm Input voltage low alarm.
in1_max_alarm Input voltage high alarm.
- LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
- LTM2987 only.
+ LTC2972, LTC2974, LTC2975, LTC2977, LTC2980, LTC2978,
+ LTC2979 and LTM2987 only.
+
in1_lcrit_alarm Input voltage critical low alarm.
- LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
- LTM2987 only.
+ LTC2972, LTC2974, LTC2975, LTC2977, LTC2980, LTC2978,
+ LTC2979 and LTM2987 only.
+
in1_crit_alarm Input voltage critical high alarm.
in1_lowest Lowest input voltage.
- LTC2974, LTC2975, LTC2977, LTC2980, LTC2978, and
- LTM2987 only.
+ LTC2972, LTC2974, LTC2975, LTC2977, LTC2980, LTC2978,
+ and LTM2987 only.
+
in1_highest Highest input voltage.
in1_reset_history Reset input voltage history.
in[N]_label "vout[1-8]".
+ - LTC2972: N=2-3
- LTC2974, LTC2975: N=2-5
- - LTC2977, LTC2980, LTM2987: N=2-9
+ - LTC2977, LTC2979, LTC2980, LTM2987: N=2-9
- LTC2978: N=2-9
- - LTC3880, LTC3882, LTC23886 LTC3887, LTM4675, LTM4676:
- N=2-3
+ - LTC3880, LTC3882, LTC3884, LTC23886 LTC3887, LTC3889,
+ LTC7880, LTM4644, LTM4675, LTM4676, LTM4677, LTM4678,
+ LTM4680, LTM4700: N=2-3
- LTC3883: N=2
in[N]_input Measured output voltage.
@@ -225,8 +311,7 @@ in[N]_crit_alarm Output voltage critical high alarm.
in[N]_lowest Lowest output voltage.
-
- LTC2974, LTC2975,and LTC2978 only.
+ LTC2972, LTC2974, LTC2975,and LTC2978 only.
in[N]_highest Highest output voltage.
@@ -234,20 +319,24 @@ in[N]_reset_history Reset output voltage history.
temp[N]_input Measured temperature.
+ - On LTC2972, temp[1-2] report external temperatures,
+ and temp 3 reports the chip temperature.
- On LTC2974 and LTC2975, temp[1-4] report external
temperatures, and temp5 reports the chip temperature.
- - On LTC2977, LTC2980, LTC2978, and LTM2987, only one
- temperature measurement is supported and reports
- the chip temperature.
- - On LTC3880, LTC3882, LTC3887, LTM4675, and LTM4676,
- temp1 and temp2 report external temperatures, and
- temp3 reports the chip temperature.
+ - On LTC2977, LTC2979, LTC2980, LTC2978, and LTM2987,
+ only one temperature measurement is supported and
+ reports the chip temperature.
+ - On LTC3880, LTC3882, LTC3886, LTC3887, LTC3889,
+ LTM4664, LTM4675, LTM4676, LTM4677, LTM4678, LTM4680,
+ and LTM4700, temp1 and temp2 report external
+ temperatures, and temp3 reports the chip temperature.
- On LTC3883, temp1 reports an external temperature,
and temp2 reports the chip temperature.
temp[N]_min Mimimum temperature.
- LTC2974, LCT2977, LTM2980, LTC2978, and LTM2987 only.
+ LTC2972, LTC2974, LCT2977, LTM2980, LTC2978,
+ LTC2979, and LTM2987 only.
temp[N]_max Maximum temperature.
@@ -257,8 +346,8 @@ temp[N]_crit Critical high temperature.
temp[N]_min_alarm Temperature low alarm.
- LTC2974, LTC2975, LTC2977, LTM2980, LTC2978, and
- LTM2987 only.
+ LTC2972, LTC2974, LTC2975, LTC2977, LTM2980, LTC2978,
+ LTC2979, and LTM2987 only.
temp[N]_max_alarm Temperature high alarm.
@@ -269,8 +358,8 @@ temp[N]_crit_alarm Temperature critical high alarm.
temp[N]_lowest Lowest measured temperature.
- - LTC2974, LTC2975, LTC2977, LTM2980, LTC2978, and
- LTM2987 only.
+ - LTC2972, LTC2974, LTC2975, LTC2977, LTM2980, LTC2978,
+ LTC2979, and LTM2987 only.
- Not supported for chip temperature sensor on LTC2974
and LTC2975.
@@ -290,19 +379,22 @@ power1_input Measured input power.
power[N]_label "pout[1-4]".
+ - LTC2972: N=1-2
- LTC2974, LTC2975: N=1-4
- - LTC2977, LTC2980, LTM2987: Not supported
+ - LTC2977, LTC2979, LTC2980, LTM2987: Not supported
- LTC2978: Not supported
- - LTC3880, LTC3882, LTC3886, LTC3887, LTM4675, LTM4676:
- N=1-2
+ - LTC3880, LTC3882, LTC3884, LTC3886, LTC3887, LTC3889,
+ LTM4664, LTM4675, LTM4676, LTM4677, LTM4678, LTM4680,
+ LTM4700: N=1-2
- LTC3883: N=2
power[N]_input Measured output power.
curr1_label "iin".
- LTC3880, LTC3883, LTC3886, LTC3887, LTM4675,
- and LTM4676 only.
+ LTC3880, LTC3883, LTC3884, LTC3886, LTC3887, LTC3889,
+ LTM4644, LTM4675, LTM4676, LTM4677, LTM4678, LTM4680,
+ and LTM4700 only.
curr1_input Measured input current.
@@ -320,11 +412,13 @@ curr1_reset_history Reset input current history.
curr[N]_label "iout[1-4]".
+ - LTC2972: N-1-2
- LTC2974, LTC2975: N=1-4
- - LTC2977, LTC2980, LTM2987: not supported
+ - LTC2977, LTC2979, LTC2980, LTM2987: not supported
- LTC2978: not supported
- - LTC3880, LTC3882, LTC3886, LTC3887, LTM4675, LTM4676:
- N=2-3
+ - LTC3880, LTC3882, LTC3884, LTC3886, LTC3887, LTC3889,
+ LTM4664, LTM4675, LTM4676, LTM4677, LTM4678, LTM4680,
+ LTM4700: N=2-3
- LTC3883: N=2
curr[N]_input Measured output current.
@@ -335,7 +429,7 @@ curr[N]_crit Critical high output current.
curr[N]_lcrit Critical low output current.
- LTC2974 and LTC2975 only.
+ LTC2972, LTC2974 and LTC2975 only.
curr[N]_max_alarm Output current high alarm.
@@ -343,11 +437,11 @@ curr[N]_crit_alarm Output current critical high alarm.
curr[N]_lcrit_alarm Output current critical low alarm.
- LTC2974 and LTC2975 only.
+ LTC2972, LTC2974 and LTC2975 only.
curr[N]_lowest Lowest output current.
- LTC2974 and LTC2975 only.
+ LTC2972, LTC2974 and LTC2975 only.
curr[N]_highest Highest output current.
diff --git a/Documentation/hwmon/pmbus-core.rst b/Documentation/hwmon/pmbus-core.rst
index 92515c446fe3..501b37b0610d 100644
--- a/Documentation/hwmon/pmbus-core.rst
+++ b/Documentation/hwmon/pmbus-core.rst
@@ -162,9 +162,12 @@ Read byte from page <page>, register <reg>.
::
- int (*read_word_data)(struct i2c_client *client, int page, int reg);
+ int (*read_word_data)(struct i2c_client *client, int page, int phase,
+ int reg);
-Read word from page <page>, register <reg>.
+Read word from page <page>, phase <pase>, register <reg>. If the chip does not
+support multiple phases, the phase parameter can be ignored. If the chip
+supports multiple phases, a phase value of 0xff indicates all phases.
::
@@ -201,16 +204,21 @@ is mandatory.
::
- int pmbus_set_page(struct i2c_client *client, u8 page);
+ int pmbus_set_page(struct i2c_client *client, u8 page, u8 phase);
-Set PMBus page register to <page> for subsequent commands.
+Set PMBus page register to <page> and <phase> for subsequent commands.
+If the chip does not support multiple phases, the phase parameter is
+ignored. Otherwise, a phase value of 0xff selects all phases.
::
- int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg);
+ int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 phase,
+ u8 reg);
-Read word data from <page>, <reg>. Similar to i2c_smbus_read_word_data(), but
-selects page first.
+Read word data from <page>, <phase>, <reg>. Similar to
+i2c_smbus_read_word_data(), but selects page and phase first. If the chip does
+not support multiple phases, the phase parameter is ignored. Otherwise, a phase
+value of 0xff selects all phases.
::
diff --git a/Documentation/hwmon/pmbus.rst b/Documentation/hwmon/pmbus.rst
index f787984e88a9..2658ddee70eb 100644
--- a/Documentation/hwmon/pmbus.rst
+++ b/Documentation/hwmon/pmbus.rst
@@ -227,7 +227,9 @@ currX_lcrit_alarm Output current critical low alarm.
From IOUT_UC_FAULT status.
currX_crit_alarm Current critical high alarm.
From IIN_OC_FAULT or IOUT_OC_FAULT status.
-currX_label "iin" or "ioutY"
+currX_label "iin", "iinY", "iinY.Z", "ioutY", or "ioutY.Z",
+ where Y reflects the page number and Z reflects the
+ phase.
powerX_input Measured power. From READ_PIN or READ_POUT register.
powerX_cap Output power cap. From POUT_MAX register.
@@ -239,7 +241,9 @@ powerX_alarm Power high alarm.
From PIN_OP_WARNING or POUT_OP_WARNING status.
powerX_crit_alarm Output power critical high alarm.
From POUT_OP_FAULT status.
-powerX_label "pin" or "poutY"
+powerX_label "pin", "pinY", "pinY.Z", "poutY", or "poutY.Z",
+ where Y reflects the page number and Z reflects the
+ phase.
tempX_input Measured temperature.
From READ_TEMPERATURE_X register.
diff --git a/Documentation/hwmon/tps53679.rst b/Documentation/hwmon/tps53679.rst
new file mode 100644
index 000000000000..be94cab78967
--- /dev/null
+++ b/Documentation/hwmon/tps53679.rst
@@ -0,0 +1,178 @@
+Kernel driver tps53679
+======================
+
+Supported chips:
+
+ * Texas Instruments TPS53647
+
+ Prefix: 'tps53647'
+
+ Addresses scanned: -
+
+ Datasheet: http://www.ti.com/lit/gpn/tps53647
+
+ * Texas Instruments TPS53667
+
+ Prefix: 'tps53667'
+
+ Addresses scanned: -
+
+ Datasheet: http://www.ti.com/lit/gpn/TPS53667
+
+ * Texas Instruments TPS53679
+
+ Prefix: 'tps53679'
+
+ Addresses scanned: -
+
+ Datasheet: http://www.ti.com/lit/gpn/TPS53679 (short version)
+
+ * Texas Instruments TPS53681
+
+ Prefix: 'tps53681'
+
+ Addresses scanned: -
+
+ Datasheet: http://www.ti.com/lit/gpn/TPS53681
+
+ * Texas Instruments TPS53688
+
+ Prefix: 'tps53688'
+
+ Addresses scanned: -
+
+ Datasheet: Available under NDA
+
+
+Authors:
+ Vadim Pasternak <vadimp@mellanox.com>
+ Guenter Roeck <linux@roeck-us.net>
+
+
+Description
+-----------
+
+Chips in this series are multi-phase step-down converters with one or two
+output channels and up to 8 phases per channel.
+
+
+Usage Notes
+-----------
+
+This driver does not probe for PMBus devices. You will have to instantiate
+devices explicitly.
+
+Example: the following commands will load the driver for an TPS53681 at address
+0x60 on I2C bus #1::
+
+ # modprobe tps53679
+ # echo tps53681 0x60 > /sys/bus/i2c/devices/i2c-1/new_device
+
+
+Sysfs attributes
+----------------
+
+======================= ========================================================
+in1_label "vin"
+
+in1_input Measured input voltage.
+
+in1_lcrit Critical minimum input voltage
+
+ TPS53679, TPS53681, TPS53688 only.
+
+in1_lcrit_alarm Input voltage critical low alarm.
+
+ TPS53679, TPS53681, TPS53688 only.
+
+in1_crit Critical maximum input voltage.
+
+in1_crit_alarm Input voltage critical high alarm.
+
+in[N]_label "vout[1-2]"
+
+ - TPS53647, TPS53667: N=2
+ - TPS53679, TPS53588: N=2,3
+
+in[N]_input Measured output voltage.
+
+in[N]_lcrit Critical minimum input voltage.
+
+ TPS53679, TPS53681, TPS53688 only.
+
+in[N]_lcrit_alarm Critical minimum voltage alarm.
+
+ TPS53679, TPS53681, TPS53688 only.
+
+in[N]_alarm Output voltage alarm.
+
+ TPS53647, TPS53667 only.
+
+in[N]_crit Critical maximum output voltage.
+
+ TPS53679, TPS53681, TPS53688 only.
+
+in[N]_crit_alarm Output voltage critical high alarm.
+
+ TPS53679, TPS53681, TPS53688 only.
+
+temp[N]_input Measured temperature.
+
+ - TPS53647, TPS53667: N=1
+ - TPS53679, TPS53681, TPS53588: N=1,2
+
+temp[N]_max Maximum temperature.
+
+temp[N]_crit Critical high temperature.
+
+temp[N]_max_alarm Temperature high alarm.
+
+temp[N]_crit_alarm Temperature critical high alarm.
+
+power1_label "pin".
+
+power1_input Measured input power.
+
+power[N]_label "pout[1-2]".
+
+ - TPS53647, TPS53667: N=2
+ - TPS53679, TPS53681, TPS53588: N=2,3
+
+power[N]_input Measured output power.
+
+curr1_label "iin".
+
+curr1_input Measured input current.
+
+curr1_max Maximum input current.
+
+curr1_max_alarm Input current high alarm.
+
+curr1_crit Critical input current.
+
+curr1_crit_alarm Input current critical alarm.
+
+curr[N]_label "iout[1-2]" or "iout1.[0-5]".
+
+ The first digit is the output channel, the second
+ digit is the phase within the channel. Per-phase
+ telemetry supported on TPS53681 only.
+
+ - TPS53647, TPS53667: N=2
+ - TPS53679, TPS53588: N=2,3
+ - TPS53681: N=2-9
+
+curr[N]_input Measured output current.
+
+curr[N]_max Maximum output current.
+
+curr[N]_crit Critical high output current.
+
+curr[N]_max_alarm Output current high alarm.
+
+curr[N]_crit_alarm Output current critical high alarm.
+
+ Limit and alarm attributes are only available for
+ non-phase telemetry (iout1, iout2).
+
+======================= ========================================================
diff --git a/Documentation/index.rst b/Documentation/index.rst
index e99d0bd2589d..9df95bab4de8 100644
--- a/Documentation/index.rst
+++ b/Documentation/index.rst
@@ -99,6 +99,7 @@ needed).
accounting/index
block/index
cdrom/index
+ cpu-freq/index
ide/index
fb/index
fpga/index
@@ -131,7 +132,6 @@ needed).
usb/index
PCI/index
misc-devices/index
- mic/index
scheduler/index
Architecture-agnostic documentation
diff --git a/Documentation/core-api/gcc-plugins.rst b/Documentation/kbuild/gcc-plugins.rst
index 8502f24396fb..4b1c10f88e30 100644
--- a/Documentation/core-api/gcc-plugins.rst
+++ b/Documentation/kbuild/gcc-plugins.rst
@@ -72,6 +72,10 @@ e.g., on Ubuntu for gcc-4.9::
apt-get install gcc-4.9-plugin-dev
+Or on Fedora::
+
+ dnf install gcc-plugin-devel
+
Enable a GCC plugin based feature in the kernel config::
CONFIG_GCC_PLUGIN_CYC_COMPLEXITY = y
diff --git a/Documentation/kbuild/index.rst b/Documentation/kbuild/index.rst
index 0f144fad99a6..82daf2efcb73 100644
--- a/Documentation/kbuild/index.rst
+++ b/Documentation/kbuild/index.rst
@@ -19,6 +19,7 @@ Kernel Build System
issues
reproducible-builds
+ gcc-plugins
.. only:: subproject and html
diff --git a/Documentation/kernel-hacking/hacking.rst b/Documentation/kernel-hacking/hacking.rst
index d62aacb2822a..eed2136d847f 100644
--- a/Documentation/kernel-hacking/hacking.rst
+++ b/Documentation/kernel-hacking/hacking.rst
@@ -601,7 +601,7 @@ Defined in ``include/linux/export.h``
This is the variant of `EXPORT_SYMBOL()` that allows specifying a symbol
namespace. Symbol Namespaces are documented in
-``Documentation/core-api/symbol-namespaces.rst``.
+:doc:`../core-api/symbol-namespaces`
:c:func:`EXPORT_SYMBOL_NS_GPL()`
--------------------------------
@@ -610,7 +610,7 @@ Defined in ``include/linux/export.h``
This is the variant of `EXPORT_SYMBOL_GPL()` that allows specifying a symbol
namespace. Symbol Namespaces are documented in
-``Documentation/core-api/symbol-namespaces.rst``.
+:doc:`../core-api/symbol-namespaces`
Routines and Conventions
========================
diff --git a/Documentation/kernel-hacking/locking.rst b/Documentation/kernel-hacking/locking.rst
index a8518ac0d31d..6ed806e6061b 100644
--- a/Documentation/kernel-hacking/locking.rst
+++ b/Documentation/kernel-hacking/locking.rst
@@ -150,17 +150,17 @@ Locking Only In User Context
If you have a data structure which is only ever accessed from user
context, then you can use a simple mutex (``include/linux/mutex.h``) to
protect it. This is the most trivial case: you initialize the mutex.
-Then you can call :c:func:`mutex_lock_interruptible()` to grab the
-mutex, and :c:func:`mutex_unlock()` to release it. There is also a
-:c:func:`mutex_lock()`, which should be avoided, because it will
+Then you can call mutex_lock_interruptible() to grab the
+mutex, and mutex_unlock() to release it. There is also a
+mutex_lock(), which should be avoided, because it will
not return if a signal is received.
Example: ``net/netfilter/nf_sockopt.c`` allows registration of new
-:c:func:`setsockopt()` and :c:func:`getsockopt()` calls, with
-:c:func:`nf_register_sockopt()`. Registration and de-registration
+setsockopt() and getsockopt() calls, with
+nf_register_sockopt(). Registration and de-registration
are only done on module load and unload (and boot time, where there is
no concurrency), and the list of registrations is only consulted for an
-unknown :c:func:`setsockopt()` or :c:func:`getsockopt()` system
+unknown setsockopt() or getsockopt() system
call. The ``nf_sockopt_mutex`` is perfect to protect this, especially
since the setsockopt and getsockopt calls may well sleep.
@@ -170,19 +170,19 @@ Locking Between User Context and Softirqs
If a softirq shares data with user context, you have two problems.
Firstly, the current user context can be interrupted by a softirq, and
secondly, the critical region could be entered from another CPU. This is
-where :c:func:`spin_lock_bh()` (``include/linux/spinlock.h``) is
+where spin_lock_bh() (``include/linux/spinlock.h``) is
used. It disables softirqs on that CPU, then grabs the lock.
-:c:func:`spin_unlock_bh()` does the reverse. (The '_bh' suffix is
+spin_unlock_bh() does the reverse. (The '_bh' suffix is
a historical reference to "Bottom Halves", the old name for software
interrupts. It should really be called spin_lock_softirq()' in a
perfect world).
-Note that you can also use :c:func:`spin_lock_irq()` or
-:c:func:`spin_lock_irqsave()` here, which stop hardware interrupts
+Note that you can also use spin_lock_irq() or
+spin_lock_irqsave() here, which stop hardware interrupts
as well: see `Hard IRQ Context <#hard-irq-context>`__.
This works perfectly for UP as well: the spin lock vanishes, and this
-macro simply becomes :c:func:`local_bh_disable()`
+macro simply becomes local_bh_disable()
(``include/linux/interrupt.h``), which protects you from the softirq
being run.
@@ -216,8 +216,8 @@ Different Tasklets/Timers
~~~~~~~~~~~~~~~~~~~~~~~~~
If another tasklet/timer wants to share data with your tasklet or timer
-, you will both need to use :c:func:`spin_lock()` and
-:c:func:`spin_unlock()` calls. :c:func:`spin_lock_bh()` is
+, you will both need to use spin_lock() and
+spin_unlock() calls. spin_lock_bh() is
unnecessary here, as you are already in a tasklet, and none will be run
on the same CPU.
@@ -234,14 +234,14 @@ The same softirq can run on the other CPUs: you can use a per-CPU array
going so far as to use a softirq, you probably care about scalable
performance enough to justify the extra complexity.
-You'll need to use :c:func:`spin_lock()` and
-:c:func:`spin_unlock()` for shared data.
+You'll need to use spin_lock() and
+spin_unlock() for shared data.
Different Softirqs
~~~~~~~~~~~~~~~~~~
-You'll need to use :c:func:`spin_lock()` and
-:c:func:`spin_unlock()` for shared data, whether it be a timer,
+You'll need to use spin_lock() and
+spin_unlock() for shared data, whether it be a timer,
tasklet, different softirq or the same or another softirq: any of them
could be running on a different CPU.
@@ -259,38 +259,38 @@ If a hardware irq handler shares data with a softirq, you have two
concerns. Firstly, the softirq processing can be interrupted by a
hardware interrupt, and secondly, the critical region could be entered
by a hardware interrupt on another CPU. This is where
-:c:func:`spin_lock_irq()` is used. It is defined to disable
+spin_lock_irq() is used. It is defined to disable
interrupts on that cpu, then grab the lock.
-:c:func:`spin_unlock_irq()` does the reverse.
+spin_unlock_irq() does the reverse.
-The irq handler does not to use :c:func:`spin_lock_irq()`, because
+The irq handler does not need to use spin_lock_irq(), because
the softirq cannot run while the irq handler is running: it can use
-:c:func:`spin_lock()`, which is slightly faster. The only exception
+spin_lock(), which is slightly faster. The only exception
would be if a different hardware irq handler uses the same lock:
-:c:func:`spin_lock_irq()` will stop that from interrupting us.
+spin_lock_irq() will stop that from interrupting us.
This works perfectly for UP as well: the spin lock vanishes, and this
-macro simply becomes :c:func:`local_irq_disable()`
+macro simply becomes local_irq_disable()
(``include/asm/smp.h``), which protects you from the softirq/tasklet/BH
being run.
-:c:func:`spin_lock_irqsave()` (``include/linux/spinlock.h``) is a
+spin_lock_irqsave() (``include/linux/spinlock.h``) is a
variant which saves whether interrupts were on or off in a flags word,
-which is passed to :c:func:`spin_unlock_irqrestore()`. This means
+which is passed to spin_unlock_irqrestore(). This means
that the same code can be used inside an hard irq handler (where
interrupts are already off) and in softirqs (where the irq disabling is
required).
Note that softirqs (and hence tasklets and timers) are run on return
-from hardware interrupts, so :c:func:`spin_lock_irq()` also stops
-these. In that sense, :c:func:`spin_lock_irqsave()` is the most
+from hardware interrupts, so spin_lock_irq() also stops
+these. In that sense, spin_lock_irqsave() is the most
general and powerful locking function.
Locking Between Two Hard IRQ Handlers
-------------------------------------
It is rare to have to share data between two IRQ handlers, but if you
-do, :c:func:`spin_lock_irqsave()` should be used: it is
+do, spin_lock_irqsave() should be used: it is
architecture-specific whether all interrupts are disabled inside irq
handlers themselves.
@@ -304,11 +304,11 @@ Pete Zaitcev gives the following summary:
(``copy_from_user*(`` or ``kmalloc(x,GFP_KERNEL)``).
- Otherwise (== data can be touched in an interrupt), use
- :c:func:`spin_lock_irqsave()` and
- :c:func:`spin_unlock_irqrestore()`.
+ spin_lock_irqsave() and
+ spin_unlock_irqrestore().
- Avoid holding spinlock for more than 5 lines of code and across any
- function call (except accessors like :c:func:`readb()`).
+ function call (except accessors like readb()).
Table of Minimum Requirements
-----------------------------
@@ -320,7 +320,7 @@ particular thread can only run on one CPU at a time, but if it needs
shares data with another thread, locking is required).
Remember the advice above: you can always use
-:c:func:`spin_lock_irqsave()`, which is a superset of all other
+spin_lock_irqsave(), which is a superset of all other
spinlock primitives.
============== ============= ============= ========= ========= ========= ========= ======= ======= ============== ==============
@@ -363,13 +363,13 @@ They can be used if you need no access to the data protected with the
lock when some other thread is holding the lock. You should acquire the
lock later if you then need access to the data protected with the lock.
-:c:func:`spin_trylock()` does not spin but returns non-zero if it
+spin_trylock() does not spin but returns non-zero if it
acquires the spinlock on the first try or 0 if not. This function can be
-used in all contexts like :c:func:`spin_lock()`: you must have
+used in all contexts like spin_lock(): you must have
disabled the contexts that might interrupt you and acquire the spin
lock.
-:c:func:`mutex_trylock()` does not suspend your task but returns
+mutex_trylock() does not suspend your task but returns
non-zero if it could lock the mutex on the first try or 0 if not. This
function cannot be safely used in hardware or software interrupt
contexts despite not sleeping.
@@ -490,14 +490,14 @@ easy, since we copy the data for the user, and never let them access the
objects directly.
There is a slight (and common) optimization here: in
-:c:func:`cache_add()` we set up the fields of the object before
+cache_add() we set up the fields of the object before
grabbing the lock. This is safe, as no-one else can access it until we
put it in cache.
Accessing From Interrupt Context
--------------------------------
-Now consider the case where :c:func:`cache_find()` can be called
+Now consider the case where cache_find() can be called
from interrupt context: either a hardware interrupt or a softirq. An
example would be a timer which deletes object from the cache.
@@ -566,16 +566,16 @@ which are taken away, and the ``+`` are lines which are added.
return ret;
}
-Note that the :c:func:`spin_lock_irqsave()` will turn off
+Note that the spin_lock_irqsave() will turn off
interrupts if they are on, otherwise does nothing (if we are already in
an interrupt handler), hence these functions are safe to call from any
context.
-Unfortunately, :c:func:`cache_add()` calls :c:func:`kmalloc()`
+Unfortunately, cache_add() calls kmalloc()
with the ``GFP_KERNEL`` flag, which is only legal in user context. I
-have assumed that :c:func:`cache_add()` is still only called in
+have assumed that cache_add() is still only called in
user context, otherwise this should become a parameter to
-:c:func:`cache_add()`.
+cache_add().
Exposing Objects Outside This File
----------------------------------
@@ -592,7 +592,7 @@ This makes locking trickier, as it is no longer all in one place.
The second problem is the lifetime problem: if another structure keeps a
pointer to an object, it presumably expects that pointer to remain
valid. Unfortunately, this is only guaranteed while you hold the lock,
-otherwise someone might call :c:func:`cache_delete()` and even
+otherwise someone might call cache_delete() and even
worse, add another object, re-using the same address.
As there is only one lock, you can't hold it forever: no-one else would
@@ -693,8 +693,8 @@ Here is the code::
We encapsulate the reference counting in the standard 'get' and 'put'
functions. Now we can return the object itself from
-:c:func:`cache_find()` which has the advantage that the user can
-now sleep holding the object (eg. to :c:func:`copy_to_user()` to
+cache_find() which has the advantage that the user can
+now sleep holding the object (eg. to copy_to_user() to
name to userspace).
The other point to note is that I said a reference should be held for
@@ -710,7 +710,7 @@ number of atomic operations defined in ``include/asm/atomic.h``: these
are guaranteed to be seen atomically from all CPUs in the system, so no
lock is required. In this case, it is simpler than using spinlocks,
although for anything non-trivial using spinlocks is clearer. The
-:c:func:`atomic_inc()` and :c:func:`atomic_dec_and_test()`
+atomic_inc() and atomic_dec_and_test()
are used instead of the standard increment and decrement operators, and
the lock is no longer used to protect the reference count itself.
@@ -802,7 +802,7 @@ name to change, there are three possibilities:
- You can make ``cache_lock`` non-static, and tell people to grab that
lock before changing the name in any object.
-- You can provide a :c:func:`cache_obj_rename()` which grabs this
+- You can provide a cache_obj_rename() which grabs this
lock and changes the name for the caller, and tell everyone to use
that function.
@@ -861,11 +861,11 @@ Note that I decide that the popularity count should be protected by the
``cache_lock`` rather than the per-object lock: this is because it (like
the :c:type:`struct list_head <list_head>` inside the object)
is logically part of the infrastructure. This way, I don't need to grab
-the lock of every object in :c:func:`__cache_add()` when seeking
+the lock of every object in __cache_add() when seeking
the least popular.
I also decided that the id member is unchangeable, so I don't need to
-grab each object lock in :c:func:`__cache_find()` to examine the
+grab each object lock in __cache_find() to examine the
id: the object lock is only used by a caller who wants to read or write
the name field.
@@ -887,7 +887,7 @@ trivial to diagnose: not a
stay-up-five-nights-talk-to-fluffy-code-bunnies kind of problem.
For a slightly more complex case, imagine you have a region shared by a
-softirq and user context. If you use a :c:func:`spin_lock()` call
+softirq and user context. If you use a spin_lock() call
to protect it, it is possible that the user context will be interrupted
by the softirq while it holds the lock, and the softirq will then spin
forever trying to get the same lock.
@@ -985,12 +985,12 @@ you might do the following::
Sooner or later, this will crash on SMP, because a timer can have just
-gone off before the :c:func:`spin_lock_bh()`, and it will only get
-the lock after we :c:func:`spin_unlock_bh()`, and then try to free
+gone off before the spin_lock_bh(), and it will only get
+the lock after we spin_unlock_bh(), and then try to free
the element (which has already been freed!).
This can be avoided by checking the result of
-:c:func:`del_timer()`: if it returns 1, the timer has been deleted.
+del_timer(): if it returns 1, the timer has been deleted.
If 0, it means (in this case) that it is currently running, so we can
do::
@@ -1012,9 +1012,9 @@ do::
Another common problem is deleting timers which restart themselves (by
-calling :c:func:`add_timer()` at the end of their timer function).
+calling add_timer() at the end of their timer function).
Because this is a fairly common case which is prone to races, you should
-use :c:func:`del_timer_sync()` (``include/linux/timer.h``) to
+use del_timer_sync() (``include/linux/timer.h``) to
handle this case. It returns the number of times the timer had to be
deleted before we finally stopped it from adding itself back in.
@@ -1086,7 +1086,7 @@ adding ``new`` to a single linked list called ``list``::
list->next = new;
-The :c:func:`wmb()` is a write memory barrier. It ensures that the
+The wmb() is a write memory barrier. It ensures that the
first operation (setting the new element's ``next`` pointer) is complete
and will be seen by all CPUs, before the second operation is (putting
the new element into the list). This is important, since modern
@@ -1097,7 +1097,7 @@ rest of the list.
Fortunately, there is a function to do this for standard
:c:type:`struct list_head <list_head>` lists:
-:c:func:`list_add_rcu()` (``include/linux/list.h``).
+list_add_rcu() (``include/linux/list.h``).
Removing an element from the list is even simpler: we replace the
pointer to the old element with a pointer to its successor, and readers
@@ -1108,7 +1108,7 @@ will either see it, or skip over it.
list->next = old->next;
-There is :c:func:`list_del_rcu()` (``include/linux/list.h``) which
+There is list_del_rcu() (``include/linux/list.h``) which
does this (the normal version poisons the old object, which we don't
want).
@@ -1116,9 +1116,9 @@ The reader must also be careful: some CPUs can look through the ``next``
pointer to start reading the contents of the next element early, but
don't realize that the pre-fetched contents is wrong when the ``next``
pointer changes underneath them. Once again, there is a
-:c:func:`list_for_each_entry_rcu()` (``include/linux/list.h``)
+list_for_each_entry_rcu() (``include/linux/list.h``)
to help you. Of course, writers can just use
-:c:func:`list_for_each_entry()`, since there cannot be two
+list_for_each_entry(), since there cannot be two
simultaneous writers.
Our final dilemma is this: when can we actually destroy the removed
@@ -1127,14 +1127,14 @@ the list right now: if we free this element and the ``next`` pointer
changes, the reader will jump off into garbage and crash. We need to
wait until we know that all the readers who were traversing the list
when we deleted the element are finished. We use
-:c:func:`call_rcu()` to register a callback which will actually
+call_rcu() to register a callback which will actually
destroy the object once all pre-existing readers are finished.
-Alternatively, :c:func:`synchronize_rcu()` may be used to block
+Alternatively, synchronize_rcu() may be used to block
until all pre-existing are finished.
But how does Read Copy Update know when the readers are finished? The
method is this: firstly, the readers always traverse the list inside
-:c:func:`rcu_read_lock()`/:c:func:`rcu_read_unlock()` pairs:
+rcu_read_lock()/rcu_read_unlock() pairs:
these simply disable preemption so the reader won't go to sleep while
reading the list.
@@ -1223,12 +1223,12 @@ this is the fundamental idea.
}
Note that the reader will alter the popularity member in
-:c:func:`__cache_find()`, and now it doesn't hold a lock. One
+__cache_find(), and now it doesn't hold a lock. One
solution would be to make it an ``atomic_t``, but for this usage, we
don't really care about races: an approximate result is good enough, so
I didn't change it.
-The result is that :c:func:`cache_find()` requires no
+The result is that cache_find() requires no
synchronization with any other functions, so is almost as fast on SMP as
it would be on UP.
@@ -1240,9 +1240,9 @@ and put the reference count.
Now, because the 'read lock' in RCU is simply disabling preemption, a
caller which always has preemption disabled between calling
-:c:func:`cache_find()` and :c:func:`object_put()` does not
+cache_find() and object_put() does not
need to actually get and put the reference count: we could expose
-:c:func:`__cache_find()` by making it non-static, and such
+__cache_find() by making it non-static, and such
callers could simply call that.
The benefit here is that the reference count is not written to: the
@@ -1260,11 +1260,11 @@ counter. Nice and simple.
If that was too slow (it's usually not, but if you've got a really big
machine to test on and can show that it is), you could instead use a
counter for each CPU, then none of them need an exclusive lock. See
-:c:func:`DEFINE_PER_CPU()`, :c:func:`get_cpu_var()` and
-:c:func:`put_cpu_var()` (``include/linux/percpu.h``).
+DEFINE_PER_CPU(), get_cpu_var() and
+put_cpu_var() (``include/linux/percpu.h``).
Of particular use for simple per-cpu counters is the ``local_t`` type,
-and the :c:func:`cpu_local_inc()` and related functions, which are
+and the cpu_local_inc() and related functions, which are
more efficient than simple code on some architectures
(``include/asm/local.h``).
@@ -1289,10 +1289,10 @@ irq handler doesn't use a lock, and all other accesses are done as so::
enable_irq(irq);
spin_unlock(&lock);
-The :c:func:`disable_irq()` prevents the irq handler from running
+The disable_irq() prevents the irq handler from running
(and waits for it to finish if it's currently running on other CPUs).
The spinlock prevents any other accesses happening at the same time.
-Naturally, this is slower than just a :c:func:`spin_lock_irq()`
+Naturally, this is slower than just a spin_lock_irq()
call, so it only makes sense if this type of access happens extremely
rarely.
@@ -1315,22 +1315,22 @@ from user context, and can sleep.
- Accesses to userspace:
- - :c:func:`copy_from_user()`
+ - copy_from_user()
- - :c:func:`copy_to_user()`
+ - copy_to_user()
- - :c:func:`get_user()`
+ - get_user()
- - :c:func:`put_user()`
+ - put_user()
-- :c:func:`kmalloc(GFP_KERNEL) <kmalloc>`
+- kmalloc(GP_KERNEL) <kmalloc>`
-- :c:func:`mutex_lock_interruptible()` and
- :c:func:`mutex_lock()`
+- mutex_lock_interruptible() and
+ mutex_lock()
- There is a :c:func:`mutex_trylock()` which does not sleep.
+ There is a mutex_trylock() which does not sleep.
Still, it must not be used inside interrupt context since its
- implementation is not safe for that. :c:func:`mutex_unlock()`
+ implementation is not safe for that. mutex_unlock()
will also never sleep. It cannot be used in interrupt context either
since a mutex must be released by the same task that acquired it.
@@ -1340,11 +1340,11 @@ Some Functions Which Don't Sleep
Some functions are safe to call from any context, or holding almost any
lock.
-- :c:func:`printk()`
+- printk()
-- :c:func:`kfree()`
+- kfree()
-- :c:func:`add_timer()` and :c:func:`del_timer()`
+- add_timer() and del_timer()
Mutex API reference
===================
@@ -1400,26 +1400,26 @@ preemption
bh
Bottom Half: for historical reasons, functions with '_bh' in them often
- now refer to any software interrupt, e.g. :c:func:`spin_lock_bh()`
+ now refer to any software interrupt, e.g. spin_lock_bh()
blocks any software interrupt on the current CPU. Bottom halves are
deprecated, and will eventually be replaced by tasklets. Only one bottom
half will be running at any time.
Hardware Interrupt / Hardware IRQ
- Hardware interrupt request. :c:func:`in_irq()` returns true in a
+ Hardware interrupt request. in_irq() returns true in a
hardware interrupt handler.
Interrupt Context
Not user context: processing a hardware irq or software irq. Indicated
- by the :c:func:`in_interrupt()` macro returning true.
+ by the in_interrupt() macro returning true.
SMP
Symmetric Multi-Processor: kernels compiled for multiple-CPU machines.
(``CONFIG_SMP=y``).
Software Interrupt / softirq
- Software interrupt handler. :c:func:`in_irq()` returns false;
- :c:func:`in_softirq()` returns true. Tasklets and softirqs both
+ Software interrupt handler. in_irq() returns false;
+ in_softirq() returns true. Tasklets and softirqs both
fall into the category of 'software interrupts'.
Strictly speaking a softirq is one of up to 32 enumerated software
diff --git a/Documentation/kref.txt b/Documentation/kref.txt
index 3af384156d7e..c61eea6f1bf2 100644
--- a/Documentation/kref.txt
+++ b/Documentation/kref.txt
@@ -128,6 +128,10 @@ since we already have a valid pointer that we own a refcount for. The
put needs no lock because nothing tries to get the data without
already holding a pointer.
+In the above example, kref_put() will be called 2 times in both success
+and error paths. This is necessary because the reference count got
+incremented 2 times by kref_init() and kref_get().
+
Note that the "before" in rule 1 is very important. You should never
do something like::
diff --git a/Documentation/media/kapi/csi2.rst b/Documentation/media/kapi/csi2.rst
index 030a5c41ec75..e111ff7bfd3d 100644
--- a/Documentation/media/kapi/csi2.rst
+++ b/Documentation/media/kapi/csi2.rst
@@ -74,7 +74,7 @@ Before the receiver driver may enable the CSI-2 transmitter by using
the :c:type:`v4l2_subdev_video_ops`->s_stream(), it must have powered
the transmitter up by using the
:c:type:`v4l2_subdev_core_ops`->s_power() callback. This may take
-place either indirectly by using :c:func:`v4l2_pipeline_pm_use` or
+place either indirectly by using :c:func:`v4l2_pipeline_pm_get` or
directly.
Formats
diff --git a/Documentation/media/kapi/v4l2-controls.rst b/Documentation/media/kapi/v4l2-controls.rst
index b20800cae3f2..5129019afb49 100644
--- a/Documentation/media/kapi/v4l2-controls.rst
+++ b/Documentation/media/kapi/v4l2-controls.rst
@@ -291,8 +291,8 @@ and QUERYMENU. And G/S_CTRL as well as G/TRY/S_EXT_CTRLS are automatically suppo
In practice the basic usage as described above is sufficient for most drivers.
-Inheriting Controls
--------------------
+Inheriting Sub-device Controls
+------------------------------
When a sub-device is registered with a V4L2 driver by calling
v4l2_device_register_subdev() and the ctrl_handler fields of both v4l2_subdev
@@ -757,8 +757,8 @@ attempting to find another control from the same handler will deadlock.
It is recommended not to use this function from inside the control ops.
-Inheriting Controls
--------------------
+Preventing Controls inheritance
+-------------------------------
When one control handler is added to another using v4l2_ctrl_add_handler, then
by default all controls from one are merged to the other. But a subdev might
diff --git a/Documentation/media/kapi/v4l2-dev.rst b/Documentation/media/kapi/v4l2-dev.rst
index 4c5a15c53dbf..63c064837c00 100644
--- a/Documentation/media/kapi/v4l2-dev.rst
+++ b/Documentation/media/kapi/v4l2-dev.rst
@@ -185,7 +185,7 @@ This will create the character device for you.
.. code-block:: c
- err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
+ err = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (err) {
video_device_release(vdev); /* or kfree(my_vdev); */
return err;
@@ -201,7 +201,7 @@ types exist:
========================== ==================== ==============================
:c:type:`vfl_devnode_type` Device name Usage
========================== ==================== ==============================
-``VFL_TYPE_GRABBER`` ``/dev/videoX`` for video input/output devices
+``VFL_TYPE_VIDEO`` ``/dev/videoX`` for video input/output devices
``VFL_TYPE_VBI`` ``/dev/vbiX`` for vertical blank data (i.e.
closed captions, teletext)
``VFL_TYPE_RADIO`` ``/dev/radioX`` for radio tuners
diff --git a/Documentation/media/uapi/cec/cec-ioc-adap-g-conn-info.rst b/Documentation/media/uapi/cec/cec-ioc-adap-g-conn-info.rst
index a21659d55c6b..6818ddf1495c 100644
--- a/Documentation/media/uapi/cec/cec-ioc-adap-g-conn-info.rst
+++ b/Documentation/media/uapi/cec/cec-ioc-adap-g-conn-info.rst
@@ -44,18 +44,18 @@ is only available if the ``CEC_CAP_CONNECTOR_INFO`` capability is set.
.. flat-table:: struct cec_connector_info
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 8
+ :widths: 1 1 8
* - __u32
- ``type``
- The type of connector this adapter is associated with.
- * - union
+ * - union {
- ``(anonymous)``
- -
- * -
- - ``struct cec_drm_connector_info``
+ * - ``struct cec_drm_connector_info``
- drm
- :ref:`cec-drm-connector-info`
+ * - }
+ -
.. tabularcolumns:: |p{4.4cm}|p{2.5cm}|p{10.6cm}|
diff --git a/Documentation/media/uapi/cec/cec-ioc-dqevent.rst b/Documentation/media/uapi/cec/cec-ioc-dqevent.rst
index 5e21b1fbfc01..d16b226b1bef 100644
--- a/Documentation/media/uapi/cec/cec-ioc-dqevent.rst
+++ b/Documentation/media/uapi/cec/cec-ioc-dqevent.rst
@@ -109,35 +109,33 @@ it is guaranteed that the state did change in between the two events.
.. flat-table:: struct cec_event
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 8
+ :widths: 1 1 8
* - __u64
- ``ts``
- - :cspan:`1`\ Timestamp of the event in ns.
+ - Timestamp of the event in ns.
The timestamp has been taken from the ``CLOCK_MONOTONIC`` clock.
To access the same clock from userspace use :c:func:`clock_gettime`.
* - __u32
- ``event``
- - :cspan:`1` The CEC event type, see :ref:`cec-events`.
+ - The CEC event type, see :ref:`cec-events`.
* - __u32
- ``flags``
- - :cspan:`1` Event flags, see :ref:`cec-event-flags`.
- * - union
+ - Event flags, see :ref:`cec-event-flags`.
+ * - union {
- (anonymous)
- -
- -
- * -
- - struct cec_event_state_change
+ * - struct cec_event_state_change
- ``state_change``
- The new adapter state as sent by the :ref:`CEC_EVENT_STATE_CHANGE <CEC-EVENT-STATE-CHANGE>`
event.
- * -
- - struct cec_event_lost_msgs
+ * - struct cec_event_lost_msgs
- ``lost_msgs``
- The number of lost messages as sent by the :ref:`CEC_EVENT_LOST_MSGS <CEC-EVENT-LOST-MSGS>`
event.
+ * - }
+ -
.. tabularcolumns:: |p{5.6cm}|p{0.9cm}|p{11.0cm}|
diff --git a/Documentation/media/uapi/mediactl/media-ioc-enum-entities.rst b/Documentation/media/uapi/mediactl/media-ioc-enum-entities.rst
index 6218d9cbdd83..33e2b110145c 100644
--- a/Documentation/media/uapi/mediactl/media-ioc-enum-entities.rst
+++ b/Documentation/media/uapi/mediactl/media-ioc-enum-entities.rst
@@ -64,12 +64,11 @@ id's until they get an error.
.. flat-table:: struct media_entity_desc
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 1 8
+ :widths: 2 2 1 8
* - __u32
- ``id``
-
- -
- Entity ID, set by the application. When the ID is or'ed with
``MEDIA_ENT_ID_FLAG_NEXT``, the driver clears the flag and returns
the first entity with a larger ID. Do not expect that the ID will
@@ -79,79 +78,70 @@ id's until they get an error.
* - char
- ``name``\ [32]
-
- -
- Entity name as an UTF-8 NULL-terminated string. This name must be unique
within the media topology.
* - __u32
- ``type``
-
- -
- Entity type, see :ref:`media-entity-functions` for details.
* - __u32
- ``revision``
-
- -
- Entity revision. Always zero (obsolete)
* - __u32
- ``flags``
-
- -
- Entity flags, see :ref:`media-entity-flag` for details.
* - __u32
- ``group_id``
-
- -
- Entity group ID. Always zero (obsolete)
* - __u16
- ``pads``
-
- -
- Number of pads
* - __u16
- ``links``
-
- -
- Total number of outbound links. Inbound links are not counted in
this field.
* - __u32
- ``reserved[4]``
-
- -
- Reserved for future extensions. Drivers and applications must set
the array to zero.
- * - union
+ * - union {
+ - (anonymous)
- * -
- - struct
+ * - struct
- ``dev``
-
- Valid for (sub-)devices that create a single device node.
* -
- -
- __u32
- ``major``
- Device node major number.
* -
- -
- __u32
- ``minor``
- Device node minor number.
- * -
- - __u8
+ * - __u8
- ``raw``\ [184]
-
-
+ * - }
+ -
Return Value
diff --git a/Documentation/media/uapi/v4l/buffer.rst b/Documentation/media/uapi/v4l/buffer.rst
index 9149b57728e5..3112300c2fa0 100644
--- a/Documentation/media/uapi/v4l/buffer.rst
+++ b/Documentation/media/uapi/v4l/buffer.rst
@@ -172,11 +172,10 @@ struct v4l2_buffer
.. flat-table:: struct v4l2_buffer
:header-rows: 0
:stub-columns: 0
- :widths: 1 2 1 10
+ :widths: 1 2 10
* - __u32
- ``index``
- -
- Number of the buffer, set by the application except when calling
:ref:`VIDIOC_DQBUF <VIDIOC_QBUF>`, then it is set by the
driver. This field can range from zero to the number of buffers
@@ -186,14 +185,12 @@ struct v4l2_buffer
:ref:`VIDIOC_CREATE_BUFS` minus one.
* - __u32
- ``type``
- -
- Type of the buffer, same as struct
:c:type:`v4l2_format` ``type`` or struct
:c:type:`v4l2_requestbuffers` ``type``, set
by the application. See :c:type:`v4l2_buf_type`
* - __u32
- ``bytesused``
- -
- The number of bytes occupied by the data in the buffer. It depends
on the negotiated data format and may change with each buffer for
compressed variable size data like JPEG images. Drivers must set
@@ -205,18 +202,15 @@ struct v4l2_buffer
``planes`` pointer is used instead.
* - __u32
- ``flags``
- -
- Flags set by the application or driver, see :ref:`buffer-flags`.
* - __u32
- ``field``
- -
- Indicates the field order of the image in the buffer, see
:c:type:`v4l2_field`. This field is not used when the buffer
contains VBI data. Drivers must set it when ``type`` refers to a
capture stream, applications when it refers to an output stream.
* - struct timeval
- ``timestamp``
- -
- For capture streams this is time when the first data byte was
captured, as returned by the :c:func:`clock_gettime()` function
for the relevant clock id; see ``V4L2_BUF_FLAG_TIMESTAMP_*`` in
@@ -229,7 +223,6 @@ struct v4l2_buffer
stream.
* - struct :c:type:`v4l2_timecode`
- ``timecode``
- -
- When the ``V4L2_BUF_FLAG_TIMECODE`` flag is set in ``flags``, this
structure contains a frame timecode. In
:c:type:`V4L2_FIELD_ALTERNATE <v4l2_field>` mode the top and
@@ -239,10 +232,9 @@ struct v4l2_buffer
independent of the ``timestamp`` and ``sequence`` fields.
* - __u32
- ``sequence``
- -
- Set by the driver, counting the frames (not fields!) in sequence.
This field is set for both input and output devices.
- * - :cspan:`3`
+ * - :cspan:`2`
In :c:type:`V4L2_FIELD_ALTERNATE <v4l2_field>` mode the top and
bottom field have the same sequence number. The count starts at
@@ -262,13 +254,11 @@ struct v4l2_buffer
* - __u32
- ``memory``
- -
- This field must be set by applications and/or drivers in
accordance with the selected I/O method. See :c:type:`v4l2_memory`
- * - union
+ * - union {
- ``m``
- * -
- - __u32
+ * - __u32
- ``offset``
- For the single-planar API and when ``memory`` is
``V4L2_MEMORY_MMAP`` this is the offset of the buffer from the
@@ -276,29 +266,27 @@ struct v4l2_buffer
and apart of serving as parameter to the
:ref:`mmap() <func-mmap>` function not useful for applications.
See :ref:`mmap` for details
- * -
- - unsigned long
+ * - unsigned long
- ``userptr``
- For the single-planar API and when ``memory`` is
``V4L2_MEMORY_USERPTR`` this is a pointer to the buffer (casted to
unsigned long type) in virtual memory, set by the application. See
:ref:`userp` for details.
- * -
- - struct v4l2_plane
+ * - struct v4l2_plane
- ``*planes``
- When using the multi-planar API, contains a userspace pointer to
an array of struct :c:type:`v4l2_plane`. The size of
the array should be put in the ``length`` field of this
struct :c:type:`v4l2_buffer` structure.
- * -
- - int
+ * - int
- ``fd``
- For the single-plane API and when ``memory`` is
``V4L2_MEMORY_DMABUF`` this is the file descriptor associated with
a DMABUF buffer.
+ * - }
+ -
* - __u32
- ``length``
- -
- Size of the buffer (not the payload) in bytes for the
single-planar API. This is set by the driver based on the calls to
:ref:`VIDIOC_REQBUFS` and/or
@@ -308,12 +296,10 @@ struct v4l2_buffer
actual number of valid elements in that array.
* - __u32
- ``reserved2``
- -
- A place holder for future extensions. Drivers and applications
must set this to 0.
* - __u32
- ``request_fd``
- -
- The file descriptor of the request to queue the buffer to. If the flag
``V4L2_BUF_FLAG_REQUEST_FD`` is set, then the buffer will be
queued to this request. If the flag is not set, then this field will
@@ -344,11 +330,10 @@ struct v4l2_plane
.. flat-table::
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 2
+ :widths: 1 1 2
* - __u32
- ``bytesused``
- -
- The number of bytes occupied by data in the plane (its payload).
Drivers must set this field when ``type`` refers to a capture
stream, applications when it refers to an output stream. If the
@@ -362,40 +347,35 @@ struct v4l2_plane
which may not be 0.
* - __u32
- ``length``
- -
- Size in bytes of the plane (not its payload). This is set by the
driver based on the calls to
:ref:`VIDIOC_REQBUFS` and/or
:ref:`VIDIOC_CREATE_BUFS`.
- * - union
+ * - union {
- ``m``
- -
- -
- * -
- - __u32
+ * - __u32
- ``mem_offset``
- When the memory type in the containing struct
:c:type:`v4l2_buffer` is ``V4L2_MEMORY_MMAP``, this
is the value that should be passed to :ref:`mmap() <func-mmap>`,
similar to the ``offset`` field in struct
:c:type:`v4l2_buffer`.
- * -
- - unsigned long
+ * - unsigned long
- ``userptr``
- When the memory type in the containing struct
:c:type:`v4l2_buffer` is ``V4L2_MEMORY_USERPTR``,
this is a userspace pointer to the memory allocated for this plane
by an application.
- * -
- - int
+ * - int
- ``fd``
- When the memory type in the containing struct
:c:type:`v4l2_buffer` is ``V4L2_MEMORY_DMABUF``,
this is a file descriptor associated with a DMABUF buffer, similar
to the ``fd`` field in struct :c:type:`v4l2_buffer`.
+ * - }
+ -
* - __u32
- ``data_offset``
- -
- Offset in bytes to video data in the plane. Drivers must set this
field when ``type`` refers to a capture stream, applications when
it refers to an output stream.
@@ -407,7 +387,6 @@ struct v4l2_plane
at offset ``data_offset`` from the start of the plane.
* - __u32
- ``reserved[11]``
- -
- Reserved for future use. Should be zeroed by drivers and
applications.
diff --git a/Documentation/media/uapi/v4l/dev-sliced-vbi.rst b/Documentation/media/uapi/v4l/dev-sliced-vbi.rst
index e86346f66017..7b2d38dd402a 100644
--- a/Documentation/media/uapi/v4l/dev-sliced-vbi.rst
+++ b/Documentation/media/uapi/v4l/dev-sliced-vbi.rst
@@ -478,33 +478,30 @@ struct v4l2_mpeg_vbi_fmt_ivtv
.. flat-table::
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 2
+ :widths: 1 1 2
* - __u8
- ``magic``\ [4]
- -
- A "magic" constant from :ref:`v4l2-mpeg-vbi-fmt-ivtv-magic` that
indicates this is a valid sliced VBI data payload and also
indicates which member of the anonymous union, ``itv0`` or
``ITV0``, to use for the payload data.
- * - union
+ * - union {
- (anonymous)
- * -
- - struct :c:type:`v4l2_mpeg_vbi_itv0`
+ * - struct :c:type:`v4l2_mpeg_vbi_itv0`
- ``itv0``
- The primary form of the sliced VBI data payload that contains
anywhere from 1 to 35 lines of sliced VBI data. Line masks are
provided in this form of the payload indicating which VBI lines
are provided.
- * -
- - struct :ref:`v4l2_mpeg_vbi_ITV0 <v4l2-mpeg-vbi-itv0-1>`
+ * - struct :ref:`v4l2_mpeg_vbi_ITV0 <v4l2-mpeg-vbi-itv0-1>`
- ``ITV0``
- An alternate form of the sliced VBI data payload used when 36
lines of sliced VBI data are present. No line masks are provided
in this form of the payload; all valid line mask bits are
implcitly set.
-
-
+ * - }
+ -
.. _v4l2-mpeg-vbi-fmt-ivtv-magic:
diff --git a/Documentation/media/uapi/v4l/ext-ctrls-codec.rst b/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
index 28313c0f4e7c..d4fc5f25aa14 100644
--- a/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
+++ b/Documentation/media/uapi/v4l/ext-ctrls-codec.rst
@@ -2028,6 +2028,22 @@ enum v4l2_mpeg_video_h264_hierarchical_coding_type -
* - ``V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM``
- 0x00000004
- The DPB entry is a long term reference frame
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_FIELD``
+ - 0x00000008
+ - The DPB entry is a field reference, which means only one of the field
+ will be used when decoding the new frame/field. When not set the DPB
+ entry is a frame reference (both fields will be used). Note that this
+ flag does not say anything about the number of fields contained in the
+ reference frame, it just describes the one used to decode the new
+ field/frame
+ * - ``V4L2_H264_DPB_ENTRY_FLAG_BOTTOM_FIELD``
+ - 0x00000010
+ - The DPB entry is a bottom field reference (only the bottom field of the
+ reference frame is needed to decode the new frame/field). Only valid if
+ V4L2_H264_DPB_ENTRY_FLAG_FIELD is set. When
+ V4L2_H264_DPB_ENTRY_FLAG_FIELD is set but
+ V4L2_H264_DPB_ENTRY_FLAG_BOTTOM_FIELD is not, that means the
+ DPB entry is a top field reference
``V4L2_CID_MPEG_VIDEO_H264_DECODE_MODE (enum)``
Specifies the decoding mode to use. Currently exposes slice-based and
diff --git a/Documentation/media/uapi/v4l/pixfmt-bayer.rst b/Documentation/media/uapi/v4l/pixfmt-bayer.rst
index cfa2f4e3e114..807ab34ba93b 100644
--- a/Documentation/media/uapi/v4l/pixfmt-bayer.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-bayer.rst
@@ -34,5 +34,6 @@ orders. See also `the Wikipedia article on Bayer filter
pixfmt-srggb10-ipu3
pixfmt-srggb12
pixfmt-srggb12p
+ pixfmt-srggb14
pixfmt-srggb14p
pixfmt-srggb16
diff --git a/Documentation/media/uapi/v4l/pixfmt-srggb14.rst b/Documentation/media/uapi/v4l/pixfmt-srggb14.rst
new file mode 100644
index 000000000000..3420d4d1825e
--- /dev/null
+++ b/Documentation/media/uapi/v4l/pixfmt-srggb14.rst
@@ -0,0 +1,82 @@
+.. Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
+
+.. _V4L2-PIX-FMT-SRGGB14:
+.. _v4l2-pix-fmt-sbggr14:
+.. _v4l2-pix-fmt-sgbrg14:
+.. _v4l2-pix-fmt-sgrbg14:
+
+
+***************************************************************************************************************************
+V4L2_PIX_FMT_SRGGB14 ('RG14'), V4L2_PIX_FMT_SGRBG14 ('GR14'), V4L2_PIX_FMT_SGBRG14 ('GB14'), V4L2_PIX_FMT_SBGGR14 ('BG14'),
+***************************************************************************************************************************
+
+
+14-bit Bayer formats expanded to 16 bits
+
+
+Description
+===========
+
+These four pixel formats are raw sRGB / Bayer formats with 14 bits per
+colour. Each sample is stored in a 16-bit word, with two unused high
+bits filled with zeros. Each n-pixel row contains n/2 green samples
+and n/2 blue or red samples, with alternating red and blue rows. Bytes
+are stored in memory in little endian order. They are conventionally
+described as GRGR... BGBG..., RGRG... GBGB..., etc. Below is an
+example of a small V4L2_PIX_FMT_SBGGR14 image:
+
+**Byte Order.**
+Each cell is one byte, the two most significant bits in the high bytes are
+zero.
+
+
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+ :widths: 2 1 1 1 1 1 1 1 1
+
+
+ * - start + 0:
+ - B\ :sub:`00low`
+ - B\ :sub:`00high`
+ - G\ :sub:`01low`
+ - G\ :sub:`01high`
+ - B\ :sub:`02low`
+ - B\ :sub:`02high`
+ - G\ :sub:`03low`
+ - G\ :sub:`03high`
+ * - start + 8:
+ - G\ :sub:`10low`
+ - G\ :sub:`10high`
+ - R\ :sub:`11low`
+ - R\ :sub:`11high`
+ - G\ :sub:`12low`
+ - G\ :sub:`12high`
+ - R\ :sub:`13low`
+ - R\ :sub:`13high`
+ * - start + 16:
+ - B\ :sub:`20low`
+ - B\ :sub:`20high`
+ - G\ :sub:`21low`
+ - G\ :sub:`21high`
+ - B\ :sub:`22low`
+ - B\ :sub:`22high`
+ - G\ :sub:`23low`
+ - G\ :sub:`23high`
+ * - start + 24:
+ - G\ :sub:`30low`
+ - G\ :sub:`30high`
+ - R\ :sub:`31low`
+ - R\ :sub:`31high`
+ - G\ :sub:`32low`
+ - G\ :sub:`32high`
+ - R\ :sub:`33low`
+ - R\ :sub:`33high`
diff --git a/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst b/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
index db43dda5aafb..054275c0dfc1 100644
--- a/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-v4l2-mplane.rst
@@ -100,7 +100,8 @@ describing all planes of that format.
* - __u8
- ``flags``
- Flags set by the application or driver, see :ref:`format-flags`.
- * - :cspan:`2` union { (anonymous)
+ * - union {
+ - (anonymous)
* - __u8
- ``ycbcr_enc``
- Y'CbCr encoding, from enum :c:type:`v4l2_ycbcr_encoding`.
@@ -113,7 +114,8 @@ describing all planes of that format.
This information supplements the ``colorspace`` and must be set by
the driver for capture streams and by the application for output
streams, see :ref:`colorspaces`.
- * - :cspan:`2` }
+ * - }
+ -
* - __u8
- ``quantization``
- Quantization range, from enum :c:type:`v4l2_quantization`.
diff --git a/Documentation/media/uapi/v4l/pixfmt-v4l2.rst b/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
index a8321c348bf8..a993b861bf75 100644
--- a/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
+++ b/Documentation/media/uapi/v4l/pixfmt-v4l2.rst
@@ -143,7 +143,6 @@ Single-planar format structure
- Flags set by the application or driver, see :ref:`format-flags`.
* - union {
- (anonymous)
- -
* - __u32
- ``ycbcr_enc``
- Y'CbCr encoding, from enum :c:type:`v4l2_ycbcr_encoding`.
@@ -158,7 +157,6 @@ Single-planar format structure
streams, see :ref:`colorspaces`.
* - }
-
- -
* - __u32
- ``quantization``
- Quantization range, from enum :c:type:`v4l2_quantization`.
diff --git a/Documentation/media/uapi/v4l/pixfmt-y14.rst b/Documentation/media/uapi/v4l/pixfmt-y14.rst
new file mode 100644
index 000000000000..5c260f8da088
--- /dev/null
+++ b/Documentation/media/uapi/v4l/pixfmt-y14.rst
@@ -0,0 +1,72 @@
+.. Permission is granted to copy, distribute and/or modify this
+.. document under the terms of the GNU Free Documentation License,
+.. Version 1.1 or any later version published by the Free Software
+.. Foundation, with no Invariant Sections, no Front-Cover Texts
+.. and no Back-Cover Texts. A copy of the license is included at
+.. Documentation/media/uapi/fdl-appendix.rst.
+..
+.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections
+
+.. _V4L2-PIX-FMT-Y14:
+
+*************************
+V4L2_PIX_FMT_Y14 ('Y14 ')
+*************************
+
+
+Grey-scale image
+
+
+Description
+===========
+
+This is a grey-scale image with a depth of 14 bits per pixel. Pixels are
+stored in 16-bit words with unused high bits padded with 0. The least
+significant byte is stored at lower memory addresses (little-endian).
+
+**Byte Order.**
+Each cell is one byte.
+
+
+
+
+.. flat-table::
+ :header-rows: 0
+ :stub-columns: 0
+
+ * - start + 0:
+ - Y'\ :sub:`00low`
+ - Y'\ :sub:`00high`
+ - Y'\ :sub:`01low`
+ - Y'\ :sub:`01high`
+ - Y'\ :sub:`02low`
+ - Y'\ :sub:`02high`
+ - Y'\ :sub:`03low`
+ - Y'\ :sub:`03high`
+ * - start + 8:
+ - Y'\ :sub:`10low`
+ - Y'\ :sub:`10high`
+ - Y'\ :sub:`11low`
+ - Y'\ :sub:`11high`
+ - Y'\ :sub:`12low`
+ - Y'\ :sub:`12high`
+ - Y'\ :sub:`13low`
+ - Y'\ :sub:`13high`
+ * - start + 16:
+ - Y'\ :sub:`20low`
+ - Y'\ :sub:`20high`
+ - Y'\ :sub:`21low`
+ - Y'\ :sub:`21high`
+ - Y'\ :sub:`22low`
+ - Y'\ :sub:`22high`
+ - Y'\ :sub:`23low`
+ - Y'\ :sub:`23high`
+ * - start + 24:
+ - Y'\ :sub:`30low`
+ - Y'\ :sub:`30high`
+ - Y'\ :sub:`31low`
+ - Y'\ :sub:`31high`
+ - Y'\ :sub:`32low`
+ - Y'\ :sub:`32high`
+ - Y'\ :sub:`33low`
+ - Y'\ :sub:`33high`
diff --git a/Documentation/media/uapi/v4l/subdev-formats.rst b/Documentation/media/uapi/v4l/subdev-formats.rst
index 15e11f27b4c8..17bfb2beaa6a 100644
--- a/Documentation/media/uapi/v4l/subdev-formats.rst
+++ b/Documentation/media/uapi/v4l/subdev-formats.rst
@@ -5792,6 +5792,43 @@ the following codes.
- u\ :sub:`2`
- u\ :sub:`1`
- u\ :sub:`0`
+ * .. _MEDIA-BUS-FMT-Y14-1X14:
+
+ - MEDIA_BUS_FMT_Y14_1X14
+ - 0x202d
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ -
+ - y\ :sub:`13`
+ - y\ :sub:`12`
+ - y\ :sub:`11`
+ - y\ :sub:`10`
+ - y\ :sub:`9`
+ - y\ :sub:`8`
+ - y\ :sub:`7`
+ - y\ :sub:`6`
+ - y\ :sub:`5`
+ - y\ :sub:`4`
+ - y\ :sub:`3`
+ - y\ :sub:`2`
+ - y\ :sub:`1`
+ - y\ :sub:`0`
* .. _MEDIA-BUS-FMT-UYVY8-1X16:
- MEDIA_BUS_FMT_UYVY8_1X16
diff --git a/Documentation/media/uapi/v4l/vidioc-dbg-g-chip-info.rst b/Documentation/media/uapi/v4l/vidioc-dbg-g-chip-info.rst
index a1cf20181cf1..d38031dbe4e4 100644
--- a/Documentation/media/uapi/v4l/vidioc-dbg-g-chip-info.rst
+++ b/Documentation/media/uapi/v4l/vidioc-dbg-g-chip-info.rst
@@ -91,23 +91,23 @@ instructions.
.. flat-table:: struct v4l2_dbg_match
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 2
+ :widths: 1 1 2
* - __u32
- ``type``
- See :ref:`name-chip-match-types` for a list of possible types.
- * - union
+ * - union {
- (anonymous)
- * -
- - __u32
+ * - __u32
- ``addr``
- Match a chip by this number, interpreted according to the ``type``
field.
- * -
- - char
+ * - char
- ``name[32]``
- Match a chip by this name, interpreted according to the ``type``
field. Currently unused.
+ * - }
+ -
diff --git a/Documentation/media/uapi/v4l/vidioc-dbg-g-register.rst b/Documentation/media/uapi/v4l/vidioc-dbg-g-register.rst
index 29e1d4fc4f52..112597c6cad2 100644
--- a/Documentation/media/uapi/v4l/vidioc-dbg-g-register.rst
+++ b/Documentation/media/uapi/v4l/vidioc-dbg-g-register.rst
@@ -100,23 +100,23 @@ instructions.
.. flat-table:: struct v4l2_dbg_match
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 2
+ :widths: 1 1 2
* - __u32
- ``type``
- See :ref:`chip-match-types` for a list of possible types.
- * - union
+ * - union {
- (anonymous)
- * -
- - __u32
+ * - __u32
- ``addr``
- Match a chip by this number, interpreted according to the ``type``
field.
- * -
- - char
+ * - char
- ``name[32]``
- Match a chip by this name, interpreted according to the ``type``
field. Currently unused.
+ * - }
+ -
diff --git a/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst b/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst
index f1a504836f31..784c5980da8d 100644
--- a/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst
+++ b/Documentation/media/uapi/v4l/vidioc-decoder-cmd.rst
@@ -77,32 +77,25 @@ introduced in Linux 3.3. They are, however, mandatory for stateful mem2mem decod
.. flat-table:: struct v4l2_decoder_cmd
:header-rows: 0
:stub-columns: 0
- :widths: 11 24 12 16 106
+ :widths: 1 1 1 3
* - __u32
- ``cmd``
-
- -
- The decoder command, see :ref:`decoder-cmds`.
* - __u32
- ``flags``
-
- -
- Flags to go with the command. If no flags are defined for this
command, drivers and applications must set this field to zero.
- * - union
+ * - union {
- (anonymous)
- -
- -
- -
- * -
- - struct
+ * - struct
- ``start``
-
- Structure containing additional data for the
``V4L2_DEC_CMD_START`` command.
* -
- -
- __s32
- ``speed``
- Playback speed and direction. The playback speed is defined as
@@ -113,7 +106,6 @@ introduced in Linux 3.3. They are, however, mandatory for stateful mem2mem decod
of 1 steps just one frame forward, a speed of -1 steps just one
frame back.
* -
- -
- __u32
- ``format``
- Format restrictions. This field is set by the driver, not the
@@ -124,30 +116,26 @@ introduced in Linux 3.3. They are, however, mandatory for stateful mem2mem decod
GOPs, which it can then play in reverse order. So to implement
reverse playback the application must feed the decoder the last
GOP in the video file, then the GOP before that, etc. etc.
- * -
- - struct
+ * - struct
- ``stop``
-
- Structure containing additional data for the ``V4L2_DEC_CMD_STOP``
command.
* -
- -
- __u64
- ``pts``
- Stop playback at this ``pts`` or immediately if the playback is
already past that timestamp. Leave to 0 if you want to stop after
the last frame was decoded.
- * -
- - struct
+ * - struct
- ``raw``
- -
- -
* -
- -
- __u32
- ``data``\ [16]
- Reserved for future extensions. Drivers and applications must set
the array to zero.
+ * - }
+ -
diff --git a/Documentation/media/uapi/v4l/vidioc-dqevent.rst b/Documentation/media/uapi/v4l/vidioc-dqevent.rst
index 42659a3d1705..2f37d255352a 100644
--- a/Documentation/media/uapi/v4l/vidioc-dqevent.rst
+++ b/Documentation/media/uapi/v4l/vidioc-dqevent.rst
@@ -55,66 +55,54 @@ call.
.. flat-table:: struct v4l2_event
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 2 1
+ :widths: 1 1 2
* - __u32
- ``type``
- -
- Type of the event, see :ref:`event-type`.
- * - union
+ * - union {
- ``u``
- -
- -
- * -
- - struct :c:type:`v4l2_event_vsync`
+ * - struct :c:type:`v4l2_event_vsync`
- ``vsync``
- Event data for event ``V4L2_EVENT_VSYNC``.
- * -
- - struct :c:type:`v4l2_event_ctrl`
+ * - struct :c:type:`v4l2_event_ctrl`
- ``ctrl``
- Event data for event ``V4L2_EVENT_CTRL``.
- * -
- - struct :c:type:`v4l2_event_frame_sync`
+ * - struct :c:type:`v4l2_event_frame_sync`
- ``frame_sync``
- Event data for event ``V4L2_EVENT_FRAME_SYNC``.
- * -
- - struct :c:type:`v4l2_event_motion_det`
+ * - struct :c:type:`v4l2_event_motion_det`
- ``motion_det``
- Event data for event V4L2_EVENT_MOTION_DET.
- * -
- - struct :c:type:`v4l2_event_src_change`
+ * - struct :c:type:`v4l2_event_src_change`
- ``src_change``
- Event data for event V4L2_EVENT_SOURCE_CHANGE.
- * -
- - __u8
+ * - __u8
- ``data``\ [64]
- Event data. Defined by the event type. The union should be used to
define easily accessible type for events.
+ * - }
+ -
* - __u32
- ``pending``
- -
- Number of pending events excluding this one.
* - __u32
- ``sequence``
- -
- Event sequence number. The sequence number is incremented for
every subscribed event that takes place. If sequence numbers are
not contiguous it means that events have been lost.
* - struct timespec
- ``timestamp``
- -
- Event timestamp. The timestamp has been taken from the
``CLOCK_MONOTONIC`` clock. To access the same clock outside V4L2,
use :c:func:`clock_gettime`.
* - u32
- ``id``
- -
- The ID associated with the event source. If the event does not
have an associated ID (this depends on the event type), then this
is 0.
* - __u32
- ``reserved``\ [8]
- -
- Reserved for future extensions. Drivers must set the array to
zero.
@@ -233,54 +221,45 @@ call.
.. flat-table:: struct v4l2_event_ctrl
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 2 1
+ :widths: 1 1 2
* - __u32
- ``changes``
- -
- A bitmask that tells what has changed. See
:ref:`ctrl-changes-flags`.
* - __u32
- ``type``
- -
- The type of the control. See enum
:c:type:`v4l2_ctrl_type`.
- * - union (anonymous)
- -
- -
- -
- * -
- - __s32
+ * - union {
+ - (anonymous)
+ * - __s32
- ``value``
- The 32-bit value of the control for 32-bit control types. This is
0 for string controls since the value of a string cannot be passed
using :ref:`VIDIOC_DQEVENT`.
- * -
- - __s64
+ * - __s64
- ``value64``
- The 64-bit value of the control for 64-bit control types.
+ * - }
+ -
* - __u32
- ``flags``
- -
- The control flags. See :ref:`control-flags`.
* - __s32
- ``minimum``
- -
- The minimum value of the control. See struct
:ref:`v4l2_queryctrl <v4l2-queryctrl>`.
* - __s32
- ``maximum``
- -
- The maximum value of the control. See struct
:ref:`v4l2_queryctrl <v4l2-queryctrl>`.
* - __s32
- ``step``
- -
- The step value of the control. See struct
:ref:`v4l2_queryctrl <v4l2-queryctrl>`.
* - __s32
- ``default_value``
- -
- The default value value of the control. See struct
:ref:`v4l2_queryctrl <v4l2-queryctrl>`.
diff --git a/Documentation/media/uapi/v4l/vidioc-dv-timings-cap.rst b/Documentation/media/uapi/v4l/vidioc-dv-timings-cap.rst
index e62d45d37072..1d0acbf14c4f 100644
--- a/Documentation/media/uapi/v4l/vidioc-dv-timings-cap.rst
+++ b/Documentation/media/uapi/v4l/vidioc-dv-timings-cap.rst
@@ -112,7 +112,7 @@ that doesn't support them will return an ``EINVAL`` error code.
.. flat-table:: struct v4l2_dv_timings_cap
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 2 1
+ :widths: 1 1 2
* - __u32
- ``type``
@@ -127,16 +127,14 @@ that doesn't support them will return an ``EINVAL`` error code.
- Reserved for future extensions.
Drivers and applications must set the array to zero.
- * - union
- -
- -
- * -
- - struct :c:type:`v4l2_bt_timings_cap`
+ * - union {
+ - (anonymous)
+ * - struct :c:type:`v4l2_bt_timings_cap`
- ``bt``
- BT.656/1120 timings capabilities of the hardware.
- * -
- - __u32
+ * - __u32
- ``raw_data``\ [32]
+ * - }
-
.. tabularcolumns:: |p{7.0cm}|p{10.5cm}|
diff --git a/Documentation/media/uapi/v4l/vidioc-enum-frameintervals.rst b/Documentation/media/uapi/v4l/vidioc-enum-frameintervals.rst
index 2c69f26b165d..563a67cddeca 100644
--- a/Documentation/media/uapi/v4l/vidioc-enum-frameintervals.rst
+++ b/Documentation/media/uapi/v4l/vidioc-enum-frameintervals.rst
@@ -138,36 +138,31 @@ application should zero out all members except for the *IN* fields.
* - __u32
- ``index``
- -
- IN: Index of the given frame interval in the enumeration.
* - __u32
- ``pixel_format``
- -
- IN: Pixel format for which the frame intervals are enumerated.
* - __u32
- ``width``
- -
- IN: Frame width for which the frame intervals are enumerated.
* - __u32
- ``height``
- -
- IN: Frame height for which the frame intervals are enumerated.
* - __u32
- ``type``
- -
- OUT: Frame interval type the device supports.
- * - union
- -
- -
+ * - union {
+ - (anonymous)
- OUT: Frame interval with the given index.
- * -
- - struct :c:type:`v4l2_fract`
+ * - struct :c:type:`v4l2_fract`
- ``discrete``
- Frame interval [s].
- * -
- - struct :c:type:`v4l2_frmival_stepwise`
+ * - struct :c:type:`v4l2_frmival_stepwise`
- ``stepwise``
-
+ * - }
+ -
+ -
* - __u32
- ``reserved[2]``
-
diff --git a/Documentation/media/uapi/v4l/vidioc-enum-framesizes.rst b/Documentation/media/uapi/v4l/vidioc-enum-framesizes.rst
index cf31f548826f..cd97546a7122 100644
--- a/Documentation/media/uapi/v4l/vidioc-enum-framesizes.rst
+++ b/Documentation/media/uapi/v4l/vidioc-enum-framesizes.rst
@@ -155,31 +155,27 @@ application should zero out all members except for the *IN* fields.
* - __u32
- ``index``
- -
- IN: Index of the given frame size in the enumeration.
* - __u32
- ``pixel_format``
- -
- IN: Pixel format for which the frame sizes are enumerated.
* - __u32
- ``type``
- -
- OUT: Frame size type the device supports.
- * - union
- -
- -
+ * - union {
+ - (anonymous)
- OUT: Frame size with the given index.
- * -
- - struct :c:type:`v4l2_frmsize_discrete`
+ * - struct :c:type:`v4l2_frmsize_discrete`
- ``discrete``
-
- * -
- - struct :c:type:`v4l2_frmsize_stepwise`
+ * - struct :c:type:`v4l2_frmsize_stepwise`
- ``stepwise``
-
+ * - }
+ -
+ -
* - __u32
- ``reserved[2]``
- -
- Reserved space for future use. Must be zeroed by drivers and
applications.
diff --git a/Documentation/media/uapi/v4l/vidioc-g-dv-timings.rst b/Documentation/media/uapi/v4l/vidioc-g-dv-timings.rst
index 5c675cbac4cf..e36dd2622857 100644
--- a/Documentation/media/uapi/v4l/vidioc-g-dv-timings.rst
+++ b/Documentation/media/uapi/v4l/vidioc-g-dv-timings.rst
@@ -179,23 +179,21 @@ EBUSY
.. flat-table:: struct v4l2_dv_timings
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 2 1
+ :widths: 1 1 2
* - __u32
- ``type``
- -
- Type of DV timings as listed in :ref:`dv-timing-types`.
- * - union
- -
- -
- * -
- - struct :c:type:`v4l2_bt_timings`
+ * - union {
+ - (anonymous)
+ * - struct :c:type:`v4l2_bt_timings`
- ``bt``
- Timings defined by BT.656/1120 specifications
- * -
- - __u32
+ * - __u32
- ``reserved``\ [32]
-
+ * - }
+ -
.. tabularcolumns:: |p{4.4cm}|p{4.4cm}|p{8.7cm}|
diff --git a/Documentation/media/uapi/v4l/vidioc-g-ext-ctrls.rst b/Documentation/media/uapi/v4l/vidioc-g-ext-ctrls.rst
index 271cac18afbb..cdb2a2a512d6 100644
--- a/Documentation/media/uapi/v4l/vidioc-g-ext-ctrls.rst
+++ b/Documentation/media/uapi/v4l/vidioc-g-ext-ctrls.rst
@@ -136,15 +136,13 @@ still cause this situation.
.. flat-table:: struct v4l2_ext_control
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 2
+ :widths: 1 1 2
* - __u32
- ``id``
- -
- Identifies the control, set by the application.
* - __u32
- ``size``
- -
- The total size in bytes of the payload of this control. This is
normally 0, but for pointer controls this should be set to the
size of the memory containing the payload, or that will receive
@@ -161,55 +159,48 @@ still cause this situation.
*length* of the string may well be much smaller.
* - __u32
- ``reserved2``\ [1]
- -
- Reserved for future extensions. Drivers and applications must set
the array to zero.
- * - union
+ * - union {
- (anonymous)
- * -
- - __s32
+ * - __s32
- ``value``
- New value or current value. Valid if this control is not of type
``V4L2_CTRL_TYPE_INTEGER64`` and ``V4L2_CTRL_FLAG_HAS_PAYLOAD`` is
not set.
- * -
- - __s64
+ * - __s64
- ``value64``
- New value or current value. Valid if this control is of type
``V4L2_CTRL_TYPE_INTEGER64`` and ``V4L2_CTRL_FLAG_HAS_PAYLOAD`` is
not set.
- * -
- - char *
+ * - char *
- ``string``
- A pointer to a string. Valid if this control is of type
``V4L2_CTRL_TYPE_STRING``.
- * -
- - __u8 *
+ * - __u8 *
- ``p_u8``
- A pointer to a matrix control of unsigned 8-bit values. Valid if
this control is of type ``V4L2_CTRL_TYPE_U8``.
- * -
- - __u16 *
+ * - __u16 *
- ``p_u16``
- A pointer to a matrix control of unsigned 16-bit values. Valid if
this control is of type ``V4L2_CTRL_TYPE_U16``.
- * -
- - __u32 *
+ * - __u32 *
- ``p_u32``
- A pointer to a matrix control of unsigned 32-bit values. Valid if
this control is of type ``V4L2_CTRL_TYPE_U32``.
- * -
- - :c:type:`v4l2_area` *
+ * - :c:type:`v4l2_area` *
- ``p_area``
- A pointer to a struct :c:type:`v4l2_area`. Valid if this control is
of type ``V4L2_CTRL_TYPE_AREA``.
- * -
- - void *
+ * - void *
- ``ptr``
- A pointer to a compound type which can be an N-dimensional array
and/or a compound type (the control's type is >=
``V4L2_CTRL_COMPOUND_TYPES``). Valid if
``V4L2_CTRL_FLAG_HAS_PAYLOAD`` is set for this control.
+ * - }
+ -
.. tabularcolumns:: |p{4.0cm}|p{2.2cm}|p{2.1cm}|p{8.2cm}|
@@ -221,12 +212,11 @@ still cause this situation.
.. flat-table:: struct v4l2_ext_controls
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 2 1
+ :widths: 1 1 2
- * - union
+ * - union {
- (anonymous)
- * -
- - __u32
+ * - __u32
- ``ctrl_class``
- The control class to which all controls belong, see
:ref:`ctrl-class`. Drivers that use a kernel framework for
@@ -235,8 +225,7 @@ still cause this situation.
support this can be tested by setting ``ctrl_class`` to 0 and
calling :ref:`VIDIOC_TRY_EXT_CTRLS <VIDIOC_G_EXT_CTRLS>` with a ``count`` of 0. If that
succeeds, then the driver supports this feature.
- * -
- - __u32
+ * - __u32
- ``which``
- Which value of the control to get/set/try.
``V4L2_CTRL_WHICH_CUR_VAL`` will return the current value of the
@@ -261,6 +250,8 @@ still cause this situation.
by setting ctrl_class to ``V4L2_CTRL_WHICH_CUR_VAL`` and calling
VIDIOC_TRY_EXT_CTRLS with a count of 0. If that fails, then the
driver does not support ``V4L2_CTRL_WHICH_CUR_VAL``.
+ * - }
+ -
* - __u32
- ``count``
- The number of controls in the controls array. May also be zero.
diff --git a/Documentation/media/uapi/v4l/vidioc-g-fmt.rst b/Documentation/media/uapi/v4l/vidioc-g-fmt.rst
index e35a9caff652..1e69bfc46e8d 100644
--- a/Documentation/media/uapi/v4l/vidioc-g-fmt.rst
+++ b/Documentation/media/uapi/v4l/vidioc-g-fmt.rst
@@ -103,51 +103,44 @@ The format as returned by :ref:`VIDIOC_TRY_FMT <VIDIOC_G_FMT>` must be identical
* - __u32
- ``type``
- -
- Type of the data stream, see :c:type:`v4l2_buf_type`.
- * - union
+ * - union {
- ``fmt``
- * -
- - struct :c:type:`v4l2_pix_format`
+ * - struct :c:type:`v4l2_pix_format`
- ``pix``
- Definition of an image format, see :ref:`pixfmt`, used by video
capture and output devices.
- * -
- - struct :c:type:`v4l2_pix_format_mplane`
+ * - struct :c:type:`v4l2_pix_format_mplane`
- ``pix_mp``
- Definition of an image format, see :ref:`pixfmt`, used by video
capture and output devices that support the
:ref:`multi-planar version of the API <planar-apis>`.
- * -
- - struct :c:type:`v4l2_window`
+ * - struct :c:type:`v4l2_window`
- ``win``
- Definition of an overlaid image, see :ref:`overlay`, used by
video overlay devices.
- * -
- - struct :c:type:`v4l2_vbi_format`
+ * - struct :c:type:`v4l2_vbi_format`
- ``vbi``
- Raw VBI capture or output parameters. This is discussed in more
detail in :ref:`raw-vbi`. Used by raw VBI capture and output
devices.
- * -
- - struct :c:type:`v4l2_sliced_vbi_format`
+ * - struct :c:type:`v4l2_sliced_vbi_format`
- ``sliced``
- Sliced VBI capture or output parameters. See :ref:`sliced` for
details. Used by sliced VBI capture and output devices.
- * -
- - struct :c:type:`v4l2_sdr_format`
+ * - struct :c:type:`v4l2_sdr_format`
- ``sdr``
- Definition of a data format, see :ref:`pixfmt`, used by SDR
capture and output devices.
- * -
- - struct :c:type:`v4l2_meta_format`
+ * - struct :c:type:`v4l2_meta_format`
- ``meta``
- Definition of a metadata format, see :ref:`meta-formats`, used by
metadata capture devices.
- * -
- - __u8
+ * - __u8
- ``raw_data``\ [200]
- Place holder for future extensions.
+ * - }
+ -
Return Value
diff --git a/Documentation/media/uapi/v4l/vidioc-g-parm.rst b/Documentation/media/uapi/v4l/vidioc-g-parm.rst
index d9d5d97848d3..044a459e073f 100644
--- a/Documentation/media/uapi/v4l/vidioc-g-parm.rst
+++ b/Documentation/media/uapi/v4l/vidioc-g-parm.rst
@@ -69,33 +69,29 @@ union holding separate parameters for input and output devices.
.. flat-table:: struct v4l2_streamparm
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 1 2
+ :widths: 1 1 2
* - __u32
- ``type``
- -
- The buffer (stream) type, same as struct
:c:type:`v4l2_format` ``type``, set by the
application. See :c:type:`v4l2_buf_type`.
- * - union
+ * - union {
- ``parm``
- -
- -
- * -
- - struct :c:type:`v4l2_captureparm`
+ * - struct :c:type:`v4l2_captureparm`
- ``capture``
- Parameters for capture devices, used when ``type`` is
``V4L2_BUF_TYPE_VIDEO_CAPTURE`` or
``V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE``.
- * -
- - struct :c:type:`v4l2_outputparm`
+ * - struct :c:type:`v4l2_outputparm`
- ``output``
- Parameters for output devices, used when ``type`` is
``V4L2_BUF_TYPE_VIDEO_OUTPUT`` or ``V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE``.
- * -
- - __u8
+ * - __u8
- ``raw_data``\ [200]
- A place holder for future extensions.
+ * - }
+ -
diff --git a/Documentation/media/uapi/v4l/vidioc-queryctrl.rst b/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
index 6690928e657b..8971f4cfb16e 100644
--- a/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
+++ b/Documentation/media/uapi/v4l/vidioc-queryctrl.rst
@@ -290,34 +290,29 @@ See also the examples in :ref:`control`.
.. flat-table:: struct v4l2_querymenu
:header-rows: 0
:stub-columns: 0
- :widths: 1 1 2 1
+ :widths: 1 1 2
* - __u32
- -
- ``id``
- Identifies the control, set by the application from the respective
struct :ref:`v4l2_queryctrl <v4l2-queryctrl>` ``id``.
* - __u32
- -
- ``index``
- Index of the menu item, starting at zero, set by the application.
- * - union
- -
- -
- -
- * -
- - __u8
+ * - union {
+ - (anonymous)
+ * - __u8
- ``name``\ [32]
- Name of the menu item, a NUL-terminated ASCII string. This
information is intended for the user. This field is valid for
``V4L2_CTRL_TYPE_MENU`` type controls.
- * -
- - __s64
+ * - __s64
- ``value``
- Value of the integer menu item. This field is valid for
``V4L2_CTRL_TYPE_INTEGER_MENU`` type controls.
- * - __u32
+ * - }
-
+ * - __u32
- ``reserved``
- Reserved for future extensions. Drivers must set the array to
zero.
@@ -378,7 +373,7 @@ See also the examples in :ref:`control`.
- 0
- 0
- A control which performs an action when set. Drivers must ignore
- the value passed with ``VIDIOC_S_CTRL`` and return an ``EINVAL`` error
+ the value passed with ``VIDIOC_S_CTRL`` and return an ``EACCES`` error
code on a ``VIDIOC_G_CTRL`` attempt.
* - ``V4L2_CTRL_TYPE_INTEGER64``
- any
diff --git a/Documentation/media/uapi/v4l/yuv-formats.rst b/Documentation/media/uapi/v4l/yuv-formats.rst
index 867470e5f9e1..3b259e31b7a1 100644
--- a/Documentation/media/uapi/v4l/yuv-formats.rst
+++ b/Documentation/media/uapi/v4l/yuv-formats.rst
@@ -35,6 +35,7 @@ to brightness information.
pixfmt-grey
pixfmt-y10
pixfmt-y12
+ pixfmt-y14
pixfmt-y10b
pixfmt-y10p
pixfmt-y16
diff --git a/Documentation/media/v4l-drivers/ipu3.rst b/Documentation/media/v4l-drivers/ipu3.rst
index e4904ab44e60..a694f49491f9 100644
--- a/Documentation/media/v4l-drivers/ipu3.rst
+++ b/Documentation/media/v4l-drivers/ipu3.rst
@@ -311,10 +311,13 @@ Down Scaler and GDC blocks should be configured with the supported resolutions
as each hardware block has its own alignment requirement.
You must configure the output resolution of the hardware blocks smartly to meet
-the hardware requirement along with keeping the maximum field of view.
-The intermediate resolutions can be generated by specific tool and this
-information can be obtained by looking at the following IPU3 ImgU configuration
-table.
+the hardware requirement along with keeping the maximum field of view. The
+intermediate resolutions can be generated by specific tool -
+
+https://github.com/intel/intel-ipu3-pipecfg
+
+This tool can be used to generate intermediate resolutions. More information can
+be obtained by looking at the following IPU3 ImgU configuration table.
https://chromium.googlesource.com/chromiumos/overlays/board-overlays/+/master
diff --git a/Documentation/media/v4l-drivers/vivid.rst b/Documentation/media/v4l-drivers/vivid.rst
index 7082fec4075d..52e57b773f07 100644
--- a/Documentation/media/v4l-drivers/vivid.rst
+++ b/Documentation/media/v4l-drivers/vivid.rst
@@ -4,9 +4,9 @@ The Virtual Video Test Driver (vivid)
=====================================
This driver emulates video4linux hardware of various types: video capture, video
-output, vbi capture and output, radio receivers and transmitters and a software
-defined radio receiver. In addition a simple framebuffer device is available for
-testing capture and output overlays.
+output, vbi capture and output, metadata capture and output, radio receivers and
+transmitters, touch capture and a software defined radio receiver. In addition a
+simple framebuffer device is available for testing capture and output overlays.
Up to 64 vivid instances can be created, each with up to 16 inputs and 16 outputs.
@@ -36,6 +36,8 @@ This document describes the features implemented by this driver:
- Radio receiver and transmitter support, including RDS support
- Software defined radio (SDR) support
- Capture and output overlay support
+- Metadata capture and output support
+- Touch capture support
These features will be described in more detail below.
@@ -69,6 +71,9 @@ all configurable using the following module options:
- bit 10-11: VBI Output node: 0 = none, 1 = raw vbi, 2 = sliced vbi, 3 = both
- bit 12: Radio Transmitter node
- bit 16: Framebuffer for testing overlays
+ - bit 17: Metadata Capture node
+ - bit 18: Metadata Output node
+ - bit 19: Touch Capture node
So to create four instances, the first two with just one video capture
device, the second two with just one video output device you would pass
@@ -175,6 +180,21 @@ all configurable using the following module options:
give the desired swradioX start number for each SDR capture device.
The default is -1 which will just take the first free number.
+- meta_cap_nr:
+
+ give the desired videoX start number for each metadata capture device.
+ The default is -1 which will just take the first free number.
+
+- meta_out_nr:
+
+ give the desired videoX start number for each metadata output device.
+ The default is -1 which will just take the first free number.
+
+- touch_cap_nr:
+
+ give the desired v4l-touchX start number for each touch capture device.
+ The default is -1 which will just take the first free number.
+
- ccs_cap_mode:
specify the allowed video capture crop/compose/scaling combination
@@ -547,6 +567,33 @@ The generated data contains the In-phase and Quadrature components of a
1 kHz tone that has an amplitude of sqrt(2).
+Metadata Capture
+----------------
+
+The Metadata capture generates UVC format metadata. The PTS and SCR are
+transmitted based on the values set in vivid contols.
+
+The Metadata device will only work for the Webcam input, it will give
+back an error for all other inputs.
+
+
+Metadata Output
+---------------
+
+The Metadata output can be used to set brightness, contrast, saturation and hue.
+
+The Metadata device will only work for the Webcam output, it will give
+back an error for all other outputs.
+
+
+Touch Capture
+-------------
+
+The Touch capture generates touch patterns simulating single tap, double tap,
+triple tap, move from left to right, zoom in, zoom out, palm press (simulating
+a large area being pressed on a touchpad), and simulating 16 simultaneous
+touch points.
+
Controls
--------
@@ -1049,6 +1096,16 @@ FM Radio Modulator Controls
to pass the RDS blocks to the driver, or "Controls" where the RDS data
is Provided by the RDS controls mentioned above.
+Metadata Capture Controls
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- Generate PTS
+
+ if set, then the generated metadata stream contains Presentation timestamp.
+
+- Generate SCR
+
+ if set, then the generated metadata stream contains Source Clock information.
Video, VBI and RDS Looping
--------------------------
diff --git a/Documentation/misc-devices/index.rst b/Documentation/misc-devices/index.rst
index f11c5daeada5..c1dcd2628911 100644
--- a/Documentation/misc-devices/index.rst
+++ b/Documentation/misc-devices/index.rst
@@ -20,4 +20,5 @@ fit into other categories.
isl29003
lis3lv02d
max6875
+ mic/index
xilinx_sdfec
diff --git a/Documentation/mic/index.rst b/Documentation/misc-devices/mic/index.rst
index 3a8d06367ef1..3a8d06367ef1 100644
--- a/Documentation/mic/index.rst
+++ b/Documentation/misc-devices/mic/index.rst
diff --git a/Documentation/mic/mic_overview.rst b/Documentation/misc-devices/mic/mic_overview.rst
index 17d956bdaf7c..17d956bdaf7c 100644
--- a/Documentation/mic/mic_overview.rst
+++ b/Documentation/misc-devices/mic/mic_overview.rst
diff --git a/Documentation/mic/scif_overview.rst b/Documentation/misc-devices/mic/scif_overview.rst
index 4c8ad9e43706..4c8ad9e43706 100644
--- a/Documentation/mic/scif_overview.rst
+++ b/Documentation/misc-devices/mic/scif_overview.rst
diff --git a/Documentation/networking/snmp_counter.rst b/Documentation/networking/snmp_counter.rst
index 38a4edc4522b..10e11099e74a 100644
--- a/Documentation/networking/snmp_counter.rst
+++ b/Documentation/networking/snmp_counter.rst
@@ -908,8 +908,8 @@ A TLP probe packet is sent.
A packet loss is detected and recovered by TLP.
-TCP Fast Open
-=============
+TCP Fast Open description
+=========================
TCP Fast Open is a technology which allows data transfer before the
3-way handshake complete. Please refer the `TCP Fast Open wiki`_ for a
general description.
diff --git a/Documentation/power/pm_qos_interface.rst b/Documentation/power/pm_qos_interface.rst
index 0d62d506caf0..69b0fe3e2542 100644
--- a/Documentation/power/pm_qos_interface.rst
+++ b/Documentation/power/pm_qos_interface.rst
@@ -7,86 +7,78 @@ performance expectations by drivers, subsystems and user space applications on
one of the parameters.
Two different PM QoS frameworks are available:
-1. PM QoS classes for cpu_dma_latency
-2. The per-device PM QoS framework provides the API to manage the
+ * CPU latency QoS.
+ * The per-device PM QoS framework provides the API to manage the
per-device latency constraints and PM QoS flags.
-Each parameters have defined units:
-
- * latency: usec
- * timeout: usec
- * throughput: kbs (kilo bit / sec)
- * memory bandwidth: mbs (mega bit / sec)
+The latency unit used in the PM QoS framework is the microsecond (usec).
1. PM QoS framework
===================
-The infrastructure exposes multiple misc device nodes one per implemented
-parameter. The set of parameters implement is defined by pm_qos_power_init()
-and pm_qos_params.h. This is done because having the available parameters
-being runtime configurable or changeable from a driver was seen as too easy to
-abuse.
-
-For each parameter a list of performance requests is maintained along with
-an aggregated target value. The aggregated target value is updated with
-changes to the request list or elements of the list. Typically the
-aggregated target value is simply the max or min of the request values held
-in the parameter list elements.
+A global list of CPU latency QoS requests is maintained along with an aggregated
+(effective) target value. The aggregated target value is updated with changes
+to the request list or elements of the list. For CPU latency QoS, the
+aggregated target value is simply the min of the request values held in the list
+elements.
+
Note: the aggregated target value is implemented as an atomic variable so that
reading the aggregated value does not require any locking mechanism.
+From kernel space the use of this interface is simple:
-From kernel mode the use of this interface is simple:
-
-void pm_qos_add_request(handle, param_class, target_value):
- Will insert an element into the list for that identified PM QoS class with the
- target value. Upon change to this list the new target is recomputed and any
- registered notifiers are called only if the target value is now different.
- Clients of pm_qos need to save the returned handle for future use in other
- pm_qos API functions.
+void cpu_latency_qos_add_request(handle, target_value):
+ Will insert an element into the CPU latency QoS list with the target value.
+ Upon change to this list the new target is recomputed and any registered
+ notifiers are called only if the target value is now different.
+ Clients of PM QoS need to save the returned handle for future use in other
+ PM QoS API functions.
-void pm_qos_update_request(handle, new_target_value):
+void cpu_latency_qos_update_request(handle, new_target_value):
Will update the list element pointed to by the handle with the new target
value and recompute the new aggregated target, calling the notification tree
if the target is changed.
-void pm_qos_remove_request(handle):
+void cpu_latency_qos_remove_request(handle):
Will remove the element. After removal it will update the aggregate target
and call the notification tree if the target was changed as a result of
removing the request.
-int pm_qos_request(param_class):
- Returns the aggregated value for a given PM QoS class.
+int cpu_latency_qos_limit():
+ Returns the aggregated value for the CPU latency QoS.
+
+int cpu_latency_qos_request_active(handle):
+ Returns if the request is still active, i.e. it has not been removed from the
+ CPU latency QoS list.
-int pm_qos_request_active(handle):
- Returns if the request is still active, i.e. it has not been removed from a
- PM QoS class constraints list.
+int cpu_latency_qos_add_notifier(notifier):
+ Adds a notification callback function to the CPU latency QoS. The callback is
+ called when the aggregated value for the CPU latency QoS is changed.
-int pm_qos_add_notifier(param_class, notifier):
- Adds a notification callback function to the PM QoS class. The callback is
- called when the aggregated value for the PM QoS class is changed.
+int cpu_latency_qos_remove_notifier(notifier):
+ Removes the notification callback function from the CPU latency QoS.
-int pm_qos_remove_notifier(int param_class, notifier):
- Removes the notification callback function for the PM QoS class.
+From user space:
-From user mode:
+The infrastructure exposes one device node, /dev/cpu_dma_latency, for the CPU
+latency QoS.
-Only processes can register a pm_qos request. To provide for automatic
+Only processes can register a PM QoS request. To provide for automatic
cleanup of a process, the interface requires the process to register its
-parameter requests in the following way:
+parameter requests as follows.
-To register the default pm_qos target for the specific parameter, the process
-must open /dev/cpu_dma_latency
+To register the default PM QoS target for the CPU latency QoS, the process must
+open /dev/cpu_dma_latency.
As long as the device node is held open that process has a registered
request on the parameter.
-To change the requested target value the process needs to write an s32 value to
-the open device node. Alternatively the user mode program could write a hex
-string for the value using 10 char long format e.g. "0x12345678". This
-translates to a pm_qos_update_request call.
+To change the requested target value, the process needs to write an s32 value to
+the open device node. Alternatively, it can write a hex string for the value
+using the 10 char long format e.g. "0x12345678". This translates to a
+cpu_latency_qos_update_request() call.
To remove the user mode request for a target value simply close the device
node.
diff --git a/Documentation/power/runtime_pm.rst b/Documentation/power/runtime_pm.rst
index ab8406c84254..0553008b6279 100644
--- a/Documentation/power/runtime_pm.rst
+++ b/Documentation/power/runtime_pm.rst
@@ -382,6 +382,12 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
nonzero, increment the counter and return 1; otherwise return 0 without
changing the counter
+ `int pm_runtime_get_if_active(struct device *dev, bool ign_usage_count);`
+ - return -EINVAL if 'power.disable_depth' is nonzero; otherwise, if the
+ runtime PM status is RPM_ACTIVE, and either ign_usage_count is true
+ or the device's usage_count is non-zero, increment the counter and
+ return 1; otherwise return 0 without changing the counter
+
`void pm_runtime_put_noidle(struct device *dev);`
- decrement the device's usage counter
diff --git a/Documentation/power/userland-swsusp.rst b/Documentation/power/userland-swsusp.rst
index a0fa51bb1a4d..1cf62d80a9ca 100644
--- a/Documentation/power/userland-swsusp.rst
+++ b/Documentation/power/userland-swsusp.rst
@@ -69,11 +69,13 @@ SNAPSHOT_PREF_IMAGE_SIZE
SNAPSHOT_GET_IMAGE_SIZE
return the actual size of the hibernation image
+ (the last argument should be a pointer to a loff_t variable that
+ will contain the result if the call is successful)
SNAPSHOT_AVAIL_SWAP_SIZE
- return the amount of available swap in bytes (the
- last argument should be a pointer to an unsigned int variable that will
- contain the result if the call is successful).
+ return the amount of available swap in bytes
+ (the last argument should be a pointer to a loff_t variable that
+ will contain the result if the call is successful)
SNAPSHOT_ALLOC_SWAP_PAGE
allocate a swap page from the resume partition
diff --git a/Documentation/powerpc/ultravisor.rst b/Documentation/powerpc/ultravisor.rst
index 363736d7fd36..df136c8f91fa 100644
--- a/Documentation/powerpc/ultravisor.rst
+++ b/Documentation/powerpc/ultravisor.rst
@@ -8,8 +8,8 @@ Protected Execution Facility
.. contents::
:depth: 3
-Protected Execution Facility
-############################
+Introduction
+############
Protected Execution Facility (PEF) is an architectural change for
POWER 9 that enables Secure Virtual Machines (SVMs). DD2.3 chips
diff --git a/Documentation/process/2.Process.rst b/Documentation/process/2.Process.rst
index ae020d84d7c4..b21b5b245d13 100644
--- a/Documentation/process/2.Process.rst
+++ b/Documentation/process/2.Process.rst
@@ -18,18 +18,18 @@ major kernel release happening every two or three months. The recent
release history looks like this:
====== =================
- 4.11 April 30, 2017
- 4.12 July 2, 2017
- 4.13 September 3, 2017
- 4.14 November 12, 2017
- 4.15 January 28, 2018
- 4.16 April 1, 2018
+ 5.0 March 3, 2019
+ 5.1 May 5, 2019
+ 5.2 July 7, 2019
+ 5.3 September 15, 2019
+ 5.4 November 24, 2019
+ 5.5 January 6, 2020
====== =================
-Every 4.x release is a major kernel release with new features, internal
-API changes, and more. A typical 4.x release contain about 13,000
-changesets with changes to several hundred thousand lines of code. 4.x is
-thus the leading edge of Linux kernel development; the kernel uses a
+Every 5.x release is a major kernel release with new features, internal
+API changes, and more. A typical release can contain about 13,000
+changesets with changes to several hundred thousand lines of code. 5.x is
+the leading edge of Linux kernel development; the kernel uses a
rolling development model which is continually integrating major changes.
A relatively straightforward discipline is followed with regard to the
@@ -48,9 +48,9 @@ detail later on).
The merge window lasts for approximately two weeks. At the end of this
time, Linus Torvalds will declare that the window is closed and release the
-first of the "rc" kernels. For the kernel which is destined to be 2.6.40,
+first of the "rc" kernels. For the kernel which is destined to be 5.6,
for example, the release which happens at the end of the merge window will
-be called 2.6.40-rc1. The -rc1 release is the signal that the time to
+be called 5.6-rc1. The -rc1 release is the signal that the time to
merge new features has passed, and that the time to stabilize the next
kernel has begun.
@@ -67,22 +67,23 @@ add at any time).
As fixes make their way into the mainline, the patch rate will slow over
time. Linus releases new -rc kernels about once a week; a normal series
will get up to somewhere between -rc6 and -rc9 before the kernel is
-considered to be sufficiently stable and the final 2.6.x release is made.
+considered to be sufficiently stable and the final release is made.
At that point the whole process starts over again.
-As an example, here is how the 4.16 development cycle went (all dates in
-2018):
+As an example, here is how the 5.4 development cycle went (all dates in
+2019):
============== ===============================
- January 28 4.15 stable release
- February 11 4.16-rc1, merge window closes
- February 18 4.16-rc2
- February 25 4.16-rc3
- March 4 4.16-rc4
- March 11 4.16-rc5
- March 18 4.16-rc6
- March 25 4.16-rc7
- April 1 4.16 stable release
+ September 15 5.3 stable release
+ September 30 5.4-rc1, merge window closes
+ October 6 5.4-rc2
+ October 13 5.4-rc3
+ October 20 5.4-rc4
+ October 27 5.4-rc5
+ November 3 5.4-rc6
+ November 10 5.4-rc7
+ November 17 5.4-rc8
+ November 24 5.4 stable release
============== ===============================
How do the developers decide when to close the development cycle and create
@@ -98,43 +99,44 @@ release is made. In the real world, this kind of perfection is hard to
achieve; there are just too many variables in a project of this size.
There comes a point where delaying the final release just makes the problem
worse; the pile of changes waiting for the next merge window will grow
-larger, creating even more regressions the next time around. So most 4.x
+larger, creating even more regressions the next time around. So most 5.x
kernels go out with a handful of known regressions though, hopefully, none
of them are serious.
Once a stable release is made, its ongoing maintenance is passed off to the
-"stable team," currently consisting of Greg Kroah-Hartman. The stable team
-will release occasional updates to the stable release using the 4.x.y
-numbering scheme. To be considered for an update release, a patch must (1)
-fix a significant bug, and (2) already be merged into the mainline for the
-next development kernel. Kernels will typically receive stable updates for
-a little more than one development cycle past their initial release. So,
-for example, the 4.13 kernel's history looked like:
+"stable team," currently Greg Kroah-Hartman. The stable team will release
+occasional updates to the stable release using the 5.x.y numbering scheme.
+To be considered for an update release, a patch must (1) fix a significant
+bug, and (2) already be merged into the mainline for the next development
+kernel. Kernels will typically receive stable updates for a little more
+than one development cycle past their initial release. So, for example, the
+5.2 kernel's history looked like this (all dates in 2019):
============== ===============================
- September 3 4.13 stable release
- September 13 4.13.1
- September 20 4.13.2
- September 27 4.13.3
- October 5 4.13.4
- October 12 4.13.5
+ September 15 5.2 stable release
+ July 14 5.2.1
+ July 21 5.2.2
+ July 26 5.2.3
+ July 28 5.2.4
+ July 31 5.2.5
... ...
- November 24 4.13.16
+ October 11 5.2.21
============== ===============================
-4.13.16 was the final stable update of the 4.13 release.
+5.2.21 was the final stable update of the 5.2 release.
Some kernels are designated "long term" kernels; they will receive support
for a longer period. As of this writing, the current long term kernels
and their maintainers are:
- ====== ====================== ==============================
- 3.16 Ben Hutchings (very long-term stable kernel)
- 4.1 Sasha Levin
- 4.4 Greg Kroah-Hartman (very long-term stable kernel)
- 4.9 Greg Kroah-Hartman
- 4.14 Greg Kroah-Hartman
- ====== ====================== ==============================
+ ====== ================================ =======================
+ 3.16 Ben Hutchings (very long-term kernel)
+ 4.4 Greg Kroah-Hartman & Sasha Levin (very long-term kernel)
+ 4.9 Greg Kroah-Hartman & Sasha Levin
+ 4.14 Greg Kroah-Hartman & Sasha Levin
+ 4.19 Greg Kroah-Hartman & Sasha Levin
+ 5.4 Greg Kroah-Hartman & Sasha Levin
+ ====== ================================ =======================
The selection of a kernel for long-term support is purely a matter of a
maintainer having the need and the time to maintain that release. There
@@ -215,12 +217,12 @@ How patches get into the Kernel
-------------------------------
There is exactly one person who can merge patches into the mainline kernel
-repository: Linus Torvalds. But, of the over 9,500 patches which went
-into the 2.6.38 kernel, only 112 (around 1.3%) were directly chosen by Linus
-himself. The kernel project has long since grown to a size where no single
-developer could possibly inspect and select every patch unassisted. The
-way the kernel developers have addressed this growth is through the use of
-a lieutenant system built around a chain of trust.
+repository: Linus Torvalds. But, for example, of the over 9,500 patches
+which went into the 2.6.38 kernel, only 112 (around 1.3%) were directly
+chosen by Linus himself. The kernel project has long since grown to a size
+where no single developer could possibly inspect and select every patch
+unassisted. The way the kernel developers have addressed this growth is
+through the use of a lieutenant system built around a chain of trust.
The kernel code base is logically broken down into a set of subsystems:
networking, specific architecture support, memory management, video
diff --git a/Documentation/process/coding-style.rst b/Documentation/process/coding-style.rst
index edb296c52f61..acb2f1b36350 100644
--- a/Documentation/process/coding-style.rst
+++ b/Documentation/process/coding-style.rst
@@ -284,9 +284,9 @@ context lines.
4) Naming
---------
-C is a Spartan language, and so should your naming be. Unlike Modula-2
-and Pascal programmers, C programmers do not use cute names like
-ThisVariableIsATemporaryCounter. A C programmer would call that
+C is a Spartan language, and your naming conventions should follow suit.
+Unlike Modula-2 and Pascal programmers, C programmers do not use cute
+names like ThisVariableIsATemporaryCounter. A C programmer would call that
variable ``tmp``, which is much easier to write, and not the least more
difficult to understand.
@@ -300,9 +300,9 @@ that counts the number of active users, you should call that
``count_active_users()`` or similar, you should **not** call it ``cntusr()``.
Encoding the type of a function into the name (so-called Hungarian
-notation) is brain damaged - the compiler knows the types anyway and can
-check those, and it only confuses the programmer. No wonder MicroSoft
-makes buggy programs.
+notation) is asinine - the compiler knows the types anyway and can check
+those, and it only confuses the programmer. No wonder Microsoft makes buggy
+programs.
LOCAL variable names should be short, and to the point. If you have
some random integer loop counter, it should probably be called ``i``.
@@ -806,9 +806,9 @@ covers RTL which is used frequently with assembly language in the kernel.
----------------------------
Kernel developers like to be seen as literate. Do mind the spelling
-of kernel messages to make a good impression. Do not use crippled
-words like ``dont``; use ``do not`` or ``don't`` instead. Make the messages
-concise, clear, and unambiguous.
+of kernel messages to make a good impression. Do not use incorrect
+contractions like ``dont``; use ``do not`` or ``don't`` instead. Make the
+messages concise, clear, and unambiguous.
Kernel messages do not have to be terminated with a period.
diff --git a/Documentation/process/deprecated.rst b/Documentation/process/deprecated.rst
index 179f2a5625a0..652e2aa02a66 100644
--- a/Documentation/process/deprecated.rst
+++ b/Documentation/process/deprecated.rst
@@ -29,6 +29,28 @@ a header file, it isn't the full solution. Such interfaces must either
be fully removed from the kernel, or added to this file to discourage
others from using them in the future.
+BUG() and BUG_ON()
+------------------
+Use WARN() and WARN_ON() instead, and handle the "impossible"
+error condition as gracefully as possible. While the BUG()-family
+of APIs were originally designed to act as an "impossible situation"
+assert and to kill a kernel thread "safely", they turn out to just be
+too risky. (e.g. "In what order do locks need to be released? Have
+various states been restored?") Very commonly, using BUG() will
+destabilize a system or entirely break it, which makes it impossible
+to debug or even get viable crash reports. Linus has `very strong
+<https://lore.kernel.org/lkml/CA+55aFy6jNLsywVYdGp83AMrXBo_P-pkjkphPGrO=82SPKCpLQ@mail.gmail.com/>`_
+feelings `about this
+<https://lore.kernel.org/lkml/CAHk-=whDHsbK3HTOpTF=ue_o04onRwTEaK_ZoJp_fjbqq4+=Jw@mail.gmail.com/>`_.
+
+Note that the WARN()-family should only be used for "expected to
+be unreachable" situations. If you want to warn about "reachable
+but undesirable" situations, please use the pr_warn()-family of
+functions. System owners may have set the *panic_on_warn* sysctl,
+to make sure their systems do not continue running in the face of
+"unreachable" conditions. (For example, see commits like `this one
+<https://git.kernel.org/linus/d4689846881d160a4d12a514e991a740bcb5d65a>`_.)
+
open-coded arithmetic in allocator arguments
--------------------------------------------
Dynamic size calculations (especially multiplication) should not be
@@ -63,51 +85,73 @@ Instead, use the helper::
header = kzalloc(struct_size(header, item, count), GFP_KERNEL);
-See :c:func:`array_size`, :c:func:`array3_size`, and :c:func:`struct_size`,
-for more details as well as the related :c:func:`check_add_overflow` and
-:c:func:`check_mul_overflow` family of functions.
+See array_size(), array3_size(), and struct_size(),
+for more details as well as the related check_add_overflow() and
+check_mul_overflow() family of functions.
simple_strtol(), simple_strtoll(), simple_strtoul(), simple_strtoull()
----------------------------------------------------------------------
-The :c:func:`simple_strtol`, :c:func:`simple_strtoll`,
-:c:func:`simple_strtoul`, and :c:func:`simple_strtoull` functions
+The simple_strtol(), simple_strtoll(),
+simple_strtoul(), and simple_strtoull() functions
explicitly ignore overflows, which may lead to unexpected results
-in callers. The respective :c:func:`kstrtol`, :c:func:`kstrtoll`,
-:c:func:`kstrtoul`, and :c:func:`kstrtoull` functions tend to be the
+in callers. The respective kstrtol(), kstrtoll(),
+kstrtoul(), and kstrtoull() functions tend to be the
correct replacements, though note that those require the string to be
NUL or newline terminated.
strcpy()
--------
-:c:func:`strcpy` performs no bounds checking on the destination
+strcpy() performs no bounds checking on the destination
buffer. This could result in linear overflows beyond the
end of the buffer, leading to all kinds of misbehaviors. While
`CONFIG_FORTIFY_SOURCE=y` and various compiler flags help reduce the
risk of using this function, there is no good reason to add new uses of
-this function. The safe replacement is :c:func:`strscpy`.
+this function. The safe replacement is strscpy().
strncpy() on NUL-terminated strings
-----------------------------------
-Use of :c:func:`strncpy` does not guarantee that the destination buffer
+Use of strncpy() does not guarantee that the destination buffer
will be NUL terminated. This can lead to various linear read overflows
and other misbehavior due to the missing termination. It also NUL-pads the
destination buffer if the source contents are shorter than the destination
buffer size, which may be a needless performance penalty for callers using
-only NUL-terminated strings. The safe replacement is :c:func:`strscpy`.
-(Users of :c:func:`strscpy` still needing NUL-padding will need an
-explicit :c:func:`memset` added.)
+only NUL-terminated strings. The safe replacement is strscpy().
+(Users of strscpy() still needing NUL-padding should instead
+use strscpy_pad().)
-If a caller is using non-NUL-terminated strings, :c:func:`strncpy()` can
+If a caller is using non-NUL-terminated strings, strncpy()() can
still be used, but destinations should be marked with the `__nonstring
<https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html>`_
attribute to avoid future compiler warnings.
strlcpy()
---------
-:c:func:`strlcpy` reads the entire source buffer first, possibly exceeding
+strlcpy() reads the entire source buffer first, possibly exceeding
the given limit of bytes to copy. This is inefficient and can lead to
linear read overflows if a source string is not NUL-terminated. The
-safe replacement is :c:func:`strscpy`.
+safe replacement is strscpy().
+
+%p format specifier
+-------------------
+Traditionally, using "%p" in format strings would lead to regular address
+exposure flaws in dmesg, proc, sysfs, etc. Instead of leaving these to
+be exploitable, all "%p" uses in the kernel are being printed as a hashed
+value, rendering them unusable for addressing. New uses of "%p" should not
+be added to the kernel. For text addresses, using "%pS" is likely better,
+as it produces the more useful symbol name instead. For nearly everything
+else, just do not add "%p" at all.
+
+Paraphrasing Linus's current `guidance <https://lore.kernel.org/lkml/CA+55aFwQEd_d40g4mUCSsVRZzrFPUJt74vc6PPpb675hYNXcKw@mail.gmail.com/>`_:
+
+- If the hashed "%p" value is pointless, ask yourself whether the pointer
+ itself is important. Maybe it should be removed entirely?
+- If you really think the true pointer value is important, why is some
+ system state or user privilege level considered "special"? If you think
+ you can justify it (in comments and commit log) well enough to stand
+ up to Linus's scrutiny, maybe you can use "%px", along with making sure
+ you have sensible permissions.
+
+And finally, know that a toggle for "%p" hashing will `not be accepted <https://lore.kernel.org/lkml/CA+55aFwieC1-nAs+NFq9RTwaR8ef9hWa4MjNBWL41F-8wM49eA@mail.gmail.com/>`_.
Variable Length Arrays (VLAs)
-----------------------------
@@ -122,27 +166,37 @@ memory adjacent to the stack (when built without `CONFIG_VMAP_STACK=y`)
Implicit switch case fall-through
---------------------------------
-The C language allows switch cases to "fall-through" when a "break" statement
-is missing at the end of a case. This, however, introduces ambiguity in the
-code, as it's not always clear if the missing break is intentional or a bug.
+The C language allows switch cases to fall through to the next case
+when a "break" statement is missing at the end of a case. This, however,
+introduces ambiguity in the code, as it's not always clear if the missing
+break is intentional or a bug. For example, it's not obvious just from
+looking at the code if `STATE_ONE` is intentionally designed to fall
+through into `STATE_TWO`::
+
+ switch (value) {
+ case STATE_ONE:
+ do_something();
+ case STATE_TWO:
+ do_other();
+ break;
+ default:
+ WARN("unknown state");
+ }
As there have been a long list of flaws `due to missing "break" statements
<https://cwe.mitre.org/data/definitions/484.html>`_, we no longer allow
-"implicit fall-through".
-
-In order to identify intentional fall-through cases, we have adopted a
-pseudo-keyword macro 'fallthrough' which expands to gcc's extension
-__attribute__((__fallthrough__)). `Statement Attributes
-<https://gcc.gnu.org/onlinedocs/gcc/Statement-Attributes.html>`_
-
-When the C17/C18 [[fallthrough]] syntax is more commonly supported by
+implicit fall-through. In order to identify intentional fall-through
+cases, we have adopted a pseudo-keyword macro "fallthrough" which
+expands to gcc's extension `__attribute__((__fallthrough__))
+<https://gcc.gnu.org/onlinedocs/gcc/Statement-Attributes.html>`_.
+(When the C17/C18 `[[fallthrough]]` syntax is more commonly supported by
C compilers, static analyzers, and IDEs, we can switch to using that syntax
-for the macro pseudo-keyword.
+for the macro pseudo-keyword.)
All switch/case blocks must end in one of:
- break;
- fallthrough;
- continue;
- goto <label>;
- return [expression];
+* break;
+* fallthrough;
+* continue;
+* goto <label>;
+* return [expression];
diff --git a/Documentation/process/email-clients.rst b/Documentation/process/email-clients.rst
index 5273d06c8ff6..c9e4ce2613c0 100644
--- a/Documentation/process/email-clients.rst
+++ b/Documentation/process/email-clients.rst
@@ -237,9 +237,9 @@ using Mutt to send patches through Gmail::
The Mutt docs have lots more information:
- http://dev.mutt.org/trac/wiki/UseCases/Gmail
+ https://gitlab.com/muttmua/mutt/-/wikis/UseCases/Gmail
- http://dev.mutt.org/doc/manual.html
+ http://www.mutt.org/doc/manual/
Pine (TUI)
**********
diff --git a/Documentation/process/howto.rst b/Documentation/process/howto.rst
index b6f5a379ad6c..70791e153de1 100644
--- a/Documentation/process/howto.rst
+++ b/Documentation/process/howto.rst
@@ -243,10 +243,10 @@ branches. These different branches are:
Mainline tree
~~~~~~~~~~~~~
-Mainline tree are maintained by Linus Torvalds, and can be found at
+The mainline tree is maintained by Linus Torvalds, and can be found at
https://kernel.org or in the repo. Its development process is as follows:
- - As soon as a new kernel is released a two weeks window is open,
+ - As soon as a new kernel is released a two week window is open,
during this period of time maintainers can submit big diffs to
Linus, usually the patches that have already been included in the
linux-next for a few weeks. The preferred way to submit big changes
@@ -281,8 +281,9 @@ Various stable trees with multiple major numbers
Kernels with 3-part versions are -stable kernels. They contain
relatively small and critical fixes for security problems or significant
-regressions discovered in a given major mainline release, with the first
-2-part of version number are the same correspondingly.
+regressions discovered in a given major mainline release. Each release
+in a major stable series increments the third part of the version
+number, keeping the first two parts the same.
This is the recommended branch for users who want the most recent stable
kernel and are not interested in helping test development/experimental
@@ -359,10 +360,10 @@ Managing bug reports
One of the best ways to put into practice your hacking skills is by fixing
bugs reported by other people. Not only you will help to make the kernel
-more stable, you'll learn to fix real world problems and you will improve
-your skills, and other developers will be aware of your presence. Fixing
-bugs is one of the best ways to get merits among other developers, because
-not many people like wasting time fixing other people's bugs.
+more stable, but you'll also learn to fix real world problems and you will
+improve your skills, and other developers will be aware of your presence.
+Fixing bugs is one of the best ways to get merits among other developers,
+because not many people like wasting time fixing other people's bugs.
To work in the already reported bug reports, go to https://bugzilla.kernel.org.
diff --git a/Documentation/process/kernel-docs.rst b/Documentation/process/kernel-docs.rst
index 7a45a8e36ea7..9d6d0ac4fca9 100644
--- a/Documentation/process/kernel-docs.rst
+++ b/Documentation/process/kernel-docs.rst
@@ -313,7 +313,7 @@ On-line docs
:URL: http://www.linuxjournal.com/article.php?sid=2391
:Date: 1997
:Keywords: RAID, MD driver.
- :Description: Linux Journal Kernel Korner article. Here is its
+ :Description: Linux Journal Kernel Korner article.
:Abstract: *A description of the implementation of the RAID-1,
RAID-4 and RAID-5 personalities of the MD device driver in the
Linux kernel, providing users with high performance and reliable,
@@ -338,7 +338,7 @@ On-line docs
:Date: 1996
:Keywords: device driver, module, loading/unloading modules,
allocating resources.
- :Description: Linux Journal Kernel Korner article. Here is its
+ :Description: Linux Journal Kernel Korner article.
:Abstract: *This is the first of a series of four articles
co-authored by Alessandro Rubini and Georg Zezchwitz which present
a practical approach to writing Linux device drivers as kernel
@@ -354,7 +354,7 @@ On-line docs
:Keywords: character driver, init_module, clean_up module,
autodetection, mayor number, minor number, file operations,
open(), close().
- :Description: Linux Journal Kernel Korner article. Here is its
+ :Description: Linux Journal Kernel Korner article.
:Abstract: *This article, the second of four, introduces part of
the actual code to create custom module implementing a character
device driver. It describes the code for module initialization and
@@ -367,7 +367,7 @@ On-line docs
:Date: 1996
:Keywords: read(), write(), select(), ioctl(), blocking/non
blocking mode, interrupt handler.
- :Description: Linux Journal Kernel Korner article. Here is its
+ :Description: Linux Journal Kernel Korner article.
:Abstract: *This article, the third of four on writing character
device drivers, introduces concepts of reading, writing, and using
ioctl-calls*.
@@ -378,7 +378,7 @@ On-line docs
:URL: http://www.linuxjournal.com/article.php?sid=1222
:Date: 1996
:Keywords: interrupts, irqs, DMA, bottom halves, task queues.
- :Description: Linux Journal Kernel Korner article. Here is its
+ :Description: Linux Journal Kernel Korner article.
:Abstract: *This is the fourth in a series of articles about
writing character device drivers as loadable kernel modules. This
month, we further investigate the field of interrupt handling.
diff --git a/Documentation/process/management-style.rst b/Documentation/process/management-style.rst
index 186753ff3d2d..dfbc69bf49d4 100644
--- a/Documentation/process/management-style.rst
+++ b/Documentation/process/management-style.rst
@@ -227,7 +227,7 @@ incompetence will grudgingly admit that you at least didn't try to weasel
out of it.
Then make the developer who really screwed up (if you can find them) know
-**in_private** that they screwed up. Not just so they can avoid it in the
+**in private** that they screwed up. Not just so they can avoid it in the
future, but so that they know they owe you one. And, perhaps even more
importantly, they're also likely the person who can fix it. Because, let's
face it, it sure ain't you.
diff --git a/Documentation/scsi/scsi_mid_low_api.txt b/Documentation/scsi/scsi_mid_low_api.txt
index 2a4be1c3e6db..537f04728487 100644
--- a/Documentation/scsi/scsi_mid_low_api.txt
+++ b/Documentation/scsi/scsi_mid_low_api.txt
@@ -299,7 +299,6 @@ Summary:
scsi_host_alloc - return a new scsi_host instance whose refcount==1
scsi_host_get - increments Scsi_Host instance's refcount
scsi_host_put - decrements Scsi_Host instance's refcount (free if 0)
- scsi_partsize - parse partition table into cylinders, heads + sectors
scsi_register - create and register a scsi host adapter instance.
scsi_remove_device - detach and remove a SCSI device
scsi_remove_host - detach and remove all SCSI devices owned by host
@@ -473,26 +472,6 @@ void scsi_host_put(struct Scsi_Host *shost)
/**
- * scsi_partsize - parse partition table into cylinders, heads + sectors
- * @buf: pointer to partition table
- * @capacity: size of (total) disk in 512 byte sectors
- * @cyls: outputs number of cylinders calculated via this pointer
- * @hds: outputs number of heads calculated via this pointer
- * @secs: outputs number of sectors calculated via this pointer
- *
- * Returns 0 on success, -1 on failure
- *
- * Might block: no
- *
- * Notes: Caller owns memory returned (free with kfree() )
- *
- * Defined in: drivers/scsi/scsicam.c
- **/
-int scsi_partsize(unsigned char *buf, unsigned long capacity,
- unsigned int *cyls, unsigned int *hds, unsigned int *secs)
-
-
-/**
* scsi_register - create and register a scsi host adapter instance.
* @sht: pointer to scsi host template
* @privsize: extra bytes to allocate in hostdata array (which is the
diff --git a/Documentation/security/siphash.rst b/Documentation/security/siphash.rst
index 9965821ab333..4eba68cdf0a1 100644
--- a/Documentation/security/siphash.rst
+++ b/Documentation/security/siphash.rst
@@ -128,8 +128,8 @@ then when you can be absolutely certain that the outputs will never be
transmitted out of the kernel. This is only remotely useful over `jhash` as a
means of mitigating hashtable flooding denial of service attacks.
-Generating a key
-================
+Generating a HalfSipHash key
+============================
Keys should always be generated from a cryptographically secure source of
random numbers, either using get_random_bytes or get_random_once:
@@ -139,8 +139,8 @@ get_random_bytes(&key, sizeof(key));
If you're not deriving your key from here, you're doing it wrong.
-Using the functions
-===================
+Using the HalfSipHash functions
+===============================
There are two variants of the function, one that takes a list of integers, and
one that takes a buffer::
diff --git a/Documentation/target/tcmu-design.rst b/Documentation/target/tcmu-design.rst
index a7b426707bf6..e47047e32e27 100644
--- a/Documentation/target/tcmu-design.rst
+++ b/Documentation/target/tcmu-design.rst
@@ -5,7 +5,7 @@ TCM Userspace Design
.. Contents:
- 1) TCM Userspace Design
+ 1) Design
a) Background
b) Benefits
c) Design constraints
@@ -23,8 +23,8 @@ TCM Userspace Design
3) A final note
-TCM Userspace Design
-====================
+Design
+======
TCM is another name for LIO, an in-kernel iSCSI target (server).
Existing TCM targets run in the kernel. TCMU (TCM in Userspace)
diff --git a/Documentation/trace/events-power.rst b/Documentation/trace/events-power.rst
index 2ef318962e29..f45bf11fa88d 100644
--- a/Documentation/trace/events-power.rst
+++ b/Documentation/trace/events-power.rst
@@ -75,16 +75,6 @@ The PM QoS events are used for QoS add/update/remove request and for
target/flags update.
::
- pm_qos_add_request "pm_qos_class=%s value=%d"
- pm_qos_update_request "pm_qos_class=%s value=%d"
- pm_qos_remove_request "pm_qos_class=%s value=%d"
- pm_qos_update_request_timeout "pm_qos_class=%s value=%d, timeout_us=%ld"
-
-The first parameter gives the QoS class name (e.g. "CPU_DMA_LATENCY").
-The second parameter is value to be added/updated/removed.
-The third parameter is timeout value in usec.
-::
-
pm_qos_update_target "action=%s prev_value=%d curr_value=%d"
pm_qos_update_flags "action=%s prev_value=0x%x curr_value=0x%x"
@@ -92,7 +82,7 @@ The first parameter gives the QoS action name (e.g. "ADD_REQ").
The second parameter is the previous QoS value.
The third parameter is the current QoS value to update.
-And, there are also events used for device PM QoS add/update/remove request.
+There are also events used for device PM QoS add/update/remove request.
::
dev_pm_qos_add_request "device=%s type=%s new_value=%d"
@@ -103,3 +93,12 @@ The first parameter gives the device name which tries to add/update/remove
QoS requests.
The second parameter gives the request type (e.g. "DEV_PM_QOS_RESUME_LATENCY").
The third parameter is value to be added/updated/removed.
+
+And, there are events used for CPU latency QoS add/update/remove request.
+::
+
+ pm_qos_add_request "value=%d"
+ pm_qos_update_request "value=%d"
+ pm_qos_remove_request "value=%d"
+
+The parameter is the value to be added/updated/removed.
diff --git a/Documentation/trace/events.rst b/Documentation/trace/events.rst
index ed79b220bd07..4a2ebe0bd19b 100644
--- a/Documentation/trace/events.rst
+++ b/Documentation/trace/events.rst
@@ -342,7 +342,8 @@ section of Documentation/trace/ftrace.rst), but there are major
differences and the implementation isn't currently tied to it in any
way, so beware about making generalizations between the two.
-Note: Writing into trace_marker (See Documentation/trace/ftrace.rst)
+.. Note::
+ Writing into trace_marker (See Documentation/trace/ftrace.rst)
can also enable triggers that are written into
/sys/kernel/tracing/events/ftrace/print/trigger
@@ -569,14 +570,14 @@ The first creates the event in one step, using synth_event_create().
In this method, the name of the event to create and an array defining
the fields is supplied to synth_event_create(). If successful, a
synthetic event with that name and fields will exist following that
-call. For example, to create a new "schedtest" synthetic event:
+call. For example, to create a new "schedtest" synthetic event::
ret = synth_event_create("schedtest", sched_fields,
ARRAY_SIZE(sched_fields), THIS_MODULE);
The sched_fields param in this example points to an array of struct
synth_field_desc, each of which describes an event field by type and
-name:
+name::
static struct synth_field_desc sched_fields[] = {
{ .type = "pid_t", .name = "next_pid_field" },
@@ -615,7 +616,7 @@ synth_event_gen_cmd_array_start(), the user should create and
initialize a dynevent_cmd object using synth_event_cmd_init().
For example, to create a new "schedtest" synthetic event with two
-fields:
+fields::
struct dynevent_cmd cmd;
char *buf;
@@ -631,7 +632,7 @@ fields:
"u64", "ts_ns");
Alternatively, using an array of struct synth_field_desc fields
-containing the same information:
+containing the same information::
ret = synth_event_gen_cmd_array_start(&cmd, "schedtest", THIS_MODULE,
fields, n_fields);
@@ -640,7 +641,7 @@ Once the synthetic event object has been created, it can then be
populated with more fields. Fields are added one by one using
synth_event_add_field(), supplying the dynevent_cmd object, a field
type, and a field name. For example, to add a new int field named
-"intfield", the following call should be made:
+"intfield", the following call should be made::
ret = synth_event_add_field(&cmd, "int", "intfield");
@@ -649,7 +650,7 @@ the field is considered to be an array.
A group of fields can also be added all at once using an array of
synth_field_desc with add_synth_fields(). For example, this would add
-just the first four sched_fields:
+just the first four sched_fields::
ret = synth_event_add_fields(&cmd, sched_fields, 4);
@@ -658,7 +659,7 @@ synth_event_add_field_str() can be used to add it as-is; it will
also automatically append a ';' to the string.
Once all the fields have been added, the event should be finalized and
-registered by calling the synth_event_gen_cmd_end() function:
+registered by calling the synth_event_gen_cmd_end() function::
ret = synth_event_gen_cmd_end(&cmd);
@@ -691,7 +692,7 @@ trace array)), along with an variable number of u64 args, one for each
synthetic event field, and the number of values being passed.
So, to trace an event corresponding to the synthetic event definition
-above, code like the following could be used:
+above, code like the following could be used::
ret = synth_event_trace(create_synth_test, 7, /* number of values */
444, /* next_pid_field */
@@ -715,7 +716,7 @@ trace array)), along with an array of u64, one for each synthetic
event field.
To trace an event corresponding to the synthetic event definition
-above, code like the following could be used:
+above, code like the following could be used::
u64 vals[7];
@@ -739,7 +740,7 @@ In order to trace a synthetic event, a pointer to the trace event file
is needed. The trace_get_event_file() function can be used to get
it - it will find the file in the given trace instance (in this case
NULL since the top trace array is being used) while at the same time
-preventing the instance containing it from going away:
+preventing the instance containing it from going away::
schedtest_event_file = trace_get_event_file(NULL, "synthetic",
"schedtest");
@@ -751,31 +752,31 @@ To enable a synthetic event from the kernel, trace_array_set_clr_event()
can be used (which is not specific to synthetic events, so does need
the "synthetic" system name to be specified explicitly).
-To enable the event, pass 'true' to it:
+To enable the event, pass 'true' to it::
trace_array_set_clr_event(schedtest_event_file->tr,
"synthetic", "schedtest", true);
-To disable it pass false:
+To disable it pass false::
trace_array_set_clr_event(schedtest_event_file->tr,
"synthetic", "schedtest", false);
Finally, synth_event_trace_array() can be used to actually trace the
-event, which should be visible in the trace buffer afterwards:
+event, which should be visible in the trace buffer afterwards::
ret = synth_event_trace_array(schedtest_event_file, vals,
ARRAY_SIZE(vals));
To remove the synthetic event, the event should be disabled, and the
-trace instance should be 'put' back using trace_put_event_file():
+trace instance should be 'put' back using trace_put_event_file()::
trace_array_set_clr_event(schedtest_event_file->tr,
"synthetic", "schedtest", false);
trace_put_event_file(schedtest_event_file);
If those have been successful, synth_event_delete() can be called to
-remove the event:
+remove the event::
ret = synth_event_delete("schedtest");
@@ -784,7 +785,7 @@ remove the event:
To trace a synthetic using the piecewise method described above, the
synth_event_trace_start() function is used to 'open' the synthetic
-event trace:
+event trace::
struct synth_trace_state trace_state;
@@ -809,7 +810,7 @@ along with the value to set the next field in the event. After each
field is set, the 'cursor' points to the next field, which will be set
by the subsequent call, continuing until all the fields have been set
in order. The same sequence of calls as in the above examples using
-this method would be (without error-handling code):
+this method would be (without error-handling code)::
/* next_pid_field */
ret = synth_event_add_next_val(777, &trace_state);
@@ -837,7 +838,7 @@ used. Each call is passed the same synth_trace_state object used in
the synth_event_trace_start(), along with the field name of the field
to set and the value to set it to. The same sequence of calls as in
the above examples using this method would be (without error-handling
-code):
+code)::
ret = synth_event_add_val("next_pid_field", 777, &trace_state);
ret = synth_event_add_val("next_comm_field", (u64)"silly putty",
@@ -855,7 +856,7 @@ can be used but not both at the same time.
Finally, the event won't be actually traced until it's 'closed',
which is done using synth_event_trace_end(), which takes only the
-struct synth_trace_state object used in the previous calls:
+struct synth_trace_state object used in the previous calls::
ret = synth_event_trace_end(&trace_state);
@@ -878,7 +879,7 @@ function. Before calling kprobe_event_gen_cmd_start(), the user
should create and initialize a dynevent_cmd object using
kprobe_event_cmd_init().
-For example, to create a new "schedtest" kprobe event with two fields:
+For example, to create a new "schedtest" kprobe event with two fields::
struct dynevent_cmd cmd;
char *buf;
@@ -900,18 +901,18 @@ Once the kprobe event object has been created, it can then be
populated with more fields. Fields can be added using
kprobe_event_add_fields(), supplying the dynevent_cmd object along
with a variable arg list of probe fields. For example, to add a
-couple additional fields, the following call could be made:
+couple additional fields, the following call could be made::
ret = kprobe_event_add_fields(&cmd, "flags=%cx", "mode=+4($stack)");
Once all the fields have been added, the event should be finalized and
registered by calling the kprobe_event_gen_cmd_end() or
kretprobe_event_gen_cmd_end() functions, depending on whether a kprobe
-or kretprobe command was started:
+or kretprobe command was started::
ret = kprobe_event_gen_cmd_end(&cmd);
-or
+or::
ret = kretprobe_event_gen_cmd_end(&cmd);
@@ -920,13 +921,13 @@ events.
Similarly, a kretprobe event can be created using
kretprobe_event_gen_cmd_start() with a probe name and location and
-additional params such as $retval:
+additional params such as $retval::
ret = kretprobe_event_gen_cmd_start(&cmd, "gen_kretprobe_test",
"do_sys_open", "$retval");
Similar to the synthetic event case, code like the following can be
-used to enable the newly created kprobe event:
+used to enable the newly created kprobe event::
gen_kprobe_test = trace_get_event_file(NULL, "kprobes", "gen_kprobe_test");
@@ -934,7 +935,7 @@ used to enable the newly created kprobe event:
"kprobes", "gen_kprobe_test", true);
Finally, also similar to synthetic events, the following code can be
-used to give the kprobe event file back and delete the event:
+used to give the kprobe event file back and delete the event::
trace_put_event_file(gen_kprobe_test);
@@ -963,7 +964,7 @@ are described below.
The first step in building a new command string is to create and
initialize an instance of a dynevent_cmd. Here, for instance, we
-create a dynevent_cmd on the stack and initialize it:
+create a dynevent_cmd on the stack and initialize it::
struct dynevent_cmd cmd;
char *buf;
@@ -989,7 +990,7 @@ calls to argument-adding functions.
To add a single argument, define and initialize a struct dynevent_arg
or struct dynevent_arg_pair object. Here's an example of the simplest
possible arg addition, which is simply to append the given string as
-a whitespace-separated argument to the command:
+a whitespace-separated argument to the command::
struct dynevent_arg arg;
@@ -1007,7 +1008,7 @@ the arg.
Here's another more complicated example using an 'arg pair', which is
used to create an argument that consists of a couple components added
together as a unit, for example, a 'type field_name;' arg or a simple
-expression arg e.g. 'flags=%cx':
+expression arg e.g. 'flags=%cx'::
struct dynevent_arg_pair arg_pair;
@@ -1031,7 +1032,7 @@ Any number of dynevent_*_add() calls can be made to build up the string
(until its length surpasses cmd->maxlen). When all the arguments have
been added and the command string is complete, the only thing left to
do is run the command, which happens by simply calling
-dynevent_create():
+dynevent_create()::
ret = dynevent_create(&cmd);
diff --git a/Documentation/translations/it_IT/networking/netdev-FAQ.rst b/Documentation/translations/it_IT/networking/netdev-FAQ.rst
index 8489ead7cff1..7e2456bb7d92 100644
--- a/Documentation/translations/it_IT/networking/netdev-FAQ.rst
+++ b/Documentation/translations/it_IT/networking/netdev-FAQ.rst
@@ -1,6 +1,6 @@
.. include:: ../disclaimer-ita.rst
-:Original: :ref:`Documentation/process/stable-kernel-rules.rst <stable_kernel_rules>`
+:Original: :ref:`Documentation/networking/netdev-FAQ.rst <netdev-FAQ>`
.. _it_netdev-FAQ:
diff --git a/Documentation/translations/it_IT/process/programming-language.rst b/Documentation/translations/it_IT/process/programming-language.rst
index f4b006395849..c4fc9d394c29 100644
--- a/Documentation/translations/it_IT/process/programming-language.rst
+++ b/Documentation/translations/it_IT/process/programming-language.rst
@@ -8,26 +8,26 @@
Linguaggio di programmazione
============================
-Il kernel è scritto nel linguaggio di programmazione C [c-language]_.
-Più precisamente, il kernel viene compilato con ``gcc`` [gcc]_ usando
-l'opzione ``-std=gnu89`` [gcc-c-dialect-options]_: il dialetto GNU
+Il kernel è scritto nel linguaggio di programmazione C [it-c-language]_.
+Più precisamente, il kernel viene compilato con ``gcc`` [it-gcc]_ usando
+l'opzione ``-std=gnu89`` [it-gcc-c-dialect-options]_: il dialetto GNU
dello standard ISO C90 (con l'aggiunta di alcune funzionalità da C99)
-Questo dialetto contiene diverse estensioni al linguaggio [gnu-extensions]_,
+Questo dialetto contiene diverse estensioni al linguaggio [it-gnu-extensions]_,
e molte di queste vengono usate sistematicamente dal kernel.
Il kernel offre un certo livello di supporto per la compilazione con ``clang``
-[clang]_ e ``icc`` [icc]_ su diverse architetture, tuttavia in questo momento
+[it-clang]_ e ``icc`` [it-icc]_ su diverse architetture, tuttavia in questo momento
il supporto non è completo e richiede delle patch aggiuntive.
Attributi
---------
Una delle estensioni più comuni e usate nel kernel sono gli attributi
-[gcc-attribute-syntax]_. Gli attributi permettono di aggiungere una semantica,
+[it-gcc-attribute-syntax]_. Gli attributi permettono di aggiungere una semantica,
definita dell'implementazione, alle entità del linguaggio (come le variabili,
le funzioni o i tipi) senza dover fare importanti modifiche sintattiche al
-linguaggio stesso (come l'aggiunta di nuove parole chiave) [n2049]_.
+linguaggio stesso (come l'aggiunta di nuove parole chiave) [it-n2049]_.
In alcuni casi, gli attributi sono opzionali (ovvero un compilatore che non
dovesse supportarli dovrebbe produrre comunque codice corretto, anche se
@@ -41,11 +41,11 @@ possono usare e/o per accorciare il codice.
Per maggiori informazioni consultate il file d'intestazione
``include/linux/compiler_attributes.h``.
-.. [c-language] http://www.open-std.org/jtc1/sc22/wg14/www/standards
-.. [gcc] https://gcc.gnu.org
-.. [clang] https://clang.llvm.org
-.. [icc] https://software.intel.com/en-us/c-compilers
-.. [gcc-c-dialect-options] https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
-.. [gnu-extensions] https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
-.. [gcc-attribute-syntax] https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
-.. [n2049] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
+.. [it-c-language] http://www.open-std.org/jtc1/sc22/wg14/www/standards
+.. [it-gcc] https://gcc.gnu.org
+.. [it-clang] https://clang.llvm.org
+.. [it-icc] https://software.intel.com/en-us/c-compilers
+.. [it-gcc-c-dialect-options] https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html
+.. [it-gnu-extensions] https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
+.. [it-gcc-attribute-syntax] https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html
+.. [it-n2049] http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
diff --git a/Documentation/translations/zh_CN/filesystems/index.rst b/Documentation/translations/zh_CN/filesystems/index.rst
new file mode 100644
index 000000000000..14f155edaf69
--- /dev/null
+++ b/Documentation/translations/zh_CN/filesystems/index.rst
@@ -0,0 +1,27 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: ../disclaimer-zh_CN.rst
+
+:Original: :ref:`Documentation/filesystems/index.rst <filesystems_index>`
+:Translator: Wang Wenhu <wenhu.wang@vivo.com>
+
+.. _cn_filesystems_index:
+
+========================
+Linux Kernel中的文件系统
+========================
+
+这份正在开发的手册或许在未来某个辉煌的日子里以易懂的形式将Linux虚拟\
+文件系统(VFS)层以及基于其上的各种文件系统如何工作呈现给大家。当前\
+可以看到下面的内容。
+
+文件系统
+========
+
+文件系统实现文档。
+
+.. toctree::
+ :maxdepth: 2
+
+ virtiofs
+
diff --git a/Documentation/translations/zh_CN/filesystems/virtiofs.rst b/Documentation/translations/zh_CN/filesystems/virtiofs.rst
new file mode 100644
index 000000000000..09bc9e012e2a
--- /dev/null
+++ b/Documentation/translations/zh_CN/filesystems/virtiofs.rst
@@ -0,0 +1,58 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. include:: ../disclaimer-zh_CN.rst
+
+:Original: :ref:`Documentation/filesystems/virtiofs.rst <virtiofs_index>`
+
+译者
+::
+
+ 中文版维护者: 王文虎 Wang Wenhu <wenhu.wang@vivo.com>
+ 中文版翻译者: 王文虎 Wang Wenhu <wenhu.wang@vivo.com>
+ 中文版校译者: 王文虎 Wang Wenhu <wenhu.wang@vivo.com>
+
+===========================================
+virtiofs: virtio-fs 主机<->客机共享文件系统
+===========================================
+
+- Copyright (C) 2020 Vivo Communication Technology Co. Ltd.
+
+介绍
+====
+Linux的virtiofs文件系统实现了一个半虚拟化VIRTIO类型“virtio-fs”设备的驱动,通过该\
+类型设备实现客机<->主机文件系统共享。它允许客机挂载一个已经导出到主机的目录。
+
+客机通常需要访问主机或者远程系统上的文件。使用场景包括:在新客机安装时让文件对其\
+可见;从主机上的根文件系统启动;对无状态或临时客机提供持久存储和在客机之间共享目录。
+
+尽管在某些任务可能通过使用已有的网络文件系统完成,但是却需要非常难以自动化的配置\
+步骤,且将存储网络暴露给客机。而virtio-fs设备通过提供不经过网络的文件系统访问文件\
+的设计方式解决了这些问题。
+
+另外,virto-fs设备发挥了主客机共存的优点提高了性能,并且提供了网络文件系统所不具备
+的一些语义功能。
+
+用法
+====
+以``myfs``标签将文件系统挂载到``/mnt``:
+
+.. code-block:: sh
+
+ guest# mount -t virtiofs myfs /mnt
+
+请查阅 https://virtio-fs.gitlab.io/ 了解配置QEMU和virtiofsd守护程序的详细信息。
+
+内幕
+====
+由于virtio-fs设备将FUSE协议用于文件系统请求,因此Linux的virtiofs文件系统与FUSE文\
+件系统客户端紧密集成在一起。客机充当FUSE客户端而主机充当FUSE服务器,内核与用户空\
+间之间的/dev/fuse接口由virtio-fs设备接口代替。
+
+FUSE请求被置于虚拟队列中由主机处理。主机填充缓冲区中的响应部分,而客机处理请求的完成部分。
+
+将/dev/fuse映射到虚拟队列需要解决/dev/fuse和虚拟队列之间语义上的差异。每次读取\
+/dev/fuse设备时,FUSE客户端都可以选择要传输的请求,从而可以使某些请求优先于其他\
+请求。虚拟队列有其队列语义,无法更改已入队请求的顺序。在虚拟队列已满的情况下尤
+其关键,因为此时不可能加入高优先级的请求。为了解决此差异,virtio-fs设备采用“hiprio”\
+(高优先级)虚拟队列,专门用于有别于普通请求的高优先级请求。
+
diff --git a/Documentation/translations/zh_CN/index.rst b/Documentation/translations/zh_CN/index.rst
index d3165535ec9e..76850a5dd982 100644
--- a/Documentation/translations/zh_CN/index.rst
+++ b/Documentation/translations/zh_CN/index.rst
@@ -14,6 +14,7 @@
:maxdepth: 2
process/index
+ filesystems/index
目录和表格
----------
diff --git a/Documentation/translations/zh_CN/io_ordering.txt b/Documentation/translations/zh_CN/io_ordering.txt
index 1f8127bdd415..7bb3086227ae 100644
--- a/Documentation/translations/zh_CN/io_ordering.txt
+++ b/Documentation/translations/zh_CN/io_ordering.txt
@@ -1,4 +1,4 @@
-Chinese translated version of Documentation/io_ordering.txt
+Chinese translated version of Documentation/driver-api/io_ordering.rst
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,7 +8,7 @@ or if there is a problem with the translation.
Chinese maintainer: Lin Yongting <linyongting@gmail.com>
---------------------------------------------------------------------
-Documentation/io_ordering.txt 的中文翻译
+Documentation/driver-api/io_ordering.rst 的中文翻译
如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
diff --git a/Documentation/translations/zh_CN/process/5.Posting.rst b/Documentation/translations/zh_CN/process/5.Posting.rst
index 41aba21ff050..9ff9945f918c 100644
--- a/Documentation/translations/zh_CN/process/5.Posting.rst
+++ b/Documentation/translations/zh_CN/process/5.Posting.rst
@@ -5,7 +5,7 @@
.. _cn_development_posting:
-发送补丁
+发布补丁
========
迟早,当您的工作准备好提交给社区进行审查,并最终包含到主线内核中时。不出所料,
diff --git a/Documentation/translations/zh_CN/video4linux/v4l2-framework.txt b/Documentation/translations/zh_CN/video4linux/v4l2-framework.txt
index 66c7c568bd86..9c39ee58ea50 100644
--- a/Documentation/translations/zh_CN/video4linux/v4l2-framework.txt
+++ b/Documentation/translations/zh_CN/video4linux/v4l2-framework.txt
@@ -649,7 +649,7 @@ video_device注册
接下来你需要注册视频设备:这会为你创建一个字符设备。
- err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
+ err = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (err) {
video_device_release(vdev); /* or kfree(my_vdev); */
return err;
@@ -660,7 +660,7 @@ video_device注册
注册哪种设备是根据类型(type)参数。存在以下类型:
-VFL_TYPE_GRABBER: 用于视频输入/输出设备的 videoX
+VFL_TYPE_VIDEO: 用于视频输入/输出设备的 videoX
VFL_TYPE_VBI: 用于垂直消隐数据的 vbiX (例如,隐藏式字幕,图文电视)
VFL_TYPE_RADIO: 用于广播调谐器的 radioX
diff --git a/Documentation/usb/index.rst b/Documentation/usb/index.rst
index 36b6ebd9a9d9..b656c9be23ed 100644
--- a/Documentation/usb/index.rst
+++ b/Documentation/usb/index.rst
@@ -22,6 +22,7 @@ USB support
misc_usbsevseg
mtouchusb
ohci
+ raw-gadget
usbip_protocol
usbmon
usb-serial
diff --git a/Documentation/usb/raw-gadget.rst b/Documentation/usb/raw-gadget.rst
new file mode 100644
index 000000000000..9e78cb858f86
--- /dev/null
+++ b/Documentation/usb/raw-gadget.rst
@@ -0,0 +1,61 @@
+==============
+USB Raw Gadget
+==============
+
+USB Raw Gadget is a kernel module that provides a userspace interface for
+the USB Gadget subsystem. Essentially it allows to emulate USB devices
+from userspace. Enabled with CONFIG_USB_RAW_GADGET. Raw Gadget is
+currently a strictly debugging feature and shouldn't be used in
+production, use GadgetFS instead.
+
+Comparison to GadgetFS
+~~~~~~~~~~~~~~~~~~~~~~
+
+Raw Gadget is similar to GadgetFS, but provides a more low-level and
+direct access to the USB Gadget layer for the userspace. The key
+differences are:
+
+1. Every USB request is passed to the userspace to get a response, while
+ GadgetFS responds to some USB requests internally based on the provided
+ descriptors. However note, that the UDC driver might respond to some
+ requests on its own and never forward them to the Gadget layer.
+
+2. GadgetFS performs some sanity checks on the provided USB descriptors,
+ while Raw Gadget allows you to provide arbitrary data as responses to
+ USB requests.
+
+3. Raw Gadget provides a way to select a UDC device/driver to bind to,
+ while GadgetFS currently binds to the first available UDC.
+
+4. Raw Gadget uses predictable endpoint names (handles) across different
+ UDCs (as long as UDCs have enough endpoints of each required transfer
+ type).
+
+5. Raw Gadget has ioctl-based interface instead of a filesystem-based one.
+
+Userspace interface
+~~~~~~~~~~~~~~~~~~~
+
+To create a Raw Gadget instance open /dev/raw-gadget. Multiple raw-gadget
+instances (bound to different UDCs) can be used at the same time. The
+interaction with the opened file happens through the ioctl() calls, see
+comments in include/uapi/linux/usb/raw_gadget.h for details.
+
+The typical usage of Raw Gadget looks like:
+
+1. Open Raw Gadget instance via /dev/raw-gadget.
+2. Initialize the instance via USB_RAW_IOCTL_INIT.
+3. Launch the instance with USB_RAW_IOCTL_RUN.
+4. In a loop issue USB_RAW_IOCTL_EVENT_FETCH calls to receive events from
+ Raw Gadget and react to those depending on what kind of USB device
+ needs to be emulated.
+
+Potential future improvements
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+- Implement ioctl's for setting/clearing halt status on endpoints.
+
+- Reporting more events (suspend, resume, etc.) through
+ USB_RAW_IOCTL_EVENT_FETCH.
+
+- Support O_NONBLOCK I/O.
diff --git a/Documentation/userspace-api/ioctl/ioctl-number.rst b/Documentation/userspace-api/ioctl/ioctl-number.rst
index 2e91370dc159..f759edafd938 100644
--- a/Documentation/userspace-api/ioctl/ioctl-number.rst
+++ b/Documentation/userspace-api/ioctl/ioctl-number.rst
@@ -266,7 +266,6 @@ Code Seq# Include File Comments
'o' 01-A1 `linux/dvb/*.h` DVB
'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
'p' 00-1F linux/rtc.h conflict!
-'p' 00-3F linux/mc146818rtc.h conflict!
'p' 40-7F linux/nvram.h
'p' 80-9F linux/ppdev.h user-space parport
<mailto:tim@cyberelk.net>
diff --git a/Documentation/virt/kvm/amd-memory-encryption.rst b/Documentation/virt/kvm/amd-memory-encryption.rst
index d18c97b4e140..c3129b9ba5cb 100644
--- a/Documentation/virt/kvm/amd-memory-encryption.rst
+++ b/Documentation/virt/kvm/amd-memory-encryption.rst
@@ -53,6 +53,29 @@ key management interface to perform common hypervisor activities such as
encrypting bootstrap code, snapshot, migrating and debugging the guest. For more
information, see the SEV Key Management spec [api-spec]_
+The main ioctl to access SEV is KVM_MEM_ENCRYPT_OP. If the argument
+to KVM_MEM_ENCRYPT_OP is NULL, the ioctl returns 0 if SEV is enabled
+and ``ENOTTY` if it is disabled (on some older versions of Linux,
+the ioctl runs normally even with a NULL argument, and therefore will
+likely return ``EFAULT``). If non-NULL, the argument to KVM_MEM_ENCRYPT_OP
+must be a struct kvm_sev_cmd::
+
+ struct kvm_sev_cmd {
+ __u32 id;
+ __u64 data;
+ __u32 error;
+ __u32 sev_fd;
+ };
+
+
+The ``id`` field contains the subcommand, and the ``data`` field points to
+another struct containing arguments specific to command. The ``sev_fd``
+should point to a file descriptor that is opened on the ``/dev/sev``
+device, if needed (see individual commands).
+
+On output, ``error`` is zero on success, or an error code. Error codes
+are defined in ``<linux/psp-dev.h>`.
+
KVM implements the following commands to support common lifecycle events of SEV
guests, such as launching, running, snapshotting, migrating and decommissioning.
@@ -90,6 +113,8 @@ Returns: 0 on success, -negative on error
On success, the 'handle' field contains a new handle and on error, a negative value.
+KVM_SEV_LAUNCH_START requires the ``sev_fd`` field to be valid.
+
For more details, see SEV spec Section 6.2.
3. KVM_SEV_LAUNCH_UPDATE_DATA
diff --git a/Documentation/x86/exception-tables.rst b/Documentation/x86/exception-tables.rst
index ed6d4b0cf62c..81a393867f10 100644
--- a/Documentation/x86/exception-tables.rst
+++ b/Documentation/x86/exception-tables.rst
@@ -257,6 +257,9 @@ the fault, in our case the actual value is c0199ff5:
the original assembly code: > 3: movl $-14,%eax
and linked in vmlinux : > c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax
+If the fixup was able to handle the exception, control flow may be returned
+to the instruction after the one that triggered the fault, ie. local label 2b.
+
The assembly code::
> .section __ex_table,"a"
@@ -344,3 +347,14 @@ pointer which points to one of:
it as special.
More functions can easily be added.
+
+CONFIG_BUILDTIME_TABLE_SORT allows the __ex_table section to be sorted post
+link of the kernel image, via a host utility scripts/sorttable. It will set the
+symbol main_extable_sort_needed to 0, avoiding sorting the __ex_table section
+at boot time. With the exception table sorted, at runtime when an exception
+occurs we can quickly lookup the __ex_table entry via binary search.
+
+This is not just a boot time optimization, some architectures require this
+table to be sorted in order to handle exceptions relatively early in the boot
+process. For example, i386 makes use of this form of exception handling before
+paging support is even enabled!
diff --git a/Documentation/x86/intel-iommu.rst b/Documentation/x86/intel-iommu.rst
index 9dae6b47e398..099f13d51d5f 100644
--- a/Documentation/x86/intel-iommu.rst
+++ b/Documentation/x86/intel-iommu.rst
@@ -95,9 +95,10 @@ and any RMRR's processed::
When DMAR is enabled for use, you will notice..
PCI-DMA: Using DMAR IOMMU
+-------------------------
Fault reporting
----------------
+^^^^^^^^^^^^^^^
::