diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/sysfs-block | 13 | ||||
-rw-r--r-- | Documentation/ABI/testing/sysfs-bus-rbd | 7 | ||||
-rw-r--r-- | Documentation/DocBook/uio-howto.tmpl | 7 | ||||
-rw-r--r-- | Documentation/blockdev/cciss.txt | 14 | ||||
-rw-r--r-- | Documentation/devicetree/bindings/vendor-prefixes.txt | 1 | ||||
-rw-r--r-- | Documentation/feature-removal-schedule.txt | 9 | ||||
-rw-r--r-- | Documentation/filesystems/btrfs.txt | 4 | ||||
-rw-r--r-- | Documentation/i2c/ten-bit-addresses | 36 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 9 | ||||
-rw-r--r-- | Documentation/networking/ip-sysctl.txt | 12 | ||||
-rw-r--r-- | Documentation/power/devices.txt | 111 | ||||
-rw-r--r-- | Documentation/power/runtime_pm.txt | 40 | ||||
-rw-r--r-- | Documentation/serial/serial-rs485.txt | 14 | ||||
-rw-r--r-- | Documentation/sound/alsa/HD-Audio.txt | 8 | ||||
-rw-r--r-- | Documentation/sound/alsa/soc/machine.txt | 6 | ||||
-rw-r--r-- | Documentation/usb/linux-cdc-acm.inf | 4 | ||||
-rw-r--r-- | Documentation/virtual/kvm/api.txt | 41 |
17 files changed, 196 insertions, 140 deletions
diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block index 2b5d56127fce..c1eb41cb9876 100644 --- a/Documentation/ABI/testing/sysfs-block +++ b/Documentation/ABI/testing/sysfs-block @@ -206,16 +206,3 @@ Description: when a discarded area is read the discard_zeroes_data parameter will be set to one. Otherwise it will be 0 and the result of reading a discarded area is undefined. -What: /sys/block/<disk>/alias -Date: Aug 2011 -Contact: Nao Nishijima <nao.nishijima.xt@hitachi.com> -Description: - A raw device name of a disk does not always point a same disk - each boot-up time. Therefore, users have to use persistent - device names, which udev creates when the kernel finds a disk, - instead of raw device name. However, kernel doesn't show those - persistent names on its messages (e.g. dmesg). - This file can store an alias of the disk and it would be - appeared in kernel messages if it is set. A disk can have an - alias which length is up to 255bytes. Users can use alphabets, - numbers, "-" and "_" in alias name. This file is writeonce. diff --git a/Documentation/ABI/testing/sysfs-bus-rbd b/Documentation/ABI/testing/sysfs-bus-rbd index fa72ccb2282e..dbedafb095e2 100644 --- a/Documentation/ABI/testing/sysfs-bus-rbd +++ b/Documentation/ABI/testing/sysfs-bus-rbd @@ -57,13 +57,6 @@ create_snap $ echo <snap-name> > /sys/bus/rbd/devices/<dev-id>/snap_create -rollback_snap - - Rolls back data to the specified snapshot. This goes over the entire - list of rados blocks and sends a rollback command to each. - - $ echo <snap-name> > /sys/bus/rbd/devices/<dev-id>/snap_rollback - snap_* A directory per each snapshot diff --git a/Documentation/DocBook/uio-howto.tmpl b/Documentation/DocBook/uio-howto.tmpl index 54883de5d5f9..ac3d0018140c 100644 --- a/Documentation/DocBook/uio-howto.tmpl +++ b/Documentation/DocBook/uio-howto.tmpl @@ -521,6 +521,11 @@ Here's a description of the fields of <varname>struct uio_mem</varname>: <itemizedlist> <listitem><para> +<varname>const char *name</varname>: Optional. Set this to help identify +the memory region, it will show up in the corresponding sysfs node. +</para></listitem> + +<listitem><para> <varname>int memtype</varname>: Required if the mapping is used. Set this to <varname>UIO_MEM_PHYS</varname> if you you have physical memory on your card to be mapped. Use <varname>UIO_MEM_LOGICAL</varname> for logical @@ -553,7 +558,7 @@ instead to remember such an address. </itemizedlist> <para> -Please do not touch the <varname>kobj</varname> element of +Please do not touch the <varname>map</varname> element of <varname>struct uio_mem</varname>! It is used by the UIO framework to set up sysfs files for this mapping. Simply leave it alone. </para> diff --git a/Documentation/blockdev/cciss.txt b/Documentation/blockdev/cciss.txt index 71464e09ec18..b79d0a13e7cd 100644 --- a/Documentation/blockdev/cciss.txt +++ b/Documentation/blockdev/cciss.txt @@ -98,14 +98,12 @@ You must enable "SCSI tape drive support for Smart Array 5xxx" and "SCSI support" in your kernel configuration to be able to use SCSI tape drives with your Smart Array 5xxx controller. -Additionally, note that the driver will not engage the SCSI core at init -time. The driver must be directed to dynamically engage the SCSI core via -the /proc filesystem entry which the "block" side of the driver creates as -/proc/driver/cciss/cciss* at runtime. This is because at driver init time, -the SCSI core may not yet be initialized (because the driver is a block -driver) and attempting to register it with the SCSI core in such a case -would cause a hang. This is best done via an initialization script -(typically in /etc/init.d, but could vary depending on distribution). +Additionally, note that the driver will engage the SCSI core at init +time if any tape drives or medium changers are detected. The driver may +also be directed to dynamically engage the SCSI core via the /proc filesystem +entry which the "block" side of the driver creates as +/proc/driver/cciss/cciss* at runtime. This is best done via a script. + For example: for x in /proc/driver/cciss/cciss[0-9]* diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt index e8552782b440..874921e97802 100644 --- a/Documentation/devicetree/bindings/vendor-prefixes.txt +++ b/Documentation/devicetree/bindings/vendor-prefixes.txt @@ -33,6 +33,7 @@ qcom Qualcomm, Inc. ramtron Ramtron International samsung Samsung Semiconductor schindler Schindler +sil Silicon Image simtek sirf SiRF Technology, Inc. stericsson ST-Ericsson diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 3d849122b5b1..165019d527e6 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -362,15 +362,6 @@ Who: anybody or Florian Mickler <florian@mickler.org> ---------------------------- -What: KVM paravirt mmu host support -When: January 2011 -Why: The paravirt mmu host support is slower than non-paravirt mmu, both - on newer and older hardware. It is already not exposed to the guest, - and kept only for live migration purposes. -Who: Avi Kivity <avi@redhat.com> - ----------------------------- - What: iwlwifi 50XX module parameters When: 3.0 Why: The "..50" modules parameters were used to configure 5000 series and diff --git a/Documentation/filesystems/btrfs.txt b/Documentation/filesystems/btrfs.txt index 64087c34327f..7671352216f1 100644 --- a/Documentation/filesystems/btrfs.txt +++ b/Documentation/filesystems/btrfs.txt @@ -63,8 +63,8 @@ IRC network. Userspace tools for creating and manipulating Btrfs file systems are available from the git repository at the following location: - http://git.kernel.org/?p=linux/kernel/git/mason/btrfs-progs-unstable.git - git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-progs-unstable.git + http://git.kernel.org/?p=linux/kernel/git/mason/btrfs-progs.git + git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-progs.git These include the following tools: diff --git a/Documentation/i2c/ten-bit-addresses b/Documentation/i2c/ten-bit-addresses index e9890709c508..cdfe13901b99 100644 --- a/Documentation/i2c/ten-bit-addresses +++ b/Documentation/i2c/ten-bit-addresses @@ -1,22 +1,24 @@ The I2C protocol knows about two kinds of device addresses: normal 7 bit addresses, and an extended set of 10 bit addresses. The sets of addresses do not intersect: the 7 bit address 0x10 is not the same as the 10 bit -address 0x10 (though a single device could respond to both of them). You -select a 10 bit address by adding an extra byte after the address -byte: - S Addr7 Rd/Wr .... -becomes - S 11110 Addr10 Rd/Wr -S is the start bit, Rd/Wr the read/write bit, and if you count the number -of bits, you will see the there are 8 after the S bit for 7 bit addresses, -and 16 after the S bit for 10 bit addresses. +address 0x10 (though a single device could respond to both of them). -WARNING! The current 10 bit address support is EXPERIMENTAL. There are -several places in the code that will cause SEVERE PROBLEMS with 10 bit -addresses, even though there is some basic handling and hooks. Also, -almost no supported adapter handles the 10 bit addresses correctly. +I2C messages to and from 10-bit address devices have a different format. +See the I2C specification for the details. -As soon as a real 10 bit address device is spotted 'in the wild', we -can and will add proper support. Right now, 10 bit address devices -are defined by the I2C protocol, but we have never seen a single device -which supports them. +The current 10 bit address support is minimal. It should work, however +you can expect some problems along the way: +* Not all bus drivers support 10-bit addresses. Some don't because the + hardware doesn't support them (SMBus doesn't require 10-bit address + support for example), some don't because nobody bothered adding the + code (or it's there but not working properly.) Software implementation + (i2c-algo-bit) is known to work. +* Some optional features do not support 10-bit addresses. This is the + case of automatic detection and instantiation of devices by their, + drivers, for example. +* Many user-space packages (for example i2c-tools) lack support for + 10-bit addresses. + +Note that 10-bit address devices are still pretty rare, so the limitations +listed above could stay for a long time, maybe even forever if nobody +needs them to be fixed. diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index fd5c913c33c1..e35c1efffdfd 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -315,12 +315,12 @@ bytes respectively. Such letter suffixes can also be entirely omitted. CPU-intensive style benchmark, and it can vary highly in a microbenchmark depending on workload and compiler. - 1: only for 32-bit processes - 2: only for 64-bit processes + 32: only for 32-bit processes + 64: only for 64-bit processes on: enable for both 32- and 64-bit processes off: disable for both 32- and 64-bit processes - amd_iommu= [HW,X86-84] + amd_iommu= [HW,X86-64] Pass parameters to the AMD IOMMU driver in the system. Possible values are: fullflush - enable flushing of IO/TLB entries when @@ -1178,9 +1178,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted. kvm.ignore_msrs=[KVM] Ignore guest accesses to unhandled MSRs. Default is 0 (don't ignore, but inject #GP) - kvm.oos_shadow= [KVM] Disable out-of-sync shadow paging. - Default is 1 (enabled) - kvm.mmu_audit= [KVM] This is a R/W parameter which allows audit KVM MMU at runtime. Default is 0 (off) diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index cb7f3148035d..589f2da5d545 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt @@ -20,7 +20,7 @@ ip_no_pmtu_disc - BOOLEAN default FALSE min_pmtu - INTEGER - default 562 - minimum discovered Path MTU + default 552 - minimum discovered Path MTU route/max_size - INTEGER Maximum number of routes allowed in the kernel. Increase @@ -282,11 +282,11 @@ tcp_max_ssthresh - INTEGER Default: 0 (off) tcp_max_syn_backlog - INTEGER - Maximal number of remembered connection requests, which are - still did not receive an acknowledgment from connecting client. - Default value is 1024 for systems with more than 128Mb of memory, - and 128 for low memory machines. If server suffers of overload, - try to increase this number. + Maximal number of remembered connection requests, which have not + received an acknowledgment from connecting client. + The minimal value is 128 for low memory machines, and it will + increase in proportion to the memory of machine. + If server suffers from overload, try increasing this number. tcp_max_tw_buckets - INTEGER Maximal number of timewait sockets held by system simultaneously. diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt index 646a89e0c07d..3139fb505dce 100644 --- a/Documentation/power/devices.txt +++ b/Documentation/power/devices.txt @@ -123,9 +123,10 @@ please refer directly to the source code for more information about it. Subsystem-Level Methods ----------------------- The core methods to suspend and resume devices reside in struct dev_pm_ops -pointed to by the pm member of struct bus_type, struct device_type and -struct class. They are mostly of interest to the people writing infrastructure -for buses, like PCI or USB, or device type and device class drivers. +pointed to by the ops member of struct dev_pm_domain, or by the pm member of +struct bus_type, struct device_type and struct class. They are mostly of +interest to the people writing infrastructure for platforms and buses, like PCI +or USB, or device type and device class drivers. Bus drivers implement these methods as appropriate for the hardware and the drivers using it; PCI works differently from USB, and so on. Not many people @@ -139,41 +140,57 @@ sequencing in the driver model tree. /sys/devices/.../power/wakeup files ----------------------------------- -All devices in the driver model have two flags to control handling of wakeup -events (hardware signals that can force the device and/or system out of a low -power state). These flags are initialized by bus or device driver code using +All device objects in the driver model contain fields that control the handling +of system wakeup events (hardware signals that can force the system out of a +sleep state). These fields are initialized by bus or device driver code using device_set_wakeup_capable() and device_set_wakeup_enable(), defined in include/linux/pm_wakeup.h. -The "can_wakeup" flag just records whether the device (and its driver) can +The "power.can_wakeup" flag just records whether the device (and its driver) can physically support wakeup events. The device_set_wakeup_capable() routine -affects this flag. The "should_wakeup" flag controls whether the device should -try to use its wakeup mechanism. device_set_wakeup_enable() affects this flag; -for the most part drivers should not change its value. The initial value of -should_wakeup is supposed to be false for the majority of devices; the major -exceptions are power buttons, keyboards, and Ethernet adapters whose WoL -(wake-on-LAN) feature has been set up with ethtool. It should also default -to true for devices that don't generate wakeup requests on their own but merely -forward wakeup requests from one bus to another (like PCI bridges). +affects this flag. The "power.wakeup" field is a pointer to an object of type +struct wakeup_source used for controlling whether or not the device should use +its system wakeup mechanism and for notifying the PM core of system wakeup +events signaled by the device. This object is only present for wakeup-capable +devices (i.e. devices whose "can_wakeup" flags are set) and is created (or +removed) by device_set_wakeup_capable(). Whether or not a device is capable of issuing wakeup events is a hardware matter, and the kernel is responsible for keeping track of it. By contrast, whether or not a wakeup-capable device should issue wakeup events is a policy decision, and it is managed by user space through a sysfs attribute: the -power/wakeup file. User space can write the strings "enabled" or "disabled" to -set or clear the "should_wakeup" flag, respectively. This file is only present -for wakeup-capable devices (i.e. devices whose "can_wakeup" flags are set) -and is created (or removed) by device_set_wakeup_capable(). Reads from the -file will return the corresponding string. - -The device_may_wakeup() routine returns true only if both flags are set. +"power/wakeup" file. User space can write the strings "enabled" or "disabled" +to it to indicate whether or not, respectively, the device is supposed to signal +system wakeup. This file is only present if the "power.wakeup" object exists +for the given device and is created (or removed) along with that object, by +device_set_wakeup_capable(). Reads from the file will return the corresponding +string. + +The "power/wakeup" file is supposed to contain the "disabled" string initially +for the majority of devices; the major exceptions are power buttons, keyboards, +and Ethernet adapters whose WoL (wake-on-LAN) feature has been set up with +ethtool. It should also default to "enabled" for devices that don't generate +wakeup requests on their own but merely forward wakeup requests from one bus to +another (like PCI Express ports). + +The device_may_wakeup() routine returns true only if the "power.wakeup" object +exists and the corresponding "power/wakeup" file contains the string "enabled". This information is used by subsystems, like the PCI bus type code, to see whether or not to enable the devices' wakeup mechanisms. If device wakeup mechanisms are enabled or disabled directly by drivers, they also should use device_may_wakeup() to decide what to do during a system sleep transition. -However for runtime power management, wakeup events should be enabled whenever -the device and driver both support them, regardless of the should_wakeup flag. - +Device drivers, however, are not supposed to call device_set_wakeup_enable() +directly in any case. + +It ought to be noted that system wakeup is conceptually different from "remote +wakeup" used by runtime power management, although it may be supported by the +same physical mechanism. Remote wakeup is a feature allowing devices in +low-power states to trigger specific interrupts to signal conditions in which +they should be put into the full-power state. Those interrupts may or may not +be used to signal system wakeup events, depending on the hardware design. On +some systems it is impossible to trigger them from system sleep states. In any +case, remote wakeup should always be enabled for runtime power management for +all devices and drivers that support it. /sys/devices/.../power/control files ------------------------------------ @@ -249,20 +266,31 @@ for every device before the next phase begins. Not all busses or classes support all these callbacks and not all drivers use all the callbacks. The various phases always run after tasks have been frozen and before they are unfrozen. Furthermore, the *_noirq phases run at a time when IRQ handlers have -been disabled (except for those marked with the IRQ_WAKEUP flag). - -All phases use bus, type, or class callbacks (that is, methods defined in -dev->bus->pm, dev->type->pm, or dev->class->pm). These callbacks are mutually -exclusive, so if the device type provides a struct dev_pm_ops object pointed to -by its pm field (i.e. both dev->type and dev->type->pm are defined), the -callbacks included in that object (i.e. dev->type->pm) will be used. Otherwise, -if the class provides a struct dev_pm_ops object pointed to by its pm field -(i.e. both dev->class and dev->class->pm are defined), the PM core will use the -callbacks from that object (i.e. dev->class->pm). Finally, if the pm fields of -both the device type and class objects are NULL (or those objects do not exist), -the callbacks provided by the bus (that is, the callbacks from dev->bus->pm) -will be used (this allows device types to override callbacks provided by bus -types or classes if necessary). +been disabled (except for those marked with the IRQF_NO_SUSPEND flag). + +All phases use PM domain, bus, type, or class callbacks (that is, methods +defined in dev->pm_domain->ops, dev->bus->pm, dev->type->pm, or dev->class->pm). +These callbacks are regarded by the PM core as mutually exclusive. Moreover, +PM domain callbacks always take precedence over bus, type and class callbacks, +while type callbacks take precedence over bus and class callbacks, and class +callbacks take precedence over bus callbacks. To be precise, the following +rules are used to determine which callback to execute in the given phase: + + 1. If dev->pm_domain is present, the PM core will attempt to execute the + callback included in dev->pm_domain->ops. If that callback is not + present, no action will be carried out for the given device. + + 2. Otherwise, if both dev->type and dev->type->pm are present, the callback + included in dev->type->pm will be executed. + + 3. Otherwise, if both dev->class and dev->class->pm are present, the + callback included in dev->class->pm will be executed. + + 4. Otherwise, if both dev->bus and dev->bus->pm are present, the callback + included in dev->bus->pm will be executed. + +This allows PM domains and device types to override callbacks provided by bus +types or device classes if necessary. These callbacks may in turn invoke device- or driver-specific methods stored in dev->driver->pm, but they don't have to. @@ -283,9 +311,8 @@ When the system goes into the standby or memory sleep state, the phases are: After the prepare callback method returns, no new children may be registered below the device. The method may also prepare the device or - driver in some way for the upcoming system power transition (for - example, by allocating additional memory required for this purpose), but - it should not put the device into a low-power state. + driver in some way for the upcoming system power transition, but it + should not put the device into a low-power state. 2. The suspend methods should quiesce the device to stop it from performing I/O. They also may save the device registers and put it into the diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt index 5336149f831b..c2ae8bf77d46 100644 --- a/Documentation/power/runtime_pm.txt +++ b/Documentation/power/runtime_pm.txt @@ -44,25 +44,33 @@ struct dev_pm_ops { }; The ->runtime_suspend(), ->runtime_resume() and ->runtime_idle() callbacks -are executed by the PM core for either the power domain, or the device type -(if the device power domain's struct dev_pm_ops does not exist), or the class -(if the device power domain's and type's struct dev_pm_ops object does not -exist), or the bus type (if the device power domain's, type's and class' -struct dev_pm_ops objects do not exist) of the given device, so the priority -order of callbacks from high to low is that power domain callbacks, device -type callbacks, class callbacks and bus type callbacks, and the high priority -one will take precedence over low priority one. The bus type, device type and -class callbacks are referred to as subsystem-level callbacks in what follows, -and generally speaking, the power domain callbacks are used for representing -power domains within a SoC. +are executed by the PM core for the device's subsystem that may be either of +the following: + + 1. PM domain of the device, if the device's PM domain object, dev->pm_domain, + is present. + + 2. Device type of the device, if both dev->type and dev->type->pm are present. + + 3. Device class of the device, if both dev->class and dev->class->pm are + present. + + 4. Bus type of the device, if both dev->bus and dev->bus->pm are present. + +The PM core always checks which callback to use in the order given above, so the +priority order of callbacks from high to low is: PM domain, device type, class +and bus type. Moreover, the high-priority one will always take precedence over +a low-priority one. The PM domain, bus type, device type and class callbacks +are referred to as subsystem-level callbacks in what follows. By default, the callbacks are always invoked in process context with interrupts enabled. However, subsystems can use the pm_runtime_irq_safe() helper function -to tell the PM core that a device's ->runtime_suspend() and ->runtime_resume() -callbacks should be invoked in atomic context with interrupts disabled. -This implies that these callback routines must not block or sleep, but it also -means that the synchronous helper functions listed at the end of Section 4 can -be used within an interrupt handler or in an atomic context. +to tell the PM core that their ->runtime_suspend(), ->runtime_resume() and +->runtime_idle() callbacks may be invoked in atomic context with interrupts +disabled for a given device. This implies that the callback routines in +question must not block or sleep, but it also means that the synchronous helper +functions listed at the end of Section 4 may be used for that device within an +interrupt handler or generally in an atomic context. The subsystem-level suspend callback is _entirely_ _responsible_ for handling the suspend of the device as appropriate, which may, but need not include diff --git a/Documentation/serial/serial-rs485.txt b/Documentation/serial/serial-rs485.txt index 079cb3df62cf..41c8378c0b2f 100644 --- a/Documentation/serial/serial-rs485.txt +++ b/Documentation/serial/serial-rs485.txt @@ -97,15 +97,23 @@ struct serial_rs485 rs485conf; - /* Set RS485 mode: */ + /* Enable RS485 mode: */ rs485conf.flags |= SER_RS485_ENABLED; + /* Set logical level for RTS pin equal to 1 when sending: */ + rs485conf.flags |= SER_RS485_RTS_ON_SEND; + /* or, set logical level for RTS pin equal to 0 when sending: */ + rs485conf.flags &= ~(SER_RS485_RTS_ON_SEND); + + /* Set logical level for RTS pin equal to 1 after sending: */ + rs485conf.flags |= SER_RS485_RTS_AFTER_SEND; + /* or, set logical level for RTS pin equal to 0 after sending: */ + rs485conf.flags &= ~(SER_RS485_RTS_AFTER_SEND); + /* Set rts delay before send, if needed: */ - rs485conf.flags |= SER_RS485_RTS_BEFORE_SEND; rs485conf.delay_rts_before_send = ...; /* Set rts delay after send, if needed: */ - rs485conf.flags |= SER_RS485_RTS_AFTER_SEND; rs485conf.delay_rts_after_send = ...; /* Set this flag if you want to receive data even whilst sending data */ diff --git a/Documentation/sound/alsa/HD-Audio.txt b/Documentation/sound/alsa/HD-Audio.txt index 03e2771ddeef..91fee3b45fb8 100644 --- a/Documentation/sound/alsa/HD-Audio.txt +++ b/Documentation/sound/alsa/HD-Audio.txt @@ -579,7 +579,7 @@ Development Tree ~~~~~~~~~~~~~~~~ The latest development codes for HD-audio are found on sound git tree: -- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6.git +- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound.git The master branch or for-next branches can be used as the main development branches in general while the HD-audio specific patches @@ -594,7 +594,7 @@ is, installed via the usual spells: configure, make and make install(-modules). See INSTALL in the package. The snapshot tarballs are found at: -- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/snapshot/ +- ftp://ftp.suse.com/pub/people/tiwai/snapshot/ Sending a Bug Report @@ -696,7 +696,7 @@ via hda-verb won't change the mixer value. The hda-verb program is found in the ftp directory: -- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/ +- ftp://ftp.suse.com/pub/people/tiwai/misc/ Also a git repository is available: @@ -764,7 +764,7 @@ operation, the jack plugging simulation, etc. The package is found in: -- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/ +- ftp://ftp.suse.com/pub/people/tiwai/misc/ A git repository is available: diff --git a/Documentation/sound/alsa/soc/machine.txt b/Documentation/sound/alsa/soc/machine.txt index 3e2ec9cbf397..d50c14df3411 100644 --- a/Documentation/sound/alsa/soc/machine.txt +++ b/Documentation/sound/alsa/soc/machine.txt @@ -50,8 +50,7 @@ Machine DAI Configuration The machine DAI configuration glues all the codec and CPU DAIs together. It can also be used to set up the DAI system clock and for any machine related DAI initialisation e.g. the machine audio map can be connected to the codec audio -map, unconnected codec pins can be set as such. Please see corgi.c, spitz.c -for examples. +map, unconnected codec pins can be set as such. struct snd_soc_dai_link is used to set up each DAI in your machine. e.g. @@ -83,8 +82,7 @@ Machine Power Map The machine driver can optionally extend the codec power map and to become an audio power map of the audio subsystem. This allows for automatic power up/down of speaker/HP amplifiers, etc. Codec pins can be connected to the machines jack -sockets in the machine init function. See soc/pxa/spitz.c and dapm.txt for -details. +sockets in the machine init function. Machine Controls diff --git a/Documentation/usb/linux-cdc-acm.inf b/Documentation/usb/linux-cdc-acm.inf index 37a02ce54841..f0ffc27d4c0a 100644 --- a/Documentation/usb/linux-cdc-acm.inf +++ b/Documentation/usb/linux-cdc-acm.inf @@ -90,10 +90,10 @@ ServiceBinary=%12%\USBSER.sys [SourceDisksFiles] [SourceDisksNames] [DeviceList] -%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02 +%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02, USB\VID_1D6B&PID_0106&MI_00 [DeviceList.NTamd64] -%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02 +%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02, USB\VID_1D6B&PID_0106&MI_00 ;------------------------------------------------------------------------------ diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt index 7945b0bd35e2..e1d94bf4056e 100644 --- a/Documentation/virtual/kvm/api.txt +++ b/Documentation/virtual/kvm/api.txt @@ -1100,6 +1100,15 @@ emulate them efficiently. The fields in each entry are defined as follows: eax, ebx, ecx, edx: the values returned by the cpuid instruction for this function/index combination +The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned +as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC +support. Instead it is reported via + + ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER) + +if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the +feature in userspace, then you can enable the feature for KVM_SET_CPUID2. + 4.47 KVM_PPC_GET_PVINFO Capability: KVM_CAP_PPC_GET_PVINFO @@ -1151,6 +1160,13 @@ following flags are specified: /* Depends on KVM_CAP_IOMMU */ #define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0) +The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure +isolation of the device. Usages not specifying this flag are deprecated. + +Only PCI header type 0 devices with PCI BAR resources are supported by +device assignment. The user requesting this ioctl must have read/write +access to the PCI sysfs resource files associated with the device. + 4.49 KVM_DEASSIGN_PCI_DEVICE Capability: KVM_CAP_DEVICE_DEASSIGNMENT @@ -1450,6 +1466,31 @@ is supported; 2 if the processor requires all virtual machines to have an RMA, or 1 if the processor can use an RMA but doesn't require it, because it supports the Virtual RMA (VRMA) facility. +4.64 KVM_NMI + +Capability: KVM_CAP_USER_NMI +Architectures: x86 +Type: vcpu ioctl +Parameters: none +Returns: 0 on success, -1 on error + +Queues an NMI on the thread's vcpu. Note this is well defined only +when KVM_CREATE_IRQCHIP has not been called, since this is an interface +between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP +has been called, this interface is completely emulated within the kernel. + +To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the +following algorithm: + + - pause the vpcu + - read the local APIC's state (KVM_GET_LAPIC) + - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1) + - if so, issue KVM_NMI + - resume the vcpu + +Some guests configure the LINT1 NMI input to cause a panic, aiding in +debugging. + 5. The kvm_run structure Application code obtains a pointer to the kvm_run structure by |