diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/atomic_bitops.txt | 7 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/power/mti,mips-cpc.txt | 8 | ||||
-rw-r--r-- | Documentation/features/sched/membarrier-sync-core/arch-support.txt | 62 | ||||
-rw-r--r-- | Documentation/locking/mutex-design.txt | 49 |
4 files changed, 93 insertions, 33 deletions
diff --git a/Documentation/atomic_bitops.txt b/Documentation/atomic_bitops.txt index 5550bfdcce5f..be70b32c95d9 100644 --- a/Documentation/atomic_bitops.txt +++ b/Documentation/atomic_bitops.txt @@ -58,7 +58,12 @@ Like with atomic_t, the rule of thumb is: - RMW operations that have a return value are fully ordered. -Except for test_and_set_bit_lock() which has ACQUIRE semantics and + - RMW operations that are conditional are unordered on FAILURE, + otherwise the above rules apply. In the case of test_and_{}_bit() operations, + if the bit in memory is unchanged by the operation then it is deemed to have + failed. + +Except for a successful test_and_set_bit_lock() which has ACQUIRE semantics and clear_bit_unlock() which has RELEASE semantics. Since a platform only has a single means of achieving atomic operations diff --git a/Documentation/devicetree/bindings/power/mti,mips-cpc.txt b/Documentation/devicetree/bindings/power/mti,mips-cpc.txt new file mode 100644 index 000000000000..c6b82511ae8a --- /dev/null +++ b/Documentation/devicetree/bindings/power/mti,mips-cpc.txt @@ -0,0 +1,8 @@ +Binding for MIPS Cluster Power Controller (CPC). + +This binding allows a system to specify where the CPC registers are +located. + +Required properties: +compatible : Should be "mti,mips-cpc". +regs: Should describe the address & size of the CPC register region. diff --git a/Documentation/features/sched/membarrier-sync-core/arch-support.txt b/Documentation/features/sched/membarrier-sync-core/arch-support.txt new file mode 100644 index 000000000000..2c815a7f1ba7 --- /dev/null +++ b/Documentation/features/sched/membarrier-sync-core/arch-support.txt @@ -0,0 +1,62 @@ +# +# Feature name: membarrier-sync-core +# Kconfig: ARCH_HAS_MEMBARRIER_SYNC_CORE +# description: arch supports core serializing membarrier +# +# Architecture requirements +# +# * arm64 +# +# Rely on eret context synchronization when returning from IPI handler, and +# when returning to user-space. +# +# * x86 +# +# x86-32 uses IRET as return from interrupt, which takes care of the IPI. +# However, it uses both IRET and SYSEXIT to go back to user-space. The IRET +# instruction is core serializing, but not SYSEXIT. +# +# x86-64 uses IRET as return from interrupt, which takes care of the IPI. +# However, it can return to user-space through either SYSRETL (compat code), +# SYSRETQ, or IRET. +# +# Given that neither SYSRET{L,Q}, nor SYSEXIT, are core serializing, we rely +# instead on write_cr3() performed by switch_mm() to provide core serialization +# after changing the current mm, and deal with the special case of kthread -> +# uthread (temporarily keeping current mm into active_mm) by issuing a +# sync_core_before_usermode() in that specific case. +# + ----------------------- + | arch |status| + ----------------------- + | alpha: | TODO | + | arc: | TODO | + | arm: | TODO | + | arm64: | ok | + | blackfin: | TODO | + | c6x: | TODO | + | cris: | TODO | + | frv: | TODO | + | h8300: | TODO | + | hexagon: | TODO | + | ia64: | TODO | + | m32r: | TODO | + | m68k: | TODO | + | metag: | TODO | + | microblaze: | TODO | + | mips: | TODO | + | mn10300: | TODO | + | nios2: | TODO | + | openrisc: | TODO | + | parisc: | TODO | + | powerpc: | TODO | + | s390: | TODO | + | score: | TODO | + | sh: | TODO | + | sparc: | TODO | + | tile: | TODO | + | um: | TODO | + | unicore32: | TODO | + | x86: | ok | + | xtensa: | TODO | + ----------------------- diff --git a/Documentation/locking/mutex-design.txt b/Documentation/locking/mutex-design.txt index 60c482df1a38..818aca19612f 100644 --- a/Documentation/locking/mutex-design.txt +++ b/Documentation/locking/mutex-design.txt @@ -21,37 +21,23 @@ Implementation -------------- Mutexes are represented by 'struct mutex', defined in include/linux/mutex.h -and implemented in kernel/locking/mutex.c. These locks use a three -state atomic counter (->count) to represent the different possible -transitions that can occur during the lifetime of a lock: - - 1: unlocked - 0: locked, no waiters - negative: locked, with potential waiters - -In its most basic form it also includes a wait-queue and a spinlock -that serializes access to it. CONFIG_SMP systems can also include -a pointer to the lock task owner (->owner) as well as a spinner MCS -lock (->osq), both described below in (ii). +and implemented in kernel/locking/mutex.c. These locks use an atomic variable +(->owner) to keep track of the lock state during its lifetime. Field owner +actually contains 'struct task_struct *' to the current lock owner and it is +therefore NULL if not currently owned. Since task_struct pointers are aligned +at at least L1_CACHE_BYTES, low bits (3) are used to store extra state (e.g., +if waiter list is non-empty). In its most basic form it also includes a +wait-queue and a spinlock that serializes access to it. Furthermore, +CONFIG_MUTEX_SPIN_ON_OWNER=y systems use a spinner MCS lock (->osq), described +below in (ii). When acquiring a mutex, there are three possible paths that can be taken, depending on the state of the lock: -(i) fastpath: tries to atomically acquire the lock by decrementing the - counter. If it was already taken by another task it goes to the next - possible path. This logic is architecture specific. On x86-64, the - locking fastpath is 2 instructions: - - 0000000000000e10 <mutex_lock>: - e21: f0 ff 0b lock decl (%rbx) - e24: 79 08 jns e2e <mutex_lock+0x1e> - - the unlocking fastpath is equally tight: - - 0000000000000bc0 <mutex_unlock>: - bc8: f0 ff 07 lock incl (%rdi) - bcb: 7f 0a jg bd7 <mutex_unlock+0x17> - +(i) fastpath: tries to atomically acquire the lock by cmpxchg()ing the owner with + the current task. This only works in the uncontended case (cmpxchg() checks + against 0UL, so all 3 state bits above have to be 0). If the lock is + contended it goes to the next possible path. (ii) midpath: aka optimistic spinning, tries to spin for acquisition while the lock owner is running and there are no other tasks ready @@ -143,11 +129,10 @@ Test if the mutex is taken: Disadvantages ------------- -Unlike its original design and purpose, 'struct mutex' is larger than -most locks in the kernel. E.g: on x86-64 it is 40 bytes, almost twice -as large as 'struct semaphore' (24 bytes) and tied, along with rwsems, -for the largest lock in the kernel. Larger structure sizes mean more -CPU cache and memory footprint. +Unlike its original design and purpose, 'struct mutex' is among the largest +locks in the kernel. E.g: on x86-64 it is 32 bytes, where 'struct semaphore' +is 24 bytes and rw_semaphore is 40 bytes. Larger structure sizes mean more CPU +cache and memory footprint. When to use mutexes ------------------- |