summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/devicetree/bindings/arm/samsung/pmu.txt1
-rw-r--r--Documentation/devicetree/bindings/bus/qcom,ebi2.txt138
-rw-r--r--Documentation/devicetree/bindings/clock/mvebu-core-clock.txt1
-rw-r--r--Documentation/devicetree/bindings/clock/st,stm32-rcc.txt42
-rw-r--r--Documentation/devicetree/bindings/perf/apm-xgene-pmu.txt112
-rw-r--r--Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt4
-rw-r--r--Documentation/devicetree/bindings/reset/st,stm32-rcc.txt6
-rw-r--r--Documentation/devicetree/bindings/reset/uniphier-reset.txt93
-rw-r--r--Documentation/perf/xgene-pmu.txt48
9 files changed, 437 insertions, 8 deletions
diff --git a/Documentation/devicetree/bindings/arm/samsung/pmu.txt b/Documentation/devicetree/bindings/arm/samsung/pmu.txt
index 2d6356d8daf4..bf5fc59a6938 100644
--- a/Documentation/devicetree/bindings/arm/samsung/pmu.txt
+++ b/Documentation/devicetree/bindings/arm/samsung/pmu.txt
@@ -10,6 +10,7 @@ Properties:
- "samsung,exynos5260-pmu" - for Exynos5260 SoC.
- "samsung,exynos5410-pmu" - for Exynos5410 SoC,
- "samsung,exynos5420-pmu" - for Exynos5420 SoC.
+ - "samsung,exynos5433-pmu" - for Exynos5433 SoC.
- "samsung,exynos7-pmu" - for Exynos7 SoC.
second value must be always "syscon".
diff --git a/Documentation/devicetree/bindings/bus/qcom,ebi2.txt b/Documentation/devicetree/bindings/bus/qcom,ebi2.txt
new file mode 100644
index 000000000000..920681f552db
--- /dev/null
+++ b/Documentation/devicetree/bindings/bus/qcom,ebi2.txt
@@ -0,0 +1,138 @@
+Qualcomm External Bus Interface 2 (EBI2)
+
+The EBI2 contains two peripheral blocks: XMEM and LCDC. The XMEM handles any
+external memory (such as NAND or other memory-mapped peripherals) whereas
+LCDC handles LCD displays.
+
+As it says it connects devices to an external bus interface, meaning address
+lines (up to 9 address lines so can only address 1KiB external memory space),
+data lines (16 bits), OE (output enable), ADV (address valid, used on some
+NOR flash memories), WE (write enable). This on top of 6 different chip selects
+(CS0 thru CS5) so that in theory 6 different devices can be connected.
+
+Apparently this bus is clocked at 64MHz. It has dedicated pins on the package
+and the bus can only come out on these pins, however if some of the pins are
+unused they can be left unconnected or remuxed to be used as GPIO or in some
+cases other orthogonal functions as well.
+
+Also CS1 and CS2 has -A and -B signals. Why they have that is unclear to me.
+
+The chip selects have the following memory range assignments. This region of
+memory is referred to as "Chip Peripheral SS FPB0" and is 168MB big.
+
+Chip Select Physical address base
+CS0 GPIO134 0x1a800000-0x1b000000 (8MB)
+CS1 GPIO39 (A) / GPIO123 (B) 0x1b000000-0x1b800000 (8MB)
+CS2 GPIO40 (A) / GPIO124 (B) 0x1b800000-0x1c000000 (8MB)
+CS3 GPIO133 0x1d000000-0x25000000 (128 MB)
+CS4 GPIO132 0x1c800000-0x1d000000 (8MB)
+CS5 GPIO131 0x1c000000-0x1c800000 (8MB)
+
+The APQ8060 Qualcomm Application Processor User Guide, 80-N7150-14 Rev. A,
+August 6, 2012 contains some incomplete documentation of the EBI2.
+
+FIXME: the manual mentions "write precharge cycles" and "precharge cycles".
+We have not been able to figure out which bit fields these correspond to
+in the hardware, or what valid values exist. The current hypothesis is that
+this is something just used on the FAST chip selects and that the SLOW
+chip selects are understood fully. There is also a "byte device enable"
+flag somewhere for 8bit memories.
+
+FIXME: The chipselects have SLOW and FAST configuration registers. It's a bit
+unclear what this means, if they are mutually exclusive or can be used
+together, or if some chip selects are hardwired to be FAST and others are SLOW
+by design.
+
+The XMEM registers are totally undocumented but could be partially decoded
+because the Cypress AN49576 Antioch Westbridge apparently has suspiciously
+similar register layout, see: http://www.cypress.com/file/105771/download
+
+Required properties:
+- compatible: should be one of:
+ "qcom,msm8660-ebi2"
+ "qcom,apq8060-ebi2"
+- #address-cells: shoule be <2>: the first cell is the chipselect,
+ the second cell is the offset inside the memory range
+- #size-cells: should be <1>
+- ranges: should be set to:
+ ranges = <0 0x0 0x1a800000 0x00800000>,
+ <1 0x0 0x1b000000 0x00800000>,
+ <2 0x0 0x1b800000 0x00800000>,
+ <3 0x0 0x1d000000 0x08000000>,
+ <4 0x0 0x1c800000 0x00800000>,
+ <5 0x0 0x1c000000 0x00800000>;
+- reg: two ranges of registers: EBI2 config and XMEM config areas
+- reg-names: should be "ebi2", "xmem"
+- clocks: two clocks, EBI_2X and EBI
+- clock-names: shoule be "ebi2x", "ebi2"
+
+Optional subnodes:
+- Nodes inside the EBI2 will be considered device nodes.
+
+The following optional properties are properties that can be tagged onto
+any device subnode. We are assuming that there can be only ONE device per
+chipselect subnode, else the properties will become ambigous.
+
+Optional properties arrays for SLOW chip selects:
+- qcom,xmem-recovery-cycles: recovery cycles is the time the memory continues to
+ drive the data bus after OE is de-asserted, in order to avoid contention on
+ the data bus. They are inserted when reading one CS and switching to another
+ CS or read followed by write on the same CS. Valid values 0 thru 15. Minimum
+ value is actually 1, so a value of 0 will still yield 1 recovery cycle.
+- qcom,xmem-write-hold-cycles: write hold cycles, these are extra cycles
+ inserted after every write minimum 1. The data out is driven from the time
+ WE is asserted until CS is asserted. With a hold of 1 (value = 0), the CS
+ stays active for 1 extra cycle etc. Valid values 0 thru 15.
+- qcom,xmem-write-delta-cycles: initial latency for write cycles inserted for
+ the first write to a page or burst memory. Valid values 0 thru 255.
+- qcom,xmem-read-delta-cycles: initial latency for read cycles inserted for the
+ first read to a page or burst memory. Valid values 0 thru 255.
+- qcom,xmem-write-wait-cycles: number of wait cycles for every write access, 0=1
+ cycle. Valid values 0 thru 15.
+- qcom,xmem-read-wait-cycles: number of wait cycles for every read access, 0=1
+ cycle. Valid values 0 thru 15.
+
+Optional properties arrays for FAST chip selects:
+- qcom,xmem-address-hold-enable: this is a boolean property stating that we
+ shall hold the address for an extra cycle to meet hold time requirements
+ with ADV assertion.
+- qcom,xmem-adv-to-oe-recovery-cycles: the number of cycles elapsed before an OE
+ assertion, with respect to the cycle where ADV (address valid) is asserted.
+ 2 means 2 cycles between ADV and OE. Valid values 0, 1, 2 or 3.
+- qcom,xmem-read-hold-cycles: the length in cycles of the first segment of a
+ read transfer. For a single read trandfer this will be the time from CS
+ assertion to OE assertion. Valid values 0 thru 15.
+
+
+Example:
+
+ebi2@1a100000 {
+ compatible = "qcom,apq8060-ebi2";
+ #address-cells = <2>;
+ #size-cells = <1>;
+ ranges = <0 0x0 0x1a800000 0x00800000>,
+ <1 0x0 0x1b000000 0x00800000>,
+ <2 0x0 0x1b800000 0x00800000>,
+ <3 0x0 0x1d000000 0x08000000>,
+ <4 0x0 0x1c800000 0x00800000>,
+ <5 0x0 0x1c000000 0x00800000>;
+ reg = <0x1a100000 0x1000>, <0x1a110000 0x1000>;
+ reg-names = "ebi2", "xmem";
+ clocks = <&gcc EBI2_2X_CLK>, <&gcc EBI2_CLK>;
+ clock-names = "ebi2x", "ebi2";
+ /* Make sure to set up the pin control for the EBI2 */
+ pinctrl-names = "default";
+ pinctrl-0 = <&foo_ebi2_pins>;
+
+ foo-ebi2@2,0 {
+ compatible = "foo";
+ reg = <2 0x0 0x100>;
+ (...)
+ qcom,xmem-recovery-cycles = <0>;
+ qcom,xmem-write-hold-cycles = <3>;
+ qcom,xmem-write-delta-cycles = <31>;
+ qcom,xmem-read-delta-cycles = <28>;
+ qcom,xmem-write-wait-cycles = <9>;
+ qcom,xmem-read-wait-cycles = <9>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt b/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
index 670c2af3e931..eb985a633d59 100644
--- a/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
+++ b/Documentation/devicetree/bindings/clock/mvebu-core-clock.txt
@@ -52,6 +52,7 @@ Required properties:
"marvell,dove-core-clock" - for Dove SoC core clocks
"marvell,kirkwood-core-clock" - for Kirkwood SoC (except mv88f6180)
"marvell,mv88f6180-core-clock" - for Kirkwood MV88f6180 SoC
+ "marvell,mv88f5181-core-clock" - for Orion MV88F5181 SoC
"marvell,mv88f5182-core-clock" - for Orion MV88F5182 SoC
"marvell,mv88f5281-core-clock" - for Orion MV88F5281 SoC
"marvell,mv88f6183-core-clock" - for Orion MV88F6183 SoC
diff --git a/Documentation/devicetree/bindings/clock/st,stm32-rcc.txt b/Documentation/devicetree/bindings/clock/st,stm32-rcc.txt
index fee3205cdff9..c209de6cfadb 100644
--- a/Documentation/devicetree/bindings/clock/st,stm32-rcc.txt
+++ b/Documentation/devicetree/bindings/clock/st,stm32-rcc.txt
@@ -1,16 +1,16 @@
STMicroelectronics STM32 Reset and Clock Controller
===================================================
-The RCC IP is both a reset and a clock controller. This documentation only
-describes the clock part.
+The RCC IP is both a reset and a clock controller.
-Please also refer to clock-bindings.txt in this directory for common clock
-controller binding usage.
+Please refer to clock-bindings.txt for common clock controller binding usage.
+Please also refer to reset.txt for common reset controller binding usage.
Required properties:
- compatible: Should be "st,stm32f42xx-rcc"
- reg: should be register base and length as documented in the
datasheet
+- #reset-cells: 1, see below
- #clock-cells: 2, device nodes should specify the clock in their "clocks"
property, containing a phandle to the clock device node, an index selecting
between gated clocks and other clocks and an index specifying the clock to
@@ -19,6 +19,7 @@ Required properties:
Example:
rcc: rcc@40023800 {
+ #reset-cells = <1>;
#clock-cells = <2>
compatible = "st,stm32f42xx-rcc", "st,stm32-rcc";
reg = <0x40023800 0x400>;
@@ -35,16 +36,23 @@ from the first RCC clock enable register (RCC_AHB1ENR, address offset 0x30).
It is calculated as: index = register_offset / 4 * 32 + bit_offset.
Where bit_offset is the bit offset within the register (LSB is 0, MSB is 31).
+To simplify the usage and to share bit definition with the reset and clock
+drivers of the RCC IP, macros are available to generate the index in
+human-readble format.
+
+For STM32F4 series, the macro are available here:
+ - include/dt-bindings/mfd/stm32f4-rcc.h
+
Example:
/* Gated clock, AHB1 bit 0 (GPIOA) */
... {
- clocks = <&rcc 0 0>
+ clocks = <&rcc 0 STM32F4_AHB1_CLOCK(GPIOA)>
};
/* Gated clock, AHB2 bit 4 (CRYP) */
... {
- clocks = <&rcc 0 36>
+ clocks = <&rcc 0 STM32F4_AHB2_CLOCK(CRYP)>
};
Specifying other clocks
@@ -61,5 +69,25 @@ Example:
/* Misc clock, FCLK */
... {
- clocks = <&rcc 1 1>
+ clocks = <&rcc 1 STM32F4_APB1_CLOCK(TIM2)>
+ };
+
+
+Specifying softreset control of devices
+=======================================
+
+Device nodes should specify the reset channel required in their "resets"
+property, containing a phandle to the reset device node and an index specifying
+which channel to use.
+The index is the bit number within the RCC registers bank, starting from RCC
+base address.
+It is calculated as: index = register_offset / 4 * 32 + bit_offset.
+Where bit_offset is the bit offset within the register.
+For example, for CRC reset:
+ crc = AHB1RSTR_offset / 4 * 32 + CRCRST_bit_offset = 0x10 / 4 * 32 + 12 = 140
+
+example:
+
+ timer2 {
+ resets = <&rcc STM32F4_APB1_RESET(TIM2)>;
};
diff --git a/Documentation/devicetree/bindings/perf/apm-xgene-pmu.txt b/Documentation/devicetree/bindings/perf/apm-xgene-pmu.txt
new file mode 100644
index 000000000000..afb11cf693c0
--- /dev/null
+++ b/Documentation/devicetree/bindings/perf/apm-xgene-pmu.txt
@@ -0,0 +1,112 @@
+* APM X-Gene SoC PMU bindings
+
+This is APM X-Gene SoC PMU (Performance Monitoring Unit) module.
+The following PMU devices are supported:
+
+ L3C - L3 cache controller
+ IOB - IO bridge
+ MCB - Memory controller bridge
+ MC - Memory controller
+
+The following section describes the SoC PMU DT node binding.
+
+Required properties:
+- compatible : Shall be "apm,xgene-pmu" for revision 1 or
+ "apm,xgene-pmu-v2" for revision 2.
+- regmap-csw : Regmap of the CPU switch fabric (CSW) resource.
+- regmap-mcba : Regmap of the MCB-A (memory bridge) resource.
+- regmap-mcbb : Regmap of the MCB-B (memory bridge) resource.
+- reg : First resource shall be the CPU bus PMU resource.
+- interrupts : Interrupt-specifier for PMU IRQ.
+
+Required properties for L3C subnode:
+- compatible : Shall be "apm,xgene-pmu-l3c".
+- reg : First resource shall be the L3C PMU resource.
+
+Required properties for IOB subnode:
+- compatible : Shall be "apm,xgene-pmu-iob".
+- reg : First resource shall be the IOB PMU resource.
+
+Required properties for MCB subnode:
+- compatible : Shall be "apm,xgene-pmu-mcb".
+- reg : First resource shall be the MCB PMU resource.
+- enable-bit-index : The bit indicates if the according MCB is enabled.
+
+Required properties for MC subnode:
+- compatible : Shall be "apm,xgene-pmu-mc".
+- reg : First resource shall be the MC PMU resource.
+- enable-bit-index : The bit indicates if the according MC is enabled.
+
+Example:
+ csw: csw@7e200000 {
+ compatible = "apm,xgene-csw", "syscon";
+ reg = <0x0 0x7e200000 0x0 0x1000>;
+ };
+
+ mcba: mcba@7e700000 {
+ compatible = "apm,xgene-mcb", "syscon";
+ reg = <0x0 0x7e700000 0x0 0x1000>;
+ };
+
+ mcbb: mcbb@7e720000 {
+ compatible = "apm,xgene-mcb", "syscon";
+ reg = <0x0 0x7e720000 0x0 0x1000>;
+ };
+
+ pmu: pmu@78810000 {
+ compatible = "apm,xgene-pmu-v2";
+ #address-cells = <2>;
+ #size-cells = <2>;
+ ranges;
+ regmap-csw = <&csw>;
+ regmap-mcba = <&mcba>;
+ regmap-mcbb = <&mcbb>;
+ reg = <0x0 0x78810000 0x0 0x1000>;
+ interrupts = <0x0 0x22 0x4>;
+
+ pmul3c@7e610000 {
+ compatible = "apm,xgene-pmu-l3c";
+ reg = <0x0 0x7e610000 0x0 0x1000>;
+ };
+
+ pmuiob@7e940000 {
+ compatible = "apm,xgene-pmu-iob";
+ reg = <0x0 0x7e940000 0x0 0x1000>;
+ };
+
+ pmucmcb@7e710000 {
+ compatible = "apm,xgene-pmu-mcb";
+ reg = <0x0 0x7e710000 0x0 0x1000>;
+ enable-bit-index = <0>;
+ };
+
+ pmucmcb@7e730000 {
+ compatible = "apm,xgene-pmu-mcb";
+ reg = <0x0 0x7e730000 0x0 0x1000>;
+ enable-bit-index = <1>;
+ };
+
+ pmucmc@7e810000 {
+ compatible = "apm,xgene-pmu-mc";
+ reg = <0x0 0x7e810000 0x0 0x1000>;
+ enable-bit-index = <0>;
+ };
+
+ pmucmc@7e850000 {
+ compatible = "apm,xgene-pmu-mc";
+ reg = <0x0 0x7e850000 0x0 0x1000>;
+ enable-bit-index = <1>;
+ };
+
+ pmucmc@7e890000 {
+ compatible = "apm,xgene-pmu-mc";
+ reg = <0x0 0x7e890000 0x0 0x1000>;
+ enable-bit-index = <2>;
+ };
+
+ pmucmc@7e8d0000 {
+ compatible = "apm,xgene-pmu-mc";
+ reg = <0x0 0x7e8d0000 0x0 0x1000>;
+ enable-bit-index = <3>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt
index 27570a3a1741..ec8aa3c6936b 100644
--- a/Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt
+++ b/Documentation/devicetree/bindings/pinctrl/marvell,orion-pinctrl.txt
@@ -4,7 +4,9 @@ Please refer to marvell,mvebu-pinctrl.txt in this directory for common binding
part and usage.
Required properties:
-- compatible: "marvell,88f5181l-pinctrl", "marvell,88f5182-pinctrl",
+- compatible: "marvell,88f5181-pinctrl",
+ "marvell,88f5181l-pinctrl",
+ "marvell,88f5182-pinctrl",
"marvell,88f5281-pinctrl"
- reg: two register areas, the first one describing the first two
diff --git a/Documentation/devicetree/bindings/reset/st,stm32-rcc.txt b/Documentation/devicetree/bindings/reset/st,stm32-rcc.txt
new file mode 100644
index 000000000000..01db34375192
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/st,stm32-rcc.txt
@@ -0,0 +1,6 @@
+STMicroelectronics STM32 Peripheral Reset Controller
+====================================================
+
+The RCC IP is both a reset and a clock controller.
+
+Please see Documentation/devicetree/bindings/clock/st,stm32-rcc.txt
diff --git a/Documentation/devicetree/bindings/reset/uniphier-reset.txt b/Documentation/devicetree/bindings/reset/uniphier-reset.txt
new file mode 100644
index 000000000000..e6bbfccd56c3
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/uniphier-reset.txt
@@ -0,0 +1,93 @@
+UniPhier reset controller
+
+
+System reset
+------------
+
+Required properties:
+- compatible: should be one of the following:
+ "socionext,uniphier-sld3-reset" - for PH1-sLD3 SoC.
+ "socionext,uniphier-ld4-reset" - for PH1-LD4 SoC.
+ "socionext,uniphier-pro4-reset" - for PH1-Pro4 SoC.
+ "socionext,uniphier-sld8-reset" - for PH1-sLD8 SoC.
+ "socionext,uniphier-pro5-reset" - for PH1-Pro5 SoC.
+ "socionext,uniphier-pxs2-reset" - for ProXstream2/PH1-LD6b SoC.
+ "socionext,uniphier-ld11-reset" - for PH1-LD11 SoC.
+ "socionext,uniphier-ld20-reset" - for PH1-LD20 SoC.
+- #reset-cells: should be 1.
+
+Example:
+
+ sysctrl@61840000 {
+ compatible = "socionext,uniphier-ld20-sysctrl",
+ "simple-mfd", "syscon";
+ reg = <0x61840000 0x4000>;
+
+ reset {
+ compatible = "socionext,uniphier-ld20-reset";
+ #reset-cells = <1>;
+ };
+
+ other nodes ...
+ };
+
+
+Media I/O (MIO) reset
+---------------------
+
+Required properties:
+- compatible: should be one of the following:
+ "socionext,uniphier-sld3-mio-reset" - for PH1-sLD3 SoC.
+ "socionext,uniphier-ld4-mio-reset" - for PH1-LD4 SoC.
+ "socionext,uniphier-pro4-mio-reset" - for PH1-Pro4 SoC.
+ "socionext,uniphier-sld8-mio-reset" - for PH1-sLD8 SoC.
+ "socionext,uniphier-pro5-mio-reset" - for PH1-Pro5 SoC.
+ "socionext,uniphier-pxs2-mio-reset" - for ProXstream2/PH1-LD6b SoC.
+ "socionext,uniphier-ld11-mio-reset" - for PH1-LD11 SoC.
+ "socionext,uniphier-ld20-mio-reset" - for PH1-LD20 SoC.
+- #reset-cells: should be 1.
+
+Example:
+
+ mioctrl@59810000 {
+ compatible = "socionext,uniphier-ld20-mioctrl",
+ "simple-mfd", "syscon";
+ reg = <0x59810000 0x800>;
+
+ reset {
+ compatible = "socionext,uniphier-ld20-mio-reset";
+ #reset-cells = <1>;
+ };
+
+ other nodes ...
+ };
+
+
+Peripheral reset
+----------------
+
+Required properties:
+- compatible: should be one of the following:
+ "socionext,uniphier-ld4-peri-reset" - for PH1-LD4 SoC.
+ "socionext,uniphier-pro4-peri-reset" - for PH1-Pro4 SoC.
+ "socionext,uniphier-sld8-peri-reset" - for PH1-sLD8 SoC.
+ "socionext,uniphier-pro5-peri-reset" - for PH1-Pro5 SoC.
+ "socionext,uniphier-pxs2-peri-reset" - for ProXstream2/PH1-LD6b SoC.
+ "socionext,uniphier-ld11-peri-reset" - for PH1-LD11 SoC.
+ "socionext,uniphier-ld20-peri-reset" - for PH1-LD20 SoC.
+- #reset-cells: should be 1.
+
+Example:
+
+ perictrl@59820000 {
+ compatible = "socionext,uniphier-ld20-perictrl",
+ "simple-mfd", "syscon";
+ reg = <0x59820000 0x200>;
+
+ reset {
+ compatible = "socionext,uniphier-ld20-peri-reset";
+ #reset-cells = <1>;
+ };
+
+ other nodes ...
+ };
diff --git a/Documentation/perf/xgene-pmu.txt b/Documentation/perf/xgene-pmu.txt
new file mode 100644
index 000000000000..d7cff4454e5b
--- /dev/null
+++ b/Documentation/perf/xgene-pmu.txt
@@ -0,0 +1,48 @@
+APM X-Gene SoC Performance Monitoring Unit (PMU)
+================================================
+
+X-Gene SoC PMU consists of various independent system device PMUs such as
+L3 cache(s), I/O bridge(s), memory controller bridge(s) and memory
+controller(s). These PMU devices are loosely architected to follow the
+same model as the PMU for ARM cores. The PMUs share the same top level
+interrupt and status CSR region.
+
+PMU (perf) driver
+-----------------
+
+The xgene-pmu driver registers several perf PMU drivers. Each of the perf
+driver provides description of its available events and configuration options
+in sysfs, see /sys/devices/<l3cX/iobX/mcbX/mcX>/.
+
+The "format" directory describes format of the config (event ID),
+config1 (agent ID) fields of the perf_event_attr structure. The "events"
+directory provides configuration templates for all supported event types that
+can be used with perf tool. For example, "l3c0/bank-fifo-full/" is an
+equivalent of "l3c0/config=0x0b/".
+
+Most of the SoC PMU has a specific list of agent ID used for monitoring
+performance of a specific datapath. For example, agents of a L3 cache can be
+a specific CPU or an I/O bridge. Each PMU has a set of 2 registers capable of
+masking the agents from which the request come from. If the bit with
+the bit number corresponding to the agent is set, the event is counted only if
+it is caused by a request from that agent. Each agent ID bit is inversely mapped
+to a corresponding bit in "config1" field. By default, the event will be
+counted for all agent requests (config1 = 0x0). For all the supported agents of
+each PMU, please refer to APM X-Gene User Manual.
+
+Each perf driver also provides a "cpumask" sysfs attribute, which contains a
+single CPU ID of the processor which will be used to handle all the PMU events.
+
+Example for perf tool use:
+
+ / # perf list | grep -e l3c -e iob -e mcb -e mc
+ l3c0/ackq-full/ [Kernel PMU event]
+ <...>
+ mcb1/mcb-csw-stall/ [Kernel PMU event]
+
+ / # perf stat -a -e l3c0/read-miss/,mcb1/csw-write-request/ sleep 1
+
+ / # perf stat -a -e l3c0/read-miss,config1=0xfffffffffffffffe/ sleep 1
+
+The driver does not support sampling, therefore "perf record" will
+not work. Per-task (without "-a") perf sessions are not supported.