summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/kernel-parameters.txt3
-rw-r--r--Documentation/lguest/lguest.c178
-rw-r--r--Documentation/networking/00-INDEX2
-rw-r--r--Documentation/networking/ip-sysctl.txt6
-rw-r--r--Documentation/networking/net-modules.txt315
-rw-r--r--Documentation/networking/tc-actions-env-rules.txt29
-rw-r--r--Documentation/scsi/link_power_management_policy.txt19
7 files changed, 159 insertions, 393 deletions
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index 727cc08f0f3b..33121d6c827c 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -1439,7 +1439,8 @@ and is between 256 and 4096 characters. It is defined in the file
Param: "schedule" - profile schedule points.
Param: <number> - step/bucket size as a power of 2 for
statistical time based profiling.
- Param: "sleep" - profile D-state sleeping (millisecs)
+ Param: "sleep" - profile D-state sleeping (millisecs).
+ Requires CONFIG_SCHEDSTATS
Param: "kvm" - profile VM exits.
processor.max_cstate= [HW,ACPI]
diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c
index 5bdc37f81842..f2668390e8f7 100644
--- a/Documentation/lguest/lguest.c
+++ b/Documentation/lguest/lguest.c
@@ -34,25 +34,24 @@
#include <zlib.h>
#include <assert.h>
#include <sched.h>
-/*L:110 We can ignore the 30 include files we need for this program, but I do
- * want to draw attention to the use of kernel-style types.
- *
- * As Linus said, "C is a Spartan language, and so should your naming be." I
- * like these abbreviations and the header we need uses them, so we define them
- * here.
- */
-typedef unsigned long long u64;
-typedef uint32_t u32;
-typedef uint16_t u16;
-typedef uint8_t u8;
#include "linux/lguest_launcher.h"
-#include "linux/pci_ids.h"
#include "linux/virtio_config.h"
#include "linux/virtio_net.h"
#include "linux/virtio_blk.h"
#include "linux/virtio_console.h"
#include "linux/virtio_ring.h"
#include "asm-x86/bootparam.h"
+/*L:110 We can ignore the 38 include files we need for this program, but I do
+ * want to draw attention to the use of kernel-style types.
+ *
+ * As Linus said, "C is a Spartan language, and so should your naming be." I
+ * like these abbreviations, so we define them here. Note that u64 is always
+ * unsigned long long, which works on all Linux systems: this means that we can
+ * use %llu in printf for any u64. */
+typedef unsigned long long u64;
+typedef uint32_t u32;
+typedef uint16_t u16;
+typedef uint8_t u8;
/*:*/
#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
@@ -361,8 +360,8 @@ static unsigned long load_bzimage(int fd)
}
/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
- * come wrapped up in the self-decompressing "bzImage" format. With some funky
- * coding, we can load those, too. */
+ * come wrapped up in the self-decompressing "bzImage" format. With a little
+ * work, we can load those, too. */
static unsigned long load_kernel(int fd)
{
Elf32_Ehdr hdr;
@@ -465,6 +464,7 @@ static unsigned long setup_pagetables(unsigned long mem,
* to know where it is. */
return to_guest_phys(pgdir);
}
+/*:*/
/* Simple routine to roll all the commandline arguments together with spaces
* between them. */
@@ -481,9 +481,9 @@ static void concat(char *dst, char *args[])
dst[len] = '\0';
}
-/* This is where we actually tell the kernel to initialize the Guest. We saw
- * the arguments it expects when we looked at initialize() in lguest_user.c:
- * the base of guest "physical" memory, the top physical page to allow, the
+/*L:185 This is where we actually tell the kernel to initialize the Guest. We
+ * saw the arguments it expects when we looked at initialize() in lguest_user.c:
+ * the base of Guest "physical" memory, the top physical page to allow, the
* top level pagetable and the entry point for the Guest. */
static int tell_kernel(unsigned long pgdir, unsigned long start)
{
@@ -513,13 +513,14 @@ static void add_device_fd(int fd)
/*L:200
* The Waker.
*
- * With a console and network devices, we can have lots of input which we need
- * to process. We could try to tell the kernel what file descriptors to watch,
- * but handing a file descriptor mask through to the kernel is fairly icky.
+ * With console, block and network devices, we can have lots of input which we
+ * need to process. We could try to tell the kernel what file descriptors to
+ * watch, but handing a file descriptor mask through to the kernel is fairly
+ * icky.
*
* Instead, we fork off a process which watches the file descriptors and writes
- * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
- * loop to stop running the Guest. This causes it to return from the
+ * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
+ * stop running the Guest. This causes the Launcher to return from the
* /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
* the LHREQ_BREAK and wake us up again.
*
@@ -545,7 +546,9 @@ static void wake_parent(int pipefd, int lguest_fd)
if (read(pipefd, &fd, sizeof(fd)) == 0)
exit(0);
/* Otherwise it's telling us to change what file
- * descriptors we're to listen to. */
+ * descriptors we're to listen to. Positive means
+ * listen to a new one, negative means stop
+ * listening. */
if (fd >= 0)
FD_SET(fd, &devices.infds);
else
@@ -560,7 +563,7 @@ static int setup_waker(int lguest_fd)
{
int pipefd[2], child;
- /* We create a pipe to talk to the waker, and also so it knows when the
+ /* We create a pipe to talk to the Waker, and also so it knows when the
* Launcher dies (and closes pipe). */
pipe(pipefd);
child = fork();
@@ -568,7 +571,8 @@ static int setup_waker(int lguest_fd)
err(1, "forking");
if (child == 0) {
- /* Close the "writing" end of our copy of the pipe */
+ /* We are the Waker: close the "writing" end of our copy of the
+ * pipe and start waiting for input. */
close(pipefd[1]);
wake_parent(pipefd[0], lguest_fd);
}
@@ -579,12 +583,12 @@ static int setup_waker(int lguest_fd)
return pipefd[1];
}
-/*L:210
+/*
* Device Handling.
*
- * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
+ * When the Guest gives us a buffer, it sends an array of addresses and sizes.
* We need to make sure it's not trying to reach into the Launcher itself, so
- * we have a convenient routine which check it and exits with an error message
+ * we have a convenient routine which checks it and exits with an error message
* if something funny is going on:
*/
static void *_check_pointer(unsigned long addr, unsigned int size,
@@ -601,7 +605,9 @@ static void *_check_pointer(unsigned long addr, unsigned int size,
/* A macro which transparently hands the line number to the real function. */
#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
-/* This function returns the next descriptor in the chain, or vq->vring.num. */
+/* Each buffer in the virtqueues is actually a chain of descriptors. This
+ * function returns the next descriptor in the chain, or vq->vring.num if we're
+ * at the end. */
static unsigned next_desc(struct virtqueue *vq, unsigned int i)
{
unsigned int next;
@@ -680,13 +686,14 @@ static unsigned get_vq_desc(struct virtqueue *vq,
return head;
}
-/* Once we've used one of their buffers, we tell them about it. We'll then
+/* After we've used one of their buffers, we tell them about it. We'll then
* want to send them an interrupt, using trigger_irq(). */
static void add_used(struct virtqueue *vq, unsigned int head, int len)
{
struct vring_used_elem *used;
- /* Get a pointer to the next entry in the used ring. */
+ /* The virtqueue contains a ring of used buffers. Get a pointer to the
+ * next entry in that used ring. */
used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
used->id = head;
used->len = len;
@@ -700,6 +707,7 @@ static void trigger_irq(int fd, struct virtqueue *vq)
{
unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
+ /* If they don't want an interrupt, don't send one. */
if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
return;
@@ -716,8 +724,11 @@ static void add_used_and_trigger(int fd, struct virtqueue *vq,
trigger_irq(fd, vq);
}
-/* Here is the input terminal setting we save, and the routine to restore them
- * on exit so the user can see what they type next. */
+/*
+ * The Console
+ *
+ * Here is the input terminal setting we save, and the routine to restore them
+ * on exit so the user gets their terminal back. */
static struct termios orig_term;
static void restore_term(void)
{
@@ -818,7 +829,10 @@ static void handle_console_output(int fd, struct virtqueue *vq)
}
}
-/* Handling output for network is also simple: we get all the output buffers
+/*
+ * The Network
+ *
+ * Handling output for network is also simple: we get all the output buffers
* and write them (ignoring the first element) to this device's file descriptor
* (stdout). */
static void handle_net_output(int fd, struct virtqueue *vq)
@@ -831,8 +845,9 @@ static void handle_net_output(int fd, struct virtqueue *vq)
while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
if (in)
errx(1, "Input buffers in output queue?");
- /* Check header, but otherwise ignore it (we said we supported
- * no features). */
+ /* Check header, but otherwise ignore it (we told the Guest we
+ * supported no features, so it shouldn't have anything
+ * interesting). */
(void)convert(&iov[0], struct virtio_net_hdr);
len = writev(vq->dev->fd, iov+1, out-1);
add_used_and_trigger(fd, vq, head, len);
@@ -883,7 +898,8 @@ static bool handle_tun_input(int fd, struct device *dev)
return true;
}
-/* This callback ensures we try again, in case we stopped console or net
+/*L:215 This is the callback attached to the network and console input
+ * virtqueues: it ensures we try again, in case we stopped console or net
* delivery because Guest didn't have any buffers. */
static void enable_fd(int fd, struct virtqueue *vq)
{
@@ -919,7 +935,7 @@ static void handle_output(int fd, unsigned long addr)
strnlen(from_guest_phys(addr), guest_limit - addr));
}
-/* This is called when the waker wakes us up: check for incoming file
+/* This is called when the Waker wakes us up: check for incoming file
* descriptors. */
static void handle_input(int fd)
{
@@ -986,8 +1002,7 @@ static struct lguest_device_desc *new_dev_desc(u16 type)
}
/* Each device descriptor is followed by some configuration information.
- * The first byte is a "status" byte for the Guest to report what's happening.
- * After that are fields: u8 type, u8 len, [... len bytes...].
+ * Each configuration field looks like: u8 type, u8 len, [... len bytes...].
*
* This routine adds a new field to an existing device's descriptor. It only
* works for the last device, but that's OK because that's how we use it. */
@@ -1044,14 +1059,17 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
/* Link virtqueue back to device. */
vq->dev = dev;
- /* Set up handler. */
+ /* Set the routine to call when the Guest does something to this
+ * virtqueue. */
vq->handle_output = handle_output;
+
+ /* Set the "Don't Notify Me" flag if we don't have a handler */
if (!handle_output)
vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
}
/* This routine does all the creation and setup of a new device, including
- * caling new_dev_desc() to allocate the descriptor and device memory. */
+ * calling new_dev_desc() to allocate the descriptor and device memory. */
static struct device *new_device(const char *name, u16 type, int fd,
bool (*handle_input)(int, struct device *))
{
@@ -1060,7 +1078,7 @@ static struct device *new_device(const char *name, u16 type, int fd,
/* Append to device list. Prepending to a single-linked list is
* easier, but the user expects the devices to be arranged on the bus
* in command-line order. The first network device on the command line
- * is eth0, the first block device /dev/lgba, etc. */
+ * is eth0, the first block device /dev/vda, etc. */
*devices.lastdev = dev;
dev->next = NULL;
devices.lastdev = &dev->next;
@@ -1104,7 +1122,7 @@ static void setup_console(void)
/* The console needs two virtqueues: the input then the output. When
* they put something the input queue, we make sure we're listening to
* stdin. When they put something in the output queue, we write it to
- * stdout. */
+ * stdout. */
add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
@@ -1252,21 +1270,17 @@ static void setup_tun_net(const char *arg)
verbose("attached to bridge: %s\n", br_name);
}
-
-/*
- * Block device.
+/* Our block (disk) device should be really simple: the Guest asks for a block
+ * number and we read or write that position in the file. Unfortunately, that
+ * was amazingly slow: the Guest waits until the read is finished before
+ * running anything else, even if it could have been doing useful work.
*
- * Serving a block device is really easy: the Guest asks for a block number and
- * we read or write that position in the file.
- *
- * Unfortunately, this is amazingly slow: the Guest waits until the read is
- * finished before running anything else, even if it could be doing useful
- * work. We could use async I/O, except it's reputed to suck so hard that
- * characters actually go missing from your code when you try to use it.
+ * We could use async I/O, except it's reputed to suck so hard that characters
+ * actually go missing from your code when you try to use it.
*
* So we farm the I/O out to thread, and communicate with it via a pipe. */
-/* This hangs off device->priv, with the data. */
+/* This hangs off device->priv. */
struct vblk_info
{
/* The size of the file. */
@@ -1282,8 +1296,14 @@ struct vblk_info
* Launcher triggers interrupt to Guest. */
int done_fd;
};
+/*:*/
-/* This is the core of the I/O thread. It returns true if it did something. */
+/*L:210
+ * The Disk
+ *
+ * Remember that the block device is handled by a separate I/O thread. We head
+ * straight into the core of that thread here:
+ */
static bool service_io(struct device *dev)
{
struct vblk_info *vblk = dev->priv;
@@ -1294,10 +1314,14 @@ static bool service_io(struct device *dev)
struct iovec iov[dev->vq->vring.num];
off64_t off;
+ /* See if there's a request waiting. If not, nothing to do. */
head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
if (head == dev->vq->vring.num)
return false;
+ /* Every block request should contain at least one output buffer
+ * (detailing the location on disk and the type of request) and one
+ * input buffer (to hold the result). */
if (out_num == 0 || in_num == 0)
errx(1, "Bad virtblk cmd %u out=%u in=%u",
head, out_num, in_num);
@@ -1306,10 +1330,15 @@ static bool service_io(struct device *dev)
in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
off = out->sector * 512;
- /* This is how we implement barriers. Pretty poor, no? */
+ /* The block device implements "barriers", where the Guest indicates
+ * that it wants all previous writes to occur before this write. We
+ * don't have a way of asking our kernel to do a barrier, so we just
+ * synchronize all the data in the file. Pretty poor, no? */
if (out->type & VIRTIO_BLK_T_BARRIER)
fdatasync(vblk->fd);
+ /* In general the virtio block driver is allowed to try SCSI commands.
+ * It'd be nice if we supported eject, for example, but we don't. */
if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
fprintf(stderr, "Scsi commands unsupported\n");
in->status = VIRTIO_BLK_S_UNSUPP;
@@ -1375,7 +1404,7 @@ static int io_thread(void *_dev)
/* When this read fails, it means Launcher died, so we follow. */
while (read(vblk->workpipe[0], &c, 1) == 1) {
- /* We acknowledge each request immediately, to reduce latency,
+ /* We acknowledge each request immediately to reduce latency,
* rather than waiting until we've done them all. I haven't
* measured to see if it makes any difference. */
while (service_io(dev))
@@ -1384,12 +1413,14 @@ static int io_thread(void *_dev)
return 0;
}
-/* When the thread says some I/O is done, we interrupt the Guest. */
+/* Now we've seen the I/O thread, we return to the Launcher to see what happens
+ * when the thread tells us it's completed some I/O. */
static bool handle_io_finish(int fd, struct device *dev)
{
char c;
- /* If child died, presumably it printed message. */
+ /* If the I/O thread died, presumably it printed the error, so we
+ * simply exit. */
if (read(dev->fd, &c, 1) != 1)
exit(1);
@@ -1398,7 +1429,7 @@ static bool handle_io_finish(int fd, struct device *dev)
return true;
}
-/* When the Guest submits some I/O, we wake the I/O thread. */
+/* When the Guest submits some I/O, we just need to wake the I/O thread. */
static void handle_virtblk_output(int fd, struct virtqueue *vq)
{
struct vblk_info *vblk = vq->dev->priv;
@@ -1410,7 +1441,7 @@ static void handle_virtblk_output(int fd, struct virtqueue *vq)
exit(1);
}
-/* This creates a virtual block device. */
+/*L:198 This actually sets up a virtual block device. */
static void setup_block_file(const char *filename)
{
int p[2];
@@ -1426,7 +1457,7 @@ static void setup_block_file(const char *filename)
/* The device responds to return from I/O thread. */
dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
- /* The device has a virtqueue. */
+ /* The device has one virtqueue, where the Guest places requests. */
add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
/* Allocate the room for our own bookkeeping */
@@ -1448,7 +1479,8 @@ static void setup_block_file(const char *filename)
/* The I/O thread writes to this end of the pipe when done. */
vblk->done_fd = p[1];
- /* This is how we tell the I/O thread about more work. */
+ /* This is the second pipe, which is how we tell the I/O thread about
+ * more work. */
pipe(vblk->workpipe);
/* Create stack for thread and run it */
@@ -1487,24 +1519,25 @@ static void __attribute__((noreturn)) run_guest(int lguest_fd)
char reason[1024] = { 0 };
read(lguest_fd, reason, sizeof(reason)-1);
errx(1, "%s", reason);
- /* EAGAIN means the waker wanted us to look at some input.
+ /* EAGAIN means the Waker wanted us to look at some input.
* Anything else means a bug or incompatible change. */
} else if (errno != EAGAIN)
err(1, "Running guest failed");
- /* Service input, then unset the BREAK which releases
- * the Waker. */
+ /* Service input, then unset the BREAK to release the Waker. */
handle_input(lguest_fd);
if (write(lguest_fd, args, sizeof(args)) < 0)
err(1, "Resetting break");
}
}
/*
- * This is the end of the Launcher.
+ * This is the end of the Launcher. The good news: we are over halfway
+ * through! The bad news: the most fiendish part of the code still lies ahead
+ * of us.
*
- * But wait! We've seen I/O from the Launcher, and we've seen I/O from the
- * Drivers. If we were to see the Host kernel I/O code, our understanding
- * would be complete... :*/
+ * Are you ready? Take a deep breath and join me in the core of the Host, in
+ * "make Host".
+ :*/
static struct option opts[] = {
{ "verbose", 0, NULL, 'v' },
@@ -1527,7 +1560,7 @@ int main(int argc, char *argv[])
/* Memory, top-level pagetable, code startpoint and size of the
* (optional) initrd. */
unsigned long mem = 0, pgdir, start, initrd_size = 0;
- /* A temporary and the /dev/lguest file descriptor. */
+ /* Two temporaries and the /dev/lguest file descriptor. */
int i, c, lguest_fd;
/* The boot information for the Guest. */
struct boot_params *boot;
@@ -1622,6 +1655,7 @@ int main(int argc, char *argv[])
/* The boot header contains a command line pointer: we put the command
* line after the boot header. */
boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
+ /* We use a simple helper to copy the arguments separated by spaces. */
concat((char *)(boot + 1), argv+optind+2);
/* Boot protocol version: 2.07 supports the fields for lguest. */
diff --git a/Documentation/networking/00-INDEX b/Documentation/networking/00-INDEX
index 153d84d281e6..f5a5e6d3d541 100644
--- a/Documentation/networking/00-INDEX
+++ b/Documentation/networking/00-INDEX
@@ -80,8 +80,6 @@ multicast.txt
- Behaviour of cards under Multicast
ncsa-telnet
- notes on how NCSA telnet (DOS) breaks with MTU discovery enabled.
-net-modules.txt
- - info and "insmod" parameters for all network driver modules.
netdevices.txt
- info on network device driver functions exported to the kernel.
olympic.txt
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index 747a5d15d529..6f7872ba1def 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -184,14 +184,14 @@ tcp_frto - INTEGER
F-RTO is an enhanced recovery algorithm for TCP retransmission
timeouts. It is particularly beneficial in wireless environments
where packet loss is typically due to random radio interference
- rather than intermediate router congestion. FRTO is sender-side
+ rather than intermediate router congestion. F-RTO is sender-side
only modification. Therefore it does not require any support from
the peer, but in a typical case, however, where wireless link is
the local access link and most of the data flows downlink, the
- faraway servers should have FRTO enabled to take advantage of it.
+ faraway servers should have F-RTO enabled to take advantage of it.
If set to 1, basic version is enabled. 2 enables SACK enhanced
F-RTO if flow uses SACK. The basic version can be used also when
- SACK is in use though scenario(s) with it exists where FRTO
+ SACK is in use though scenario(s) with it exists where F-RTO
interacts badly with the packet counting of the SACK enabled TCP
flow.
diff --git a/Documentation/networking/net-modules.txt b/Documentation/networking/net-modules.txt
deleted file mode 100644
index 98c4392dd0fd..000000000000
--- a/Documentation/networking/net-modules.txt
+++ /dev/null
@@ -1,315 +0,0 @@
-Wed 2-Aug-95 <matti.aarnio@utu.fi>
-
- Linux network driver modules
-
- Do not mistake this for "README.modules" at the top-level
- directory! That document tells about modules in general, while
- this one tells only about network device driver modules.
-
- This is a potpourri of INSMOD-time(*) configuration options
- (if such exists) and their default values of various modules
- in the Linux network drivers collection.
-
- Some modules have also hidden (= non-documented) tunable values.
- The choice of not documenting them is based on general belief, that
- the less the user needs to know, the better. (There are things that
- driver developers can use, others should not confuse themselves.)
-
- In many cases it is highly preferred that insmod:ing is done
- ONLY with defining an explicit address for the card, AND BY
- NOT USING AUTO-PROBING!
-
- Now most cards have some explicitly defined base address that they
- are compiled with (to avoid auto-probing, among other things).
- If that compiled value does not match your actual configuration,
- do use the "io=0xXXX" -parameter for the insmod, and give there
- a value matching your environment.
-
- If you are adventurous, you can ask the driver to autoprobe
- by using the "io=0" parameter, however it is a potentially dangerous
- thing to do in a live system. (If you don't know where the
- card is located, you can try autoprobing, and after possible
- crash recovery, insmod with proper IO-address..)
-
- --------------------------
- (*) "INSMOD-time" means when you load module with
- /sbin/insmod you can feed it optional parameters.
- See "man insmod".
- --------------------------
-
-
- 8390 based Network Modules (Paul Gortmaker, Nov 12, 1995)
- --------------------------
-
-(Includes: smc-ultra, ne, wd, 3c503, hp, hp-plus, e2100 and ac3200)
-
-The 8390 series of network drivers now support multiple card systems without
-reloading the same module multiple times (memory efficient!) This is done by
-specifying multiple comma separated values, such as:
-
- insmod 3c503.o io=0x280,0x300,0x330,0x350 xcvr=0,1,0,1
-
-The above would have the one module controlling four 3c503 cards, with card 2
-and 4 using external transceivers. The "insmod" manual describes the usage
-of comma separated value lists.
-
-It is *STRONGLY RECOMMENDED* that you supply "io=" instead of autoprobing.
-If an "io=" argument is not supplied, then the ISA drivers will complain
-about autoprobing being not recommended, and begrudgingly autoprobe for
-a *SINGLE CARD ONLY* -- if you want to use multiple cards you *have* to
-supply an "io=0xNNN,0xQQQ,..." argument.
-
-The ne module is an exception to the above. A NE2000 is essentially an
-8390 chip, some bus glue and some RAM. Because of this, the ne probe is
-more invasive than the rest, and so at boot we make sure the ne probe is
-done last of all the 8390 cards (so that it won't trip over other 8390 based
-cards) With modules we can't ensure that all other non-ne 8390 cards have
-already been found. Because of this, the ne module REQUIRES an "io=0xNNN"
-argument passed in via insmod. It will refuse to autoprobe.
-
-It is also worth noting that auto-IRQ probably isn't as reliable during
-the flurry of interrupt activity on a running machine. Cards such as the
-ne2000 that can't get the IRQ setting from an EEPROM or configuration
-register are probably best supplied with an "irq=M" argument as well.
-
-
-----------------------------------------------------------------------
-Card/Module List - Configurable Parameters and Default Values
-----------------------------------------------------------------------
-
-3c501.c:
- io = 0x280 IO base address
- irq = 5 IRQ
- (Probes ports: 0x280, 0x300)
-
-3c503.c:
- io = 0 (It will complain if you don't supply an "io=0xNNN")
- irq = 0 (IRQ software selected by driver using autoIRQ)
- xcvr = 0 (Use xcvr=1 to select external transceiver.)
- (Probes ports: 0x300, 0x310, 0x330, 0x350, 0x250, 0x280, 0x2A0, 0x2E0)
-
-3c505.c:
- io = 0
- irq = 0
- dma = 6 (not autoprobed)
- (Probes ports: 0x300, 0x280, 0x310)
-
-3c507.c:
- io = 0x300
- irq = 0
- (Probes ports: 0x300, 0x320, 0x340, 0x280)
-
-3c509.c:
- io = 0
- irq = 0
- ( Module load-time probing Works reliably only on EISA, ISA ID-PROBE
- IS NOT RELIABLE! Compile this driver statically into kernel for
- now, if you need it auto-probing on an ISA-bus machine. )
-
-8390.c:
- (No public options, several other modules need this one)
-
-a2065.c:
- Since this is a Zorro board, it supports full autoprobing, even for
- multiple boards. (m68k/Amiga)
-
-ac3200.c:
- io = 0 (Checks 0x1000 to 0x8fff in 0x1000 intervals)
- irq = 0 (Read from config register)
- (EISA probing..)
-
-apricot.c:
- io = 0x300 (Can't be altered!)
- irq = 10
-
-arcnet.c:
- io = 0
- irqnum = 0
- shmem = 0
- num = 0
- DO SET THESE MANUALLY AT INSMOD!
- (When probing, looks at the following possible addresses:
- Suggested ones:
- 0x300, 0x2E0, 0x2F0, 0x2D0
- Other ones:
- 0x200, 0x210, 0x220, 0x230, 0x240, 0x250, 0x260, 0x270,
- 0x280, 0x290, 0x2A0, 0x2B0, 0x2C0,
- 0x310, 0x320, 0x330, 0x340, 0x350, 0x360, 0x370,
- 0x380, 0x390, 0x3A0, 0x3E0, 0x3F0 )
-
-ariadne.c:
- Since this is a Zorro board, it supports full autoprobing, even for
- multiple boards. (m68k/Amiga)
-
-at1700.c:
- io = 0x260
- irq = 0
- (Probes ports: 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300)
-
-atarilance.c:
- Supports full autoprobing. (m68k/Atari)
-
-atp.c: *Not modularized*
- (Probes ports: 0x378, 0x278, 0x3BC;
- fixed IRQs: 5 and 7 )
-
-cops.c:
- io = 0x240
- irq = 5
- nodeid = 0 (AutoSelect = 0, NodeID 1-254 is hand selected.)
- (Probes ports: 0x240, 0x340, 0x200, 0x210, 0x220, 0x230, 0x260,
- 0x2A0, 0x300, 0x310, 0x320, 0x330, 0x350, 0x360)
-
-de4x5.c:
- io = 0x000b
- irq = 10
- is_not_dec = 0 -- For non-DEC card using DEC 21040/21041/21140 chip, set this to 1
- (EISA, and PCI probing)
-
-de600.c:
- de600_debug = 0
- (On port 0x378, irq 7 -- lpt1; compile time configurable)
-
-de620.c:
- bnc = 0, utp = 0 <-- Force media by setting either.
- io = 0x378 (also compile-time configurable)
- irq = 7
-
-depca.c:
- io = 0x200
- irq = 7
- (Probes ports: ISA: 0x300, 0x200;
- EISA: 0x0c00 )
-
-dummy.c:
- No options
-
-e2100.c:
- io = 0 (It will complain if you don't supply an "io=0xNNN")
- irq = 0 (IRQ software selected by driver)
- mem = 0 (Override default shared memory start of 0xd0000)
- xcvr = 0 (Use xcvr=1 to select external transceiver.)
- (Probes ports: 0x300, 0x280, 0x380, 0x220)
-
-eepro.c:
- io = 0x200
- irq = 0
- (Probes ports: 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0x360)
-
-eexpress.c:
- io = 0x300
- irq = 0 (IRQ value read from EEPROM)
- (Probes ports: 0x300, 0x270, 0x320, 0x340)
-
-eql.c:
- (No parameters)
-
-ewrk3.c:
- io = 0x300
- irq = 5
- (With module no autoprobing!
- On EISA-bus does EISA probing.
- Static linkage probes ports on ISA bus:
- 0x100, 0x120, 0x140, 0x160, 0x180, 0x1A0, 0x1C0,
- 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0,
- 0x300, 0x340, 0x360, 0x380, 0x3A0, 0x3C0)
-
-hp-plus.c:
- io = 0 (It will complain if you don't supply an "io=0xNNN")
- irq = 0 (IRQ read from configuration register)
- (Probes ports: 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340)
-
-hp.c:
- io = 0 (It will complain if you don't supply an "io=0xNNN")
- irq = 0 (IRQ software selected by driver using autoIRQ)
- (Probes ports: 0x300, 0x320, 0x340, 0x280, 0x2C0, 0x200, 0x240)
-
-hp100.c:
- hp100_port = 0 (IO-base address)
- (Does EISA-probing, if on EISA-slot;
- On ISA-bus probes all ports from 0x100 thru to 0x3E0
- in increments of 0x020)
-
-hydra.c:
- Since this is a Zorro board, it supports full autoprobing, even for
- multiple boards. (m68k/Amiga)
-
-ibmtr.c:
- io = 0xa20, 0xa24 (autoprobed by default)
- irq = 0 (driver cannot select irq - read from hardware)
- mem = 0 (shared memory base set at 0xd0000 and not yet
- able to override thru mem= parameter.)
-
-lance.c: *Not modularized*
- (PCI, and ISA probing; "CONFIG_PCI" needed for PCI support)
- (Probes ISA ports: 0x300, 0x320, 0x340, 0x360)
-
-loopback.c: *Static kernel component*
-
-ne.c:
- io = 0 (Explicitly *requires* an "io=0xNNN" value)
- irq = 0 (Tries to determine configured IRQ via autoIRQ)
- (Probes ports: 0x300, 0x280, 0x320, 0x340, 0x360)
-
-net_init.c: *Static kernel component*
-
-ni52.c: *Not modularized*
- (Probes ports: 0x300, 0x280, 0x360, 0x320, 0x340
- mems: 0xD0000, 0xD2000, 0xC8000, 0xCA000,
- 0xD4000, 0xD6000, 0xD8000 )
-
-ni65.c: *Not modularized* **16MB MEMORY BARRIER BUG**
- (Probes ports: 0x300, 0x320, 0x340, 0x360)
-
-pi2.c: *Not modularized* (well, NON-STANDARD modularization!)
- Only one card supported at this time.
- (Probes ports: 0x380, 0x300, 0x320, 0x340, 0x360, 0x3A0)
-
-plip.c:
- io = 0
- irq = 0 (by default, uses IRQ 5 for port at 0x3bc, IRQ 7
- for port at 0x378, and IRQ 2 for port at 0x278)
- (Probes ports: 0x278, 0x378, 0x3bc)
-
-ppp.c:
- No options (ppp-2.2+ has some, this is based on non-dynamic
- version from ppp-2.1.2d)
-
-seeq8005.c: *Not modularized*
- (Probes ports: 0x300, 0x320, 0x340, 0x360)
-
-skeleton.c: *Skeleton*
-
-slhc.c:
- No configuration parameters
-
-slip.c:
- slip_maxdev = 256 (default value from SL_NRUNIT on slip.h)
-
-
-smc-ultra.c:
- io = 0 (It will complain if you don't supply an "io=0xNNN")
- irq = 0 (IRQ val. read from EEPROM)
- (Probes ports: 0x200, 0x220, 0x240, 0x280, 0x300, 0x340, 0x380)
-
-tulip.c: *Partial modularization*
- (init-time memory allocation makes problems..)
-
-tunnel.c:
- No insmod parameters
-
-wavelan.c:
- io = 0x390 (Settable, but change not recommended)
- irq = 0 (Not honoured, if changed..)
-
-wd.c:
- io = 0 (It will complain if you don't supply an "io=0xNNN")
- irq = 0 (IRQ val. read from EEPROM, ancient cards use autoIRQ)
- mem = 0 (Force shared-memory on address 0xC8000, or whatever..)
- mem_end = 0 (Force non-std. mem. size via supplying mem_end val.)
- (eg. for 32k WD8003EBT, use mem=0xd0000 mem_end=0xd8000)
- (Probes ports: 0x300, 0x280, 0x380, 0x240)
-
-znet.c: *Not modularized*
- (Only one device on Zenith Z-Note (notebook?) systems,
- configuration information from (EE)PROM)
diff --git a/Documentation/networking/tc-actions-env-rules.txt b/Documentation/networking/tc-actions-env-rules.txt
new file mode 100644
index 000000000000..01e716d185f4
--- /dev/null
+++ b/Documentation/networking/tc-actions-env-rules.txt
@@ -0,0 +1,29 @@
+
+The "enviromental" rules for authors of any new tc actions are:
+
+1) If you stealeth or borroweth any packet thou shalt be branching
+from the righteous path and thou shalt cloneth.
+
+For example if your action queues a packet to be processed later
+or intentionaly branches by redirecting a packet then you need to
+clone the packet.
+There are certain fields in the skb tc_verd that need to be reset so we
+avoid loops etc. A few are generic enough so much so that skb_act_clone()
+resets them for you. So invoke skb_act_clone() rather than skb_clone()
+
+2) If you munge any packet thou shalt call pskb_expand_head in the case
+someone else is referencing the skb. After that you "own" the skb.
+You must also tell us if it is ok to munge the packet (TC_OK2MUNGE),
+this way any action downstream can stomp on the packet.
+
+3) dropping packets you dont own is a nono. You simply return
+TC_ACT_SHOT to the caller and they will drop it.
+
+The "enviromental" rules for callers of actions (qdiscs etc) are:
+
+*) thou art responsible for freeing anything returned as being
+TC_ACT_SHOT/STOLEN/QUEUED. If none of TC_ACT_SHOT/STOLEN/QUEUED is
+returned then all is great and you dont need to do anything.
+
+Post on netdev if something is unclear.
+
diff --git a/Documentation/scsi/link_power_management_policy.txt b/Documentation/scsi/link_power_management_policy.txt
new file mode 100644
index 000000000000..d18993d01884
--- /dev/null
+++ b/Documentation/scsi/link_power_management_policy.txt
@@ -0,0 +1,19 @@
+This parameter allows the user to set the link (interface) power management.
+There are 3 possible options:
+
+Value Effect
+----------------------------------------------------------------------------
+min_power Tell the controller to try to make the link use the
+ least possible power when possible. This may
+ sacrifice some performance due to increased latency
+ when coming out of lower power states.
+
+max_performance Generally, this means no power management. Tell
+ the controller to have performance be a priority
+ over power management.
+
+medium_power Tell the controller to enter a lower power state
+ when possible, but do not enter the lowest power
+ state, thus improving latency over min_power setting.
+
+