summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/RCU/RTFP.txt4
-rw-r--r--Documentation/RCU/rcuref.txt9
-rw-r--r--Documentation/kernel-parameters.txt13
-rw-r--r--Documentation/memory-barriers.txt27
4 files changed, 47 insertions, 6 deletions
diff --git a/Documentation/RCU/RTFP.txt b/Documentation/RCU/RTFP.txt
index 2f0fcb2112d2..f29bcbc463e7 100644
--- a/Documentation/RCU/RTFP.txt
+++ b/Documentation/RCU/RTFP.txt
@@ -2451,8 +2451,8 @@ lot of {Linux} into your technology!!!"
,month="February"
,year="2010"
,note="Available:
-\url{http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589}
-[Viewed March 20, 2011]"
+\url{http://thread.gmane.org/gmane.linux.network/153338}
+[Viewed June 9, 2014]"
,annotation={
Use a pair of list_head structures to support RCU-protected
resizable hash tables.
diff --git a/Documentation/RCU/rcuref.txt b/Documentation/RCU/rcuref.txt
index 141d531aa14b..613033ff2b9b 100644
--- a/Documentation/RCU/rcuref.txt
+++ b/Documentation/RCU/rcuref.txt
@@ -1,5 +1,14 @@
Reference-count design for elements of lists/arrays protected by RCU.
+
+Please note that the percpu-ref feature is likely your first
+stop if you need to combine reference counts and RCU. Please see
+include/linux/percpu-refcount.h for more information. However, in
+those unusual cases where percpu-ref would consume too much memory,
+please read on.
+
+------------------------------------------------------------------------
+
Reference counting on elements of lists which are protected by traditional
reader/writer spinlocks or semaphores are straightforward:
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index c1b9aa8c5a52..6439c9380198 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -2790,6 +2790,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
leaf rcu_node structure. Useful for very large
systems.
+ rcutree.jiffies_till_sched_qs= [KNL]
+ Set required age in jiffies for a
+ given grace period before RCU starts
+ soliciting quiescent-state help from
+ rcu_note_context_switch().
+
rcutree.jiffies_till_first_fqs= [KNL]
Set delay from grace-period initialization to
first attempt to force quiescent states.
@@ -2801,6 +2807,13 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
quiescent states. Units are jiffies, minimum
value is one, and maximum value is HZ.
+ rcutree.rcu_nocb_leader_stride= [KNL]
+ Set the number of NOCB kthread groups, which
+ defaults to the square root of the number of
+ CPUs. Larger numbers reduces the wakeup overhead
+ on the per-CPU grace-period kthreads, but increases
+ that same overhead on each group's leader.
+
rcutree.qhimark= [KNL]
Set threshold of queued RCU callbacks beyond which
batch limiting is disabled.
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index f1dc4a215593..a4de88fb55f0 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -757,10 +757,14 @@ SMP BARRIER PAIRING
When dealing with CPU-CPU interactions, certain types of memory barrier should
always be paired. A lack of appropriate pairing is almost certainly an error.
-A write barrier should always be paired with a data dependency barrier or read
-barrier, though a general barrier would also be viable. Similarly a read
-barrier or a data dependency barrier should always be paired with at least an
-write barrier, though, again, a general barrier is viable:
+General barriers pair with each other, though they also pair with
+most other types of barriers, albeit without transitivity. An acquire
+barrier pairs with a release barrier, but both may also pair with other
+barriers, including of course general barriers. A write barrier pairs
+with a data dependency barrier, an acquire barrier, a release barrier,
+a read barrier, or a general barrier. Similarly a read barrier or a
+data dependency barrier pairs with a write barrier, an acquire barrier,
+a release barrier, or a general barrier:
CPU 1 CPU 2
=============== ===============
@@ -1893,6 +1897,21 @@ between the STORE to indicate the event and the STORE to set TASK_RUNNING:
<general barrier> STORE current->state
LOAD event_indicated
+To repeat, this write memory barrier is present if and only if something
+is actually awakened. To see this, consider the following sequence of
+events, where X and Y are both initially zero:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ X = 1; STORE event_indicated
+ smp_mb(); wake_up();
+ Y = 1; wait_event(wq, Y == 1);
+ wake_up(); load from Y sees 1, no memory barrier
+ load from X might see 0
+
+In contrast, if a wakeup does occur, CPU 2's load from X would be guaranteed
+to see 1.
+
The available waker functions include:
complete();