diff options
Diffstat (limited to 'Documentation')
90 files changed, 4223 insertions, 534 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX index a1a643272883..2214f123a976 100644 --- a/Documentation/00-INDEX +++ b/Documentation/00-INDEX @@ -104,6 +104,8 @@ cpuidle/ - info on CPU_IDLE, CPU idle state management subsystem. cputopology.txt - documentation on how CPU topology info is exported via sysfs. +crc32.txt + - brief tutorial on CRC computation cris/ - directory with info about Linux on CRIS architecture. crypto/ diff --git a/Documentation/ABI/testing/sysfs-bus-rpmsg b/Documentation/ABI/testing/sysfs-bus-rpmsg new file mode 100644 index 000000000000..189e419a5a2d --- /dev/null +++ b/Documentation/ABI/testing/sysfs-bus-rpmsg @@ -0,0 +1,75 @@ +What: /sys/bus/rpmsg/devices/.../name +Date: June 2011 +KernelVersion: 3.3 +Contact: Ohad Ben-Cohen <ohad@wizery.com> +Description: + Every rpmsg device is a communication channel with a remote + processor. Channels are identified with a (textual) name, + which is maximum 32 bytes long (defined as RPMSG_NAME_SIZE in + rpmsg.h). + + This sysfs entry contains the name of this channel. + +What: /sys/bus/rpmsg/devices/.../src +Date: June 2011 +KernelVersion: 3.3 +Contact: Ohad Ben-Cohen <ohad@wizery.com> +Description: + Every rpmsg device is a communication channel with a remote + processor. Channels have a local ("source") rpmsg address, + and remote ("destination") rpmsg address. When an entity + starts listening on one end of a channel, it assigns it with + a unique rpmsg address (a 32 bits integer). This way when + inbound messages arrive to this address, the rpmsg core + dispatches them to the listening entity (a kernel driver). + + This sysfs entry contains the src (local) rpmsg address + of this channel. If it contains 0xffffffff, then an address + wasn't assigned (can happen if no driver exists for this + channel). + +What: /sys/bus/rpmsg/devices/.../dst +Date: June 2011 +KernelVersion: 3.3 +Contact: Ohad Ben-Cohen <ohad@wizery.com> +Description: + Every rpmsg device is a communication channel with a remote + processor. Channels have a local ("source") rpmsg address, + and remote ("destination") rpmsg address. When an entity + starts listening on one end of a channel, it assigns it with + a unique rpmsg address (a 32 bits integer). This way when + inbound messages arrive to this address, the rpmsg core + dispatches them to the listening entity. + + This sysfs entry contains the dst (remote) rpmsg address + of this channel. If it contains 0xffffffff, then an address + wasn't assigned (can happen if the kernel driver that + is attached to this channel is exposing a service to the + remote processor. This make it a local rpmsg server, + and it is listening for inbound messages that may be sent + from any remote rpmsg client; it is not bound to a single + remote entity). + +What: /sys/bus/rpmsg/devices/.../announce +Date: June 2011 +KernelVersion: 3.3 +Contact: Ohad Ben-Cohen <ohad@wizery.com> +Description: + Every rpmsg device is a communication channel with a remote + processor. Channels are identified by a textual name (see + /sys/bus/rpmsg/devices/.../name above) and have a local + ("source") rpmsg address, and remote ("destination") rpmsg + address. + + A channel is first created when an entity, whether local + or remote, starts listening on it for messages (and is thus + called an rpmsg server). + + When that happens, a "name service" announcement is sent + to the other processor, in order to let it know about the + creation of the channel (this way remote clients know they + can start sending messages). + + This sysfs entry tells us whether the channel is a local + server channel that is announced (values are either + true or false). diff --git a/Documentation/ABI/testing/sysfs-kernel-mm-cleancache b/Documentation/ABI/testing/sysfs-kernel-mm-cleancache deleted file mode 100644 index 662ae646ea12..000000000000 --- a/Documentation/ABI/testing/sysfs-kernel-mm-cleancache +++ /dev/null @@ -1,11 +0,0 @@ -What: /sys/kernel/mm/cleancache/ -Date: April 2011 -Contact: Dan Magenheimer <dan.magenheimer@oracle.com> -Description: - /sys/kernel/mm/cleancache/ contains a number of files which - record a count of various cleancache operations - (sum across all filesystems): - succ_gets - failed_gets - puts - flushes diff --git a/Documentation/DocBook/kgdb.tmpl b/Documentation/DocBook/kgdb.tmpl index d71b57fcf116..4ee4ba3509fc 100644 --- a/Documentation/DocBook/kgdb.tmpl +++ b/Documentation/DocBook/kgdb.tmpl @@ -362,6 +362,23 @@ </para> </para> </sect1> + <sect1 id="kgdbreboot"> + <title>Run time parameter: kgdbreboot</title> + <para> The kgdbreboot feature allows you to change how the debugger + deals with the reboot notification. You have 3 choices for the + behavior. The default behavior is always set to 0.</para> + <orderedlist> + <listitem><para>echo -1 > /sys/module/debug_core/parameters/kgdbreboot</para> + <para>Ignore the reboot notification entirely.</para> + </listitem> + <listitem><para>echo 0 > /sys/module/debug_core/parameters/kgdbreboot</para> + <para>Send the detach message to any attached debugger client.</para> + </listitem> + <listitem><para>echo 1 > /sys/module/debug_core/parameters/kgdbreboot</para> + <para>Enter the debugger on reboot notify.</para> + </listitem> + </orderedlist> + </sect1> </chapter> <chapter id="usingKDB"> <title>Using kdb</title> diff --git a/Documentation/DocBook/media/v4l/biblio.xml b/Documentation/DocBook/media/v4l/biblio.xml index cea6fd3ed428..7dc65c592a87 100644 --- a/Documentation/DocBook/media/v4l/biblio.xml +++ b/Documentation/DocBook/media/v4l/biblio.xml @@ -128,6 +128,26 @@ url="http://www.ijg.org">http://www.ijg.org</ulink>)</corpauthor> <subtitle>Version 1.02</subtitle> </biblioentry> + <biblioentry id="itu-t81"> + <abbrev>ITU-T.81</abbrev> + <authorgroup> + <corpauthor>International Telecommunication Union +(<ulink url="http://www.itu.int">http://www.itu.int</ulink>)</corpauthor> + </authorgroup> + <title>ITU-T Recommendation T.81 +"Information Technology — Digital Compression and Coding of Continous-Tone +Still Images — Requirements and Guidelines"</title> + </biblioentry> + + <biblioentry id="w3c-jpeg-jfif"> + <abbrev>W3C JPEG JFIF</abbrev> + <authorgroup> + <corpauthor>The World Wide Web Consortium (<ulink +url="http://www.w3.org/Graphics/JPEG">http://www.w3.org</ulink>)</corpauthor> + </authorgroup> + <title>JPEG JFIF</title> + </biblioentry> + <biblioentry id="smpte12m"> <abbrev>SMPTE 12M</abbrev> <authorgroup> diff --git a/Documentation/DocBook/media/v4l/compat.xml b/Documentation/DocBook/media/v4l/compat.xml index a2485b3ff3d2..bce97c50391b 100644 --- a/Documentation/DocBook/media/v4l/compat.xml +++ b/Documentation/DocBook/media/v4l/compat.xml @@ -2393,6 +2393,20 @@ details.</para> to the <link linkend="control">User controls class</link>. </para> </listitem> + <listitem> + <para>Added the device_caps field to struct v4l2_capabilities and added the new + V4L2_CAP_DEVICE_CAPS capability.</para> + </listitem> + </orderedlist> + </section> + + <section> + <title>V4L2 in Linux 3.4</title> + <orderedlist> + <listitem> + <para>Added <link linkend="jpeg-controls">JPEG compression control + class</link>.</para> + </listitem> </orderedlist> </section> diff --git a/Documentation/DocBook/media/v4l/controls.xml b/Documentation/DocBook/media/v4l/controls.xml index a1be37897ad7..b84f25e9cc87 100644 --- a/Documentation/DocBook/media/v4l/controls.xml +++ b/Documentation/DocBook/media/v4l/controls.xml @@ -1286,6 +1286,49 @@ produce a slight hiss, but in the encoder itself, guaranteeing a fixed and reproducible audio bitstream. 0 = unmuted, 1 = muted.</entry> </row> <row><entry></entry></row> + <row id="v4l2-mpeg-audio-dec-playback"> + <entry spanname="id"><constant>V4L2_CID_MPEG_AUDIO_DEC_PLAYBACK</constant> </entry> + <entry>enum v4l2_mpeg_audio_dec_playback</entry> + </row><row><entry spanname="descr">Determines how monolingual audio should be played back. +Possible values are:</entry> + </row> + <row> + <entrytbl spanname="descr" cols="2"> + <tbody valign="top"> + <row> + <entry><constant>V4L2_MPEG_AUDIO_DEC_PLAYBACK_AUTO</constant> </entry> + <entry>Automatically determines the best playback mode.</entry> + </row> + <row> + <entry><constant>V4L2_MPEG_AUDIO_DEC_PLAYBACK_STEREO</constant> </entry> + <entry>Stereo playback.</entry> + </row> + <row> + <entry><constant>V4L2_MPEG_AUDIO_DEC_PLAYBACK_LEFT</constant> </entry> + <entry>Left channel playback.</entry> + </row> + <row> + <entry><constant>V4L2_MPEG_AUDIO_DEC_PLAYBACK_RIGHT</constant> </entry> + <entry>Right channel playback.</entry> + </row> + <row> + <entry><constant>V4L2_MPEG_AUDIO_DEC_PLAYBACK_MONO</constant> </entry> + <entry>Mono playback.</entry> + </row> + <row> + <entry><constant>V4L2_MPEG_AUDIO_DEC_PLAYBACK_SWAPPED_STEREO</constant> </entry> + <entry>Stereo playback with swapped left and right channels.</entry> + </row> + </tbody> + </entrytbl> + </row> + <row><entry></entry></row> + <row id="v4l2-mpeg-audio-dec-multilingual-playback"> + <entry spanname="id"><constant>V4L2_CID_MPEG_AUDIO_DEC_MULTILINGUAL_PLAYBACK</constant> </entry> + <entry>enum v4l2_mpeg_audio_dec_playback</entry> + </row><row><entry spanname="descr">Determines how multilingual audio should be played back.</entry> + </row> + <row><entry></entry></row> <row id="v4l2-mpeg-video-encoding"> <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_ENCODING</constant> </entry> <entry>enum v4l2_mpeg_video_encoding</entry> @@ -1447,6 +1490,22 @@ of the video. The supplied 32-bit integer is interpreted as follows (bit </tbody> </entrytbl> </row> + <row><entry></entry></row> + <row id="v4l2-mpeg-video-dec-pts"> + <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_DEC_PTS</constant> </entry> + <entry>integer64</entry> + </row><row><entry spanname="descr">This read-only control returns the +33-bit video Presentation Time Stamp as defined in ITU T-REC-H.222.0 and ISO/IEC 13818-1 of +the currently displayed frame. This is the same PTS as is used in &VIDIOC-DECODER-CMD;.</entry> + </row> + <row><entry></entry></row> + <row id="v4l2-mpeg-video-dec-frame"> + <entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_DEC_FRAME</constant> </entry> + <entry>integer64</entry> + </row><row><entry spanname="descr">This read-only control returns the +frame counter of the frame that is currently displayed (decoded). This value is reset to 0 whenever +the decoder is started.</entry> + </row> <row><entry></entry></row> @@ -3377,6 +3436,167 @@ interface and may change in the future.</para> </tbody> </tgroup> </table> + </section> + + <section id="jpeg-controls"> + <title>JPEG Control Reference</title> + <para>The JPEG class includes controls for common features of JPEG + encoders and decoders. Currently it includes features for codecs + implementing progressive baseline DCT compression process with + Huffman entrophy coding.</para> + <table pgwide="1" frame="none" id="jpeg-control-id"> + <title>JPEG Control IDs</title> + <tgroup cols="4"> + <colspec colname="c1" colwidth="1*" /> + <colspec colname="c2" colwidth="6*" /> + <colspec colname="c3" colwidth="2*" /> + <colspec colname="c4" colwidth="6*" /> + <spanspec namest="c1" nameend="c2" spanname="id" /> + <spanspec namest="c2" nameend="c4" spanname="descr" /> + <thead> + <row> + <entry spanname="id" align="left">ID</entry> + <entry align="left">Type</entry> + </row><row rowsep="1"><entry spanname="descr" align="left">Description</entry> + </row> + </thead> + <tbody valign="top"> + <row><entry></entry></row> + <row> + <entry spanname="id"><constant>V4L2_CID_JPEG_CLASS</constant> </entry> + <entry>class</entry> + </row><row><entry spanname="descr">The JPEG class descriptor. Calling + &VIDIOC-QUERYCTRL; for this control will return a description of this + control class. + + </entry> + </row> + <row> + <entry spanname="id"><constant>V4L2_CID_JPEG_CHROMA_SUBSAMPLING</constant></entry> + <entry>menu</entry> + </row> + <row id="jpeg-chroma-subsampling-control"> + <entry spanname="descr">The chroma subsampling factors describe how + each component of an input image is sampled, in respect to maximum + sample rate in each spatial dimension. See <xref linkend="itu-t81"/>, + clause A.1.1. for more details. The <constant> + V4L2_CID_JPEG_CHROMA_SUBSAMPLING</constant> control determines how + Cb and Cr components are downsampled after coverting an input image + from RGB to Y'CbCr color space. + </entry> + </row> + <row> + <entrytbl spanname="descr" cols="2"> + <tbody valign="top"> + <row> + <entry><constant>V4L2_JPEG_CHROMA_SUBSAMPLING_444</constant> + </entry><entry>No chroma subsampling, each pixel has + Y, Cr and Cb values.</entry> + </row> + <row> + <entry><constant>V4L2_JPEG_CHROMA_SUBSAMPLING_422</constant> + </entry><entry>Horizontally subsample Cr, Cb components + by a factor of 2.</entry> + </row> + <row> + <entry><constant>V4L2_JPEG_CHROMA_SUBSAMPLING_420</constant> + </entry><entry>Subsample Cr, Cb components horizontally + and vertically by 2.</entry> + </row> + <row> + <entry><constant>V4L2_JPEG_CHROMA_SUBSAMPLING_411</constant> + </entry><entry>Horizontally subsample Cr, Cb components + by a factor of 4.</entry> + </row> + <row> + <entry><constant>V4L2_JPEG_CHROMA_SUBSAMPLING_410</constant> + </entry><entry>Subsample Cr, Cb components horizontally + by 4 and vertically by 2.</entry> + </row> + <row> + <entry><constant>V4L2_JPEG_CHROMA_SUBSAMPLING_GRAY</constant> + </entry><entry>Use only luminance component.</entry> + </row> + </tbody> + </entrytbl> + </row> + <row> + <entry spanname="id"><constant>V4L2_CID_JPEG_RESTART_INTERVAL</constant> + </entry><entry>integer</entry> + </row> + <row><entry spanname="descr"> + The restart interval determines an interval of inserting RSTm + markers (m = 0..7). The purpose of these markers is to additionally + reinitialize the encoder process, in order to process blocks of + an image independently. + For the lossy compression processes the restart interval unit is + MCU (Minimum Coded Unit) and its value is contained in DRI + (Define Restart Interval) marker. If <constant> + V4L2_CID_JPEG_RESTART_INTERVAL</constant> control is set to 0, + DRI and RSTm markers will not be inserted. + </entry> + </row> + <row id="jpeg-quality-control"> + <entry spanname="id"><constant>V4L2_CID_JPEG_COMPRESION_QUALITY</constant></entry> + <entry>integer</entry> + </row> + <row> + <entry spanname="descr"> + <constant>V4L2_CID_JPEG_COMPRESION_QUALITY</constant> control + determines trade-off between image quality and size. + It provides simpler method for applications to control image quality, + without a need for direct reconfiguration of luminance and chrominance + quantization tables. + + In cases where a driver uses quantization tables configured directly + by an application, using interfaces defined elsewhere, <constant> + V4L2_CID_JPEG_COMPRESION_QUALITY</constant> control should be set + by driver to 0. + + <para>The value range of this control is driver-specific. Only + positive, non-zero values are meaningful. The recommended range + is 1 - 100, where larger values correspond to better image quality. + </para> + </entry> + </row> + <row id="jpeg-active-marker-control"> + <entry spanname="id"><constant>V4L2_CID_JPEG_ACTIVE_MARKER</constant></entry> + <entry>bitmask</entry> + </row> + <row> + <entry spanname="descr">Specify which JPEG markers are included + in compressed stream. This control is valid only for encoders. + </entry> + </row> + <row> + <entrytbl spanname="descr" cols="2"> + <tbody valign="top"> + <row> + <entry><constant>V4L2_JPEG_ACTIVE_MARKER_APP0</constant></entry> + <entry>Application data segment APP<subscript>0</subscript>.</entry> + </row><row> + <entry><constant>V4L2_JPEG_ACTIVE_MARKER_APP1</constant></entry> + <entry>Application data segment APP<subscript>1</subscript>.</entry> + </row><row> + <entry><constant>V4L2_JPEG_ACTIVE_MARKER_COM</constant></entry> + <entry>Comment segment.</entry> + </row><row> + <entry><constant>V4L2_JPEG_ACTIVE_MARKER_DQT</constant></entry> + <entry>Quantization tables segment.</entry> + </row><row> + <entry><constant>V4L2_JPEG_ACTIVE_MARKER_DHT</constant></entry> + <entry>Huffman tables segment.</entry> + </row> + </tbody> + </entrytbl> + </row> + <row><entry></entry></row> + </tbody> + </tgroup> + </table> + <para>For more details about JPEG specification, refer + to <xref linkend="itu-t81"/>, <xref linkend="jfif"/>, + <xref linkend="w3c-jpeg-jfif"/>.</para> </section> </section> diff --git a/Documentation/DocBook/media/v4l/selection-api.xml b/Documentation/DocBook/media/v4l/selection-api.xml index 2f0bdb4d5551..b299e4779354 100644 --- a/Documentation/DocBook/media/v4l/selection-api.xml +++ b/Documentation/DocBook/media/v4l/selection-api.xml @@ -52,6 +52,10 @@ cropping and composing rectangles have the same size.</para> </textobject> </mediaobject> </figure> + +For complete list of the available selection targets see table <xref +linkend="v4l2-sel-target"/> + </section> <section> @@ -186,7 +190,7 @@ V4L2_SEL_TGT_COMPOSE_ACTIVE </constant> target.</para> <section> - <title>Scaling control.</title> + <title>Scaling control</title> <para>An application can detect if scaling is performed by comparing the width and the height of rectangles obtained using <constant> V4L2_SEL_TGT_CROP_ACTIVE @@ -200,7 +204,7 @@ the scaling ratios using these values.</para> <section> - <title>Comparison with old cropping API.</title> + <title>Comparison with old cropping API</title> <para>The selection API was introduced to cope with deficiencies of previous <link linkend="crop"> API </link>, that was designed to control simple capture diff --git a/Documentation/DocBook/media/v4l/v4l2.xml b/Documentation/DocBook/media/v4l/v4l2.xml index e97c512861bb..8ae38876172e 100644 --- a/Documentation/DocBook/media/v4l/v4l2.xml +++ b/Documentation/DocBook/media/v4l/v4l2.xml @@ -128,6 +128,22 @@ structs, ioctls) must be noted in more detail in the history chapter applications. --> <revision> + <revnumber>3.4</revnumber> + <date>2012-01-25</date> + <authorinitials>sn</authorinitials> + <revremark>Added <link linkend="jpeg-controls">JPEG compression + control class.</link> + </revremark> + </revision> + + <revision> + <revnumber>3.3</revnumber> + <date>2012-01-11</date> + <authorinitials>hv</authorinitials> + <revremark>Added device_caps field to struct v4l2_capabilities.</revremark> + </revision> + + <revision> <revnumber>3.2</revnumber> <date>2011-08-26</date> <authorinitials>hv</authorinitials> @@ -417,7 +433,7 @@ and discussions on the V4L mailing list.</revremark> </partinfo> <title>Video for Linux Two API Specification</title> - <subtitle>Revision 3.2</subtitle> + <subtitle>Revision 3.3</subtitle> <chapter id="common"> &sub-common; @@ -473,6 +489,7 @@ and discussions on the V4L mailing list.</revremark> &sub-cropcap; &sub-dbg-g-chip-ident; &sub-dbg-g-register; + &sub-decoder-cmd; &sub-dqevent; &sub-encoder-cmd; &sub-enumaudio; diff --git a/Documentation/DocBook/media/v4l/vidioc-decoder-cmd.xml b/Documentation/DocBook/media/v4l/vidioc-decoder-cmd.xml new file mode 100644 index 000000000000..74b87f6e480a --- /dev/null +++ b/Documentation/DocBook/media/v4l/vidioc-decoder-cmd.xml @@ -0,0 +1,256 @@ +<refentry id="vidioc-decoder-cmd"> + <refmeta> + <refentrytitle>ioctl VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD</refentrytitle> + &manvol; + </refmeta> + + <refnamediv> + <refname>VIDIOC_DECODER_CMD</refname> + <refname>VIDIOC_TRY_DECODER_CMD</refname> + <refpurpose>Execute an decoder command</refpurpose> + </refnamediv> + + <refsynopsisdiv> + <funcsynopsis> + <funcprototype> + <funcdef>int <function>ioctl</function></funcdef> + <paramdef>int <parameter>fd</parameter></paramdef> + <paramdef>int <parameter>request</parameter></paramdef> + <paramdef>struct v4l2_decoder_cmd *<parameter>argp</parameter></paramdef> + </funcprototype> + </funcsynopsis> + </refsynopsisdiv> + + <refsect1> + <title>Arguments</title> + + <variablelist> + <varlistentry> + <term><parameter>fd</parameter></term> + <listitem> + <para>&fd;</para> + </listitem> + </varlistentry> + <varlistentry> + <term><parameter>request</parameter></term> + <listitem> + <para>VIDIOC_DECODER_CMD, VIDIOC_TRY_DECODER_CMD</para> + </listitem> + </varlistentry> + <varlistentry> + <term><parameter>argp</parameter></term> + <listitem> + <para></para> + </listitem> + </varlistentry> + </variablelist> + </refsect1> + + <refsect1> + <title>Description</title> + + <note> + <title>Experimental</title> + + <para>This is an <link linkend="experimental">experimental</link> +interface and may change in the future.</para> + </note> + + <para>These ioctls control an audio/video (usually MPEG-) decoder. +<constant>VIDIOC_DECODER_CMD</constant> sends a command to the +decoder, <constant>VIDIOC_TRY_DECODER_CMD</constant> can be used to +try a command without actually executing it. To send a command applications +must initialize all fields of a &v4l2-decoder-cmd; and call +<constant>VIDIOC_DECODER_CMD</constant> or <constant>VIDIOC_TRY_DECODER_CMD</constant> +with a pointer to this structure.</para> + + <para>The <structfield>cmd</structfield> field must contain the +command code. Some commands use the <structfield>flags</structfield> field for +additional information. +</para> + + <para>A <function>write</function>() or &VIDIOC-STREAMON; call sends an implicit +START command to the decoder if it has not been started yet. +</para> + + <para>A <function>close</function>() or &VIDIOC-STREAMOFF; call of a streaming +file descriptor sends an implicit immediate STOP command to the decoder, and all +buffered data is discarded.</para> + + <para>These ioctls are optional, not all drivers may support +them. They were introduced in Linux 3.3.</para> + + <table pgwide="1" frame="none" id="v4l2-decoder-cmd"> + <title>struct <structname>v4l2_decoder_cmd</structname></title> + <tgroup cols="5"> + &cs-str; + <tbody valign="top"> + <row> + <entry>__u32</entry> + <entry><structfield>cmd</structfield></entry> + <entry></entry> + <entry></entry> + <entry>The decoder command, see <xref linkend="decoder-cmds" />.</entry> + </row> + <row> + <entry>__u32</entry> + <entry><structfield>flags</structfield></entry> + <entry></entry> + <entry></entry> + <entry>Flags to go with the command. If no flags are defined for +this command, drivers and applications must set this field to zero.</entry> + </row> + <row> + <entry>union</entry> + <entry>(anonymous)</entry> + <entry></entry> + <entry></entry> + <entry></entry> + </row> + <row> + <entry></entry> + <entry>struct</entry> + <entry><structfield>start</structfield></entry> + <entry></entry> + <entry>Structure containing additional data for the +<constant>V4L2_DEC_CMD_START</constant> command.</entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>__s32</entry> + <entry><structfield>speed</structfield></entry> + <entry>Playback speed and direction. The playback speed is defined as +<structfield>speed</structfield>/1000 of the normal speed. So 1000 is normal playback. +Negative numbers denote reverse playback, so -1000 does reverse playback at normal +speed. Speeds -1, 0 and 1 have special meanings: speed 0 is shorthand for 1000 +(normal playback). A speed of 1 steps just one frame forward, a speed of -1 steps +just one frame back. + </entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>__u32</entry> + <entry><structfield>format</structfield></entry> + <entry>Format restrictions. This field is set by the driver, not the +application. Possible values are <constant>V4L2_DEC_START_FMT_NONE</constant> if +there are no format restrictions or <constant>V4L2_DEC_START_FMT_GOP</constant> +if the decoder operates on full GOPs (<wordasword>Group Of Pictures</wordasword>). +This is usually the case for reverse playback: the decoder needs full GOPs, which +it can then play in reverse order. So to implement reverse playback the application +must feed the decoder the last GOP in the video file, then the GOP before that, etc. etc. + </entry> + </row> + <row> + <entry></entry> + <entry>struct</entry> + <entry><structfield>stop</structfield></entry> + <entry></entry> + <entry>Structure containing additional data for the +<constant>V4L2_DEC_CMD_STOP</constant> command.</entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>__u64</entry> + <entry><structfield>pts</structfield></entry> + <entry>Stop playback at this <structfield>pts</structfield> or immediately +if the playback is already past that timestamp. Leave to 0 if you want to stop after the +last frame was decoded. + </entry> + </row> + <row> + <entry></entry> + <entry>struct</entry> + <entry><structfield>raw</structfield></entry> + <entry></entry> + <entry></entry> + </row> + <row> + <entry></entry> + <entry></entry> + <entry>__u32</entry> + <entry><structfield>data</structfield>[16]</entry> + <entry>Reserved for future extensions. Drivers and +applications must set the array to zero.</entry> + </row> + </tbody> + </tgroup> + </table> + + <table pgwide="1" frame="none" id="decoder-cmds"> + <title>Decoder Commands</title> + <tgroup cols="3"> + &cs-def; + <tbody valign="top"> + <row> + <entry><constant>V4L2_DEC_CMD_START</constant></entry> + <entry>0</entry> + <entry>Start the decoder. When the decoder is already +running or paused, this command will just change the playback speed. +That means that calling <constant>V4L2_DEC_CMD_START</constant> when +the decoder was paused will <emphasis>not</emphasis> resume the decoder. +You have to explicitly call <constant>V4L2_DEC_CMD_RESUME</constant> for that. +This command has one flag: +<constant>V4L2_DEC_CMD_START_MUTE_AUDIO</constant>. If set, then audio will +be muted when playing back at a non-standard speed. + </entry> + </row> + <row> + <entry><constant>V4L2_DEC_CMD_STOP</constant></entry> + <entry>1</entry> + <entry>Stop the decoder. When the decoder is already stopped, +this command does nothing. This command has two flags: +if <constant>V4L2_DEC_CMD_STOP_TO_BLACK</constant> is set, then the decoder will +set the picture to black after it stopped decoding. Otherwise the last image will +repeat. If <constant>V4L2_DEC_CMD_STOP_IMMEDIATELY</constant> is set, then the decoder +stops immediately (ignoring the <structfield>pts</structfield> value), otherwise it +will keep decoding until timestamp >= pts or until the last of the pending data from +its internal buffers was decoded. +</entry> + </row> + <row> + <entry><constant>V4L2_DEC_CMD_PAUSE</constant></entry> + <entry>2</entry> + <entry>Pause the decoder. When the decoder has not been +started yet, the driver will return an &EPERM;. When the decoder is +already paused, this command does nothing. This command has one flag: +if <constant>V4L2_DEC_CMD_PAUSE_TO_BLACK</constant> is set, then set the +decoder output to black when paused. +</entry> + </row> + <row> + <entry><constant>V4L2_DEC_CMD_RESUME</constant></entry> + <entry>3</entry> + <entry>Resume decoding after a PAUSE command. When the +decoder has not been started yet, the driver will return an &EPERM;. +When the decoder is already running, this command does nothing. No +flags are defined for this command.</entry> + </row> + </tbody> + </tgroup> + </table> + + </refsect1> + + <refsect1> + &return-value; + + <variablelist> + <varlistentry> + <term><errorcode>EINVAL</errorcode></term> + <listitem> + <para>The <structfield>cmd</structfield> field is invalid.</para> + </listitem> + </varlistentry> + <varlistentry> + <term><errorcode>EPERM</errorcode></term> + <listitem> + <para>The application sent a PAUSE or RESUME command when +the decoder was not running.</para> + </listitem> + </varlistentry> + </variablelist> + </refsect1> +</refentry> diff --git a/Documentation/DocBook/media/v4l/vidioc-encoder-cmd.xml b/Documentation/DocBook/media/v4l/vidioc-encoder-cmd.xml index af7f3f2a36dd..f431b3ba79bd 100644 --- a/Documentation/DocBook/media/v4l/vidioc-encoder-cmd.xml +++ b/Documentation/DocBook/media/v4l/vidioc-encoder-cmd.xml @@ -74,15 +74,16 @@ only used by the STOP command and contains one bit: If the encoding will continue until the end of the current <wordasword>Group Of Pictures</wordasword>, otherwise it will stop immediately.</para> - <para>A <function>read</function>() call sends a START command to -the encoder if it has not been started yet. After a STOP command, + <para>A <function>read</function>() or &VIDIOC-STREAMON; call sends an implicit +START command to the encoder if it has not been started yet. After a STOP command, <function>read</function>() calls will read the remaining data buffered by the driver. When the buffer is empty, <function>read</function>() will return zero and the next <function>read</function>() call will restart the encoder.</para> - <para>A <function>close</function>() call sends an immediate STOP -to the encoder, and all buffered data is discarded.</para> + <para>A <function>close</function>() or &VIDIOC-STREAMOFF; call of a streaming +file descriptor sends an implicit immediate STOP to the encoder, and all buffered +data is discarded.</para> <para>These ioctls are optional, not all drivers may support them. They were introduced in Linux 2.6.21.</para> diff --git a/Documentation/DocBook/media/v4l/vidioc-g-jpegcomp.xml b/Documentation/DocBook/media/v4l/vidioc-g-jpegcomp.xml index 01ea24b84385..48748499c097 100644 --- a/Documentation/DocBook/media/v4l/vidioc-g-jpegcomp.xml +++ b/Documentation/DocBook/media/v4l/vidioc-g-jpegcomp.xml @@ -57,6 +57,11 @@ <refsect1> <title>Description</title> + <para>These ioctls are <emphasis role="bold">deprecated</emphasis>. + New drivers and applications should use <link linkend="jpeg-controls"> + JPEG class controls</link> for image quality and JPEG markers control. + </para> + <para>[to do]</para> <para>Ronald Bultje elaborates:</para> @@ -86,7 +91,10 @@ to add them.</para> <row> <entry>int</entry> <entry><structfield>quality</structfield></entry> - <entry></entry> + <entry>Deprecated. If <link linkend="jpeg-quality-control"><constant> + V4L2_CID_JPEG_IMAGE_QUALITY</constant></link> control is exposed by + a driver applications should use it instead and ignore this field. + </entry> </row> <row> <entry>int</entry> @@ -116,7 +124,11 @@ to add them.</para> <row> <entry>__u32</entry> <entry><structfield>jpeg_markers</structfield></entry> - <entry>See <xref linkend="jpeg-markers" />.</entry> + <entry>See <xref linkend="jpeg-markers"/>. Deprecated. + If <link linkend="jpeg-active-marker-control"><constant> + V4L2_CID_JPEG_ACTIVE_MARKER</constant></link> control + is exposed by a driver applications should use it instead + and ignore this field.</entry> </row> </tbody> </tgroup> diff --git a/Documentation/DocBook/media/v4l/vidioc-g-selection.xml b/Documentation/DocBook/media/v4l/vidioc-g-selection.xml index a9d36e0c090e..bb04eff75f45 100644 --- a/Documentation/DocBook/media/v4l/vidioc-g-selection.xml +++ b/Documentation/DocBook/media/v4l/vidioc-g-selection.xml @@ -58,43 +58,43 @@ <para>The ioctls are used to query and configure selection rectangles.</para> -<para> To query the cropping (composing) rectangle set <structfield> -&v4l2-selection;::type </structfield> to the respective buffer type. Do not -use multiplanar buffers. Use <constant> V4L2_BUF_TYPE_VIDEO_CAPTURE +<para> To query the cropping (composing) rectangle set &v4l2-selection; +<structfield> type </structfield> field to the respective buffer type. +Do not use multiplanar buffers. Use <constant> V4L2_BUF_TYPE_VIDEO_CAPTURE </constant> instead of <constant> V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE </constant>. Use <constant> V4L2_BUF_TYPE_VIDEO_OUTPUT </constant> instead of <constant> V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE </constant>. The next step is -setting <structfield> &v4l2-selection;::target </structfield> to value -<constant> V4L2_SEL_TGT_CROP_ACTIVE </constant> (<constant> +setting the value of &v4l2-selection; <structfield>target</structfield> field +to <constant> V4L2_SEL_TGT_CROP_ACTIVE </constant> (<constant> V4L2_SEL_TGT_COMPOSE_ACTIVE </constant>). Please refer to table <xref linkend="v4l2-sel-target" /> or <xref linkend="selection-api" /> for additional -targets. Fields <structfield> &v4l2-selection;::flags </structfield> and -<structfield> &v4l2-selection;::reserved </structfield> are ignored and they -must be filled with zeros. The driver fills the rest of the structure or +targets. The <structfield>flags</structfield> and <structfield>reserved +</structfield> fields of &v4l2-selection; are ignored and they must be filled +with zeros. The driver fills the rest of the structure or returns &EINVAL; if incorrect buffer type or target was used. If cropping (composing) is not supported then the active rectangle is not mutable and it is -always equal to the bounds rectangle. Finally, structure <structfield> -&v4l2-selection;::r </structfield> is filled with the current cropping +always equal to the bounds rectangle. Finally, the &v4l2-rect; +<structfield>r</structfield> rectangle is filled with the current cropping (composing) coordinates. The coordinates are expressed in driver-dependent units. The only exception are rectangles for images in raw formats, whose coordinates are always expressed in pixels. </para> -<para> To change the cropping (composing) rectangle set <structfield> -&v4l2-selection;::type </structfield> to the respective buffer type. Do not +<para> To change the cropping (composing) rectangle set the &v4l2-selection; +<structfield>type</structfield> field to the respective buffer type. Do not use multiplanar buffers. Use <constant> V4L2_BUF_TYPE_VIDEO_CAPTURE </constant> instead of <constant> V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE </constant>. Use <constant> V4L2_BUF_TYPE_VIDEO_OUTPUT </constant> instead of <constant> V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE </constant>. The next step is -setting <structfield> &v4l2-selection;::target </structfield> to value -<constant> V4L2_SEL_TGT_CROP_ACTIVE </constant> (<constant> +setting the value of &v4l2-selection; <structfield>target</structfield> to +<constant>V4L2_SEL_TGT_CROP_ACTIVE</constant> (<constant> V4L2_SEL_TGT_COMPOSE_ACTIVE </constant>). Please refer to table <xref linkend="v4l2-sel-target" /> or <xref linkend="selection-api" /> for additional -targets. Set desired active area into the field <structfield> -&v4l2-selection;::r </structfield>. Field <structfield> -&v4l2-selection;::reserved </structfield> is ignored and must be filled with -zeros. The driver may adjust the rectangle coordinates. An application may -introduce constraints to control rounding behaviour. Set the field -<structfield> &v4l2-selection;::flags </structfield> to one of values: +targets. The &v4l2-rect; <structfield>r</structfield> rectangle need to be +set to the desired active area. Field &v4l2-selection; <structfield> reserved +</structfield> is ignored and must be filled with zeros. The driver may adjust +coordinates of the requested rectangle. An application may +introduce constraints to control rounding behaviour. The &v4l2-selection; +<structfield>flags</structfield> field must be set to one of the following: <itemizedlist> <listitem> @@ -129,7 +129,7 @@ and vertical offset and sizes are chosen according to following priority: <orderedlist> <listitem> - <para>Satisfy constraints from <structfield>&v4l2-selection;::flags</structfield>.</para> + <para>Satisfy constraints from &v4l2-selection; <structfield>flags</structfield>.</para> </listitem> <listitem> <para>Adjust width, height, left, and top to hardware limits and alignments.</para> @@ -145,7 +145,7 @@ and vertical offset and sizes are chosen according to following priority: </listitem> </orderedlist> -On success the field <structfield> &v4l2-selection;::r </structfield> contains +On success the &v4l2-rect; <structfield>r</structfield> field contains the adjusted rectangle. When the parameters are unsuitable the application may modify the cropping (composing) or image parameters and repeat the cycle until satisfactory parameters have been negotiated. If constraints flags have to be @@ -162,38 +162,38 @@ exist no rectangle </emphasis> that satisfies the constraints.</para> <tbody valign="top"> <row> <entry><constant>V4L2_SEL_TGT_CROP_ACTIVE</constant></entry> - <entry>0</entry> - <entry>area that is currently cropped by hardware</entry> + <entry>0x0000</entry> + <entry>The area that is currently cropped by hardware.</entry> </row> <row> <entry><constant>V4L2_SEL_TGT_CROP_DEFAULT</constant></entry> - <entry>1</entry> - <entry>suggested cropping rectangle that covers the "whole picture"</entry> + <entry>0x0001</entry> + <entry>Suggested cropping rectangle that covers the "whole picture".</entry> </row> <row> <entry><constant>V4L2_SEL_TGT_CROP_BOUNDS</constant></entry> - <entry>2</entry> - <entry>limits for the cropping rectangle</entry> + <entry>0x0002</entry> + <entry>Limits for the cropping rectangle.</entry> </row> <row> <entry><constant>V4L2_SEL_TGT_COMPOSE_ACTIVE</constant></entry> - <entry>256</entry> - <entry>area to which data are composed by hardware</entry> + <entry>0x0100</entry> + <entry>The area to which data is composed by hardware.</entry> </row> <row> <entry><constant>V4L2_SEL_TGT_COMPOSE_DEFAULT</constant></entry> - <entry>257</entry> - <entry>suggested composing rectangle that covers the "whole picture"</entry> + <entry>0x0101</entry> + <entry>Suggested composing rectangle that covers the "whole picture".</entry> </row> <row> <entry><constant>V4L2_SEL_TGT_COMPOSE_BOUNDS</constant></entry> - <entry>258</entry> - <entry>limits for the composing rectangle</entry> + <entry>0x0102</entry> + <entry>Limits for the composing rectangle.</entry> </row> <row> <entry><constant>V4L2_SEL_TGT_COMPOSE_PADDED</constant></entry> - <entry>259</entry> - <entry>the active area and all padding pixels that are inserted or modified by the hardware</entry> + <entry>0x0103</entry> + <entry>The active area and all padding pixels that are inserted or modified by hardware.</entry> </row> </tbody> </tgroup> @@ -209,12 +209,14 @@ exist no rectangle </emphasis> that satisfies the constraints.</para> <row> <entry><constant>V4L2_SEL_FLAG_GE</constant></entry> <entry>0x00000001</entry> - <entry>indicate that adjusted rectangle must contain a rectangle from <structfield>&v4l2-selection;::r</structfield></entry> + <entry>Indicates that the adjusted rectangle must contain the original + &v4l2-selection; <structfield>r</structfield> rectangle.</entry> </row> <row> <entry><constant>V4L2_SEL_FLAG_LE</constant></entry> <entry>0x00000002</entry> - <entry>indicate that adjusted rectangle must be inside a rectangle from <structfield>&v4l2-selection;::r</structfield></entry> + <entry>Indicates that the adjusted rectangle must be inside the original + &v4l2-rect; <structfield>r</structfield> rectangle.</entry> </row> </tbody> </tgroup> @@ -245,27 +247,29 @@ exist no rectangle </emphasis> that satisfies the constraints.</para> <row> <entry>__u32</entry> <entry><structfield>type</structfield></entry> - <entry>Type of the buffer (from &v4l2-buf-type;)</entry> + <entry>Type of the buffer (from &v4l2-buf-type;).</entry> </row> <row> <entry>__u32</entry> <entry><structfield>target</structfield></entry> - <entry>used to select between <link linkend="v4l2-sel-target"> cropping and composing rectangles </link></entry> + <entry>Used to select between <link linkend="v4l2-sel-target"> cropping + and composing rectangles</link>.</entry> </row> <row> <entry>__u32</entry> <entry><structfield>flags</structfield></entry> - <entry>control over coordinates adjustments, refer to <link linkend="v4l2-sel-flags">selection flags</link></entry> + <entry>Flags controlling the selection rectangle adjustments, refer to + <link linkend="v4l2-sel-flags">selection flags</link>.</entry> </row> <row> <entry>&v4l2-rect;</entry> <entry><structfield>r</structfield></entry> - <entry>selection rectangle</entry> + <entry>The selection rectangle.</entry> </row> <row> <entry>__u32</entry> <entry><structfield>reserved[9]</structfield></entry> - <entry>Reserved fields for future use</entry> + <entry>Reserved fields for future use.</entry> </row> </tbody> </tgroup> @@ -278,24 +282,24 @@ exist no rectangle </emphasis> that satisfies the constraints.</para> <varlistentry> <term><errorcode>EINVAL</errorcode></term> <listitem> - <para>The buffer <structfield> &v4l2-selection;::type </structfield> -or <structfield> &v4l2-selection;::target </structfield> is not supported, or -the <structfield> &v4l2-selection;::flags </structfield> are invalid.</para> + <para>Given buffer type <structfield>type</structfield> or +the selection target <structfield>target</structfield> is not supported, +or the <structfield>flags</structfield> argument is not valid.</para> </listitem> </varlistentry> <varlistentry> <term><errorcode>ERANGE</errorcode></term> <listitem> - <para>it is not possible to adjust a rectangle <structfield> -&v4l2-selection;::r </structfield> that satisfies all contraints from -<structfield> &v4l2-selection;::flags </structfield>.</para> + <para>It is not possible to adjust &v4l2-rect; <structfield> +r</structfield> rectangle to satisfy all contraints given in the +<structfield>flags</structfield> argument.</para> </listitem> </varlistentry> <varlistentry> <term><errorcode>EBUSY</errorcode></term> <listitem> - <para>it is not possible to apply change of selection rectangle at the moment. -Usually because streaming is in progress.</para> + <para>It is not possible to apply change of the selection rectangle +at the moment. Usually because streaming is in progress.</para> </listitem> </varlistentry> </variablelist> diff --git a/Documentation/DocBook/media/v4l/vidioc-querycap.xml b/Documentation/DocBook/media/v4l/vidioc-querycap.xml index e3664d6f2de4..4643505cd4ca 100644 --- a/Documentation/DocBook/media/v4l/vidioc-querycap.xml +++ b/Documentation/DocBook/media/v4l/vidioc-querycap.xml @@ -124,12 +124,35 @@ printf ("Version: %u.%u.%u\n", <row> <entry>__u32</entry> <entry><structfield>capabilities</structfield></entry> - <entry>Device capabilities, see <xref - linkend="device-capabilities" />.</entry> + <entry>Available capabilities of the physical device as a whole, see <xref + linkend="device-capabilities" />. The same physical device can export + multiple devices in /dev (e.g. /dev/videoX, /dev/vbiY and /dev/radioZ). + The <structfield>capabilities</structfield> field should contain a union + of all capabilities available around the several V4L2 devices exported + to userspace. + For all those devices the <structfield>capabilities</structfield> field + returns the same set of capabilities. This allows applications to open + just one of the devices (typically the video device) and discover whether + video, vbi and/or radio are also supported. + </entry> </row> <row> <entry>__u32</entry> - <entry><structfield>reserved</structfield>[4]</entry> + <entry><structfield>device_caps</structfield></entry> + <entry>Device capabilities of the opened device, see <xref + linkend="device-capabilities" />. Should contain the available capabilities + of that specific device node. So, for example, <structfield>device_caps</structfield> + of a radio device will only contain radio related capabilities and + no video or vbi capabilities. This field is only set if the <structfield>capabilities</structfield> + field contains the <constant>V4L2_CAP_DEVICE_CAPS</constant> capability. + Only the <structfield>capabilities</structfield> field can have the + <constant>V4L2_CAP_DEVICE_CAPS</constant> capability, <structfield>device_caps</structfield> + will never set <constant>V4L2_CAP_DEVICE_CAPS</constant>. + </entry> + </row> + <row> + <entry>__u32</entry> + <entry><structfield>reserved</structfield>[3]</entry> <entry>Reserved for future extensions. Drivers must set this array to zero.</entry> </row> @@ -276,6 +299,13 @@ linkend="async">asynchronous</link> I/O methods.</entry> <entry>The device supports the <link linkend="mmap">streaming</link> I/O method.</entry> </row> + <row> + <entry><constant>V4L2_CAP_DEVICE_CAPS</constant></entry> + <entry>0x80000000</entry> + <entry>The driver fills the <structfield>device_caps</structfield> + field. This capability can only appear in the <structfield>capabilities</structfield> + field and never in the <structfield>device_caps</structfield> field.</entry> + </row> </tbody> </tgroup> </table> diff --git a/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml b/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml index e013da845b11..18b1a8266f7c 100644 --- a/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml +++ b/Documentation/DocBook/media/v4l/vidioc-s-hw-freq-seek.xml @@ -96,8 +96,8 @@ field and the &v4l2-tuner; <structfield>index</structfield> field.</entry> <row> <entry>__u32</entry> <entry><structfield>reserved</structfield>[7]</entry> - <entry>Reserved for future extensions. Drivers and - applications must set the array to zero.</entry> + <entry>Reserved for future extensions. Applications + must set the array to zero.</entry> </row> </tbody> </tgroup> @@ -112,7 +112,7 @@ field and the &v4l2-tuner; <structfield>index</structfield> field.</entry> <term><errorcode>EINVAL</errorcode></term> <listitem> <para>The <structfield>tuner</structfield> index is out of -bounds or the value in the <structfield>type</structfield> field is +bounds, the wrap_around value is not supported or the value in the <structfield>type</structfield> field is wrong.</para> </listitem> </varlistentry> diff --git a/Documentation/EDID/1024x768.S b/Documentation/EDID/1024x768.S new file mode 100644 index 000000000000..4b486fe31b32 --- /dev/null +++ b/Documentation/EDID/1024x768.S @@ -0,0 +1,44 @@ +/* + 1024x768.S: EDID data set for standard 1024x768 60 Hz monitor + + Copyright (C) 2011 Carsten Emde <C.Emde@osadl.org> + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + as published by the Free Software Foundation; either version 2 + of the License, or (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +*/ + +/* EDID */ +#define VERSION 1 +#define REVISION 3 + +/* Display */ +#define CLOCK 65000 /* kHz */ +#define XPIX 1024 +#define YPIX 768 +#define XY_RATIO XY_RATIO_4_3 +#define XBLANK 320 +#define YBLANK 38 +#define XOFFSET 8 +#define XPULSE 144 +#define YOFFSET (63+3) +#define YPULSE (63+6) +#define DPI 72 +#define VFREQ 60 /* Hz */ +#define TIMING_NAME "Linux XGA" +#define ESTABLISHED_TIMINGS_BITS 0x08 /* Bit 3 -> 1024x768 @60 Hz */ +#define HSYNC_POL 0 +#define VSYNC_POL 0 +#define CRC 0x55 + +#include "edid.S" diff --git a/Documentation/EDID/1280x1024.S b/Documentation/EDID/1280x1024.S new file mode 100644 index 000000000000..a2799fe33a4d --- /dev/null +++ b/Documentation/EDID/1280x1024.S @@ -0,0 +1,44 @@ +/* + 1280x1024.S: EDID data set for standard 1280x1024 60 Hz monitor + + Copyright (C) 2011 Carsten Emde <C.Emde@osadl.org> + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + as published by the Free Software Foundation; either version 2 + of the License, or (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +*/ + +/* EDID */ +#define VERSION 1 +#define REVISION 3 + +/* Display */ +#define CLOCK 108000 /* kHz */ +#define XPIX 1280 +#define YPIX 1024 +#define XY_RATIO XY_RATIO_5_4 +#define XBLANK 408 +#define YBLANK 42 +#define XOFFSET 48 +#define XPULSE 112 +#define YOFFSET (63+1) +#define YPULSE (63+3) +#define DPI 72 +#define VFREQ 60 /* Hz */ +#define TIMING_NAME "Linux SXGA" +#define ESTABLISHED_TIMINGS_BITS 0x00 /* none */ +#define HSYNC_POL 1 +#define VSYNC_POL 1 +#define CRC 0xa0 + +#include "edid.S" diff --git a/Documentation/EDID/1680x1050.S b/Documentation/EDID/1680x1050.S new file mode 100644 index 000000000000..96f67cafcf2e --- /dev/null +++ b/Documentation/EDID/1680x1050.S @@ -0,0 +1,44 @@ +/* + 1680x1050.S: EDID data set for standard 1680x1050 60 Hz monitor + + Copyright (C) 2012 Carsten Emde <C.Emde@osadl.org> + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + as published by the Free Software Foundation; either version 2 + of the License, or (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +*/ + +/* EDID */ +#define VERSION 1 +#define REVISION 3 + +/* Display */ +#define CLOCK 146250 /* kHz */ +#define XPIX 1680 +#define YPIX 1050 +#define XY_RATIO XY_RATIO_16_10 +#define XBLANK 560 +#define YBLANK 39 +#define XOFFSET 104 +#define XPULSE 176 +#define YOFFSET (63+3) +#define YPULSE (63+6) +#define DPI 96 +#define VFREQ 60 /* Hz */ +#define TIMING_NAME "Linux WSXGA" +#define ESTABLISHED_TIMINGS_BITS 0x00 /* none */ +#define HSYNC_POL 1 +#define VSYNC_POL 1 +#define CRC 0x26 + +#include "edid.S" diff --git a/Documentation/EDID/1920x1080.S b/Documentation/EDID/1920x1080.S new file mode 100644 index 000000000000..36ed5d571d0a --- /dev/null +++ b/Documentation/EDID/1920x1080.S @@ -0,0 +1,44 @@ +/* + 1920x1080.S: EDID data set for standard 1920x1080 60 Hz monitor + + Copyright (C) 2012 Carsten Emde <C.Emde@osadl.org> + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + as published by the Free Software Foundation; either version 2 + of the License, or (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +*/ + +/* EDID */ +#define VERSION 1 +#define REVISION 3 + +/* Display */ +#define CLOCK 148500 /* kHz */ +#define XPIX 1920 +#define YPIX 1080 +#define XY_RATIO XY_RATIO_16_9 +#define XBLANK 280 +#define YBLANK 45 +#define XOFFSET 88 +#define XPULSE 44 +#define YOFFSET (63+4) +#define YPULSE (63+5) +#define DPI 96 +#define VFREQ 60 /* Hz */ +#define TIMING_NAME "Linux FHD" +#define ESTABLISHED_TIMINGS_BITS 0x00 /* none */ +#define HSYNC_POL 1 +#define VSYNC_POL 1 +#define CRC 0x05 + +#include "edid.S" diff --git a/Documentation/EDID/HOWTO.txt b/Documentation/EDID/HOWTO.txt new file mode 100644 index 000000000000..75a9f2a0c43d --- /dev/null +++ b/Documentation/EDID/HOWTO.txt @@ -0,0 +1,39 @@ +In the good old days when graphics parameters were configured explicitly +in a file called xorg.conf, even broken hardware could be managed. + +Today, with the advent of Kernel Mode Setting, a graphics board is +either correctly working because all components follow the standards - +or the computer is unusable, because the screen remains dark after +booting or it displays the wrong area. Cases when this happens are: +- The graphics board does not recognize the monitor. +- The graphics board is unable to detect any EDID data. +- The graphics board incorrectly forwards EDID data to the driver. +- The monitor sends no or bogus EDID data. +- A KVM sends its own EDID data instead of querying the connected monitor. +Adding the kernel parameter "nomodeset" helps in most cases, but causes +restrictions later on. + +As a remedy for such situations, the kernel configuration item +CONFIG_DRM_LOAD_EDID_FIRMWARE was introduced. It allows to provide an +individually prepared or corrected EDID data set in the /lib/firmware +directory from where it is loaded via the firmware interface. The code +(see drivers/gpu/drm/drm_edid_load.c) contains built-in data sets for +commonly used screen resolutions (1024x768, 1280x1024, 1680x1050, +1920x1080) as binary blobs, but the kernel source tree does not contain +code to create these data. In order to elucidate the origin of the +built-in binary EDID blobs and to facilitate the creation of individual +data for a specific misbehaving monitor, commented sources and a +Makefile environment are given here. + +To create binary EDID and C source code files from the existing data +material, simply type "make". + +If you want to create your own EDID file, copy the file 1024x768.S and +replace the settings with your own data. The CRC value in the last line + #define CRC 0x55 +is a bit tricky. After a first version of the binary data set is +created, it must be be checked with the "edid-decode" utility which will +most probably complain about a wrong CRC. Fortunately, the utility also +displays the correct CRC which must then be inserted into the source +file. After the make procedure is repeated, the EDID data set is ready +to be used. diff --git a/Documentation/EDID/Makefile b/Documentation/EDID/Makefile new file mode 100644 index 000000000000..17763ca3f12b --- /dev/null +++ b/Documentation/EDID/Makefile @@ -0,0 +1,26 @@ + +SOURCES := $(wildcard [0-9]*x[0-9]*.S) + +BIN := $(patsubst %.S, %.bin, $(SOURCES)) + +IHEX := $(patsubst %.S, %.bin.ihex, $(SOURCES)) + +CODE := $(patsubst %.S, %.c, $(SOURCES)) + +all: $(BIN) $(IHEX) $(CODE) + +clean: + @rm -f *.o *.bin.ihex *.bin *.c + +%.o: %.S + @cc -c $^ + +%.bin: %.o + @objcopy -Obinary $^ $@ + +%.bin.ihex: %.o + @objcopy -Oihex $^ $@ + @dos2unix $@ 2>/dev/null + +%.c: %.bin + @echo "{" >$@; hexdump -f hex $^ >>$@; echo "};" >>$@ diff --git a/Documentation/EDID/edid.S b/Documentation/EDID/edid.S new file mode 100644 index 000000000000..ea97ae275fca --- /dev/null +++ b/Documentation/EDID/edid.S @@ -0,0 +1,261 @@ +/* + edid.S: EDID data template + + Copyright (C) 2012 Carsten Emde <C.Emde@osadl.org> + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + as published by the Free Software Foundation; either version 2 + of the License, or (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +*/ + + +/* Manufacturer */ +#define MFG_LNX1 'L' +#define MFG_LNX2 'N' +#define MFG_LNX3 'X' +#define SERIAL 0 +#define YEAR 2012 +#define WEEK 5 + +/* EDID 1.3 standard definitions */ +#define XY_RATIO_16_10 0b00 +#define XY_RATIO_4_3 0b01 +#define XY_RATIO_5_4 0b10 +#define XY_RATIO_16_9 0b11 + +#define mfgname2id(v1,v2,v3) \ + ((((v1-'@')&0x1f)<<10)+(((v2-'@')&0x1f)<<5)+((v3-'@')&0x1f)) +#define swap16(v1) ((v1>>8)+((v1&0xff)<<8)) +#define msbs2(v1,v2) ((((v1>>8)&0x0f)<<4)+((v2>>8)&0x0f)) +#define msbs4(v1,v2,v3,v4) \ + (((v1&0x03)>>2)+((v2&0x03)>>4)+((v3&0x03)>>6)+((v4&0x03)>>8)) +#define pixdpi2mm(pix,dpi) ((pix*25)/dpi) +#define xsize pixdpi2mm(XPIX,DPI) +#define ysize pixdpi2mm(YPIX,DPI) + + .data + +/* Fixed header pattern */ +header: .byte 0x00,0xff,0xff,0xff,0xff,0xff,0xff,0x00 + +mfg_id: .word swap16(mfgname2id(MFG_LNX1, MFG_LNX2, MFG_LNX3)) + +prod_code: .word 0 + +/* Serial number. 32 bits, little endian. */ +serial_number: .long SERIAL + +/* Week of manufacture */ +week: .byte WEEK + +/* Year of manufacture, less 1990. (1990-2245) + If week=255, it is the model year instead */ +year: .byte YEAR-1990 + +version: .byte VERSION /* EDID version, usually 1 (for 1.3) */ +revision: .byte REVISION /* EDID revision, usually 3 (for 1.3) */ + +/* If Bit 7=1 Digital input. If set, the following bit definitions apply: + Bits 6-1 Reserved, must be 0 + Bit 0 Signal is compatible with VESA DFP 1.x TMDS CRGB, + 1 pixel per clock, up to 8 bits per color, MSB aligned, + If Bit 7=0 Analog input. If clear, the following bit definitions apply: + Bits 6-5 Video white and sync levels, relative to blank + 00=+0.7/-0.3 V; 01=+0.714/-0.286 V; + 10=+1.0/-0.4 V; 11=+0.7/0 V + Bit 4 Blank-to-black setup (pedestal) expected + Bit 3 Separate sync supported + Bit 2 Composite sync (on HSync) supported + Bit 1 Sync on green supported + Bit 0 VSync pulse must be serrated when somposite or + sync-on-green is used. */ +video_parms: .byte 0x6d + +/* Maximum horizontal image size, in centimetres + (max 292 cm/115 in at 16:9 aspect ratio) */ +max_hor_size: .byte xsize/10 + +/* Maximum vertical image size, in centimetres. + If either byte is 0, undefined (e.g. projector) */ +max_vert_size: .byte ysize/10 + +/* Display gamma, minus 1, times 100 (range 1.00-3.5 */ +gamma: .byte 120 + +/* Bit 7 DPMS standby supported + Bit 6 DPMS suspend supported + Bit 5 DPMS active-off supported + Bits 4-3 Display type: 00=monochrome; 01=RGB colour; + 10=non-RGB multicolour; 11=undefined + Bit 2 Standard sRGB colour space. Bytes 25-34 must contain + sRGB standard values. + Bit 1 Preferred timing mode specified in descriptor block 1. + Bit 0 GTF supported with default parameter values. */ +dsp_features: .byte 0xea + +/* Chromaticity coordinates. */ +/* Red and green least-significant bits + Bits 7-6 Red x value least-significant 2 bits + Bits 5-4 Red y value least-significant 2 bits + Bits 3-2 Green x value lst-significant 2 bits + Bits 1-0 Green y value least-significant 2 bits */ +red_green_lsb: .byte 0x5e + +/* Blue and white least-significant 2 bits */ +blue_white_lsb: .byte 0xc0 + +/* Red x value most significant 8 bits. + 0-255 encodes 0-0.996 (255/256); 0-0.999 (1023/1024) with lsbits */ +red_x_msb: .byte 0xa4 + +/* Red y value most significant 8 bits */ +red_y_msb: .byte 0x59 + +/* Green x and y value most significant 8 bits */ +green_x_y_msb: .byte 0x4a,0x98 + +/* Blue x and y value most significant 8 bits */ +blue_x_y_msb: .byte 0x25,0x20 + +/* Default white point x and y value most significant 8 bits */ +white_x_y_msb: .byte 0x50,0x54 + +/* Established timings */ +/* Bit 7 720x400 @ 70 Hz + Bit 6 720x400 @ 88 Hz + Bit 5 640x480 @ 60 Hz + Bit 4 640x480 @ 67 Hz + Bit 3 640x480 @ 72 Hz + Bit 2 640x480 @ 75 Hz + Bit 1 800x600 @ 56 Hz + Bit 0 800x600 @ 60 Hz */ +estbl_timing1: .byte 0x00 + +/* Bit 7 800x600 @ 72 Hz + Bit 6 800x600 @ 75 Hz + Bit 5 832x624 @ 75 Hz + Bit 4 1024x768 @ 87 Hz, interlaced (1024x768) + Bit 3 1024x768 @ 60 Hz + Bit 2 1024x768 @ 72 Hz + Bit 1 1024x768 @ 75 Hz + Bit 0 1280x1024 @ 75 Hz */ +estbl_timing2: .byte ESTABLISHED_TIMINGS_BITS + +/* Bit 7 1152x870 @ 75 Hz (Apple Macintosh II) + Bits 6-0 Other manufacturer-specific display mod */ +estbl_timing3: .byte 0x00 + +/* Standard timing */ +/* X resolution, less 31, divided by 8 (256-2288 pixels) */ +std_xres: .byte (XPIX/8)-31 +/* Y resolution, X:Y pixel ratio + Bits 7-6 X:Y pixel ratio: 00=16:10; 01=4:3; 10=5:4; 11=16:9. + Bits 5-0 Vertical frequency, less 60 (60-123 Hz) */ +std_vres: .byte (XY_RATIO<<6)+VFREQ-60 + .fill 7,2,0x0101 /* Unused */ + +descriptor1: +/* Pixel clock in 10 kHz units. (0.-655.35 MHz, little-endian) */ +clock: .word CLOCK/10 + +/* Horizontal active pixels 8 lsbits (0-4095) */ +x_act_lsb: .byte XPIX&0xff +/* Horizontal blanking pixels 8 lsbits (0-4095) + End of active to start of next active. */ +x_blk_lsb: .byte XBLANK&0xff +/* Bits 7-4 Horizontal active pixels 4 msbits + Bits 3-0 Horizontal blanking pixels 4 msbits */ +x_msbs: .byte msbs2(XPIX,XBLANK) + +/* Vertical active lines 8 lsbits (0-4095) */ +y_act_lsb: .byte YPIX&0xff +/* Vertical blanking lines 8 lsbits (0-4095) */ +y_blk_lsb: .byte YBLANK&0xff +/* Bits 7-4 Vertical active lines 4 msbits + Bits 3-0 Vertical blanking lines 4 msbits */ +y_msbs: .byte msbs2(YPIX,YBLANK) + +/* Horizontal sync offset pixels 8 lsbits (0-1023) From blanking start */ +x_snc_off_lsb: .byte XOFFSET&0xff +/* Horizontal sync pulse width pixels 8 lsbits (0-1023) */ +x_snc_pls_lsb: .byte XPULSE&0xff +/* Bits 7-4 Vertical sync offset lines 4 lsbits -63) + Bits 3-0 Vertical sync pulse width lines 4 lsbits -63) */ +y_snc_lsb: .byte ((YOFFSET-63)<<4)+(YPULSE-63) +/* Bits 7-6 Horizontal sync offset pixels 2 msbits + Bits 5-4 Horizontal sync pulse width pixels 2 msbits + Bits 3-2 Vertical sync offset lines 2 msbits + Bits 1-0 Vertical sync pulse width lines 2 msbits */ +xy_snc_msbs: .byte msbs4(XOFFSET,XPULSE,YOFFSET,YPULSE) + +/* Horizontal display size, mm, 8 lsbits (0-4095 mm, 161 in) */ +x_dsp_size: .byte xsize&0xff + +/* Vertical display size, mm, 8 lsbits (0-4095 mm, 161 in) */ +y_dsp_size: .byte ysize&0xff + +/* Bits 7-4 Horizontal display size, mm, 4 msbits + Bits 3-0 Vertical display size, mm, 4 msbits */ +dsp_size_mbsb: .byte msbs2(xsize,ysize) + +/* Horizontal border pixels (each side; total is twice this) */ +x_border: .byte 0 +/* Vertical border lines (each side; total is twice this) */ +y_border: .byte 0 + +/* Bit 7 Interlaced + Bits 6-5 Stereo mode: 00=No stereo; other values depend on bit 0: + Bit 0=0: 01=Field sequential, sync=1 during right; 10=similar, + sync=1 during left; 11=4-way interleaved stereo + Bit 0=1 2-way interleaved stereo: 01=Right image on even lines; + 10=Left image on even lines; 11=side-by-side + Bits 4-3 Sync type: 00=Analog composite; 01=Bipolar analog composite; + 10=Digital composite (on HSync); 11=Digital separate + Bit 2 If digital separate: Vertical sync polarity (1=positive) + Other types: VSync serrated (HSync during VSync) + Bit 1 If analog sync: Sync on all 3 RGB lines (else green only) + Digital: HSync polarity (1=positive) + Bit 0 2-way line-interleaved stereo, if bits 4-3 are not 00. */ +features: .byte 0x18+(VSYNC_POL<<2)+(HSYNC_POL<<1) + +descriptor2: .byte 0,0 /* Not a detailed timing descriptor */ + .byte 0 /* Must be zero */ + .byte 0xff /* Descriptor is monitor serial number (text) */ + .byte 0 /* Must be zero */ +start1: .ascii "Linux #0" +end1: .byte 0x0a /* End marker */ + .fill 12-(end1-start1), 1, 0x20 /* Padded spaces */ +descriptor3: .byte 0,0 /* Not a detailed timing descriptor */ + .byte 0 /* Must be zero */ + .byte 0xfd /* Descriptor is monitor range limits */ + .byte 0 /* Must be zero */ +start2: .byte VFREQ-1 /* Minimum vertical field rate (1-255 Hz) */ + .byte VFREQ+1 /* Maximum vertical field rate (1-255 Hz) */ + .byte (CLOCK/(XPIX+XBLANK))-1 /* Minimum horizontal line rate + (1-255 kHz) */ + .byte (CLOCK/(XPIX+XBLANK))+1 /* Maximum horizontal line rate + (1-255 kHz) */ + .byte (CLOCK/10000)+1 /* Maximum pixel clock rate, rounded up + to 10 MHz multiple (10-2550 MHz) */ + .byte 0 /* No extended timing information type */ +end2: .byte 0x0a /* End marker */ + .fill 12-(end2-start2), 1, 0x20 /* Padded spaces */ +descriptor4: .byte 0,0 /* Not a detailed timing descriptor */ + .byte 0 /* Must be zero */ + .byte 0xfc /* Descriptor is text */ + .byte 0 /* Must be zero */ +start3: .ascii TIMING_NAME +end3: .byte 0x0a /* End marker */ + .fill 12-(end3-start3), 1, 0x20 /* Padded spaces */ +extensions: .byte 0 /* Number of extensions to follow */ +checksum: .byte CRC /* Sum of all bytes must be 0 */ diff --git a/Documentation/EDID/hex b/Documentation/EDID/hex new file mode 100644 index 000000000000..8873ebb618af --- /dev/null +++ b/Documentation/EDID/hex @@ -0,0 +1 @@ +"\t" 8/1 "0x%02x, " "\n" diff --git a/Documentation/backlight/lp855x-driver.txt b/Documentation/backlight/lp855x-driver.txt new file mode 100644 index 000000000000..f5e4caafab7d --- /dev/null +++ b/Documentation/backlight/lp855x-driver.txt @@ -0,0 +1,78 @@ +Kernel driver lp855x +==================== + +Backlight driver for LP855x ICs + +Supported chips: + Texas Instruments LP8550, LP8551, LP8552, LP8553 and LP8556 + +Author: Milo(Woogyom) Kim <milo.kim@ti.com> + +Description +----------- + +* Brightness control + +Brightness can be controlled by the pwm input or the i2c command. +The lp855x driver supports both cases. + +* Device attributes + +1) bl_ctl_mode +Backlight control mode. +Value : pwm based or register based + +2) chip_id +The lp855x chip id. +Value : lp8550/lp8551/lp8552/lp8553/lp8556 + +Platform data for lp855x +------------------------ + +For supporting platform specific data, the lp855x platform data can be used. + +* name : Backlight driver name. If it is not defined, default name is set. +* mode : Brightness control mode. PWM or register based. +* device_control : Value of DEVICE CONTROL register. +* initial_brightness : Initial value of backlight brightness. +* pwm_data : Platform specific pwm generation functions. + Only valid when brightness is pwm input mode. + Functions should be implemented by PWM driver. + - pwm_set_intensity() : set duty of PWM + - pwm_get_intensity() : get current duty of PWM +* load_new_rom_data : + 0 : use default configuration data + 1 : update values of eeprom or eprom registers on loading driver +* size_program : Total size of lp855x_rom_data. +* rom_data : List of new eeprom/eprom registers. + +example 1) lp8552 platform data : i2c register mode with new eeprom data + +#define EEPROM_A5_ADDR 0xA5 +#define EEPROM_A5_VAL 0x4f /* EN_VSYNC=0 */ + +static struct lp855x_rom_data lp8552_eeprom_arr[] = { + {EEPROM_A5_ADDR, EEPROM_A5_VAL}, +}; + +static struct lp855x_platform_data lp8552_pdata = { + .name = "lcd-bl", + .mode = REGISTER_BASED, + .device_control = I2C_CONFIG(LP8552), + .initial_brightness = INITIAL_BRT, + .load_new_rom_data = 1, + .size_program = ARRAY_SIZE(lp8552_eeprom_arr), + .rom_data = lp8552_eeprom_arr, +}; + +example 2) lp8556 platform data : pwm input mode with default rom data + +static struct lp855x_platform_data lp8556_pdata = { + .mode = PWM_BASED, + .device_control = PWM_CONFIG(LP8556), + .initial_brightness = INITIAL_BRT, + .pwm_data = { + .pwm_set_intensity = platform_pwm_set_intensity, + .pwm_get_intensity = platform_pwm_get_intensity, + }, +}; diff --git a/Documentation/crc32.txt b/Documentation/crc32.txt new file mode 100644 index 000000000000..a08a7dd9d625 --- /dev/null +++ b/Documentation/crc32.txt @@ -0,0 +1,182 @@ +A brief CRC tutorial. + +A CRC is a long-division remainder. You add the CRC to the message, +and the whole thing (message+CRC) is a multiple of the given +CRC polynomial. To check the CRC, you can either check that the +CRC matches the recomputed value, *or* you can check that the +remainder computed on the message+CRC is 0. This latter approach +is used by a lot of hardware implementations, and is why so many +protocols put the end-of-frame flag after the CRC. + +It's actually the same long division you learned in school, except that +- We're working in binary, so the digits are only 0 and 1, and +- When dividing polynomials, there are no carries. Rather than add and + subtract, we just xor. Thus, we tend to get a bit sloppy about + the difference between adding and subtracting. + +Like all division, the remainder is always smaller than the divisor. +To produce a 32-bit CRC, the divisor is actually a 33-bit CRC polynomial. +Since it's 33 bits long, bit 32 is always going to be set, so usually the +CRC is written in hex with the most significant bit omitted. (If you're +familiar with the IEEE 754 floating-point format, it's the same idea.) + +Note that a CRC is computed over a string of *bits*, so you have +to decide on the endianness of the bits within each byte. To get +the best error-detecting properties, this should correspond to the +order they're actually sent. For example, standard RS-232 serial is +little-endian; the most significant bit (sometimes used for parity) +is sent last. And when appending a CRC word to a message, you should +do it in the right order, matching the endianness. + +Just like with ordinary division, you proceed one digit (bit) at a time. +Each step of the division you take one more digit (bit) of the dividend +and append it to the current remainder. Then you figure out the +appropriate multiple of the divisor to subtract to being the remainder +back into range. In binary, this is easy - it has to be either 0 or 1, +and to make the XOR cancel, it's just a copy of bit 32 of the remainder. + +When computing a CRC, we don't care about the quotient, so we can +throw the quotient bit away, but subtract the appropriate multiple of +the polynomial from the remainder and we're back to where we started, +ready to process the next bit. + +A big-endian CRC written this way would be coded like: +for (i = 0; i < input_bits; i++) { + multiple = remainder & 0x80000000 ? CRCPOLY : 0; + remainder = (remainder << 1 | next_input_bit()) ^ multiple; +} + +Notice how, to get at bit 32 of the shifted remainder, we look +at bit 31 of the remainder *before* shifting it. + +But also notice how the next_input_bit() bits we're shifting into +the remainder don't actually affect any decision-making until +32 bits later. Thus, the first 32 cycles of this are pretty boring. +Also, to add the CRC to a message, we need a 32-bit-long hole for it at +the end, so we have to add 32 extra cycles shifting in zeros at the +end of every message, + +These details lead to a standard trick: rearrange merging in the +next_input_bit() until the moment it's needed. Then the first 32 cycles +can be precomputed, and merging in the final 32 zero bits to make room +for the CRC can be skipped entirely. This changes the code to: + +for (i = 0; i < input_bits; i++) { + remainder ^= next_input_bit() << 31; + multiple = (remainder & 0x80000000) ? CRCPOLY : 0; + remainder = (remainder << 1) ^ multiple; +} + +With this optimization, the little-endian code is particularly simple: +for (i = 0; i < input_bits; i++) { + remainder ^= next_input_bit(); + multiple = (remainder & 1) ? CRCPOLY : 0; + remainder = (remainder >> 1) ^ multiple; +} + +The most significant coefficient of the remainder polynomial is stored +in the least significant bit of the binary "remainder" variable. +The other details of endianness have been hidden in CRCPOLY (which must +be bit-reversed) and next_input_bit(). + +As long as next_input_bit is returning the bits in a sensible order, we don't +*have* to wait until the last possible moment to merge in additional bits. +We can do it 8 bits at a time rather than 1 bit at a time: +for (i = 0; i < input_bytes; i++) { + remainder ^= next_input_byte() << 24; + for (j = 0; j < 8; j++) { + multiple = (remainder & 0x80000000) ? CRCPOLY : 0; + remainder = (remainder << 1) ^ multiple; + } +} + +Or in little-endian: +for (i = 0; i < input_bytes; i++) { + remainder ^= next_input_byte(); + for (j = 0; j < 8; j++) { + multiple = (remainder & 1) ? CRCPOLY : 0; + remainder = (remainder >> 1) ^ multiple; + } +} + +If the input is a multiple of 32 bits, you can even XOR in a 32-bit +word at a time and increase the inner loop count to 32. + +You can also mix and match the two loop styles, for example doing the +bulk of a message byte-at-a-time and adding bit-at-a-time processing +for any fractional bytes at the end. + +To reduce the number of conditional branches, software commonly uses +the byte-at-a-time table method, popularized by Dilip V. Sarwate, +"Computation of Cyclic Redundancy Checks via Table Look-Up", Comm. ACM +v.31 no.8 (August 1998) p. 1008-1013. + +Here, rather than just shifting one bit of the remainder to decide +in the correct multiple to subtract, we can shift a byte at a time. +This produces a 40-bit (rather than a 33-bit) intermediate remainder, +and the correct multiple of the polynomial to subtract is found using +a 256-entry lookup table indexed by the high 8 bits. + +(The table entries are simply the CRC-32 of the given one-byte messages.) + +When space is more constrained, smaller tables can be used, e.g. two +4-bit shifts followed by a lookup in a 16-entry table. + +It is not practical to process much more than 8 bits at a time using this +technique, because tables larger than 256 entries use too much memory and, +more importantly, too much of the L1 cache. + +To get higher software performance, a "slicing" technique can be used. +See "High Octane CRC Generation with the Intel Slicing-by-8 Algorithm", +ftp://download.intel.com/technology/comms/perfnet/download/slicing-by-8.pdf + +This does not change the number of table lookups, but does increase +the parallelism. With the classic Sarwate algorithm, each table lookup +must be completed before the index of the next can be computed. + +A "slicing by 2" technique would shift the remainder 16 bits at a time, +producing a 48-bit intermediate remainder. Rather than doing a single +lookup in a 65536-entry table, the two high bytes are looked up in +two different 256-entry tables. Each contains the remainder required +to cancel out the corresponding byte. The tables are different because the +polynomials to cancel are different. One has non-zero coefficients from +x^32 to x^39, while the other goes from x^40 to x^47. + +Since modern processors can handle many parallel memory operations, this +takes barely longer than a single table look-up and thus performs almost +twice as fast as the basic Sarwate algorithm. + +This can be extended to "slicing by 4" using 4 256-entry tables. +Each step, 32 bits of data is fetched, XORed with the CRC, and the result +broken into bytes and looked up in the tables. Because the 32-bit shift +leaves the low-order bits of the intermediate remainder zero, the +final CRC is simply the XOR of the 4 table look-ups. + +But this still enforces sequential execution: a second group of table +look-ups cannot begin until the previous groups 4 table look-ups have all +been completed. Thus, the processor's load/store unit is sometimes idle. + +To make maximum use of the processor, "slicing by 8" performs 8 look-ups +in parallel. Each step, the 32-bit CRC is shifted 64 bits and XORed +with 64 bits of input data. What is important to note is that 4 of +those 8 bytes are simply copies of the input data; they do not depend +on the previous CRC at all. Thus, those 4 table look-ups may commence +immediately, without waiting for the previous loop iteration. + +By always having 4 loads in flight, a modern superscalar processor can +be kept busy and make full use of its L1 cache. + +Two more details about CRC implementation in the real world: + +Normally, appending zero bits to a message which is already a multiple +of a polynomial produces a larger multiple of that polynomial. Thus, +a basic CRC will not detect appended zero bits (or bytes). To enable +a CRC to detect this condition, it's common to invert the CRC before +appending it. This makes the remainder of the message+crc come out not +as zero, but some fixed non-zero value. (The CRC of the inversion +pattern, 0xffffffff.) + +The same problem applies to zero bits prepended to the message, and a +similar solution is used. Instead of starting the CRC computation with +a remainder of 0, an initial remainder of all ones is used. As long as +you start the same way on decoding, it doesn't make a difference. diff --git a/Documentation/devicetree/bindings/arm/atmel-aic.txt b/Documentation/devicetree/bindings/arm/atmel-aic.txt new file mode 100644 index 000000000000..aabca4f83402 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/atmel-aic.txt @@ -0,0 +1,38 @@ +* Advanced Interrupt Controller (AIC) + +Required properties: +- compatible: Should be "atmel,<chip>-aic" +- interrupt-controller: Identifies the node as an interrupt controller. +- interrupt-parent: For single AIC system, it is an empty property. +- #interrupt-cells: The number of cells to define the interrupts. It sould be 2. + The first cell is the IRQ number (aka "Peripheral IDentifier" on datasheet). + The second cell is used to specify flags: + bits[3:0] trigger type and level flags: + 1 = low-to-high edge triggered. + 2 = high-to-low edge triggered. + 4 = active high level-sensitive. + 8 = active low level-sensitive. + Valid combinations are 1, 2, 3, 4, 8. + Default flag for internal sources should be set to 4 (active high). +- reg: Should contain AIC registers location and length + +Examples: + /* + * AIC + */ + aic: interrupt-controller@fffff000 { + compatible = "atmel,at91rm9200-aic"; + interrupt-controller; + interrupt-parent; + #interrupt-cells = <2>; + reg = <0xfffff000 0x200>; + }; + + /* + * An interrupt generating device that is wired to an AIC. + */ + dma: dma-controller@ffffec00 { + compatible = "atmel,at91sam9g45-dma"; + reg = <0xffffec00 0x200>; + interrupts = <21 4>; + }; diff --git a/Documentation/devicetree/bindings/arm/atmel-at91.txt b/Documentation/devicetree/bindings/arm/atmel-at91.txt new file mode 100644 index 000000000000..1aeaf6f2a1ba --- /dev/null +++ b/Documentation/devicetree/bindings/arm/atmel-at91.txt @@ -0,0 +1,32 @@ +Atmel AT91 device tree bindings. +================================ + +PIT Timer required properties: +- compatible: Should be "atmel,at91sam9260-pit" +- reg: Should contain registers location and length +- interrupts: Should contain interrupt for the PIT which is the IRQ line + shared across all System Controller members. + +TC/TCLIB Timer required properties: +- compatible: Should be "atmel,<chip>-pit". + <chip> can be "at91rm9200" or "at91sam9x5" +- reg: Should contain registers location and length +- interrupts: Should contain all interrupts for the TC block + Note that you can specify several interrupt cells if the TC + block has one interrupt per channel. + +Examples: + +One interrupt per TC block: + tcb0: timer@fff7c000 { + compatible = "atmel,at91rm9200-tcb"; + reg = <0xfff7c000 0x100>; + interrupts = <18 4>; + }; + +One interrupt per TC channel in a TC block: + tcb1: timer@fffdc000 { + compatible = "atmel,at91rm9200-tcb"; + reg = <0xfffdc000 0x100>; + interrupts = <26 4 27 4 28 4>; + }; diff --git a/Documentation/devicetree/bindings/arm/fsl.txt b/Documentation/devicetree/bindings/arm/fsl.txt index 54bdddadf1cf..bfbc771a65f8 100644 --- a/Documentation/devicetree/bindings/arm/fsl.txt +++ b/Documentation/devicetree/bindings/arm/fsl.txt @@ -28,3 +28,25 @@ Required root node properties: i.MX6 Quad SABRE Lite Board Required root node properties: - compatible = "fsl,imx6q-sabrelite", "fsl,imx6q"; + +Generic i.MX boards +------------------- + +No iomux setup is done for these boards, so this must have been configured +by the bootloader for boards to work with the generic bindings. + +i.MX27 generic board +Required root node properties: + - compatible = "fsl,imx27"; + +i.MX51 generic board +Required root node properties: + - compatible = "fsl,imx51"; + +i.MX53 generic board +Required root node properties: + - compatible = "fsl,imx53"; + +i.MX6q generic board +Required root node properties: + - compatible = "fsl,imx6q"; diff --git a/Documentation/devicetree/bindings/arm/mrvl.txt b/Documentation/devicetree/bindings/arm/mrvl.txt new file mode 100644 index 000000000000..d8de933e9d81 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/mrvl.txt @@ -0,0 +1,6 @@ +Marvell Platforms Device Tree Bindings +---------------------------------------------------- + +PXA168 Aspenite Board +Required root node properties: + - compatible = "mrvl,pxa168-aspenite", "mrvl,pxa168"; diff --git a/Documentation/devicetree/bindings/arm/omap/intc.txt b/Documentation/devicetree/bindings/arm/omap/intc.txt new file mode 100644 index 000000000000..f2583e6ec060 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/omap/intc.txt @@ -0,0 +1,27 @@ +* OMAP Interrupt Controller + +OMAP2/3 are using a TI interrupt controller that can support several +configurable number of interrupts. + +Main node required properties: + +- compatible : should be: + "ti,omap2-intc" +- interrupt-controller : Identifies the node as an interrupt controller +- #interrupt-cells : Specifies the number of cells needed to encode an + interrupt source. The type shall be a <u32> and the value shall be 1. + + The cell contains the interrupt number in the range [0-128]. +- ti,intc-size: Number of interrupts handled by the interrupt controller. +- reg: physical base address and size of the intc registers map. + +Example: + + intc: interrupt-controller@1 { + compatible = "ti,omap2-intc"; + interrupt-controller; + #interrupt-cells = <1>; + ti,intc-size = <96>; + reg = <0x48200000 0x1000>; + }; + diff --git a/Documentation/devicetree/bindings/arm/tegra/emc.txt b/Documentation/devicetree/bindings/arm/tegra/emc.txt new file mode 100644 index 000000000000..09335f8eee00 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/tegra/emc.txt @@ -0,0 +1,100 @@ +Embedded Memory Controller + +Properties: +- name : Should be emc +- #address-cells : Should be 1 +- #size-cells : Should be 0 +- compatible : Should contain "nvidia,tegra20-emc". +- reg : Offset and length of the register set for the device +- nvidia,use-ram-code : If present, the sub-nodes will be addressed + and chosen using the ramcode board selector. If omitted, only one + set of tables can be present and said tables will be used + irrespective of ram-code configuration. + +Child device nodes describe the memory settings for different configurations and clock rates. + +Example: + + emc@7000f400 { + #address-cells = < 1 >; + #size-cells = < 0 >; + compatible = "nvidia,tegra20-emc"; + reg = <0x7000f4000 0x200>; + } + + +Embedded Memory Controller ram-code table + +If the emc node has the nvidia,use-ram-code property present, then the +next level of nodes below the emc table are used to specify which settings +apply for which ram-code settings. + +If the emc node lacks the nvidia,use-ram-code property, this level is omitted +and the tables are stored directly under the emc node (see below). + +Properties: + +- name : Should be emc-tables +- nvidia,ram-code : the binary representation of the ram-code board strappings + for which this node (and children) are valid. + + + +Embedded Memory Controller configuration table + +This is a table containing the EMC register settings for the various +operating speeds of the memory controller. They are always located as +subnodes of the emc controller node. + +There are two ways of specifying which tables to use: + +* The simplest is if there is just one set of tables in the device tree, + and they will always be used (based on which frequency is used). + This is the preferred method, especially when firmware can fill in + this information based on the specific system information and just + pass it on to the kernel. + +* The slightly more complex one is when more than one memory configuration + might exist on the system. The Tegra20 platform handles this during + early boot by selecting one out of possible 4 memory settings based + on a 2-pin "ram code" bootstrap setting on the board. The values of + these strappings can be read through a register in the SoC, and thus + used to select which tables to use. + +Properties: +- name : Should be emc-table +- compatible : Should contain "nvidia,tegra20-emc-table". +- reg : either an opaque enumerator to tell different tables apart, or + the valid frequency for which the table should be used (in kHz). +- clock-frequency : the clock frequency for the EMC at which this + table should be used (in kHz). +- nvidia,emc-registers : a 46 word array of EMC registers to be programmed + for operation at the 'clock-frequency' setting. + The order and contents of the registers are: + RC, RFC, RAS, RP, R2W, W2R, R2P, W2P, RD_RCD, WR_RCD, RRD, REXT, + WDV, QUSE, QRST, QSAFE, RDV, REFRESH, BURST_REFRESH_NUM, PDEX2WR, + PDEX2RD, PCHG2PDEN, ACT2PDEN, AR2PDEN, RW2PDEN, TXSR, TCKE, TFAW, + TRPAB, TCLKSTABLE, TCLKSTOP, TREFBW, QUSE_EXTRA, FBIO_CFG6, ODT_WRITE, + ODT_READ, FBIO_CFG5, CFG_DIG_DLL, DLL_XFORM_DQS, DLL_XFORM_QUSE, + ZCAL_REF_CNT, ZCAL_WAIT_CNT, AUTO_CAL_INTERVAL, CFG_CLKTRIM_0, + CFG_CLKTRIM_1, CFG_CLKTRIM_2 + + emc-table@166000 { + reg = <166000>; + compatible = "nvidia,tegra20-emc-table"; + clock-frequency = < 166000 >; + nvidia,emc-registers = < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 >; + }; + + emc-table@333000 { + reg = <333000>; + compatible = "nvidia,tegra20-emc-table"; + clock-frequency = < 333000 >; + nvidia,emc-registers = < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 >; + }; diff --git a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt new file mode 100644 index 000000000000..b5846e21cc2e --- /dev/null +++ b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra20-pmc.txt @@ -0,0 +1,19 @@ +NVIDIA Tegra Power Management Controller (PMC) + +Properties: +- name : Should be pmc +- compatible : Should contain "nvidia,tegra<chip>-pmc". +- reg : Offset and length of the register set for the device +- nvidia,invert-interrupt : If present, inverts the PMU interrupt signal. + The PMU is an external Power Management Unit, whose interrupt output + signal is fed into the PMC. This signal is optionally inverted, and then + fed into the ARM GIC. The PMC is not involved in the detection or + handling of this interrupt signal, merely its inversion. + +Example: + +pmc@7000f400 { + compatible = "nvidia,tegra20-pmc"; + reg = <0x7000e400 0x400>; + nvidia,invert-interrupt; +}; diff --git a/Documentation/devicetree/bindings/arm/twd.txt b/Documentation/devicetree/bindings/arm/twd.txt new file mode 100644 index 000000000000..75b8610939fa --- /dev/null +++ b/Documentation/devicetree/bindings/arm/twd.txt @@ -0,0 +1,48 @@ +* ARM Timer Watchdog + +ARM 11MP, Cortex-A5 and Cortex-A9 are often associated with a per-core +Timer-Watchdog (aka TWD), which provides both a per-cpu local timer +and watchdog. + +The TWD is usually attached to a GIC to deliver its two per-processor +interrupts. + +** Timer node required properties: + +- compatible : Should be one of: + "arm,cortex-a9-twd-timer" + "arm,cortex-a5-twd-timer" + "arm,arm11mp-twd-timer" + +- interrupts : One interrupt to each core + +- reg : Specify the base address and the size of the TWD timer + register window. + +Example: + + twd-timer@2c000600 { + compatible = "arm,arm11mp-twd-timer""; + reg = <0x2c000600 0x20>; + interrupts = <1 13 0xf01>; + }; + +** Watchdog node properties: + +- compatible : Should be one of: + "arm,cortex-a9-twd-wdt" + "arm,cortex-a5-twd-wdt" + "arm,arm11mp-twd-wdt" + +- interrupts : One interrupt to each core + +- reg : Specify the base address and the size of the TWD watchdog + register window. + +Example: + + twd-watchdog@2c000620 { + compatible = "arm,arm11mp-twd-wdt"; + reg = <0x2c000620 0x20>; + interrupts = <1 14 0xf01>; + }; diff --git a/Documentation/devicetree/bindings/arm/vexpress.txt b/Documentation/devicetree/bindings/arm/vexpress.txt new file mode 100644 index 000000000000..ec8b50cbb2e8 --- /dev/null +++ b/Documentation/devicetree/bindings/arm/vexpress.txt @@ -0,0 +1,146 @@ +ARM Versatile Express boards family +----------------------------------- + +ARM's Versatile Express platform consists of a motherboard and one +or more daughterboards (tiles). The motherboard provides a set of +peripherals. Processor and RAM "live" on the tiles. + +The motherboard and each core tile should be described by a separate +Device Tree source file, with the tile's description including +the motherboard file using a /include/ directive. As the motherboard +can be initialized in one of two different configurations ("memory +maps"), care must be taken to include the correct one. + +Required properties in the root node: +- compatible value: + compatible = "arm,vexpress,<model>", "arm,vexpress"; + where <model> is the full tile model name (as used in the tile's + Technical Reference Manual), eg.: + - for Coretile Express A5x2 (V2P-CA5s): + compatible = "arm,vexpress,v2p-ca5s", "arm,vexpress"; + - for Coretile Express A9x4 (V2P-CA9): + compatible = "arm,vexpress,v2p-ca9", "arm,vexpress"; + If a tile comes in several variants or can be used in more then one + configuration, the compatible value should be: + compatible = "arm,vexpress,<model>,<variant>", \ + "arm,vexpress,<model>", "arm,vexpress"; + eg: + - Coretile Express A15x2 (V2P-CA15) with Tech Chip 1: + compatible = "arm,vexpress,v2p-ca15,tc1", \ + "arm,vexpress,v2p-ca15", "arm,vexpress"; + - LogicTile Express 13MG (V2F-2XV6) running Cortex-A7 (3 cores) SMM: + compatible = "arm,vexpress,v2f-2xv6,ca7x3", \ + "arm,vexpress,v2f-2xv6", "arm,vexpress"; + +Optional properties in the root node: +- tile model name (use name from the tile's Technical Reference + Manual, eg. "V2P-CA5s") + model = "<model>"; +- tile's HBI number (unique ARM's board model ID, visible on the + PCB's silkscreen) in hexadecimal transcription: + arm,hbi = <0xhbi> + eg: + - for Coretile Express A5x2 (V2P-CA5s) HBI-0191: + arm,hbi = <0x191>; + - Coretile Express A9x4 (V2P-CA9) HBI-0225: + arm,hbi = <0x225>; + +Top-level standard "cpus" node is required. It must contain a node +with device_type = "cpu" property for every available core, eg.: + + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a5"; + reg = <0>; + }; + }; + +The motherboard description file provides a single "motherboard" node +using 2 address cells corresponding to the Static Memory Bus used +between the motherboard and the tile. The first cell defines the Chip +Select (CS) line number, the second cell address offset within the CS. +All interrupt lines between the motherboard and the tile are active +high and are described using single cell. + +Optional properties of the "motherboard" node: +- motherboard's memory map variant: + arm,v2m-memory-map = "<name>"; + where name is one of: + - "rs1" - for RS1 map (i.a. peripherals on CS3); this map is also + referred to as "ARM Cortex-A Series memory map": + arm,v2m-memory-map = "rs1"; + When this property is missing, the motherboard is using the original + memory map (also known as the "Legacy memory map", primarily used + with the original CoreTile Express A9x4) with peripherals on CS7. + +Motherboard .dtsi files provide a set of labelled peripherals that +can be used to obtain required phandle in the tile's "aliases" node: +- UARTs, note that the numbers correspond to the physical connectors + on the motherboard's back panel: + v2m_serial0, v2m_serial1, v2m_serial2 and v2m_serial3 +- I2C controllers: + v2m_i2c_dvi and v2m_i2c_pcie +- SP804 timers: + v2m_timer01 and v2m_timer23 + +Current Linux implementation requires a "arm,v2m_timer" alias +pointing at one of the motherboard's SP804 timers, if it is to be +used as the system timer. This alias should be defined in the +motherboard files. + +The tile description must define "ranges", "interrupt-map-mask" and +"interrupt-map" properties to translate the motherboard's address +and interrupt space into one used by the tile's processor. + +Abbreviated example: + +/dts-v1/; + +/ { + model = "V2P-CA5s"; + arm,hbi = <0x225>; + compatible = "arm,vexpress-v2p-ca5s", "arm,vexpress"; + interrupt-parent = <&gic>; + #address-cells = <1>; + #size-cells = <1>; + + chosen { }; + + aliases { + serial0 = &v2m_serial0; + }; + + cpus { + #address-cells = <1>; + #size-cells = <0>; + + cpu@0 { + device_type = "cpu"; + compatible = "arm,cortex-a5"; + reg = <0>; + }; + }; + + gic: interrupt-controller@2c001000 { + compatible = "arm,cortex-a9-gic"; + #interrupt-cells = <3>; + #address-cells = <0>; + interrupt-controller; + reg = <0x2c001000 0x1000>, + <0x2c000100 0x100>; + }; + + motherboard { + /* CS0 is visible at 0x08000000 */ + ranges = <0 0 0x08000000 0x04000000>; + interrupt-map-mask = <0 0 63>; + /* Active high IRQ 0 is connected to GIC's SPI0 */ + interrupt-map = <0 0 0 &gic 0 0 4>; + }; +}; + +/include/ "vexpress-v2m-rs1.dtsi" diff --git a/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt b/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt new file mode 100644 index 000000000000..90fa7da525b8 --- /dev/null +++ b/Documentation/devicetree/bindings/dma/tegra20-apbdma.txt @@ -0,0 +1,30 @@ +* NVIDIA Tegra APB DMA controller + +Required properties: +- compatible: Should be "nvidia,<chip>-apbdma" +- reg: Should contain DMA registers location and length. This shuld include + all of the per-channel registers. +- interrupts: Should contain all of the per-channel DMA interrupts. + +Examples: + +apbdma: dma@6000a000 { + compatible = "nvidia,tegra20-apbdma"; + reg = <0x6000a000 0x1200>; + interrupts = < 0 136 0x04 + 0 137 0x04 + 0 138 0x04 + 0 139 0x04 + 0 140 0x04 + 0 141 0x04 + 0 142 0x04 + 0 143 0x04 + 0 144 0x04 + 0 145 0x04 + 0 146 0x04 + 0 147 0x04 + 0 148 0x04 + 0 149 0x04 + 0 150 0x04 + 0 151 0x04 >; +}; diff --git a/Documentation/devicetree/bindings/gpio/gpio_atmel.txt b/Documentation/devicetree/bindings/gpio/gpio_atmel.txt new file mode 100644 index 000000000000..66efc804806a --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/gpio_atmel.txt @@ -0,0 +1,20 @@ +* Atmel GPIO controller (PIO) + +Required properties: +- compatible: "atmel,<chip>-gpio", where <chip> is at91rm9200 or at91sam9x5. +- reg: Should contain GPIO controller registers location and length +- interrupts: Should be the port interrupt shared by all the pins. +- #gpio-cells: Should be two. The first cell is the pin number and + the second cell is used to specify optional parameters (currently + unused). +- gpio-controller: Marks the device node as a GPIO controller. + +Example: + pioA: gpio@fffff200 { + compatible = "atmel,at91rm9200-gpio"; + reg = <0xfffff200 0x100>; + interrupts = <2 4>; + #gpio-cells = <2>; + gpio-controller; + }; + diff --git a/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt b/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt index eb4b530d64e1..023c9526e5f8 100644 --- a/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt +++ b/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt @@ -1,8 +1,40 @@ -NVIDIA Tegra 2 GPIO controller +NVIDIA Tegra GPIO controller Required properties: -- compatible : "nvidia,tegra20-gpio" +- compatible : "nvidia,tegra<chip>-gpio" +- reg : Physical base address and length of the controller's registers. +- interrupts : The interrupt outputs from the controller. For Tegra20, + there should be 7 interrupts specified, and for Tegra30, there should + be 8 interrupts specified. - #gpio-cells : Should be two. The first cell is the pin number and the second cell is used to specify optional parameters: - bit 0 specifies polarity (0 for normal, 1 for inverted) - gpio-controller : Marks the device node as a GPIO controller. +- #interrupt-cells : Should be 2. + The first cell is the GPIO number. + The second cell is used to specify flags: + bits[3:0] trigger type and level flags: + 1 = low-to-high edge triggered. + 2 = high-to-low edge triggered. + 4 = active high level-sensitive. + 8 = active low level-sensitive. + Valid combinations are 1, 2, 3, 4, 8. +- interrupt-controller : Marks the device node as an interrupt controller. + +Example: + +gpio: gpio@6000d000 { + compatible = "nvidia,tegra20-gpio"; + reg = < 0x6000d000 0x1000 >; + interrupts = < 0 32 0x04 + 0 33 0x04 + 0 34 0x04 + 0 35 0x04 + 0 55 0x04 + 0 87 0x04 + 0 89 0x04 >; + #gpio-cells = <2>; + gpio-controller; + #interrupt-cells = <2>; + interrupt-controller; +}; diff --git a/Documentation/devicetree/bindings/gpio/mrvl-gpio.txt b/Documentation/devicetree/bindings/gpio/mrvl-gpio.txt new file mode 100644 index 000000000000..1e34cfe5ebea --- /dev/null +++ b/Documentation/devicetree/bindings/gpio/mrvl-gpio.txt @@ -0,0 +1,23 @@ +* Marvell PXA GPIO controller + +Required properties: +- compatible : Should be "mrvl,pxa-gpio" or "mrvl,mmp-gpio" +- reg : Address and length of the register set for the device +- interrupts : Should be the port interrupt shared by all gpio pins, if +- interrupt-name : Should be the name of irq resource. + one number. +- gpio-controller : Marks the device node as a gpio controller. +- #gpio-cells : Should be one. It is the pin number. + +Example: + + gpio: gpio@d4019000 { + compatible = "mrvl,mmp-gpio", "mrvl,pxa-gpio"; + reg = <0xd4019000 0x1000>; + interrupts = <49>, <17>, <18>; + interrupt-name = "gpio_mux", "gpio0", "gpio1"; + gpio-controller; + #gpio-cells = <1>; + interrupt-controller; + #interrupt-cells = <1>; + }; diff --git a/Documentation/devicetree/bindings/i2c/mrvl-i2c.txt b/Documentation/devicetree/bindings/i2c/mrvl-i2c.txt new file mode 100644 index 000000000000..071eb3caae91 --- /dev/null +++ b/Documentation/devicetree/bindings/i2c/mrvl-i2c.txt @@ -0,0 +1,37 @@ +* I2C + +Required properties : + + - reg : Offset and length of the register set for the device + - compatible : should be "mrvl,mmp-twsi" where CHIP is the name of a + compatible processor, e.g. pxa168, pxa910, mmp2, mmp3. + For the pxa2xx/pxa3xx, an additional node "mrvl,pxa-i2c" is required + as shown in the example below. + +Recommended properties : + + - interrupts : <a b> where a is the interrupt number and b is a + field that represents an encoding of the sense and level + information for the interrupt. This should be encoded based on + the information in section 2) depending on the type of interrupt + controller you have. + - interrupt-parent : the phandle for the interrupt controller that + services interrupts for this device. + - mrvl,i2c-polling : Disable interrupt of i2c controller. Polling + status register of i2c controller instead. + - mrvl,i2c-fast-mode : Enable fast mode of i2c controller. + +Examples: + twsi1: i2c@d4011000 { + compatible = "mrvl,mmp-twsi", "mrvl,pxa-i2c"; + reg = <0xd4011000 0x1000>; + interrupts = <7>; + mrvl,i2c-fast-mode; + }; + + twsi2: i2c@d4025000 { + compatible = "mrvl,mmp-twsi", "mrvl,pxa-i2c"; + reg = <0xd4025000 0x1000>; + interrupts = <58>; + }; + diff --git a/Documentation/devicetree/bindings/i2c/sirf-i2c.txt b/Documentation/devicetree/bindings/i2c/sirf-i2c.txt new file mode 100644 index 000000000000..7baf9e133fa8 --- /dev/null +++ b/Documentation/devicetree/bindings/i2c/sirf-i2c.txt @@ -0,0 +1,19 @@ +I2C for SiRFprimaII platforms + +Required properties : +- compatible : Must be "sirf,prima2-i2c" +- reg: physical base address of the controller and length of memory mapped + region. +- interrupts: interrupt number to the cpu. + +Optional properties: +- clock-frequency : Constains desired I2C/HS-I2C bus clock frequency in Hz. + The absence of the propoerty indicates the default frequency 100 kHz. + +Examples : + +i2c0: i2c@b00e0000 { + compatible = "sirf,prima2-i2c"; + reg = <0xb00e0000 0x10000>; + interrupts = <24>; +}; diff --git a/Documentation/devicetree/bindings/input/matrix-keymap.txt b/Documentation/devicetree/bindings/input/matrix-keymap.txt new file mode 100644 index 000000000000..3cd8b98ccd2d --- /dev/null +++ b/Documentation/devicetree/bindings/input/matrix-keymap.txt @@ -0,0 +1,19 @@ +A simple common binding for matrix-connected key boards. Currently targeted at +defining the keys in the scope of linux key codes since that is a stable and +standardized interface at this time. + +Required properties: +- linux,keymap: an array of packed 1-cell entries containing the equivalent + of row, column and linux key-code. The 32-bit big endian cell is packed + as: + row << 24 | column << 16 | key-code + +Optional properties: +Some users of this binding might choose to specify secondary keymaps for +cases where there is a modifier key such as a Fn key. Proposed names +for said properties are "linux,fn-keymap" or with another descriptive +word for the modifier other from "Fn". + +Example: + linux,keymap = < 0x00030012 + 0x0102003a >; diff --git a/Documentation/devicetree/bindings/input/tegra-kbc.txt b/Documentation/devicetree/bindings/input/tegra-kbc.txt index 5ecfa99089b4..72683be6de35 100644 --- a/Documentation/devicetree/bindings/input/tegra-kbc.txt +++ b/Documentation/devicetree/bindings/input/tegra-kbc.txt @@ -3,16 +3,21 @@ Required properties: - compatible: "nvidia,tegra20-kbc" -Optional properties: -- debounce-delay: delay in milliseconds per row scan for debouncing -- repeat-delay: delay in milliseconds before repeat starts -- ghost-filter: enable ghost filtering for this device -- wakeup-source: configure keyboard as a wakeup source for suspend/resume +Optional properties, in addition to those specified by the shared +matrix-keyboard bindings: + +- linux,fn-keymap: a second keymap, same specification as the + matrix-keyboard-controller spec but to be used when the KEY_FN modifier + key is pressed. +- nvidia,debounce-delay-ms: delay in milliseconds per row scan for debouncing +- nvidia,repeat-delay-ms: delay in milliseconds before repeat starts +- nvidia,ghost-filter: enable ghost filtering for this device +- nvidia,wakeup-source: configure keyboard as a wakeup source for suspend/resume Example: keyboard: keyboard { compatible = "nvidia,tegra20-kbc"; reg = <0x7000e200 0x100>; - ghost-filter; + nvidia,ghost-filter; }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpic-msgr.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpic-msgr.txt new file mode 100644 index 000000000000..bc8ded641ab6 --- /dev/null +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpic-msgr.txt @@ -0,0 +1,63 @@ +* FSL MPIC Message Registers + +This binding specifies what properties must be available in the device tree +representation of the message register blocks found in some FSL MPIC +implementations. + +Required properties: + + - compatible: Specifies the compatibility list for the message register + block. The type shall be <string-list> and the value shall be of the form + "fsl,mpic-v<version>-msgr", where <version> is the version number of + the MPIC containing the message registers. + + - reg: Specifies the base physical address(s) and size(s) of the + message register block's addressable register space. The type shall be + <prop-encoded-array>. + + - interrupts: Specifies a list of interrupt-specifiers which are available + for receiving interrupts. Interrupt-specifier consists of two cells: first + cell is interrupt-number and second cell is level-sense. The type shall be + <prop-encoded-array>. + +Optional properties: + + - mpic-msgr-receive-mask: Specifies what registers in the containing block + are allowed to receive interrupts. The value is a bit mask where a set + bit at bit 'n' indicates that message register 'n' can receive interrupts. + Note that "bit 'n'" is numbered from LSB for PPC hardware. The type shall + be <u32>. If not present, then all of the message registers in the block + are available. + +Aliases: + + An alias should be created for every message register block. They are not + required, though. However, a particular implementation of this binding + may require aliases to be present. Aliases are of the form + 'mpic-msgr-block<n>', where <n> is an integer specifying the block's number. + Numbers shall start at 0. + +Example: + + aliases { + mpic-msgr-block0 = &mpic_msgr_block0; + mpic-msgr-block1 = &mpic_msgr_block1; + }; + + mpic_msgr_block0: mpic-msgr-block@41400 { + compatible = "fsl,mpic-v3.1-msgr"; + reg = <0x41400 0x200>; + // Message registers 0 and 2 in this block can receive interrupts on + // sources 0xb0 and 0xb2, respectively. + interrupts = <0xb0 2 0xb2 2>; + mpic-msgr-receive-mask = <0x5>; + }; + + mpic_msgr_block1: mpic-msgr-block@42400 { + compatible = "fsl,mpic-v3.1-msgr"; + reg = <0x42400 0x200>; + // Message registers 0 and 2 in this block can receive interrupts on + // sources 0xb4 and 0xb6, respectively. + interrupts = <0xb4 2 0xb6 2>; + mpic-msgr-receive-mask = <0x5>; + }; diff --git a/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt index 2cf38bd841fd..dc5744636a57 100644 --- a/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt +++ b/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt @@ -56,7 +56,27 @@ PROPERTIES to the client. The presence of this property also mandates that any initialization related to interrupt sources shall be limited to sources explicitly referenced in the device tree. - + + - big-endian + Usage: optional + Value type: <empty> + If present the MPIC will be assumed to be big-endian. Some + device-trees omit this property on MPIC nodes even when the MPIC is + in fact big-endian, so certain boards override this property. + + - single-cpu-affinity + Usage: optional + Value type: <empty> + If present the MPIC will be assumed to only be able to route + non-IPI interrupts to a single CPU at a time (EG: Freescale MPIC). + + - last-interrupt-source + Usage: optional + Value type: <u32> + Some MPICs do not correctly report the number of hardware sources + in the global feature registers. If specified, this field will + override the value read from MPIC_GREG_FEATURE_LAST_SRC. + INTERRUPT SPECIFIER DEFINITION Interrupt specifiers consists of 4 cells encoded as diff --git a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt index 5d586e1ccaf5..5693877ab377 100644 --- a/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt +++ b/Documentation/devicetree/bindings/powerpc/fsl/msi-pic.txt @@ -6,8 +6,10 @@ Required properties: etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on the parent type. -- reg : should contain the address and the length of the shared message - interrupt register set. +- reg : It may contain one or two regions. The first region should contain + the address and the length of the shared message interrupt register set. + The second region should contain the address of aliased MSIIR register for + platforms that have such an alias. - msi-available-ranges: use <start count> style section to define which msi interrupt can be used in the 256 msi interrupts. This property is diff --git a/Documentation/devicetree/bindings/rtc/sa1100-rtc.txt b/Documentation/devicetree/bindings/rtc/sa1100-rtc.txt new file mode 100644 index 000000000000..0cda19ad4859 --- /dev/null +++ b/Documentation/devicetree/bindings/rtc/sa1100-rtc.txt @@ -0,0 +1,17 @@ +* Marvell Real Time Clock controller + +Required properties: +- compatible: should be "mrvl,sa1100-rtc" +- reg: physical base address of the controller and length of memory mapped + region. +- interrupts: Should be two. The first interrupt number is the rtc alarm + interrupt and the second interrupt number is the rtc hz interrupt. +- interrupt-names: Assign name of irq resource. + +Example: + rtc: rtc@d4010000 { + compatible = "mrvl,mmp-rtc"; + reg = <0xd4010000 0x1000>; + interrupts = <5>, <6>; + interrupt-name = "rtc 1Hz", "rtc alarm"; + }; diff --git a/Documentation/devicetree/bindings/serial/mrvl-serial.txt b/Documentation/devicetree/bindings/serial/mrvl-serial.txt new file mode 100644 index 000000000000..d744340de887 --- /dev/null +++ b/Documentation/devicetree/bindings/serial/mrvl-serial.txt @@ -0,0 +1,4 @@ +PXA UART controller + +Required properties: +- compatible : should be "mrvl,mmp-uart" or "mrvl,pxa-uart". diff --git a/Documentation/devicetree/bindings/sound/alc5632.txt b/Documentation/devicetree/bindings/sound/alc5632.txt new file mode 100644 index 000000000000..8608f747dcfe --- /dev/null +++ b/Documentation/devicetree/bindings/sound/alc5632.txt @@ -0,0 +1,24 @@ +ALC5632 audio CODEC + +This device supports I2C only. + +Required properties: + + - compatible : "realtek,alc5632" + + - reg : the I2C address of the device. + + - gpio-controller : Indicates this device is a GPIO controller. + + - #gpio-cells : Should be two. The first cell is the pin number and the + second cell is used to specify optional parameters (currently unused). + +Example: + +alc5632: alc5632@1e { + compatible = "realtek,alc5632"; + reg = <0x1a>; + + gpio-controller; + #gpio-cells = <2>; +}; diff --git a/Documentation/devicetree/bindings/sound/imx-audmux.txt b/Documentation/devicetree/bindings/sound/imx-audmux.txt new file mode 100644 index 000000000000..215aa9817213 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/imx-audmux.txt @@ -0,0 +1,13 @@ +Freescale Digital Audio Mux (AUDMUX) device + +Required properties: +- compatible : "fsl,imx21-audmux" for AUDMUX version firstly used on i.MX21, + or "fsl,imx31-audmux" for the version firstly used on i.MX31. +- reg : Should contain AUDMUX registers location and length + +Example: + +audmux@021d8000 { + compatible = "fsl,imx6q-audmux", "fsl,imx31-audmux"; + reg = <0x021d8000 0x4000>; +}; diff --git a/Documentation/devicetree/bindings/sound/soc/codecs/fsl-sgtl5000.txt b/Documentation/devicetree/bindings/sound/sgtl5000.txt index 2c3cd413f042..2c3cd413f042 100644 --- a/Documentation/devicetree/bindings/sound/soc/codecs/fsl-sgtl5000.txt +++ b/Documentation/devicetree/bindings/sound/sgtl5000.txt diff --git a/Documentation/devicetree/bindings/sound/tegra-audio-alc5632.txt b/Documentation/devicetree/bindings/sound/tegra-audio-alc5632.txt new file mode 100644 index 000000000000..b77a97c9101e --- /dev/null +++ b/Documentation/devicetree/bindings/sound/tegra-audio-alc5632.txt @@ -0,0 +1,59 @@ +NVIDIA Tegra audio complex + +Required properties: +- compatible : "nvidia,tegra-audio-alc5632" +- nvidia,model : The user-visible name of this sound complex. +- nvidia,audio-routing : A list of the connections between audio components. + Each entry is a pair of strings, the first being the connection's sink, + the second being the connection's source. Valid names for sources and + sinks are the ALC5632's pins: + + ALC5632 pins: + + * SPK_OUTP + * SPK_OUTN + * HP_OUT_L + * HP_OUT_R + * AUX_OUT_P + * AUX_OUT_N + * LINE_IN_L + * LINE_IN_R + * PHONE_P + * PHONE_N + * MIC1_P + * MIC1_N + * MIC2_P + * MIC2_N + * MICBIAS1 + * DMICDAT + + Board connectors: + + * Headset Stereophone + * Int Spk + * Headset Mic + * Digital Mic + +- nvidia,i2s-controller : The phandle of the Tegra I2S controller +- nvidia,audio-codec : The phandle of the ALC5632 audio codec + +Example: + +sound { + compatible = "nvidia,tegra-audio-alc5632-paz00", + "nvidia,tegra-audio-alc5632"; + + nvidia,model = "Compal PAZ00"; + + nvidia,audio-routing = + "Int Spk", "SPK_OUTP", + "Int Spk", "SPK_OUTN", + "Headset Mic","MICBIAS1", + "MIC1_N", "Headset Mic", + "MIC1_P", "Headset Mic", + "Headset Stereophone", "HP_OUT_R", + "Headset Stereophone", "HP_OUT_L"; + + nvidia,i2s-controller = <&tegra_i2s1>; + nvidia,audio-codec = <&alc5632>; +}; diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt index a20008ab319a..82ac057a24a9 100644 --- a/Documentation/devicetree/bindings/vendor-prefixes.txt +++ b/Documentation/devicetree/bindings/vendor-prefixes.txt @@ -34,6 +34,7 @@ picochip Picochip Ltd powervr Imagination Technologies qcom Qualcomm, Inc. ramtron Ramtron International +realtek Realtek Semiconductor Corp. samsung Samsung Semiconductor sbs Smart Battery System schindler Schindler diff --git a/Documentation/dvb/cards.txt b/Documentation/dvb/cards.txt index cc09187a5db7..97709e9a3076 100644 --- a/Documentation/dvb/cards.txt +++ b/Documentation/dvb/cards.txt @@ -119,4 +119,5 @@ o Cards based on the Phillips saa7134 PCI bridge: - Compro Videomate DVB-T300 - Compro Videomate DVB-T200 - AVerMedia AVerTVHD MCE A180 + - KWorld PC150-U ATSC Hybrid diff --git a/Documentation/dvb/lmedm04.txt b/Documentation/dvb/lmedm04.txt index 10b5f0411386..f4b720a14675 100644 --- a/Documentation/dvb/lmedm04.txt +++ b/Documentation/dvb/lmedm04.txt @@ -66,5 +66,16 @@ dd if=US290D.sys ibs=1 skip=36856 count=3976 of=dvb-usb-lme2510-s0194.fw For LME2510C dd if=US290D.sys ibs=1 skip=33152 count=3697 of=dvb-usb-lme2510c-s0194.fw +--------------------------------------------------------------------- + +The m88rs2000 tuner driver can be found in windows/system32/drivers + +US2B0D.sys (dated 29 Jun 2010) + +dd if=US2B0D.sys ibs=1 skip=34432 count=3871 of=dvb-usb-lme2510c-rs2000.fw + +We need to modify id of rs2000 firmware or it will warm boot id 3344:1120. + +echo -ne \\xF0\\x22 | dd conv=notrunc bs=1 count=2 seek=266 of=dvb-usb-lme2510c-rs2000.fw Copy the firmware file(s) to /lib/firmware diff --git a/Documentation/edac.txt b/Documentation/edac.txt index 249822cde82b..fdcc49fad8e1 100644 --- a/Documentation/edac.txt +++ b/Documentation/edac.txt @@ -334,8 +334,8 @@ Sdram memory scrubbing rate: Reading the file will return the actual scrubbing rate employed. - If configuration fails or memory scrubbing is not implemented, the value - of the attribute file will be -1. + If configuration fails or memory scrubbing is not implemented, accessing + that attribute will fail. diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 4bfd982f8080..0cad4803ffac 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -513,20 +513,6 @@ Who: Bjorn Helgaas <bhelgaas@google.com> ---------------------------- -What: The CAP9 SoC family will be removed -When: 3.4 -Files: arch/arm/mach-at91/at91cap9.c - arch/arm/mach-at91/at91cap9_devices.c - arch/arm/mach-at91/include/mach/at91cap9.h - arch/arm/mach-at91/include/mach/at91cap9_matrix.h - arch/arm/mach-at91/include/mach/at91cap9_ddrsdr.h - arch/arm/mach-at91/board-cap9adk.c -Why: The code is not actively maintained and platforms are now hard to find. -Who: Nicolas Ferre <nicolas.ferre@atmel.com> - Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com> - ----------------------------- - What: Low Performance USB Block driver ("CONFIG_BLK_DEV_UB") When: 3.6 Why: This driver provides support for USB storage devices like "USB diff --git a/Documentation/filesystems/debugfs.txt b/Documentation/filesystems/debugfs.txt index 4e2575873187..7a34f827989c 100644 --- a/Documentation/filesystems/debugfs.txt +++ b/Documentation/filesystems/debugfs.txt @@ -136,7 +136,7 @@ file. void __iomem *base; }; - struct dentry *debugfs_create_regset32(const char *name, mode_t mode, + struct dentry *debugfs_create_regset32(const char *name, umode_t mode, struct dentry *parent, struct debugfs_regset32 *regset); diff --git a/Documentation/filesystems/nfs/idmapper.txt b/Documentation/filesystems/nfs/idmapper.txt index 120fd3cf7fd9..fe03d10bb79a 100644 --- a/Documentation/filesystems/nfs/idmapper.txt +++ b/Documentation/filesystems/nfs/idmapper.txt @@ -4,13 +4,21 @@ ID Mapper ========= Id mapper is used by NFS to translate user and group ids into names, and to translate user and group names into ids. Part of this translation involves -performing an upcall to userspace to request the information. Id mapper will -user request-key to perform this upcall and cache the result. The program -/usr/sbin/nfs.idmap should be called by request-key, and will perform the -translation and initialize a key with the resulting information. +performing an upcall to userspace to request the information. There are two +ways NFS could obtain this information: placing a call to /sbin/request-key +or by placing a call to the rpc.idmap daemon. + +NFS will attempt to call /sbin/request-key first. If this succeeds, the +result will be cached using the generic request-key cache. This call should +only fail if /etc/request-key.conf is not configured for the id_resolver key +type, see the "Configuring" section below if you wish to use the request-key +method. + +If the call to /sbin/request-key fails (if /etc/request-key.conf is not +configured with the id_resolver key type), then the idmapper will ask the +legacy rpc.idmap daemon for the id mapping. This result will be stored +in a custom NFS idmap cache. - NFS_USE_NEW_IDMAPPER must be selected when configuring the kernel to use this - feature. =========== Configuring diff --git a/Documentation/filesystems/nfs/pnfs.txt b/Documentation/filesystems/nfs/pnfs.txt index 983e14abe7e9..c7919c6e3bea 100644 --- a/Documentation/filesystems/nfs/pnfs.txt +++ b/Documentation/filesystems/nfs/pnfs.txt @@ -53,3 +53,57 @@ lseg maintains an extra reference corresponding to the NFS_LSEG_VALID bit which holds it in the pnfs_layout_hdr's list. When the final lseg is removed from the pnfs_layout_hdr's list, the NFS_LAYOUT_DESTROYED bit is set, preventing any new lsegs from being added. + +layout drivers +-------------- + +PNFS utilizes what is called layout drivers. The STD defines 3 basic +layout types: "files" "objects" and "blocks". For each of these types +there is a layout-driver with a common function-vectors table which +are called by the nfs-client pnfs-core to implement the different layout +types. + +Files-layout-driver code is in: fs/nfs/nfs4filelayout.c && nfs4filelayoutdev.c +Objects-layout-deriver code is in: fs/nfs/objlayout/.. directory +Blocks-layout-deriver code is in: fs/nfs/blocklayout/.. directory + +objects-layout setup +-------------------- + +As part of the full STD implementation the objlayoutdriver.ko needs, at times, +to automatically login to yet undiscovered iscsi/osd devices. For this the +driver makes up-calles to a user-mode script called *osd_login* + +The path_name of the script to use is by default: + /sbin/osd_login. +This name can be overridden by the Kernel module parameter: + objlayoutdriver.osd_login_prog + +If Kernel does not find the osd_login_prog path it will zero it out +and will not attempt farther logins. An admin can then write new value +to the objlayoutdriver.osd_login_prog Kernel parameter to re-enable it. + +The /sbin/osd_login is part of the nfs-utils package, and should usually +be installed on distributions that support this Kernel version. + +The API to the login script is as follows: + Usage: $0 -u <URI> -o <OSDNAME> -s <SYSTEMID> + Options: + -u target uri e.g. iscsi://<ip>:<port> + (allways exists) + (More protocols can be defined in the future. + The client does not interpret this string it is + passed unchanged as recieved from the Server) + -o osdname of the requested target OSD + (Might be empty) + (A string which denotes the OSD name, there is a + limit of 64 chars on this string) + -s systemid of the requested target OSD + (Might be empty) + (This string, if not empty is always an hex + representation of the 20 bytes osd_system_id) + +blocks-layout setup +------------------- + +TODO: Document the setup needs of the blocks layout driver diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting index b4a3d765ff9a..74acd9618819 100644 --- a/Documentation/filesystems/porting +++ b/Documentation/filesystems/porting @@ -429,3 +429,9 @@ filemap_write_and_wait_range() so that all dirty pages are synced out properly. You must also keep in mind that ->fsync() is not called with i_mutex held anymore, so if you require i_mutex locking you must make sure to take it and release it yourself. + +-- +[mandatory] + d_alloc_root() is gone, along with a lot of bugs caused by code +misusing it. Replacement: d_make_root(inode). The difference is, +d_make_root() drops the reference to inode if dentry allocation fails. diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index a76a26a1db8a..b7413cb46dcb 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -290,7 +290,7 @@ Table 1-4: Contents of the stat files (as of 2.6.30-rc7) rsslim current limit in bytes on the rss start_code address above which program text can run end_code address below which program text can run - start_stack address of the start of the stack + start_stack address of the start of the main process stack esp current value of ESP eip current value of EIP pending bitmap of pending signals @@ -325,7 +325,7 @@ address perms offset dev inode pathname a7cb1000-a7cb2000 ---p 00000000 00:00 0 a7cb2000-a7eb2000 rw-p 00000000 00:00 0 a7eb2000-a7eb3000 ---p 00000000 00:00 0 -a7eb3000-a7ed5000 rw-p 00000000 00:00 0 +a7eb3000-a7ed5000 rw-p 00000000 00:00 0 [stack:1001] a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6 a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6 a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6 @@ -357,11 +357,39 @@ is not associated with a file: [heap] = the heap of the program [stack] = the stack of the main process + [stack:1001] = the stack of the thread with tid 1001 [vdso] = the "virtual dynamic shared object", the kernel system call handler or if empty, the mapping is anonymous. +The /proc/PID/task/TID/maps is a view of the virtual memory from the viewpoint +of the individual tasks of a process. In this file you will see a mapping marked +as [stack] if that task sees it as a stack. This is a key difference from the +content of /proc/PID/maps, where you will see all mappings that are being used +as stack by all of those tasks. Hence, for the example above, the task-level +map, i.e. /proc/PID/task/TID/maps for thread 1001 will look like this: + +08048000-08049000 r-xp 00000000 03:00 8312 /opt/test +08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test +0804a000-0806b000 rw-p 00000000 00:00 0 [heap] +a7cb1000-a7cb2000 ---p 00000000 00:00 0 +a7cb2000-a7eb2000 rw-p 00000000 00:00 0 +a7eb2000-a7eb3000 ---p 00000000 00:00 0 +a7eb3000-a7ed5000 rw-p 00000000 00:00 0 [stack] +a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6 +a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6 +a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6 +a800b000-a800e000 rw-p 00000000 00:00 0 +a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0 +a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0 +a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0 +a8024000-a8027000 rw-p 00000000 00:00 0 +a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2 +a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2 +a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2 +aff35000-aff4a000 rw-p 00000000 00:00 0 +ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso] The /proc/PID/smaps is an extension based on maps, showing the memory consumption for each of the process's mappings. For each of mappings there diff --git a/Documentation/filesystems/qnx6.txt b/Documentation/filesystems/qnx6.txt new file mode 100644 index 000000000000..050223ea03c7 --- /dev/null +++ b/Documentation/filesystems/qnx6.txt @@ -0,0 +1,174 @@ +The QNX6 Filesystem +=================== + +The qnx6fs is used by newer QNX operating system versions. (e.g. Neutrino) +It got introduced in QNX 6.4.0 and is used default since 6.4.1. + +Option +====== + +mmi_fs Mount filesystem as used for example by Audi MMI 3G system + +Specification +============= + +qnx6fs shares many properties with traditional Unix filesystems. It has the +concepts of blocks, inodes and directories. +On QNX it is possible to create little endian and big endian qnx6 filesystems. +This feature makes it possible to create and use a different endianness fs +for the target (QNX is used on quite a range of embedded systems) plattform +running on a different endianess. +The Linux driver handles endianness transparently. (LE and BE) + +Blocks +------ + +The space in the device or file is split up into blocks. These are a fixed +size of 512, 1024, 2048 or 4096, which is decided when the filesystem is +created. +Blockpointers are 32bit, so the maximum space that can be adressed is +2^32 * 4096 bytes or 16TB + +The superblocks +--------------- + +The superblock contains all global information about the filesystem. +Each qnx6fs got two superblocks, each one having a 64bit serial number. +That serial number is used to identify the "active" superblock. +In write mode with reach new snapshot (after each synchronous write), the +serial of the new master superblock is increased (old superblock serial + 1) + +So basically the snapshot functionality is realized by an atomic final +update of the serial number. Before updating that serial, all modifications +are done by copying all modified blocks during that specific write request +(or period) and building up a new (stable) filesystem structure under the +inactive superblock. + +Each superblock holds a set of root inodes for the different filesystem +parts. (Inode, Bitmap and Longfilenames) +Each of these root nodes holds information like total size of the stored +data and the adressing levels in that specific tree. +If the level value is 0, up to 16 direct blocks can be adressed by each +node. +Level 1 adds an additional indirect adressing level where each indirect +adressing block holds up to blocksize / 4 bytes pointers to data blocks. +Level 2 adds an additional indirect adressig block level (so, already up +to 16 * 256 * 256 = 1048576 blocks that can be adressed by such a tree)a + +Unused block pointers are always set to ~0 - regardless of root node, +indirect adressing blocks or inodes. +Data leaves are always on the lowest level. So no data is stored on upper +tree levels. + +The first Superblock is located at 0x2000. (0x2000 is the bootblock size) +The Audi MMI 3G first superblock directly starts at byte 0. +Second superblock position can either be calculated from the superblock +information (total number of filesystem blocks) or by taking the highest +device address, zeroing the last 3 bytes and then substracting 0x1000 from +that address. + +0x1000 is the size reserved for each superblock - regardless of the +blocksize of the filesystem. + +Inodes +------ + +Each object in the filesystem is represented by an inode. (index node) +The inode structure contains pointers to the filesystem blocks which contain +the data held in the object and all of the metadata about an object except +its longname. (filenames longer than 27 characters) +The metadata about an object includes the permissions, owner, group, flags, +size, number of blocks used, access time, change time and modification time. + +Object mode field is POSIX format. (which makes things easier) + +There are also pointers to the first 16 blocks, if the object data can be +adressed with 16 direct blocks. +For more than 16 blocks an indirect adressing in form of another tree is +used. (scheme is the same as the one used for the superblock root nodes) + +The filesize is stored 64bit. Inode counting starts with 1. (whilst long +filename inodes start with 0) + +Directories +----------- + +A directory is a filesystem object and has an inode just like a file. +It is a specially formatted file containing records which associate each +name with an inode number. +'.' inode number points to the directory inode +'..' inode number points to the parent directory inode +Eeach filename record additionally got a filename length field. + +One special case are long filenames or subdirectory names. +These got set a filename length field of 0xff in the corresponding directory +record plus the longfile inode number also stored in that record. +With that longfilename inode number, the longfilename tree can be walked +starting with the superblock longfilename root node pointers. + +Special files +------------- + +Symbolic links are also filesystem objects with inodes. They got a specific +bit in the inode mode field identifying them as symbolic link. +The directory entry file inode pointer points to the target file inode. + +Hard links got an inode, a directory entry, but a specific mode bit set, +no block pointers and the directory file record pointing to the target file +inode. + +Character and block special devices do not exist in QNX as those files +are handled by the QNX kernel/drivers and created in /dev independant of the +underlaying filesystem. + +Long filenames +-------------- + +Long filenames are stored in a seperate adressing tree. The staring point +is the longfilename root node in the active superblock. +Each data block (tree leaves) holds one long filename. That filename is +limited to 510 bytes. The first two starting bytes are used as length field +for the actual filename. +If that structure shall fit for all allowed blocksizes, it is clear why there +is a limit of 510 bytes for the actual filename stored. + +Bitmap +------ + +The qnx6fs filesystem allocation bitmap is stored in a tree under bitmap +root node in the superblock and each bit in the bitmap represents one +filesystem block. +The first block is block 0, which starts 0x1000 after superblock start. +So for a normal qnx6fs 0x3000 (bootblock + superblock) is the physical +address at which block 0 is located. + +Bits at the end of the last bitmap block are set to 1, if the device is +smaller than addressing space in the bitmap. + +Bitmap system area +------------------ + +The bitmap itself is devided into three parts. +First the system area, that is split into two halfs. +Then userspace. + +The requirement for a static, fixed preallocated system area comes from how +qnx6fs deals with writes. +Each superblock got it's own half of the system area. So superblock #1 +always uses blocks from the lower half whilst superblock #2 just writes to +blocks represented by the upper half bitmap system area bits. + +Bitmap blocks, Inode blocks and indirect addressing blocks for those two +tree structures are treated as system blocks. + +The rational behind that is that a write request can work on a new snapshot +(system area of the inactive - resp. lower serial numbered superblock) while +at the same time there is still a complete stable filesystem structer in the +other half of the system area. + +When finished with writing (a sync write is completed, the maximum sync leap +time or a filesystem sync is requested), serial of the previously inactive +superblock atomically is increased and the fs switches over to that - then +stable declared - superblock. + +For all data outside the system area, blocks are just copied while writing. diff --git a/Documentation/hwmon/lm90 b/Documentation/hwmon/lm90 index 9cd14cfe6515..b466974e142f 100644 --- a/Documentation/hwmon/lm90 +++ b/Documentation/hwmon/lm90 @@ -118,6 +118,10 @@ Supported chips: Addresses scanned: I2C 0x48 through 0x4F Datasheet: Publicly available at NXP website http://ics.nxp.com/products/interface/datasheet/sa56004x.pdf + * GMT G781 + Prefix: 'g781' + Addresses scanned: I2C 0x4c, 0x4d + Datasheet: Not publicly available from GMT Author: Jean Delvare <khali@linux-fr.org> diff --git a/Documentation/hwmon/mc13783-adc b/Documentation/hwmon/mc13783-adc index 044531a86405..d0e7b3fa9e75 100644 --- a/Documentation/hwmon/mc13783-adc +++ b/Documentation/hwmon/mc13783-adc @@ -3,8 +3,11 @@ Kernel driver mc13783-adc Supported chips: * Freescale Atlas MC13783 - Prefix: 'mc13783_adc' + Prefix: 'mc13783' Datasheet: http://www.freescale.com/files/rf_if/doc/data_sheet/MC13783.pdf?fsrch=1 + * Freescale Atlas MC13892 + Prefix: 'mc13892' + Datasheet: http://cache.freescale.com/files/analog/doc/data_sheet/MC13892.pdf?fsrch=1&sr=1 Authors: Sascha Hauer <s.hauer@pengutronix.de> @@ -13,20 +16,21 @@ Authors: Description ----------- -The Freescale MC13783 is a Power Management and Audio Circuit. Among -other things it contains a 10-bit A/D converter. The converter has 16 -channels which can be used in different modes. -The A/D converter has a resolution of 2.25mV. Channels 0-4 have -a dedicated meaning with chip internal scaling applied. Channels 5-7 -can be used as general purpose inputs or alternatively in a dedicated -mode. Channels 12-15 are occupied by the touchscreen if it's active. +The Freescale MC13783 and MC13892 are Power Management and Audio Circuits. +Among other things they contain a 10-bit A/D converter. The converter has 16 +(MC13783) resp. 12 (MC13892) channels which can be used in different modes. The +A/D converter has a resolution of 2.25mV. -Currently the driver only supports channels 2 and 5-15 with no alternative -modes for channels 5-7. +Some channels can be used as General Purpose inputs or in a dedicated mode with +a chip internal scaling applied . -See this table for the meaning of the different channels and their chip -internal scaling: +Currently the driver only supports the Application Supply channel (BP / BPSNS), +the General Purpose inputs and touchscreen. +See the following tables for the meaning of the different channels and their +chip internal scaling: + +MC13783: Channel Signal Input Range Scaling ------------------------------------------------------------------------------- 0 Battery Voltage (BATT) 2.50 - 4.65V -2.40V @@ -34,7 +38,7 @@ Channel Signal Input Range Scaling 2 Application Supply (BP) 2.50 - 4.65V -2.40V 3 Charger Voltage (CHRGRAW) 0 - 10V / /5 0 - 20V /10 -4 Charger Current (CHRGISNSP-CHRGISNSN) -0.25V - 0.25V x4 +4 Charger Current (CHRGISNSP-CHRGISNSN) -0.25 - 0.25V x4 5 General Purpose ADIN5 / Battery Pack Thermistor 0 - 2.30V No 6 General Purpose ADIN6 / Backup Voltage (LICELL) 0 - 2.30V / No / 1.50 - 3.50V -1.20V @@ -48,3 +52,23 @@ Channel Signal Input Range Scaling 13 General Purpose TSX2 / Touchscreen X-plate 2 0 - 2.30V No 14 General Purpose TSY1 / Touchscreen Y-plate 1 0 - 2.30V No 15 General Purpose TSY2 / Touchscreen Y-plate 2 0 - 2.30V No + +MC13892: +Channel Signal Input Range Scaling +------------------------------------------------------------------------------- +0 Battery Voltage (BATT) 0 - 4.8V /2 +1 Battery Current (BATT - BATTISNSCC) -60 - 60 mV x20 +2 Application Supply (BPSNS) 0 - 4.8V /2 +3 Charger Voltage (CHRGRAW) 0 - 12V / /5 + 0 - 20V /10 +4 Charger Current (CHRGISNS-BPSNS) / -0.3 - 0.3V / x4 / + Touchscreen X-plate 1 0 - 2.4V No +5 General Purpose ADIN5 / Battery Pack Thermistor 0 - 2.4V No +6 General Purpose ADIN6 / Backup Voltage (LICELL) 0 - 2.4V / No + Backup Voltage (LICELL) 0 - 3.6V x2/3 +7 General Purpose ADIN7 / UID / Die Temperature 0 - 2.4V / No / + 0 - 4.8V /2 +12 General Purpose TSX1 / Touchscreen X-plate 1 0 - 2.4V No +13 General Purpose TSX2 / Touchscreen X-plate 2 0 - 2.4V No +14 General Purpose TSY1 / Touchscreen Y-plate 1 0 - 2.4V No +15 General Purpose TSY2 / Touchscreen Y-plate 2 0 - 2.4V No diff --git a/Documentation/hwmon/mcp3021 b/Documentation/hwmon/mcp3021 new file mode 100644 index 000000000000..325fd87e81b2 --- /dev/null +++ b/Documentation/hwmon/mcp3021 @@ -0,0 +1,22 @@ +Kernel driver MCP3021 +====================== + +Supported chips: + * Microchip Technology MCP3021 + Prefix: 'mcp3021' + Datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/21805a.pdf + +Author: Mingkai Hu + +Description +----------- + +This driver implements support for the Microchip Technology MCP3021 chip. + +The Microchip Technology Inc. MCP3021 is a successive approximation A/D +converter (ADC) with 10-bit resolution. +This device provides one single-ended input with very low power consumption. +Communication to the MCP3021 is performed using a 2-wire I2C compatible +interface. Standard (100 kHz) and Fast (400 kHz) I2C modes are available. +The default I2C device address is 0x4d (contact the Microchip factory for +additional address options). diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt index 68fbfb6529eb..3b7488fc3373 100644 --- a/Documentation/ioctl/ioctl-number.txt +++ b/Documentation/ioctl/ioctl-number.txt @@ -218,6 +218,7 @@ Code Seq#(hex) Include File Comments 'h' 00-7F conflict! Charon filesystem <mailto:zapman@interlan.net> 'h' 00-1F linux/hpet.h conflict! +'h' 80-8F fs/hfsplus/ioctl.c 'i' 00-3F linux/i2o-dev.h conflict! 'i' 0B-1F linux/ipmi.h conflict! 'i' 80-8F linux/i8k.h diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 8cadb7551fca..58eac231fe69 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -713,6 +713,21 @@ bytes respectively. Such letter suffixes can also be entirely omitted. The filter can be disabled or changed to another driver later using sysfs. + drm_kms_helper.edid_firmware=[<connector>:]<file> + Broken monitors, graphic adapters and KVMs may + send no or incorrect EDID data sets. This parameter + allows to specify an EDID data set in the + /lib/firmware directory that is used instead. + Generic built-in EDID data sets are used, if one of + edid/1024x768.bin, edid/1280x1024.bin, + edid/1680x1050.bin, or edid/1920x1080.bin is given + and no file with the same name exists. Details and + instructions how to build your own EDID data are + available in Documentation/EDID/HOWTO.txt. An EDID + data set will only be used for a particular connector, + if its name and a colon are prepended to the EDID + name. + dscc4.setup= [NET] earlycon= [KNL] Output early console device and options. @@ -1071,8 +1086,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted. no_x2apic_optout BIOS x2APIC opt-out request will be ignored - inttest= [IA-64] - iomem= Disable strict checking of access to MMIO memory strict regions from userspace. relaxed @@ -1657,6 +1670,14 @@ bytes respectively. Such letter suffixes can also be entirely omitted. of returning the full 64-bit number. The default is to return 64-bit inode numbers. + nfs.max_session_slots= + [NFSv4.1] Sets the maximum number of session slots + the client will attempt to negotiate with the server. + This limits the number of simultaneous RPC requests + that the client can send to the NFSv4.1 server. + Note that there is little point in setting this + value higher than the max_tcp_slot_table_limit. + nfs.nfs4_disable_idmapping= [NFSv4] When set to the default of '1', this option ensures that both the RPC level authentication @@ -1670,6 +1691,21 @@ bytes respectively. Such letter suffixes can also be entirely omitted. back to using the idmapper. To turn off this behaviour, set the value to '0'. + nfs.send_implementation_id = + [NFSv4.1] Send client implementation identification + information in exchange_id requests. + If zero, no implementation identification information + will be sent. + The default is to send the implementation identification + information. + + + objlayoutdriver.osd_login_prog= + [NFS] [OBJLAYOUT] sets the pathname to the program which + is used to automatically discover and login into new + osd-targets. Please see: + Documentation/filesystems/pnfs.txt for more explanations + nmi_debug= [KNL,AVR32,SH] Specify one or more actions to take when a NMI is triggered. Format: [state][,regs][,debounce][,die] @@ -2109,8 +2145,14 @@ bytes respectively. Such letter suffixes can also be entirely omitted. the default. off: Turn ECRC off on: Turn ECRC on. - realloc reallocate PCI resources if allocations done by BIOS - are erroneous. + realloc= Enable/disable reallocating PCI bridge resources + if allocations done by BIOS are too small to + accommodate resources required by all child + devices. + off: Turn realloc off + on: Turn realloc on + realloc same as realloc=on + noari do not use PCIe ARI. pcie_aspm= [PCIE] Forcibly enable or disable PCIe Active State Power Management. @@ -2118,6 +2160,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted. force Enable ASPM even on devices that claim not to support it. WARNING: Forcing ASPM on may cause system lockups. + pcie_hp= [PCIE] PCI Express Hotplug driver options: + nomsi Do not use MSI for PCI Express Native Hotplug (this + makes all PCIe ports use INTx for hotplug services). + pcie_ports= [PCIE] PCIe ports handling: auto Ask the BIOS whether or not to use native PCIe services associated with PCIe ports (PME, hot-plug, AER). Use @@ -2635,6 +2681,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted. to facilitate early boot debugging. See also Documentation/trace/events.txt + transparent_hugepage= + [KNL] + Format: [always|madvise|never] + Can be used to control the default behavior of the system + with respect to transparent hugepages. + See Documentation/vm/transhuge.txt for more details. + tsc= Disable clocksource stability checks for TSC. Format: <string> [x86] reliable: mark tsc clocksource as reliable, this diff --git a/Documentation/leds/leds-lp5521.txt b/Documentation/leds/leds-lp5521.txt index c4d8d151e0fe..0e542ab3d4a0 100644 --- a/Documentation/leds/leds-lp5521.txt +++ b/Documentation/leds/leds-lp5521.txt @@ -43,17 +43,23 @@ Format: 10x mA i.e 10 means 1.0 mA example platform data: Note: chan_nr can have values between 0 and 2. +The name of each channel can be configurable. +If the name field is not defined, the default name will be set to 'xxxx:channelN' +(XXXX : pdata->label or i2c client name, N : channel number) static struct lp5521_led_config lp5521_led_config[] = { { + .name = "red", .chan_nr = 0, .led_current = 50, .max_current = 130, }, { + .name = "green", .chan_nr = 1, .led_current = 0, .max_current = 130, }, { + .name = "blue", .chan_nr = 2, .led_current = 0, .max_current = 130, @@ -86,3 +92,60 @@ static struct lp5521_platform_data lp5521_platform_data = { If the current is set to 0 in the platform data, that channel is disabled and it is not visible in the sysfs. + +The 'update_config' : CONFIG register (ADDR 08h) +This value is platform-specific data. +If update_config is not defined, the CONFIG register is set with +'LP5521_PWRSAVE_EN | LP5521_CP_MODE_AUTO | LP5521_R_TO_BATT'. +(Enable auto-powersave, set charge pump to auto, red to battery) + +example of update_config : + +#define LP5521_CONFIGS (LP5521_PWM_HF | LP5521_PWRSAVE_EN | \ + LP5521_CP_MODE_AUTO | LP5521_R_TO_BATT | \ + LP5521_CLK_INT) + +static struct lp5521_platform_data lp5521_pdata = { + .led_config = lp5521_led_config, + .num_channels = ARRAY_SIZE(lp5521_led_config), + .clock_mode = LP5521_CLOCK_INT, + .update_config = LP5521_CONFIGS, +}; + +LED patterns : LP5521 has autonomous operation without external control. +Pattern data can be defined in the platform data. + +example of led pattern data : + +/* RGB(50,5,0) 500ms on, 500ms off, infinite loop */ +static u8 pattern_red[] = { + 0x40, 0x32, 0x60, 0x00, 0x40, 0x00, 0x60, 0x00, + }; + +static u8 pattern_green[] = { + 0x40, 0x05, 0x60, 0x00, 0x40, 0x00, 0x60, 0x00, + }; + +static struct lp5521_led_pattern board_led_patterns[] = { + { + .r = pattern_red, + .g = pattern_green, + .size_r = ARRAY_SIZE(pattern_red), + .size_g = ARRAY_SIZE(pattern_green), + }, +}; + +static struct lp5521_platform_data lp5521_platform_data = { + .led_config = lp5521_led_config, + .num_channels = ARRAY_SIZE(lp5521_led_config), + .clock_mode = LP5521_CLOCK_EXT, + .patterns = board_led_patterns, + .num_patterns = ARRAY_SIZE(board_led_patterns), +}; + +Then predefined led pattern(s) can be executed via the sysfs. +To start the pattern #1, +# echo 1 > /sys/bus/i2c/devices/xxxx/led_pattern +(xxxx : i2c bus & slave address) +To end the pattern, +# echo 0 > /sys/bus/i2c/devices/xxxx/led_pattern diff --git a/Documentation/pinctrl.txt b/Documentation/pinctrl.txt index 150fd3833d0b..d97bccf46147 100644 --- a/Documentation/pinctrl.txt +++ b/Documentation/pinctrl.txt @@ -206,12 +206,21 @@ using a certain resistor value - pull up and pull down - so that the pin has a stable value when nothing is driving the rail it is connected to, or when it's unconnected. -For example, a platform may do this: +Pin configuration can be programmed either using the explicit APIs described +immediately below, or by adding configuration entries into the mapping table; +see section "Board/machine configuration" below. + +For example, a platform may do the following to pull up a pin to VDD: + +#include <linux/pinctrl/consumer.h> ret = pin_config_set("foo-dev", "FOO_GPIO_PIN", PLATFORM_X_PULL_UP); -To pull up a pin to VDD. The pin configuration driver implements callbacks for -changing pin configuration in the pin controller ops like this: +The format and meaning of the configuration parameter, PLATFORM_X_PULL_UP +above, is entirely defined by the pin controller driver. + +The pin configuration driver implements callbacks for changing pin +configuration in the pin controller ops like this: #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/pinconf.h> @@ -492,14 +501,10 @@ Definitions: {"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0} } - Every map must be assigned a symbolic name, pin controller and function. - The group is not compulsory - if it is omitted the first group presented by - the driver as applicable for the function will be selected, which is - useful for simple cases. - - The device name is present in map entries tied to specific devices. Maps - without device names are referred to as SYSTEM pinmuxes, such as can be taken - by the machine implementation on boot and not tied to any specific device. + Every map must be assigned a state name, pin controller, device and + function. The group is not compulsory - if it is omitted the first group + presented by the driver as applicable for the function will be selected, + which is useful for simple cases. It is possible to map several groups to the same combination of device, pin controller and function. This is for cases where a certain function on @@ -726,19 +731,19 @@ same time. All the above functions are mandatory to implement for a pinmux driver. -Pinmux interaction with the GPIO subsystem -========================================== +Pin control interaction with the GPIO subsystem +=============================================== -The public pinmux API contains two functions named pinmux_request_gpio() -and pinmux_free_gpio(). These two functions shall *ONLY* be called from +The public pinmux API contains two functions named pinctrl_request_gpio() +and pinctrl_free_gpio(). These two functions shall *ONLY* be called from gpiolib-based drivers as part of their gpio_request() and -gpio_free() semantics. Likewise the pinmux_gpio_direction_[input|output] +gpio_free() semantics. Likewise the pinctrl_gpio_direction_[input|output] shall only be called from within respective gpio_direction_[input|output] gpiolib implementation. NOTE that platforms and individual drivers shall *NOT* request GPIO pins to be -muxed in. Instead, implement a proper gpiolib driver and have that driver -request proper muxing for its pins. +controlled e.g. muxed in. Instead, implement a proper gpiolib driver and have +that driver request proper muxing and other control for its pins. The function list could become long, especially if you can convert every individual pin into a GPIO pin independent of any other pins, and then try @@ -747,7 +752,7 @@ the approach to define every pin as a function. In this case, the function array would become 64 entries for each GPIO setting and then the device functions. -For this reason there are two functions a pinmux driver can implement +For this reason there are two functions a pin control driver can implement to enable only GPIO on an individual pin: .gpio_request_enable() and .gpio_disable_free(). @@ -762,12 +767,12 @@ gpiolib driver and the affected GPIO range, pin offset and desired direction will be passed along to this function. Alternatively to using these special functions, it is fully allowed to use -named functions for each GPIO pin, the pinmux_request_gpio() will attempt to +named functions for each GPIO pin, the pinctrl_request_gpio() will attempt to obtain the function "gpioN" where "N" is the global GPIO pin number if no special GPIO-handler is registered. -Pinmux board/machine configuration +Board/machine configuration ================================== Boards and machines define how a certain complete running system is put @@ -775,27 +780,33 @@ together, including how GPIOs and devices are muxed, how regulators are constrained and how the clock tree looks. Of course pinmux settings are also part of this. -A pinmux config for a machine looks pretty much like a simple regulator -configuration, so for the example array above we want to enable i2c and -spi on the second function mapping: +A pin controller configuration for a machine looks pretty much like a simple +regulator configuration, so for the example array above we want to enable i2c +and spi on the second function mapping: #include <linux/pinctrl/machine.h> -static const struct pinmux_map __initdata pmx_mapping[] = { +static const struct pinctrl_map __initdata mapping[] = { { - .ctrl_dev_name = "pinctrl-foo", - .function = "spi0", .dev_name = "foo-spi.0", + .name = PINCTRL_STATE_DEFAULT, + .type = PIN_MAP_TYPE_MUX_GROUP, + .ctrl_dev_name = "pinctrl-foo", + .data.mux.function = "spi0", }, { - .ctrl_dev_name = "pinctrl-foo", - .function = "i2c0", .dev_name = "foo-i2c.0", + .name = PINCTRL_STATE_DEFAULT, + .type = PIN_MAP_TYPE_MUX_GROUP, + .ctrl_dev_name = "pinctrl-foo", + .data.mux.function = "i2c0", }, { - .ctrl_dev_name = "pinctrl-foo", - .function = "mmc0", .dev_name = "foo-mmc.0", + .name = PINCTRL_STATE_DEFAULT, + .type = PIN_MAP_TYPE_MUX_GROUP, + .ctrl_dev_name = "pinctrl-foo", + .data.mux.function = "mmc0", }, }; @@ -805,21 +816,51 @@ must match a function provided by the pinmux driver handling this pin range. As you can see we may have several pin controllers on the system and thus we need to specify which one of them that contain the functions we wish -to map. The map can also use struct device * directly, so there is no -inherent need to use strings to specify .dev_name or .ctrl_dev_name, these -are for the situation where you do not have a handle to the struct device *, -for example if they are not yet instantiated or cumbersome to obtain. +to map. You register this pinmux mapping to the pinmux subsystem by simply: - ret = pinmux_register_mappings(pmx_mapping, ARRAY_SIZE(pmx_mapping)); + ret = pinctrl_register_mappings(mapping, ARRAY_SIZE(mapping)); Since the above construct is pretty common there is a helper macro to make it even more compact which assumes you want to use pinctrl-foo and position 0 for mapping, for example: -static struct pinmux_map __initdata pmx_mapping[] = { - PINMUX_MAP("I2CMAP", "pinctrl-foo", "i2c0", "foo-i2c.0"), +static struct pinctrl_map __initdata mapping[] = { + PIN_MAP_MUX_GROUP("foo-i2c.o", PINCTRL_STATE_DEFAULT, "pinctrl-foo", NULL, "i2c0"), +}; + +The mapping table may also contain pin configuration entries. It's common for +each pin/group to have a number of configuration entries that affect it, so +the table entries for configuration reference an array of config parameters +and values. An example using the convenience macros is shown below: + +static unsigned long i2c_grp_configs[] = { + FOO_PIN_DRIVEN, + FOO_PIN_PULLUP, +}; + +static unsigned long i2c_pin_configs[] = { + FOO_OPEN_COLLECTOR, + FOO_SLEW_RATE_SLOW, +}; + +static struct pinctrl_map __initdata mapping[] = { + PIN_MAP_MUX_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0", "i2c0"), + PIN_MAP_MUX_CONFIGS_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0", i2c_grp_configs), + PIN_MAP_MUX_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0scl", i2c_pin_configs), + PIN_MAP_MUX_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, "pinctrl-foo", "i2c0sda", i2c_pin_configs), +}; + +Finally, some devices expect the mapping table to contain certain specific +named states. When running on hardware that doesn't need any pin controller +configuration, the mapping table must still contain those named states, in +order to explicitly indicate that the states were provided and intended to +be empty. Table entry macro PIN_MAP_DUMMY_STATE serves the purpose of defining +a named state without causing any pin controller to be programmed: + +static struct pinctrl_map __initdata mapping[] = { + PIN_MAP_DUMMY_STATE("foo-i2c.0", PINCTRL_STATE_DEFAULT), }; @@ -831,81 +872,96 @@ As it is possible to map a function to different groups of pins an optional ... { + .dev_name = "foo-spi.0", .name = "spi0-pos-A", + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "spi0", .group = "spi0_0_grp", - .dev_name = "foo-spi.0", }, { + .dev_name = "foo-spi.0", .name = "spi0-pos-B", + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "spi0", .group = "spi0_1_grp", - .dev_name = "foo-spi.0", }, ... This example mapping is used to switch between two positions for spi0 at runtime, as described further below under the heading "Runtime pinmuxing". -Further it is possible to match several groups of pins to the same function -for a single device, say for example in the mmc0 example above, where you can +Further it is possible for one named state to affect the muxing of several +groups of pins, say for example in the mmc0 example above, where you can additively expand the mmc0 bus from 2 to 4 to 8 pins. If we want to use all three groups for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the case), we define a mapping like this: ... { + .dev_name = "foo-mmc.0", .name = "2bit" + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "mmc0", .group = "mmc0_1_grp", - .dev_name = "foo-mmc.0", }, { + .dev_name = "foo-mmc.0", .name = "4bit" + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "mmc0", .group = "mmc0_1_grp", - .dev_name = "foo-mmc.0", }, { + .dev_name = "foo-mmc.0", .name = "4bit" + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "mmc0", .group = "mmc0_2_grp", - .dev_name = "foo-mmc.0", }, { + .dev_name = "foo-mmc.0", .name = "8bit" + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", + .function = "mmc0", .group = "mmc0_1_grp", - .dev_name = "foo-mmc.0", }, { + .dev_name = "foo-mmc.0", .name = "8bit" + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "mmc0", .group = "mmc0_2_grp", - .dev_name = "foo-mmc.0", }, { + .dev_name = "foo-mmc.0", .name = "8bit" + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "mmc0", .group = "mmc0_3_grp", - .dev_name = "foo-mmc.0", }, ... The result of grabbing this mapping from the device with something like this (see next paragraph): - pmx = pinmux_get(&device, "8bit"); + p = pinctrl_get(dev); + s = pinctrl_lookup_state(p, "8bit"); + ret = pinctrl_select_state(p, s); + +or more simply: + + p = pinctrl_get_select(dev, "8bit"); Will be that you activate all the three bottom records in the mapping at -once. Since they share the same name, pin controller device, funcion and +once. Since they share the same name, pin controller device, function and device, and since we allow multiple groups to match to a single device, they all get selected, and they all get enabled and disable simultaneously by the pinmux core. @@ -914,97 +970,111 @@ pinmux core. Pinmux requests from drivers ============================ -Generally it is discouraged to let individual drivers get and enable pinmuxes. -So if possible, handle the pinmuxes in platform code or some other place where -you have access to all the affected struct device * pointers. In some cases -where a driver needs to switch between different mux mappings at runtime -this is not possible. +Generally it is discouraged to let individual drivers get and enable pin +control. So if possible, handle the pin control in platform code or some other +place where you have access to all the affected struct device * pointers. In +some cases where a driver needs to e.g. switch between different mux mappings +at runtime this is not possible. -A driver may request a certain mux to be activated, usually just the default -mux like this: +A driver may request a certain control state to be activated, usually just the +default state like this: -#include <linux/pinctrl/pinmux.h> +#include <linux/pinctrl/consumer.h> struct foo_state { - struct pinmux *pmx; + struct pinctrl *p; + struct pinctrl_state *s; ... }; foo_probe() { - /* Allocate a state holder named "state" etc */ - struct pinmux pmx; + /* Allocate a state holder named "foo" etc */ + struct foo_state *foo = ...; + + foo->p = pinctrl_get(&device); + if (IS_ERR(foo->p)) { + /* FIXME: clean up "foo" here */ + return PTR_ERR(foo->p); + } - pmx = pinmux_get(&device, NULL); - if IS_ERR(pmx) - return PTR_ERR(pmx); - pinmux_enable(pmx); + foo->s = pinctrl_lookup_state(foo->p, PINCTRL_STATE_DEFAULT); + if (IS_ERR(foo->s)) { + pinctrl_put(foo->p); + /* FIXME: clean up "foo" here */ + return PTR_ERR(s); + } - state->pmx = pmx; + ret = pinctrl_select_state(foo->s); + if (ret < 0) { + pinctrl_put(foo->p); + /* FIXME: clean up "foo" here */ + return ret; + } } foo_remove() { - pinmux_disable(state->pmx); - pinmux_put(state->pmx); + pinctrl_put(state->p); } -If you want to grab a specific mux mapping and not just the first one found for -this device you can specify a specific mapping name, for example in the above -example the second i2c0 setting: pinmux_get(&device, "spi0-pos-B"); - -This get/enable/disable/put sequence can just as well be handled by bus drivers +This get/lookup/select/put sequence can just as well be handled by bus drivers if you don't want each and every driver to handle it and you know the arrangement on your bus. -The semantics of the get/enable respective disable/put is as follows: +The semantics of the pinctrl APIs are: + +- pinctrl_get() is called in process context to obtain a handle to all pinctrl + information for a given client device. It will allocate a struct from the + kernel memory to hold the pinmux state. All mapping table parsing or similar + slow operations take place within this API. -- pinmux_get() is called in process context to reserve the pins affected with - a certain mapping and set up the pinmux core and the driver. It will allocate - a struct from the kernel memory to hold the pinmux state. +- pinctrl_lookup_state() is called in process context to obtain a handle to a + specific state for a the client device. This operation may be slow too. -- pinmux_enable()/pinmux_disable() is quick and can be called from fastpath - (irq context) when you quickly want to set up/tear down the hardware muxing - when running a device driver. Usually it will just poke some values into a - register. +- pinctrl_select_state() programs pin controller hardware according to the + definition of the state as given by the mapping table. In theory this is a + fast-path operation, since it only involved blasting some register settings + into hardware. However, note that some pin controllers may have their + registers on a slow/IRQ-based bus, so client devices should not assume they + can call pinctrl_select_state() from non-blocking contexts. -- pinmux_disable() is called in process context to tear down the pin requests - and release the state holder struct for the mux setting. +- pinctrl_put() frees all information associated with a pinctrl handle. -Usually the pinmux core handled the get/put pair and call out to the device -drivers bookkeeping operations, like checking available functions and the -associated pins, whereas the enable/disable pass on to the pin controller +Usually the pin control core handled the get/put pair and call out to the +device drivers bookkeeping operations, like checking available functions and +the associated pins, whereas the enable/disable pass on to the pin controller driver which takes care of activating and/or deactivating the mux setting by quickly poking some registers. -The pins are allocated for your device when you issue the pinmux_get() call, +The pins are allocated for your device when you issue the pinctrl_get() call, after this you should be able to see this in the debugfs listing of all pins. -System pinmux hogging -===================== +System pin control hogging +========================== -A system pinmux map entry, i.e. a pinmux setting that does not have a device -associated with it, can be hogged by the core when the pin controller is -registered. This means that the core will attempt to call pinmux_get() and -pinmux_enable() on it immediately after the pin control device has been -registered. +Pin control map entries can be hogged by the core when the pin controller +is registered. This means that the core will attempt to call pinctrl_get(), +lookup_state() and select_state() on it immediately after the pin control +device has been registered. -This is enabled by simply setting the .hog_on_boot field in the map to true, -like this: +This occurs for mapping table entries where the client device name is equal +to the pin controller device name, and the state name is PINCTRL_STATE_DEFAULT. { - .name = "POWERMAP" + .dev_name = "pinctrl-foo", + .name = PINCTRL_STATE_DEFAULT, + .type = PIN_MAP_TYPE_MUX_GROUP, .ctrl_dev_name = "pinctrl-foo", .function = "power_func", - .hog_on_boot = true, }, Since it may be common to request the core to hog a few always-applicable mux settings on the primary pin controller, there is a convenience macro for this: -PINMUX_MAP_PRIMARY_SYS_HOG("POWERMAP", "power_func") +PIN_MAP_MUX_GROUP_HOG_DEFAULT("pinctrl-foo", NULL /* group */, "power_func") This gives the exact same result as the above construction. @@ -1016,32 +1086,47 @@ It is possible to mux a certain function in and out at runtime, say to move an SPI port from one set of pins to another set of pins. Say for example for spi0 in the example above, we expose two different groups of pins for the same function, but with different named in the mapping as described under -"Advanced mapping" above. So we have two mappings named "spi0-pos-A" and -"spi0-pos-B". +"Advanced mapping" above. So that for an SPI device, we have two states named +"pos-A" and "pos-B". This snippet first muxes the function in the pins defined by group A, enables it, disables and releases it, and muxes it in on the pins defined by group B: +#include <linux/pinctrl/consumer.h> + foo_switch() { - struct pinmux *pmx; + struct pinctrl *p; + struct pinctrl_state *s1, *s2; + + /* Setup */ + p = pinctrl_get(&device); + if (IS_ERR(p)) + ... + + s1 = pinctrl_lookup_state(foo->p, "pos-A"); + if (IS_ERR(s1)) + ... + + s2 = pinctrl_lookup_state(foo->p, "pos-B"); + if (IS_ERR(s2)) + ... /* Enable on position A */ - pmx = pinmux_get(&device, "spi0-pos-A"); - if IS_ERR(pmx) - return PTR_ERR(pmx); - pinmux_enable(pmx); + ret = pinctrl_select_state(s1); + if (ret < 0) + ... - /* This releases the pins again */ - pinmux_disable(pmx); - pinmux_put(pmx); + ... /* Enable on position B */ - pmx = pinmux_get(&device, "spi0-pos-B"); - if IS_ERR(pmx) - return PTR_ERR(pmx); - pinmux_enable(pmx); + ret = pinctrl_select_state(s2); + if (ret < 0) + ... + ... + + pinctrl_put(p); } The above has to be done from process context. diff --git a/Documentation/powerpc/firmware-assisted-dump.txt b/Documentation/powerpc/firmware-assisted-dump.txt new file mode 100644 index 000000000000..3007bc98af28 --- /dev/null +++ b/Documentation/powerpc/firmware-assisted-dump.txt @@ -0,0 +1,270 @@ + + Firmware-Assisted Dump + ------------------------ + July 2011 + +The goal of firmware-assisted dump is to enable the dump of +a crashed system, and to do so from a fully-reset system, and +to minimize the total elapsed time until the system is back +in production use. + +- Firmware assisted dump (fadump) infrastructure is intended to replace + the existing phyp assisted dump. +- Fadump uses the same firmware interfaces and memory reservation model + as phyp assisted dump. +- Unlike phyp dump, fadump exports the memory dump through /proc/vmcore + in the ELF format in the same way as kdump. This helps us reuse the + kdump infrastructure for dump capture and filtering. +- Unlike phyp dump, userspace tool does not need to refer any sysfs + interface while reading /proc/vmcore. +- Unlike phyp dump, fadump allows user to release all the memory reserved + for dump, with a single operation of echo 1 > /sys/kernel/fadump_release_mem. +- Once enabled through kernel boot parameter, fadump can be + started/stopped through /sys/kernel/fadump_registered interface (see + sysfs files section below) and can be easily integrated with kdump + service start/stop init scripts. + +Comparing with kdump or other strategies, firmware-assisted +dump offers several strong, practical advantages: + +-- Unlike kdump, the system has been reset, and loaded + with a fresh copy of the kernel. In particular, + PCI and I/O devices have been reinitialized and are + in a clean, consistent state. +-- Once the dump is copied out, the memory that held the dump + is immediately available to the running kernel. And therefore, + unlike kdump, fadump doesn't need a 2nd reboot to get back + the system to the production configuration. + +The above can only be accomplished by coordination with, +and assistance from the Power firmware. The procedure is +as follows: + +-- The first kernel registers the sections of memory with the + Power firmware for dump preservation during OS initialization. + These registered sections of memory are reserved by the first + kernel during early boot. + +-- When a system crashes, the Power firmware will save + the low memory (boot memory of size larger of 5% of system RAM + or 256MB) of RAM to the previous registered region. It will + also save system registers, and hardware PTE's. + + NOTE: The term 'boot memory' means size of the low memory chunk + that is required for a kernel to boot successfully when + booted with restricted memory. By default, the boot memory + size will be the larger of 5% of system RAM or 256MB. + Alternatively, user can also specify boot memory size + through boot parameter 'fadump_reserve_mem=' which will + override the default calculated size. Use this option + if default boot memory size is not sufficient for second + kernel to boot successfully. + +-- After the low memory (boot memory) area has been saved, the + firmware will reset PCI and other hardware state. It will + *not* clear the RAM. It will then launch the bootloader, as + normal. + +-- The freshly booted kernel will notice that there is a new + node (ibm,dump-kernel) in the device tree, indicating that + there is crash data available from a previous boot. During + the early boot OS will reserve rest of the memory above + boot memory size effectively booting with restricted memory + size. This will make sure that the second kernel will not + touch any of the dump memory area. + +-- User-space tools will read /proc/vmcore to obtain the contents + of memory, which holds the previous crashed kernel dump in ELF + format. The userspace tools may copy this info to disk, or + network, nas, san, iscsi, etc. as desired. + +-- Once the userspace tool is done saving dump, it will echo + '1' to /sys/kernel/fadump_release_mem to release the reserved + memory back to general use, except the memory required for + next firmware-assisted dump registration. + + e.g. + # echo 1 > /sys/kernel/fadump_release_mem + +Please note that the firmware-assisted dump feature +is only available on Power6 and above systems with recent +firmware versions. + +Implementation details: +---------------------- + +During boot, a check is made to see if firmware supports +this feature on that particular machine. If it does, then +we check to see if an active dump is waiting for us. If yes +then everything but boot memory size of RAM is reserved during +early boot (See Fig. 2). This area is released once we finish +collecting the dump from user land scripts (e.g. kdump scripts) +that are run. If there is dump data, then the +/sys/kernel/fadump_release_mem file is created, and the reserved +memory is held. + +If there is no waiting dump data, then only the memory required +to hold CPU state, HPTE region, boot memory dump and elfcore +header, is reserved at the top of memory (see Fig. 1). This area +is *not* released: this region will be kept permanently reserved, +so that it can act as a receptacle for a copy of the boot memory +content in addition to CPU state and HPTE region, in the case a +crash does occur. + + o Memory Reservation during first kernel + + Low memory Top of memory + 0 boot memory size | + | | |<--Reserved dump area -->| + V V | Permanent Reservation V + +-----------+----------/ /----------+---+----+-----------+----+ + | | |CPU|HPTE| DUMP |ELF | + +-----------+----------/ /----------+---+----+-----------+----+ + | ^ + | | + \ / + ------------------------------------------- + Boot memory content gets transferred to + reserved area by firmware at the time of + crash + Fig. 1 + + o Memory Reservation during second kernel after crash + + Low memory Top of memory + 0 boot memory size | + | |<------------- Reserved dump area ----------- -->| + V V V + +-----------+----------/ /----------+---+----+-----------+----+ + | | |CPU|HPTE| DUMP |ELF | + +-----------+----------/ /----------+---+----+-----------+----+ + | | + V V + Used by second /proc/vmcore + kernel to boot + Fig. 2 + +Currently the dump will be copied from /proc/vmcore to a +a new file upon user intervention. The dump data available through +/proc/vmcore will be in ELF format. Hence the existing kdump +infrastructure (kdump scripts) to save the dump works fine with +minor modifications. + +The tools to examine the dump will be same as the ones +used for kdump. + +How to enable firmware-assisted dump (fadump): +------------------------------------- + +1. Set config option CONFIG_FA_DUMP=y and build kernel. +2. Boot into linux kernel with 'fadump=on' kernel cmdline option. +3. Optionally, user can also set 'fadump_reserve_mem=' kernel cmdline + to specify size of the memory to reserve for boot memory dump + preservation. + +NOTE: If firmware-assisted dump fails to reserve memory then it will + fallback to existing kdump mechanism if 'crashkernel=' option + is set at kernel cmdline. + +Sysfs/debugfs files: +------------ + +Firmware-assisted dump feature uses sysfs file system to hold +the control files and debugfs file to display memory reserved region. + +Here is the list of files under kernel sysfs: + + /sys/kernel/fadump_enabled + + This is used to display the fadump status. + 0 = fadump is disabled + 1 = fadump is enabled + + This interface can be used by kdump init scripts to identify if + fadump is enabled in the kernel and act accordingly. + + /sys/kernel/fadump_registered + + This is used to display the fadump registration status as well + as to control (start/stop) the fadump registration. + 0 = fadump is not registered. + 1 = fadump is registered and ready to handle system crash. + + To register fadump echo 1 > /sys/kernel/fadump_registered and + echo 0 > /sys/kernel/fadump_registered for un-register and stop the + fadump. Once the fadump is un-registered, the system crash will not + be handled and vmcore will not be captured. This interface can be + easily integrated with kdump service start/stop. + + /sys/kernel/fadump_release_mem + + This file is available only when fadump is active during + second kernel. This is used to release the reserved memory + region that are held for saving crash dump. To release the + reserved memory echo 1 to it: + + echo 1 > /sys/kernel/fadump_release_mem + + After echo 1, the content of the /sys/kernel/debug/powerpc/fadump_region + file will change to reflect the new memory reservations. + + The existing userspace tools (kdump infrastructure) can be easily + enhanced to use this interface to release the memory reserved for + dump and continue without 2nd reboot. + +Here is the list of files under powerpc debugfs: +(Assuming debugfs is mounted on /sys/kernel/debug directory.) + + /sys/kernel/debug/powerpc/fadump_region + + This file shows the reserved memory regions if fadump is + enabled otherwise this file is empty. The output format + is: + <region>: [<start>-<end>] <reserved-size> bytes, Dumped: <dump-size> + + e.g. + Contents when fadump is registered during first kernel + + # cat /sys/kernel/debug/powerpc/fadump_region + CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x0 + HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x0 + DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x0 + + Contents when fadump is active during second kernel + + # cat /sys/kernel/debug/powerpc/fadump_region + CPU : [0x0000006ffb0000-0x0000006fff001f] 0x40020 bytes, Dumped: 0x40020 + HPTE: [0x0000006fff0020-0x0000006fff101f] 0x1000 bytes, Dumped: 0x1000 + DUMP: [0x0000006fff1020-0x0000007fff101f] 0x10000000 bytes, Dumped: 0x10000000 + : [0x00000010000000-0x0000006ffaffff] 0x5ffb0000 bytes, Dumped: 0x5ffb0000 + +NOTE: Please refer to Documentation/filesystems/debugfs.txt on + how to mount the debugfs filesystem. + + +TODO: +----- + o Need to come up with the better approach to find out more + accurate boot memory size that is required for a kernel to + boot successfully when booted with restricted memory. + o The fadump implementation introduces a fadump crash info structure + in the scratch area before the ELF core header. The idea of introducing + this structure is to pass some important crash info data to the second + kernel which will help second kernel to populate ELF core header with + correct data before it gets exported through /proc/vmcore. The current + design implementation does not address a possibility of introducing + additional fields (in future) to this structure without affecting + compatibility. Need to come up with the better approach to address this. + The possible approaches are: + 1. Introduce version field for version tracking, bump up the version + whenever a new field is added to the structure in future. The version + field can be used to find out what fields are valid for the current + version of the structure. + 2. Reserve the area of predefined size (say PAGE_SIZE) for this + structure and have unused area as reserved (initialized to zero) + for future field additions. + The advantage of approach 1 over 2 is we don't need to reserve extra space. +--- +Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> +This document is based on the original documentation written for phyp +assisted dump by Linas Vepstas and Manish Ahuja. diff --git a/Documentation/powerpc/mpc52xx.txt b/Documentation/powerpc/mpc52xx.txt index 10dd4ab93b85..0d540a31ea1a 100644 --- a/Documentation/powerpc/mpc52xx.txt +++ b/Documentation/powerpc/mpc52xx.txt @@ -2,7 +2,7 @@ Linux 2.6.x on MPC52xx family ----------------------------- For the latest info, go to http://www.246tNt.com/mpc52xx/ - + To compile/use : - U-Boot: @@ -10,23 +10,23 @@ To compile/use : if you wish to ). # make lite5200_defconfig # make uImage - + then, on U-boot: => tftpboot 200000 uImage => tftpboot 400000 pRamdisk => bootm 200000 400000 - + - DBug: # <edit Makefile to set ARCH=ppc & CROSS_COMPILE=... ( also EXTRAVERSION if you wish to ). # make lite5200_defconfig # cp your_initrd.gz arch/ppc/boot/images/ramdisk.image.gz - # make zImage.initrd - # make + # make zImage.initrd + # make then in DBug: DBug> dn -i zImage.initrd.lite5200 - + Some remarks : - The port is named mpc52xxx, and config options are PPC_MPC52xx. The MGT5100 diff --git a/Documentation/powerpc/phyp-assisted-dump.txt b/Documentation/powerpc/phyp-assisted-dump.txt deleted file mode 100644 index ad340205d96a..000000000000 --- a/Documentation/powerpc/phyp-assisted-dump.txt +++ /dev/null @@ -1,127 +0,0 @@ - - Hypervisor-Assisted Dump - ------------------------ - November 2007 - -The goal of hypervisor-assisted dump is to enable the dump of -a crashed system, and to do so from a fully-reset system, and -to minimize the total elapsed time until the system is back -in production use. - -As compared to kdump or other strategies, hypervisor-assisted -dump offers several strong, practical advantages: - --- Unlike kdump, the system has been reset, and loaded - with a fresh copy of the kernel. In particular, - PCI and I/O devices have been reinitialized and are - in a clean, consistent state. --- As the dump is performed, the dumped memory becomes - immediately available to the system for normal use. --- After the dump is completed, no further reboots are - required; the system will be fully usable, and running - in its normal, production mode on its normal kernel. - -The above can only be accomplished by coordination with, -and assistance from the hypervisor. The procedure is -as follows: - --- When a system crashes, the hypervisor will save - the low 256MB of RAM to a previously registered - save region. It will also save system state, system - registers, and hardware PTE's. - --- After the low 256MB area has been saved, the - hypervisor will reset PCI and other hardware state. - It will *not* clear RAM. It will then launch the - bootloader, as normal. - --- The freshly booted kernel will notice that there - is a new node (ibm,dump-kernel) in the device tree, - indicating that there is crash data available from - a previous boot. It will boot into only 256MB of RAM, - reserving the rest of system memory. - --- Userspace tools will parse /sys/kernel/release_region - and read /proc/vmcore to obtain the contents of memory, - which holds the previous crashed kernel. The userspace - tools may copy this info to disk, or network, nas, san, - iscsi, etc. as desired. - - For Example: the values in /sys/kernel/release-region - would look something like this (address-range pairs). - CPU:0x177fee000-0x10000: HPTE:0x177ffe020-0x1000: / - DUMP:0x177fff020-0x10000000, 0x10000000-0x16F1D370A - --- As the userspace tools complete saving a portion of - dump, they echo an offset and size to - /sys/kernel/release_region to release the reserved - memory back to general use. - - An example of this is: - "echo 0x40000000 0x10000000 > /sys/kernel/release_region" - which will release 256MB at the 1GB boundary. - -Please note that the hypervisor-assisted dump feature -is only available on Power6-based systems with recent -firmware versions. - -Implementation details: ----------------------- - -During boot, a check is made to see if firmware supports -this feature on this particular machine. If it does, then -we check to see if a active dump is waiting for us. If yes -then everything but 256 MB of RAM is reserved during early -boot. This area is released once we collect a dump from user -land scripts that are run. If there is dump data, then -the /sys/kernel/release_region file is created, and -the reserved memory is held. - -If there is no waiting dump data, then only the highest -256MB of the ram is reserved as a scratch area. This area -is *not* released: this region will be kept permanently -reserved, so that it can act as a receptacle for a copy -of the low 256MB in the case a crash does occur. See, -however, "open issues" below, as to whether -such a reserved region is really needed. - -Currently the dump will be copied from /proc/vmcore to a -a new file upon user intervention. The starting address -to be read and the range for each data point in provided -in /sys/kernel/release_region. - -The tools to examine the dump will be same as the ones -used for kdump. - -General notes: --------------- -Security: please note that there are potential security issues -with any sort of dump mechanism. In particular, plaintext -(unencrypted) data, and possibly passwords, may be present in -the dump data. Userspace tools must take adequate precautions to -preserve security. - -Open issues/ToDo: ------------- - o The various code paths that tell the hypervisor that a crash - occurred, vs. it simply being a normal reboot, should be - reviewed, and possibly clarified/fixed. - - o Instead of using /sys/kernel, should there be a /sys/dump - instead? There is a dump_subsys being created by the s390 code, - perhaps the pseries code should use a similar layout as well. - - o Is reserving a 256MB region really required? The goal of - reserving a 256MB scratch area is to make sure that no - important crash data is clobbered when the hypervisor - save low mem to the scratch area. But, if one could assure - that nothing important is located in some 256MB area, then - it would not need to be reserved. Something that can be - improved in subsequent versions. - - o Still working the kdump team to integrate this with kdump, - some work remains but this would not affect the current - patches. - - o Still need to write a shell script, to copy the dump away. - Currently I am parsing it manually. diff --git a/Documentation/remoteproc.txt b/Documentation/remoteproc.txt new file mode 100644 index 000000000000..70a048cd3fa3 --- /dev/null +++ b/Documentation/remoteproc.txt @@ -0,0 +1,322 @@ +Remote Processor Framework + +1. Introduction + +Modern SoCs typically have heterogeneous remote processor devices in asymmetric +multiprocessing (AMP) configurations, which may be running different instances +of operating system, whether it's Linux or any other flavor of real-time OS. + +OMAP4, for example, has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP. +In a typical configuration, the dual cortex-A9 is running Linux in a SMP +configuration, and each of the other three cores (two M3 cores and a DSP) +is running its own instance of RTOS in an AMP configuration. + +The remoteproc framework allows different platforms/architectures to +control (power on, load firmware, power off) those remote processors while +abstracting the hardware differences, so the entire driver doesn't need to be +duplicated. In addition, this framework also adds rpmsg virtio devices +for remote processors that supports this kind of communication. This way, +platform-specific remoteproc drivers only need to provide a few low-level +handlers, and then all rpmsg drivers will then just work +(for more information about the virtio-based rpmsg bus and its drivers, +please read Documentation/rpmsg.txt). +Registration of other types of virtio devices is now also possible. Firmwares +just need to publish what kind of virtio devices do they support, and then +remoteproc will add those devices. This makes it possible to reuse the +existing virtio drivers with remote processor backends at a minimal development +cost. + +2. User API + + int rproc_boot(struct rproc *rproc) + - Boot a remote processor (i.e. load its firmware, power it on, ...). + If the remote processor is already powered on, this function immediately + returns (successfully). + Returns 0 on success, and an appropriate error value otherwise. + Note: to use this function you should already have a valid rproc + handle. There are several ways to achieve that cleanly (devres, pdata, + the way remoteproc_rpmsg.c does this, or, if this becomes prevalent, we + might also consider using dev_archdata for this). See also + rproc_get_by_name() below. + + void rproc_shutdown(struct rproc *rproc) + - Power off a remote processor (previously booted with rproc_boot()). + In case @rproc is still being used by an additional user(s), then + this function will just decrement the power refcount and exit, + without really powering off the device. + Every call to rproc_boot() must (eventually) be accompanied by a call + to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug. + Notes: + - we're not decrementing the rproc's refcount, only the power refcount. + which means that the @rproc handle stays valid even after + rproc_shutdown() returns, and users can still use it with a subsequent + rproc_boot(), if needed. + - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly + because rproc_shutdown() _does not_ decrement the refcount of @rproc. + To decrement the refcount of @rproc, use rproc_put() (but _only_ if + you acquired @rproc using rproc_get_by_name()). + + struct rproc *rproc_get_by_name(const char *name) + - Find an rproc handle using the remote processor's name, and then + boot it. If it's already powered on, then just immediately return + (successfully). Returns the rproc handle on success, and NULL on failure. + This function increments the remote processor's refcount, so always + use rproc_put() to decrement it back once rproc isn't needed anymore. + Note: currently rproc_get_by_name() and rproc_put() are not used anymore + by the rpmsg bus and its drivers. We need to scrutinize the use cases + that still need them, and see if we can migrate them to use the non + name-based boot/shutdown interface. + + void rproc_put(struct rproc *rproc) + - Decrement @rproc's power refcount and shut it down if it reaches zero + (essentially by just calling rproc_shutdown), and then decrement @rproc's + validity refcount too. + After this function returns, @rproc may _not_ be used anymore, and its + handle should be considered invalid. + This function should be called _iff_ the @rproc handle was grabbed by + calling rproc_get_by_name(). + +3. Typical usage + +#include <linux/remoteproc.h> + +/* in case we were given a valid 'rproc' handle */ +int dummy_rproc_example(struct rproc *my_rproc) +{ + int ret; + + /* let's power on and boot our remote processor */ + ret = rproc_boot(my_rproc); + if (ret) { + /* + * something went wrong. handle it and leave. + */ + } + + /* + * our remote processor is now powered on... give it some work + */ + + /* let's shut it down now */ + rproc_shutdown(my_rproc); +} + +4. API for implementors + + struct rproc *rproc_alloc(struct device *dev, const char *name, + const struct rproc_ops *ops, + const char *firmware, int len) + - Allocate a new remote processor handle, but don't register + it yet. Required parameters are the underlying device, the + name of this remote processor, platform-specific ops handlers, + the name of the firmware to boot this rproc with, and the + length of private data needed by the allocating rproc driver (in bytes). + + This function should be used by rproc implementations during + initialization of the remote processor. + After creating an rproc handle using this function, and when ready, + implementations should then call rproc_register() to complete + the registration of the remote processor. + On success, the new rproc is returned, and on failure, NULL. + + Note: _never_ directly deallocate @rproc, even if it was not registered + yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free(). + + void rproc_free(struct rproc *rproc) + - Free an rproc handle that was allocated by rproc_alloc. + This function should _only_ be used if @rproc was only allocated, + but not registered yet. + If @rproc was already successfully registered (by calling + rproc_register()), then use rproc_unregister() instead. + + int rproc_register(struct rproc *rproc) + - Register @rproc with the remoteproc framework, after it has been + allocated with rproc_alloc(). + This is called by the platform-specific rproc implementation, whenever + a new remote processor device is probed. + Returns 0 on success and an appropriate error code otherwise. + Note: this function initiates an asynchronous firmware loading + context, which will look for virtio devices supported by the rproc's + firmware. + If found, those virtio devices will be created and added, so as a result + of registering this remote processor, additional virtio drivers might get + probed. + + int rproc_unregister(struct rproc *rproc) + - Unregister a remote processor, and decrement its refcount. + If its refcount drops to zero, then @rproc will be freed. If not, + it will be freed later once the last reference is dropped. + + This function should be called when the platform specific rproc + implementation decides to remove the rproc device. it should + _only_ be called if a previous invocation of rproc_register() + has completed successfully. + + After rproc_unregister() returns, @rproc is _not_ valid anymore and + it shouldn't be used. More specifically, don't call rproc_free() + or try to directly free @rproc after rproc_unregister() returns; + none of these are needed, and calling them is a bug. + + Returns 0 on success and -EINVAL if @rproc isn't valid. + +5. Implementation callbacks + +These callbacks should be provided by platform-specific remoteproc +drivers: + +/** + * struct rproc_ops - platform-specific device handlers + * @start: power on the device and boot it + * @stop: power off the device + * @kick: kick a virtqueue (virtqueue id given as a parameter) + */ +struct rproc_ops { + int (*start)(struct rproc *rproc); + int (*stop)(struct rproc *rproc); + void (*kick)(struct rproc *rproc, int vqid); +}; + +Every remoteproc implementation should at least provide the ->start and ->stop +handlers. If rpmsg/virtio functionality is also desired, then the ->kick handler +should be provided as well. + +The ->start() handler takes an rproc handle and should then power on the +device and boot it (use rproc->priv to access platform-specific private data). +The boot address, in case needed, can be found in rproc->bootaddr (remoteproc +core puts there the ELF entry point). +On success, 0 should be returned, and on failure, an appropriate error code. + +The ->stop() handler takes an rproc handle and powers the device down. +On success, 0 is returned, and on failure, an appropriate error code. + +The ->kick() handler takes an rproc handle, and an index of a virtqueue +where new message was placed in. Implementations should interrupt the remote +processor and let it know it has pending messages. Notifying remote processors +the exact virtqueue index to look in is optional: it is easy (and not +too expensive) to go through the existing virtqueues and look for new buffers +in the used rings. + +6. Binary Firmware Structure + +At this point remoteproc only supports ELF32 firmware binaries. However, +it is quite expected that other platforms/devices which we'd want to +support with this framework will be based on different binary formats. + +When those use cases show up, we will have to decouple the binary format +from the framework core, so we can support several binary formats without +duplicating common code. + +When the firmware is parsed, its various segments are loaded to memory +according to the specified device address (might be a physical address +if the remote processor is accessing memory directly). + +In addition to the standard ELF segments, most remote processors would +also include a special section which we call "the resource table". + +The resource table contains system resources that the remote processor +requires before it should be powered on, such as allocation of physically +contiguous memory, or iommu mapping of certain on-chip peripherals. +Remotecore will only power up the device after all the resource table's +requirement are met. + +In addition to system resources, the resource table may also contain +resource entries that publish the existence of supported features +or configurations by the remote processor, such as trace buffers and +supported virtio devices (and their configurations). + +The resource table begins with this header: + +/** + * struct resource_table - firmware resource table header + * @ver: version number + * @num: number of resource entries + * @reserved: reserved (must be zero) + * @offset: array of offsets pointing at the various resource entries + * + * The header of the resource table, as expressed by this structure, + * contains a version number (should we need to change this format in the + * future), the number of available resource entries, and their offsets + * in the table. + */ +struct resource_table { + u32 ver; + u32 num; + u32 reserved[2]; + u32 offset[0]; +} __packed; + +Immediately following this header are the resource entries themselves, +each of which begins with the following resource entry header: + +/** + * struct fw_rsc_hdr - firmware resource entry header + * @type: resource type + * @data: resource data + * + * Every resource entry begins with a 'struct fw_rsc_hdr' header providing + * its @type. The content of the entry itself will immediately follow + * this header, and it should be parsed according to the resource type. + */ +struct fw_rsc_hdr { + u32 type; + u8 data[0]; +} __packed; + +Some resources entries are mere announcements, where the host is informed +of specific remoteproc configuration. Other entries require the host to +do something (e.g. allocate a system resource). Sometimes a negotiation +is expected, where the firmware requests a resource, and once allocated, +the host should provide back its details (e.g. address of an allocated +memory region). + +Here are the various resource types that are currently supported: + +/** + * enum fw_resource_type - types of resource entries + * + * @RSC_CARVEOUT: request for allocation of a physically contiguous + * memory region. + * @RSC_DEVMEM: request to iommu_map a memory-based peripheral. + * @RSC_TRACE: announces the availability of a trace buffer into which + * the remote processor will be writing logs. + * @RSC_VDEV: declare support for a virtio device, and serve as its + * virtio header. + * @RSC_LAST: just keep this one at the end + * + * Please note that these values are used as indices to the rproc_handle_rsc + * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to + * check the validity of an index before the lookup table is accessed, so + * please update it as needed. + */ +enum fw_resource_type { + RSC_CARVEOUT = 0, + RSC_DEVMEM = 1, + RSC_TRACE = 2, + RSC_VDEV = 3, + RSC_LAST = 4, +}; + +For more details regarding a specific resource type, please see its +dedicated structure in include/linux/remoteproc.h. + +We also expect that platform-specific resource entries will show up +at some point. When that happens, we could easily add a new RSC_PLATFORM +type, and hand those resources to the platform-specific rproc driver to handle. + +7. Virtio and remoteproc + +The firmware should provide remoteproc information about virtio devices +that it supports, and their configurations: a RSC_VDEV resource entry +should specify the virtio device id (as in virtio_ids.h), virtio features, +virtio config space, vrings information, etc. + +When a new remote processor is registered, the remoteproc framework +will look for its resource table and will register the virtio devices +it supports. A firmware may support any number of virtio devices, and +of any type (a single remote processor can also easily support several +rpmsg virtio devices this way, if desired). + +Of course, RSC_VDEV resource entries are only good enough for static +allocation of virtio devices. Dynamic allocations will also be made possible +using the rpmsg bus (similar to how we already do dynamic allocations of +rpmsg channels; read more about it in rpmsg.txt). diff --git a/Documentation/rpmsg.txt b/Documentation/rpmsg.txt new file mode 100644 index 000000000000..409d9f964c5b --- /dev/null +++ b/Documentation/rpmsg.txt @@ -0,0 +1,293 @@ +Remote Processor Messaging (rpmsg) Framework + +Note: this document describes the rpmsg bus and how to write rpmsg drivers. +To learn how to add rpmsg support for new platforms, check out remoteproc.txt +(also a resident of Documentation/). + +1. Introduction + +Modern SoCs typically employ heterogeneous remote processor devices in +asymmetric multiprocessing (AMP) configurations, which may be running +different instances of operating system, whether it's Linux or any other +flavor of real-time OS. + +OMAP4, for example, has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP. +Typically, the dual cortex-A9 is running Linux in a SMP configuration, +and each of the other three cores (two M3 cores and a DSP) is running +its own instance of RTOS in an AMP configuration. + +Typically AMP remote processors employ dedicated DSP codecs and multimedia +hardware accelerators, and therefore are often used to offload CPU-intensive +multimedia tasks from the main application processor. + +These remote processors could also be used to control latency-sensitive +sensors, drive random hardware blocks, or just perform background tasks +while the main CPU is idling. + +Users of those remote processors can either be userland apps (e.g. multimedia +frameworks talking with remote OMX components) or kernel drivers (controlling +hardware accessible only by the remote processor, reserving kernel-controlled +resources on behalf of the remote processor, etc..). + +Rpmsg is a virtio-based messaging bus that allows kernel drivers to communicate +with remote processors available on the system. In turn, drivers could then +expose appropriate user space interfaces, if needed. + +When writing a driver that exposes rpmsg communication to userland, please +keep in mind that remote processors might have direct access to the +system's physical memory and other sensitive hardware resources (e.g. on +OMAP4, remote cores and hardware accelerators may have direct access to the +physical memory, gpio banks, dma controllers, i2c bus, gptimers, mailbox +devices, hwspinlocks, etc..). Moreover, those remote processors might be +running RTOS where every task can access the entire memory/devices exposed +to the processor. To minimize the risks of rogue (or buggy) userland code +exploiting remote bugs, and by that taking over the system, it is often +desired to limit userland to specific rpmsg channels (see definition below) +it can send messages on, and if possible, minimize how much control +it has over the content of the messages. + +Every rpmsg device is a communication channel with a remote processor (thus +rpmsg devices are called channels). Channels are identified by a textual name +and have a local ("source") rpmsg address, and remote ("destination") rpmsg +address. + +When a driver starts listening on a channel, its rx callback is bound with +a unique rpmsg local address (a 32-bit integer). This way when inbound messages +arrive, the rpmsg core dispatches them to the appropriate driver according +to their destination address (this is done by invoking the driver's rx handler +with the payload of the inbound message). + + +2. User API + + int rpmsg_send(struct rpmsg_channel *rpdev, void *data, int len); + - sends a message across to the remote processor on a given channel. + The caller should specify the channel, the data it wants to send, + and its length (in bytes). The message will be sent on the specified + channel, i.e. its source and destination address fields will be + set to the channel's src and dst addresses. + + In case there are no TX buffers available, the function will block until + one becomes available (i.e. until the remote processor consumes + a tx buffer and puts it back on virtio's used descriptor ring), + or a timeout of 15 seconds elapses. When the latter happens, + -ERESTARTSYS is returned. + The function can only be called from a process context (for now). + Returns 0 on success and an appropriate error value on failure. + + int rpmsg_sendto(struct rpmsg_channel *rpdev, void *data, int len, u32 dst); + - sends a message across to the remote processor on a given channel, + to a destination address provided by the caller. + The caller should specify the channel, the data it wants to send, + its length (in bytes), and an explicit destination address. + The message will then be sent to the remote processor to which the + channel belongs, using the channel's src address, and the user-provided + dst address (thus the channel's dst address will be ignored). + + In case there are no TX buffers available, the function will block until + one becomes available (i.e. until the remote processor consumes + a tx buffer and puts it back on virtio's used descriptor ring), + or a timeout of 15 seconds elapses. When the latter happens, + -ERESTARTSYS is returned. + The function can only be called from a process context (for now). + Returns 0 on success and an appropriate error value on failure. + + int rpmsg_send_offchannel(struct rpmsg_channel *rpdev, u32 src, u32 dst, + void *data, int len); + - sends a message across to the remote processor, using the src and dst + addresses provided by the user. + The caller should specify the channel, the data it wants to send, + its length (in bytes), and explicit source and destination addresses. + The message will then be sent to the remote processor to which the + channel belongs, but the channel's src and dst addresses will be + ignored (and the user-provided addresses will be used instead). + + In case there are no TX buffers available, the function will block until + one becomes available (i.e. until the remote processor consumes + a tx buffer and puts it back on virtio's used descriptor ring), + or a timeout of 15 seconds elapses. When the latter happens, + -ERESTARTSYS is returned. + The function can only be called from a process context (for now). + Returns 0 on success and an appropriate error value on failure. + + int rpmsg_trysend(struct rpmsg_channel *rpdev, void *data, int len); + - sends a message across to the remote processor on a given channel. + The caller should specify the channel, the data it wants to send, + and its length (in bytes). The message will be sent on the specified + channel, i.e. its source and destination address fields will be + set to the channel's src and dst addresses. + + In case there are no TX buffers available, the function will immediately + return -ENOMEM without waiting until one becomes available. + The function can only be called from a process context (for now). + Returns 0 on success and an appropriate error value on failure. + + int rpmsg_trysendto(struct rpmsg_channel *rpdev, void *data, int len, u32 dst) + - sends a message across to the remote processor on a given channel, + to a destination address provided by the user. + The user should specify the channel, the data it wants to send, + its length (in bytes), and an explicit destination address. + The message will then be sent to the remote processor to which the + channel belongs, using the channel's src address, and the user-provided + dst address (thus the channel's dst address will be ignored). + + In case there are no TX buffers available, the function will immediately + return -ENOMEM without waiting until one becomes available. + The function can only be called from a process context (for now). + Returns 0 on success and an appropriate error value on failure. + + int rpmsg_trysend_offchannel(struct rpmsg_channel *rpdev, u32 src, u32 dst, + void *data, int len); + - sends a message across to the remote processor, using source and + destination addresses provided by the user. + The user should specify the channel, the data it wants to send, + its length (in bytes), and explicit source and destination addresses. + The message will then be sent to the remote processor to which the + channel belongs, but the channel's src and dst addresses will be + ignored (and the user-provided addresses will be used instead). + + In case there are no TX buffers available, the function will immediately + return -ENOMEM without waiting until one becomes available. + The function can only be called from a process context (for now). + Returns 0 on success and an appropriate error value on failure. + + struct rpmsg_endpoint *rpmsg_create_ept(struct rpmsg_channel *rpdev, + void (*cb)(struct rpmsg_channel *, void *, int, void *, u32), + void *priv, u32 addr); + - every rpmsg address in the system is bound to an rx callback (so when + inbound messages arrive, they are dispatched by the rpmsg bus using the + appropriate callback handler) by means of an rpmsg_endpoint struct. + + This function allows drivers to create such an endpoint, and by that, + bind a callback, and possibly some private data too, to an rpmsg address + (either one that is known in advance, or one that will be dynamically + assigned for them). + + Simple rpmsg drivers need not call rpmsg_create_ept, because an endpoint + is already created for them when they are probed by the rpmsg bus + (using the rx callback they provide when they registered to the rpmsg bus). + + So things should just work for simple drivers: they already have an + endpoint, their rx callback is bound to their rpmsg address, and when + relevant inbound messages arrive (i.e. messages which their dst address + equals to the src address of their rpmsg channel), the driver's handler + is invoked to process it. + + That said, more complicated drivers might do need to allocate + additional rpmsg addresses, and bind them to different rx callbacks. + To accomplish that, those drivers need to call this function. + Drivers should provide their channel (so the new endpoint would bind + to the same remote processor their channel belongs to), an rx callback + function, an optional private data (which is provided back when the + rx callback is invoked), and an address they want to bind with the + callback. If addr is RPMSG_ADDR_ANY, then rpmsg_create_ept will + dynamically assign them an available rpmsg address (drivers should have + a very good reason why not to always use RPMSG_ADDR_ANY here). + + Returns a pointer to the endpoint on success, or NULL on error. + + void rpmsg_destroy_ept(struct rpmsg_endpoint *ept); + - destroys an existing rpmsg endpoint. user should provide a pointer + to an rpmsg endpoint that was previously created with rpmsg_create_ept(). + + int register_rpmsg_driver(struct rpmsg_driver *rpdrv); + - registers an rpmsg driver with the rpmsg bus. user should provide + a pointer to an rpmsg_driver struct, which contains the driver's + ->probe() and ->remove() functions, an rx callback, and an id_table + specifying the names of the channels this driver is interested to + be probed with. + + void unregister_rpmsg_driver(struct rpmsg_driver *rpdrv); + - unregisters an rpmsg driver from the rpmsg bus. user should provide + a pointer to a previously-registered rpmsg_driver struct. + Returns 0 on success, and an appropriate error value on failure. + + +3. Typical usage + +The following is a simple rpmsg driver, that sends an "hello!" message +on probe(), and whenever it receives an incoming message, it dumps its +content to the console. + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/rpmsg.h> + +static void rpmsg_sample_cb(struct rpmsg_channel *rpdev, void *data, int len, + void *priv, u32 src) +{ + print_hex_dump(KERN_INFO, "incoming message:", DUMP_PREFIX_NONE, + 16, 1, data, len, true); +} + +static int rpmsg_sample_probe(struct rpmsg_channel *rpdev) +{ + int err; + + dev_info(&rpdev->dev, "chnl: 0x%x -> 0x%x\n", rpdev->src, rpdev->dst); + + /* send a message on our channel */ + err = rpmsg_send(rpdev, "hello!", 6); + if (err) { + pr_err("rpmsg_send failed: %d\n", err); + return err; + } + + return 0; +} + +static void __devexit rpmsg_sample_remove(struct rpmsg_channel *rpdev) +{ + dev_info(&rpdev->dev, "rpmsg sample client driver is removed\n"); +} + +static struct rpmsg_device_id rpmsg_driver_sample_id_table[] = { + { .name = "rpmsg-client-sample" }, + { }, +}; +MODULE_DEVICE_TABLE(rpmsg, rpmsg_driver_sample_id_table); + +static struct rpmsg_driver rpmsg_sample_client = { + .drv.name = KBUILD_MODNAME, + .drv.owner = THIS_MODULE, + .id_table = rpmsg_driver_sample_id_table, + .probe = rpmsg_sample_probe, + .callback = rpmsg_sample_cb, + .remove = __devexit_p(rpmsg_sample_remove), +}; + +static int __init init(void) +{ + return register_rpmsg_driver(&rpmsg_sample_client); +} +module_init(init); + +static void __exit fini(void) +{ + unregister_rpmsg_driver(&rpmsg_sample_client); +} +module_exit(fini); + +Note: a similar sample which can be built and loaded can be found +in samples/rpmsg/. + +4. Allocations of rpmsg channels: + +At this point we only support dynamic allocations of rpmsg channels. + +This is possible only with remote processors that have the VIRTIO_RPMSG_F_NS +virtio device feature set. This feature bit means that the remote +processor supports dynamic name service announcement messages. + +When this feature is enabled, creation of rpmsg devices (i.e. channels) +is completely dynamic: the remote processor announces the existence of a +remote rpmsg service by sending a name service message (which contains +the name and rpmsg addr of the remote service, see struct rpmsg_ns_msg). + +This message is then handled by the rpmsg bus, which in turn dynamically +creates and registers an rpmsg channel (which represents the remote service). +If/when a relevant rpmsg driver is registered, it will be immediately probed +by the bus, and can then start sending messages to the remote service. + +The plan is also to add static creation of rpmsg channels via the virtio +config space, but it's not implemented yet. diff --git a/Documentation/scsi/LICENSE.qla2xxx b/Documentation/scsi/LICENSE.qla2xxx index 19e7cd4bba66..ce0fdf349a81 100644 --- a/Documentation/scsi/LICENSE.qla2xxx +++ b/Documentation/scsi/LICENSE.qla2xxx @@ -1,48 +1,11 @@ Copyright (c) 2003-2011 QLogic Corporation -QLogic Linux/ESX Fibre Channel HBA Driver +QLogic Linux FC-FCoE Driver -This program includes a device driver for Linux 2.6/ESX that may be -distributed with QLogic hardware specific firmware binary file. +This program includes a device driver for Linux 3.x. You may modify and redistribute the device driver code under the GNU General Public License (a copy of which is attached hereto as Exhibit A) published by the Free Software Foundation (version 2). -You may redistribute the hardware specific firmware binary file -under the following terms: - - 1. Redistribution of source code (only if applicable), - must retain the above copyright notice, this list of - conditions and the following disclaimer. - - 2. Redistribution in binary form must reproduce the above - copyright notice, this list of conditions and the - following disclaimer in the documentation and/or other - materials provided with the distribution. - - 3. The name of QLogic Corporation may not be used to - endorse or promote products derived from this software - without specific prior written permission - -REGARDLESS OF WHAT LICENSING MECHANISM IS USED OR APPLICABLE, -THIS PROGRAM IS PROVIDED BY QLOGIC CORPORATION "AS IS'' AND ANY -EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR -BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED -TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON -ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY -OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -USER ACKNOWLEDGES AND AGREES THAT USE OF THIS PROGRAM WILL NOT -CREATE OR GIVE GROUNDS FOR A LICENSE BY IMPLICATION, ESTOPPEL, OR -OTHERWISE IN ANY INTELLECTUAL PROPERTY RIGHTS (PATENT, COPYRIGHT, -TRADE SECRET, MASK WORK, OR OTHER PROPRIETARY RIGHT) EMBODIED IN -ANY OTHER QLOGIC HARDWARE OR SOFTWARE EITHER SOLELY OR IN -COMBINATION WITH THIS PROGRAM. EXHIBIT A diff --git a/Documentation/scsi/bfa.txt b/Documentation/scsi/bfa.txt new file mode 100644 index 000000000000..f2d6e9d1791e --- /dev/null +++ b/Documentation/scsi/bfa.txt @@ -0,0 +1,82 @@ +Linux driver for Brocade FC/FCOE adapters + + +Supported Hardware +------------------ + +bfa 3.0.2.2 driver supports all Brocade FC/FCOE adapters. Below is a list of +adapter models with corresponding PCIIDs. + + PCIID Model + + 1657:0013:1657:0014 425 4Gbps dual port FC HBA + 1657:0013:1657:0014 825 8Gbps PCIe dual port FC HBA + 1657:0013:103c:1742 HP 82B 8Gbps PCIedual port FC HBA + 1657:0013:103c:1744 HP 42B 4Gbps dual port FC HBA + 1657:0017:1657:0014 415 4Gbps single port FC HBA + 1657:0017:1657:0014 815 8Gbps single port FC HBA + 1657:0017:103c:1741 HP 41B 4Gbps single port FC HBA + 1657:0017:103c 1743 HP 81B 8Gbps single port FC HBA + 1657:0021:103c:1779 804 8Gbps FC HBA for HP Bladesystem c-class + + 1657:0014:1657:0014 1010 10Gbps single port CNA - FCOE + 1657:0014:1657:0014 1020 10Gbps dual port CNA - FCOE + 1657:0014:1657:0014 1007 10Gbps dual port CNA - FCOE + 1657:0014:1657:0014 1741 10Gbps dual port CNA - FCOE + + 1657:0022:1657:0024 1860 16Gbps FC HBA + 1657:0022:1657:0022 1860 10Gbps CNA - FCOE + + +Firmware download +----------------- + +The latest Firmware package for 3.0.2.2 bfa driver can be found at: + +http://www.brocade.com/services-support/drivers-downloads/adapters/Linux.page + +and then click following respective util package link: + + Version Link + + v3.0.0.0 Linux Adapter Firmware package for RHEL 6.2, SLES 11SP2 + + +Configuration & Management utility download +------------------------------------------- + +The latest driver configuration & management utility for 3.0.2.2 bfa driver can +be found at: + +http://www.brocade.com/services-support/drivers-downloads/adapters/Linux.page + +and then click following respective util pacakge link + + Version Link + + v3.0.2.0 Linux Adapter Firmware package for RHEL 6.2, SLES 11SP2 + + +Documentation +------------- + +The latest Administration's Guide, Installation and Reference Manual, +Troubleshooting Guide, and Release Notes for the corresponding out-of-box +driver can be found at: + +http://www.brocade.com/services-support/drivers-downloads/adapters/Linux.page + +and use the following inbox and out-of-box driver version mapping to find +the corresponding documentation: + + Inbox Version Out-of-box Version + + v3.0.2.2 v3.0.0.0 + + +Support +------- + +For general product and support info, go to the Brocade website at: + +http://www.brocade.com/services-support/index.page diff --git a/Documentation/scsi/libsas.txt b/Documentation/scsi/libsas.txt index aa54f54c4a50..3cc9c7843e15 100644 --- a/Documentation/scsi/libsas.txt +++ b/Documentation/scsi/libsas.txt @@ -398,21 +398,6 @@ struct sas_task { task_done -- callback when the task has finished execution }; -When an external entity, entity other than the LLDD or the -SAS Layer, wants to work with a struct domain_device, it -_must_ call kobject_get() when getting a handle on the -device and kobject_put() when it is done with the device. - -This does two things: - A) implements proper kfree() for the device; - B) increments/decrements the kref for all players: - domain_device - all domain_device's ... (if past an expander) - port - host adapter - pci device - and up the ladder, etc. - DISCOVERY --------- diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt index 12e3a0fb9bec..6f75ba3b8a39 100644 --- a/Documentation/sound/alsa/ALSA-Configuration.txt +++ b/Documentation/sound/alsa/ALSA-Configuration.txt @@ -860,7 +860,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. [Multiple options for each card instance] model - force the model name - position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF) + position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF, + 3 = VIACOMBO, 4 = COMBO) probe_mask - Bitmask to probe codecs (default = -1, meaning all slots) When the bit 8 (0x100) is set, the lower 8 bits are used as the "fixed" codec slots; i.e. the driver probes the @@ -925,6 +926,11 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. (Usually SD_LPIB register is more accurate than the position buffer.) + position_fix=3 is specific to VIA devices. The position + of the capture stream is checked from both LPIB and POSBUF + values. position_fix=4 is a combination mode, using LPIB + for playback and POSBUF for capture. + NB: If you get many "azx_get_response timeout" messages at loading, it's likely a problem of interrupts (e.g. ACPI irq routing). Try to boot with options like "pci=noacpi". Also, you diff --git a/Documentation/sound/alsa/HD-Audio-Models.txt b/Documentation/sound/alsa/HD-Audio-Models.txt index c8c54544abc5..d97d992ced14 100644 --- a/Documentation/sound/alsa/HD-Audio-Models.txt +++ b/Documentation/sound/alsa/HD-Audio-Models.txt @@ -8,37 +8,10 @@ ALC880 5stack-digout 5-jack in back, 2-jack in front, a SPDIF out 6stack 6-jack in back, 2-jack in front 6stack-digout 6-jack with a SPDIF out - w810 3-jack - z71v 3-jack (HP shared SPDIF) - asus 3-jack (ASUS Mobo) - asus-w1v ASUS W1V - asus-dig ASUS with SPDIF out - asus-dig2 ASUS with SPDIF out (using GPIO2) - uniwill 3-jack - fujitsu Fujitsu Laptops (Pi1536) - F1734 2-jack - lg LG laptop (m1 express dual) - lg-lw LG LW20/LW25 laptop - tcl TCL S700 - clevo Clevo laptops (m520G, m665n) - medion Medion Rim 2150 - test for testing/debugging purpose, almost all controls can be - adjusted. Appearing only when compiled with - $CONFIG_SND_DEBUG=y - auto auto-config reading BIOS (default) ALC260 ====== - fujitsu Fujitsu S7020 - acer Acer TravelMate - will Will laptops (PB V7900) - replacer Replacer 672V - favorit100 Maxdata Favorit 100XS - basic fixed pin assignment (old default model) - test for testing/debugging purpose, almost all controls can - adjusted. Appearing only when compiled with - $CONFIG_SND_DEBUG=y - auto auto-config reading BIOS (default) + N/A ALC262 ====== @@ -70,55 +43,7 @@ ALC680 ALC882/883/885/888/889 ====================== - 3stack-dig 3-jack with SPDIF I/O - 6stack-dig 6-jack digital with SPDIF I/O - arima Arima W820Di1 - targa Targa T8, MSI-1049 T8 - asus-a7j ASUS A7J - asus-a7m ASUS A7M - macpro MacPro support - mb5 Macbook 5,1 - macmini3 Macmini 3,1 - mba21 Macbook Air 2,1 - mbp3 Macbook Pro rev3 - imac24 iMac 24'' with jack detection - imac91 iMac 9,1 - w2jc ASUS W2JC - 3stack-2ch-dig 3-jack with SPDIF I/O (ALC883) - alc883-6stack-dig 6-jack digital with SPDIF I/O (ALC883) - 3stack-6ch 3-jack 6-channel - 3stack-6ch-dig 3-jack 6-channel with SPDIF I/O - 6stack-dig-demo 6-jack digital for Intel demo board - acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc) - acer-aspire Acer Aspire 9810 - acer-aspire-4930g Acer Aspire 4930G - acer-aspire-6530g Acer Aspire 6530G - acer-aspire-7730g Acer Aspire 7730G - acer-aspire-8930g Acer Aspire 8930G - medion Medion Laptops - targa-dig Targa/MSI - targa-2ch-dig Targa/MSI with 2-channel - targa-8ch-dig Targa/MSI with 8-channel (MSI GX620) - laptop-eapd 3-jack with SPDIF I/O and EAPD (Clevo M540JE, M550JE) - lenovo-101e Lenovo 101E - lenovo-nb0763 Lenovo NB0763 - lenovo-ms7195-dig Lenovo MS7195 - lenovo-sky Lenovo Sky - haier-w66 Haier W66 - 3stack-hp HP machines with 3stack (Lucknow, Samba boards) - 6stack-dell Dell machines with 6stack (Inspiron 530) - mitac Mitac 8252D - clevo-m540r Clevo M540R (6ch + digital) - clevo-m720 Clevo M720 laptop series - fujitsu-pi2515 Fujitsu AMILO Pi2515 - fujitsu-xa3530 Fujitsu AMILO XA3530 - 3stack-6ch-intel Intel DG33* boards - intel-alc889a Intel IbexPeak with ALC889A - intel-x58 Intel DX58 with ALC889 - asus-p5q ASUS P5Q-EM boards - mb31 MacBook 3,1 - sony-vaio-tt Sony VAIO TT - auto auto-config reading BIOS (default) + N/A ALC861/660 ========== diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt index 91fee3b45fb8..7813c06a5c71 100644 --- a/Documentation/sound/alsa/HD-Audio.txt +++ b/Documentation/sound/alsa/HD-Audio.txt @@ -59,7 +59,12 @@ a case, you can change the default method via `position_fix` option. `position_fix=1` means to use LPIB method explicitly. `position_fix=2` means to use the position-buffer. `position_fix=3` means to use a combination of both methods, needed -for some VIA and ATI controllers. 0 is the default value for all other +for some VIA controllers. The capture stream position is corrected +by comparing both LPIB and position-buffer values. +`position_fix=4` is another combination available for all controllers, +and uses LPIB for the playback and the position-buffer for the capture +streams. +0 is the default value for all other controllers, the automatic check and fallback to LPIB as described in the above. If you get a problem of repeated sounds, this option might help. diff --git a/Documentation/video4linux/CARDLIST.cx23885 b/Documentation/video4linux/CARDLIST.cx23885 index 23584d0c6a75..f316d1816fcd 100644 --- a/Documentation/video4linux/CARDLIST.cx23885 +++ b/Documentation/video4linux/CARDLIST.cx23885 @@ -32,3 +32,4 @@ 31 -> Leadtek Winfast PxDVR3200 H XC4000 [107d:6f39] 32 -> MPX-885 33 -> Mygica X8507 [14f1:8502] + 34 -> TerraTec Cinergy T PCIe Dual [153b:117e] diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88 index eee18e6962b6..fa4b3f947468 100644 --- a/Documentation/video4linux/CARDLIST.cx88 +++ b/Documentation/video4linux/CARDLIST.cx88 @@ -59,7 +59,7 @@ 58 -> Pinnacle PCTV HD 800i [11bd:0051] 59 -> DViCO FusionHDTV 5 PCI nano [18ac:d530] 60 -> Pinnacle Hybrid PCTV [12ab:1788] - 61 -> Leadtek TV2000 XP Global [107d:6f18,107d:6618] + 61 -> Leadtek TV2000 XP Global [107d:6f18,107d:6618,107d:6619] 62 -> PowerColor RA330 [14f1:ea3d] 63 -> Geniatech X8000-MT DVBT [14f1:8852] 64 -> DViCO FusionHDTV DVB-T PRO [18ac:db30] @@ -87,3 +87,5 @@ 86 -> TeVii S464 DVB-S/S2 [d464:9022] 87 -> Leadtek WinFast DTV2000 H PLUS [107d:6f42] 88 -> Leadtek WinFast DTV1800 H (XC4000) [107d:6f38] + 89 -> Leadtek TV2000 XP Global (SC4100) [107d:6f36] + 90 -> Leadtek TV2000 XP Global (XC4100) [107d:6f43] diff --git a/Documentation/video4linux/CARDLIST.em28xx b/Documentation/video4linux/CARDLIST.em28xx index e7be3ac49ead..d99262dda533 100644 --- a/Documentation/video4linux/CARDLIST.em28xx +++ b/Documentation/video4linux/CARDLIST.em28xx @@ -7,7 +7,7 @@ 6 -> Terratec Cinergy 200 USB (em2800) 7 -> Leadtek Winfast USB II (em2800) [0413:6023] 8 -> Kworld USB2800 (em2800) - 9 -> Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas Video to DVD maker (em2820/em2840) [1b80:e302,1b80:e304,2304:0207,2304:021a] + 9 -> Pinnacle Dazzle DVC 90/100/101/107 / Kaiser Baas Video to DVD maker (em2820/em2840) [1b80:e302,1b80:e304,2304:0207,2304:021a,093b:a003] 10 -> Hauppauge WinTV HVR 900 (em2880) [2040:6500] 11 -> Terratec Hybrid XS (em2880) 12 -> Kworld PVR TV 2800 RF (em2820/em2840) @@ -61,7 +61,7 @@ 61 -> Pixelview PlayTV Box 4 USB 2.0 (em2820/em2840) 62 -> Gadmei TVR200 (em2820/em2840) 63 -> Kaiomy TVnPC U2 (em2860) [eb1a:e303] - 64 -> Easy Cap Capture DC-60 (em2860) + 64 -> Easy Cap Capture DC-60 (em2860) [1b80:e309] 65 -> IO-DATA GV-MVP/SZ (em2820/em2840) [04bb:0515] 66 -> Empire dual TV (em2880) 67 -> Terratec Grabby (em2860) [0ccd:0096,0ccd:10AF] @@ -76,7 +76,11 @@ 76 -> KWorld PlusTV 340U or UB435-Q (ATSC) (em2870) [1b80:a340] 77 -> EM2874 Leadership ISDBT (em2874) 78 -> PCTV nanoStick T2 290e (em28174) - 79 -> Terratec Cinergy H5 (em2884) [0ccd:10a2,0ccd:10ad] + 79 -> Terratec Cinergy H5 (em2884) [0ccd:008e,0ccd:00ac,0ccd:10a2,0ccd:10ad] 80 -> PCTV DVB-S2 Stick (460e) (em28174) 81 -> Hauppauge WinTV HVR 930C (em2884) [2040:1605] 82 -> Terratec Cinergy HTC Stick (em2884) [0ccd:00b2] + 83 -> Honestech Vidbox NW03 (em2860) [eb1a:5006] + 84 -> MaxMedia UB425-TC (em2874) [1b80:e425] + 85 -> PCTV QuatroStick (510e) (em2884) [2304:0242] + 86 -> PCTV QuatroStick nano (520e) (em2884) [2013:0251] diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134 index e7ef38a19859..34f3b330e5f4 100644 --- a/Documentation/video4linux/CARDLIST.saa7134 +++ b/Documentation/video4linux/CARDLIST.saa7134 @@ -187,3 +187,4 @@ 186 -> Beholder BeholdTV 501 [5ace:5010] 187 -> Beholder BeholdTV 503 FM [5ace:5030] 188 -> Sensoray 811/911 [6000:0811,6000:0911] +189 -> Kworld PC150-U [17de:a134] diff --git a/Documentation/video4linux/CARDLIST.tuner b/Documentation/video4linux/CARDLIST.tuner index 6323b7a20719..c83f6e418879 100644 --- a/Documentation/video4linux/CARDLIST.tuner +++ b/Documentation/video4linux/CARDLIST.tuner @@ -78,10 +78,11 @@ tuner=77 - TCL tuner MF02GIP-5N-E tuner=78 - Philips FMD1216MEX MK3 Hybrid Tuner tuner=79 - Philips PAL/SECAM multi (FM1216 MK5) tuner=80 - Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough -tuner=81 - Xceive 4000 tuner tuner=81 - Partsnic (Daewoo) PTI-5NF05 tuner=82 - Philips CU1216L tuner=83 - NXP TDA18271 tuner=84 - Sony BTF-Pxn01Z tuner=85 - Philips FQ1236 MK5 tuner=86 - Tena TNF5337 MFD +tuner=87 - Xceive 4000 tuner +tuner=88 - Xceive 5000C tuner diff --git a/Documentation/video4linux/fimc.txt b/Documentation/video4linux/fimc.txt new file mode 100644 index 000000000000..eb049708f3e4 --- /dev/null +++ b/Documentation/video4linux/fimc.txt @@ -0,0 +1,178 @@ +Samsung S5P/EXYNOS4 FIMC driver + +Copyright (C) 2012 Samsung Electronics Co., Ltd. +--------------------------------------------------------------------------- + +The FIMC (Fully Interactive Mobile Camera) device available in Samsung +SoC Application Processors is an integrated camera host interface, color +space converter, image resizer and rotator. It's also capable of capturing +data from LCD controller (FIMD) through the SoC internal writeback data +path. There are multiple FIMC instances in the SoCs (up to 4), having +slightly different capabilities, like pixel alignment constraints, rotator +availability, LCD writeback support, etc. The driver is located at +drivers/media/video/s5p-fimc directory. + +1. Supported SoCs +================= + +S5PC100 (mem-to-mem only), S5PV210, EXYNOS4210 + +2. Supported features +===================== + + - camera parallel interface capture (ITU-R.BT601/565); + - camera serial interface capture (MIPI-CSI2); + - memory-to-memory processing (color space conversion, scaling, mirror + and rotation); + - dynamic pipeline re-configuration at runtime (re-attachment of any FIMC + instance to any parallel video input or any MIPI-CSI front-end); + - runtime PM and system wide suspend/resume + +Not currently supported: + - LCD writeback input + - per frame clock gating (mem-to-mem) + +3. Files partitioning +===================== + +- media device driver + drivers/media/video/s5p-fimc/fimc-mdevice.[ch] + + - camera capture video device driver + drivers/media/video/s5p-fimc/fimc-capture.c + + - MIPI-CSI2 receiver subdev + drivers/media/video/s5p-fimc/mipi-csis.[ch] + + - video post-processor (mem-to-mem) + drivers/media/video/s5p-fimc/fimc-core.c + + - common files + drivers/media/video/s5p-fimc/fimc-core.h + drivers/media/video/s5p-fimc/fimc-reg.h + drivers/media/video/s5p-fimc/regs-fimc.h + +4. User space interfaces +======================== + +4.1. Media device interface + +The driver supports Media Controller API as defined at +http://http://linuxtv.org/downloads/v4l-dvb-apis/media_common.html +The media device driver name is "SAMSUNG S5P FIMC". + +The purpose of this interface is to allow changing assignment of FIMC instances +to the SoC peripheral camera input at runtime and optionally to control internal +connections of the MIPI-CSIS device(s) to the FIMC entities. + +The media device interface allows to configure the SoC for capturing image +data from the sensor through more than one FIMC instance (e.g. for simultaneous +viewfinder and still capture setup). +Reconfiguration is done by enabling/disabling media links created by the driver +during initialization. The internal device topology can be easily discovered +through media entity and links enumeration. + +4.2. Memory-to-memory video node + +V4L2 memory-to-memory interface at /dev/video? device node. This is standalone +video device, it has no media pads. However please note the mem-to-mem and +capture video node operation on same FIMC instance is not allowed. The driver +detects such cases but the applications should prevent them to avoid an +undefined behaviour. + +4.3. Capture video node + +The driver supports V4L2 Video Capture Interface as defined at: +http://linuxtv.org/downloads/v4l-dvb-apis/devices.html + +At the capture and mem-to-mem video nodes only the multi-planar API is +supported. For more details see: +http://linuxtv.org/downloads/v4l-dvb-apis/planar-apis.html + +4.4. Camera capture subdevs + +Each FIMC instance exports a sub-device node (/dev/v4l-subdev?), a sub-device +node is also created per each available and enabled at the platform level +MIPI-CSI receiver device (currently up to two). + +4.5. sysfs + +In order to enable more precise camera pipeline control through the sub-device +API the driver creates a sysfs entry associated with "s5p-fimc-md" platform +device. The entry path is: /sys/platform/devices/s5p-fimc-md/subdev_conf_mode. + +In typical use case there could be a following capture pipeline configuration: +sensor subdev -> mipi-csi subdev -> fimc subdev -> video node + +When we configure these devices through sub-device API at user space, the +configuration flow must be from left to right, and the video node is +configured as last one. +When we don't use sub-device user space API the whole configuration of all +devices belonging to the pipeline is done at the video node driver. +The sysfs entry allows to instruct the capture node driver not to configure +the sub-devices (format, crop), to avoid resetting the subdevs' configuration +when the last configuration steps at the video node is performed. + +For full sub-device control support (subdevs configured at user space before +starting streaming): +# echo "sub-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode + +For V4L2 video node control only (subdevs configured internally by the host +driver): +# echo "vid-dev" > /sys/platform/devices/s5p-fimc-md/subdev_conf_mode +This is a default option. + +5. Device mapping to video and subdev device nodes +================================================== + +There are associated two video device nodes with each device instance in +hardware - video capture and mem-to-mem and additionally a subdev node for +more precise FIMC capture subsystem control. In addition a separate v4l2 +sub-device node is created per each MIPI-CSIS device. + +How to find out which /dev/video? or /dev/v4l-subdev? is assigned to which +device? + +You can either grep through the kernel log to find relevant information, i.e. +# dmesg | grep -i fimc +(note that udev, if present, might still have rearranged the video nodes), + +or retrieve the information from /dev/media? with help of the media-ctl tool: +# media-ctl -p + +6. Platform support +=================== + +The machine code (plat-s5p and arch/arm/mach-*) must select following options + +CONFIG_S5P_DEV_FIMC0 mandatory +CONFIG_S5P_DEV_FIMC1 \ +CONFIG_S5P_DEV_FIMC2 | optional +CONFIG_S5P_DEV_FIMC3 | +CONFIG_S5P_SETUP_FIMC / +CONFIG_S5P_SETUP_MIPIPHY \ +CONFIG_S5P_DEV_CSIS0 | optional for MIPI-CSI interface +CONFIG_S5P_DEV_CSIS1 / + +Except that, relevant s5p_device_fimc? should be registered in the machine code +in addition to a "s5p-fimc-md" platform device to which the media device driver +is bound. The "s5p-fimc-md" device instance is required even if only mem-to-mem +operation is used. + +The description of sensor(s) attached to FIMC/MIPI-CSIS camera inputs should be +passed as the "s5p-fimc-md" device platform_data. The platform data structure +is defined in file include/media/s5p_fimc.h. + +7. Build +======== + +This driver depends on following config options: +PLAT_S5P, +PM_RUNTIME, +I2C, +REGULATOR, +VIDEO_V4L2_SUBDEV_API, + +If the driver is built as a loadable kernel module (CONFIG_VIDEO_SAMSUNG_S5P_FIMC=m) +two modules are created (in addition to the core v4l2 modules): s5p-fimc.ko and +optional s5p-csis.ko (MIPI-CSI receiver subdev). diff --git a/Documentation/video4linux/gspca.txt b/Documentation/video4linux/gspca.txt index f2060f0dc02c..e6c2842407a4 100644 --- a/Documentation/video4linux/gspca.txt +++ b/Documentation/video4linux/gspca.txt @@ -217,6 +217,7 @@ ov534_9 06f8:3003 Hercules Dualpix HD Weblog sonixj 06f8:3004 Hercules Classic Silver sonixj 06f8:3008 Hercules Deluxe Optical Glass pac7302 06f8:3009 Hercules Classic Link +pac7302 06f8:301b Hercules Link nw80x 0728:d001 AVerMedia Camguard spca508 0733:0110 ViewQuest VQ110 spca501 0733:0401 Intel Create and Share diff --git a/Documentation/vm/cleancache.txt b/Documentation/vm/cleancache.txt index d5c615af10ba..142fbb0f325a 100644 --- a/Documentation/vm/cleancache.txt +++ b/Documentation/vm/cleancache.txt @@ -46,10 +46,11 @@ a negative return value indicates failure. A "put_page" will copy a the pool id, a file key, and a page index into the file. (The combination of a pool id, a file key, and an index is sometimes called a "handle".) A "get_page" will copy the page, if found, from cleancache into kernel memory. -A "flush_page" will ensure the page no longer is present in cleancache; -a "flush_inode" will flush all pages associated with the specified file; -and, when a filesystem is unmounted, a "flush_fs" will flush all pages in -all files specified by the given pool id and also surrender the pool id. +An "invalidate_page" will ensure the page no longer is present in cleancache; +an "invalidate_inode" will invalidate all pages associated with the specified +file; and, when a filesystem is unmounted, an "invalidate_fs" will invalidate +all pages in all files specified by the given pool id and also surrender +the pool id. An "init_shared_fs", like init_fs, obtains a pool id but tells cleancache to treat the pool as shared using a 128-bit UUID as a key. On systems @@ -62,12 +63,12 @@ of the kernel (e.g. by "tools" that control cleancache). Or a cleancache implementation can simply disable shared_init by always returning a negative value. -If a get_page is successful on a non-shared pool, the page is flushed (thus -making cleancache an "exclusive" cache). On a shared pool, the page -is NOT flushed on a successful get_page so that it remains accessible to +If a get_page is successful on a non-shared pool, the page is invalidated +(thus making cleancache an "exclusive" cache). On a shared pool, the page +is NOT invalidated on a successful get_page so that it remains accessible to other sharers. The kernel is responsible for ensuring coherency between cleancache (shared or not), the page cache, and the filesystem, using -cleancache flush operations as required. +cleancache invalidate operations as required. Note that cleancache must enforce put-put-get coherency and get-get coherency. For the former, if two puts are made to the same handle but @@ -77,20 +78,20 @@ if a get for a given handle fails, subsequent gets for that handle will never succeed unless preceded by a successful put with that handle. Last, cleancache provides no SMP serialization guarantees; if two -different Linux threads are simultaneously putting and flushing a page +different Linux threads are simultaneously putting and invalidating a page with the same handle, the results are indeterminate. Callers must lock the page to ensure serial behavior. CLEANCACHE PERFORMANCE METRICS -Cleancache monitoring is done by sysfs files in the -/sys/kernel/mm/cleancache directory. The effectiveness of cleancache +If properly configured, monitoring of cleancache is done via debugfs in +the /sys/kernel/debug/mm/cleancache directory. The effectiveness of cleancache can be measured (across all filesystems) with: succ_gets - number of gets that were successful failed_gets - number of gets that failed puts - number of puts attempted (all "succeed") -flushes - number of flushes attempted +invalidates - number of invalidates attempted A backend implementation may provide additional metrics. @@ -143,7 +144,7 @@ systems. The core hooks for cleancache in VFS are in most cases a single line and the minimum set are placed precisely where needed to maintain -coherency (via cleancache_flush operations) between cleancache, +coherency (via cleancache_invalidate operations) between cleancache, the page cache, and disk. All hooks compile into nothingness if cleancache is config'ed off and turn into a function-pointer- compare-to-NULL if config'ed on but no backend claims the ops @@ -184,15 +185,15 @@ or for real kernel-addressable RAM, it makes perfect sense for transcendent memory. 4) Why is non-shared cleancache "exclusive"? And where is the - page "flushed" after a "get"? (Minchan Kim) + page "invalidated" after a "get"? (Minchan Kim) The main reason is to free up space in transcendent memory and -to avoid unnecessary cleancache_flush calls. If you want inclusive, +to avoid unnecessary cleancache_invalidate calls. If you want inclusive, the page can be "put" immediately following the "get". If put-after-get for inclusive becomes common, the interface could -be easily extended to add a "get_no_flush" call. +be easily extended to add a "get_no_invalidate" call. -The flush is done by the cleancache backend implementation. +The invalidate is done by the cleancache backend implementation. 5) What's the performance impact? @@ -222,7 +223,7 @@ Some points for a filesystem to consider: as tmpfs should not enable cleancache) - To ensure coherency/correctness, the FS must ensure that all file removal or truncation operations either go through VFS or - add hooks to do the equivalent cleancache "flush" operations + add hooks to do the equivalent cleancache "invalidate" operations - To ensure coherency/correctness, either inode numbers must be unique across the lifetime of the on-disk file OR the FS must provide an "encode_fh" function. @@ -243,11 +244,11 @@ If cleancache would use the inode virtual address instead of inode/filehandle, the pool id could be eliminated. But, this won't work because cleancache retains pagecache data pages persistently even when the inode has been pruned from the -inode unused list, and only flushes the data page if the file +inode unused list, and only invalidates the data page if the file gets removed/truncated. So if cleancache used the inode kva, there would be potential coherency issues if/when the inode kva is reused for a different file. Alternately, if cleancache -flushed the pages when the inode kva was freed, much of the value +invalidated the pages when the inode kva was freed, much of the value of cleancache would be lost because the cache of pages in cleanache is potentially much larger than the kernel pagecache and is most useful if the pages survive inode cache removal. diff --git a/Documentation/vm/page-types.c b/Documentation/vm/page-types.c index 7445caa26d05..0b13f02d4059 100644 --- a/Documentation/vm/page-types.c +++ b/Documentation/vm/page-types.c @@ -98,6 +98,7 @@ #define KPF_HWPOISON 19 #define KPF_NOPAGE 20 #define KPF_KSM 21 +#define KPF_THP 22 /* [32-] kernel hacking assistances */ #define KPF_RESERVED 32 @@ -147,6 +148,7 @@ static const char *page_flag_names[] = { [KPF_HWPOISON] = "X:hwpoison", [KPF_NOPAGE] = "n:nopage", [KPF_KSM] = "x:ksm", + [KPF_THP] = "t:thp", [KPF_RESERVED] = "r:reserved", [KPF_MLOCKED] = "m:mlocked", diff --git a/Documentation/vm/pagemap.txt b/Documentation/vm/pagemap.txt index df09b9650a81..4600cbe3d6be 100644 --- a/Documentation/vm/pagemap.txt +++ b/Documentation/vm/pagemap.txt @@ -60,6 +60,7 @@ There are three components to pagemap: 19. HWPOISON 20. NOPAGE 21. KSM + 22. THP Short descriptions to the page flags: @@ -97,6 +98,9 @@ Short descriptions to the page flags: 21. KSM identical memory pages dynamically shared between one or more processes +22. THP + contiguous pages which construct transparent hugepages + [IO related page flags] 1. ERROR IO error occurred 3. UPTODATE page has up-to-date data |