diff options
Diffstat (limited to 'Documentation/trace')
-rw-r--r-- | Documentation/trace/ftrace.rst | 3 | ||||
-rw-r--r-- | Documentation/trace/histogram.rst | 6 | ||||
-rw-r--r-- | Documentation/trace/stm.rst | 38 | ||||
-rw-r--r-- | Documentation/trace/sys-t.rst | 62 |
4 files changed, 97 insertions, 12 deletions
diff --git a/Documentation/trace/ftrace.rst b/Documentation/trace/ftrace.rst index 7ea16a0ceffc..f82434f2795e 100644 --- a/Documentation/trace/ftrace.rst +++ b/Documentation/trace/ftrace.rst @@ -2987,6 +2987,9 @@ The following commands are supported: command, it only prints out the contents of the ring buffer for the CPU that executed the function that triggered the dump. +- stacktrace: + When the function is hit, a stack trace is recorded. + trace_pipe ---------- diff --git a/Documentation/trace/histogram.rst b/Documentation/trace/histogram.rst index 5ac724baea7d..7dda76503127 100644 --- a/Documentation/trace/histogram.rst +++ b/Documentation/trace/histogram.rst @@ -1765,7 +1765,7 @@ For example, here's how a latency can be calculated:: # echo 'hist:keys=pid,prio:ts0=common_timestamp ...' >> event1/trigger # echo 'hist:keys=next_pid:wakeup_lat=common_timestamp-$ts0 ...' >> event2/trigger -In the first line above, the event's timetamp is saved into the +In the first line above, the event's timestamp is saved into the variable ts0. In the next line, ts0 is subtracted from the second event's timestamp to produce the latency, which is then assigned into yet another variable, 'wakeup_lat'. The hist trigger below in turn @@ -1811,7 +1811,7 @@ the command that defined it with a '!':: /sys/kernel/debug/tracing/synthetic_events At this point, there isn't yet an actual 'wakeup_latency' event -instantiated in the event subsytem - for this to happen, a 'hist +instantiated in the event subsystem - for this to happen, a 'hist trigger action' needs to be instantiated and bound to actual fields and variables defined on other events (see Section 2.2.3 below on how that is done using hist trigger 'onmatch' action). Once that is @@ -1837,7 +1837,7 @@ output can be displayed by reading the event's 'hist' file. A hist trigger 'action' is a function that's executed whenever a histogram entry is added or updated. -The default 'action' if no special function is explicity specified is +The default 'action' if no special function is explicitly specified is as it always has been, to simply update the set of values associated with an entry. Some applications, however, may want to perform additional actions at that point, such as generate another event, or diff --git a/Documentation/trace/stm.rst b/Documentation/trace/stm.rst index 2c22ddb7fd3e..99f99963e5e7 100644 --- a/Documentation/trace/stm.rst +++ b/Documentation/trace/stm.rst @@ -1,3 +1,5 @@ +.. SPDX-License-Identifier: GPL-2.0 + =================== System Trace Module =================== @@ -53,12 +55,30 @@ under "user" directory from the example above and this new rule will be used for trace sources with the id string of "user/dummy". Trace sources have to open the stm class device's node and write their -trace data into its file descriptor. In order to identify themselves -to the policy, they need to do a STP_POLICY_ID_SET ioctl on this file -descriptor providing their id string. Otherwise, they will be -automatically allocated a master/channel pair upon first write to this -file descriptor according to the "default" rule of the policy, if such -exists. +trace data into its file descriptor. + +In order to find an appropriate policy node for a given trace source, +several mechanisms can be used. First, a trace source can explicitly +identify itself by calling an STP_POLICY_ID_SET ioctl on the character +device's file descriptor, providing their id string, before they write +any data there. Secondly, if they chose not to perform the explicit +identification (because you may not want to patch existing software +to do this), they can just start writing the data, at which point the +stm core will try to find a policy node with the name matching the +task's name (e.g., "syslogd") and if one exists, it will be used. +Thirdly, if the task name can't be found among the policy nodes, the +catch-all entry "default" will be used, if it exists. This entry also +needs to be created and configured by the system administrator or +whatever tools are taking care of the policy configuration. Finally, +if all the above steps failed, the write() to an stm file descriptor +will return a error (EINVAL). + +Previously, if no policy nodes were found for a trace source, the stm +class would silently fall back to allocating the first available +contiguous range of master/channels from the beginning of the device's +master/channel range. The new requirement for a policy node to exist +will help programmers and sysadmins identify gaps in configuration +and have better control over the un-identified sources. Some STM devices may allow direct mapping of the channel mmio regions to userspace for zero-copy writing. One mappable page (in terms of @@ -92,9 +112,9 @@ allocated for the device according to the policy configuration. If there's a node in the root of the policy directory that matches the stm_source device's name (for example, "console"), this node will be used to allocate master and channel numbers. If there's no such policy -node, the stm core will pick the first contiguous chunk of channels -within the first available master. Note that the node must exist -before the stm_source device is connected to its stm device. +node, the stm core will use the catch-all entry "default", if one +exists. If neither policy nodes exist, the write() to stm_source_link +will return an error. stm_console =========== diff --git a/Documentation/trace/sys-t.rst b/Documentation/trace/sys-t.rst new file mode 100644 index 000000000000..3d8eb92735e9 --- /dev/null +++ b/Documentation/trace/sys-t.rst @@ -0,0 +1,62 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=================== +MIPI SyS-T over STP +=================== + +The MIPI SyS-T protocol driver can be used with STM class devices to +generate standardized trace stream. Aside from being a standard, it +provides better trace source identification and timestamp correlation. + +In order to use the MIPI SyS-T protocol driver with your STM device, +first, you'll need CONFIG_STM_PROTO_SYS_T. + +Now, you can select which protocol driver you want to use when you create +a policy for your STM device, by specifying it in the policy name: + +# mkdir /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/ + +In other words, the policy name format is extended like this: + + <device_name>:<protocol_name>.<policy_name> + +With Intel TH, therefore it can look like "0-sth:p_sys-t.my-policy". + +If the protocol name is omitted, the STM class will chose whichever +protocol driver was loaded first. + +You can also double check that everything is working as expected by + +# cat /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/protocol +p_sys-t + +Now, with the MIPI SyS-T protocol driver, each policy node in the +configfs gets a few additional attributes, which determine per-source +parameters specific to the protocol: + +# mkdir /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/default +# ls /config/stp-policy/dummy_stm.0:p_sys-t.my-policy/default +channels +clocksync_interval +do_len +masters +ts_interval +uuid + +The most important one here is the "uuid", which determines the UUID +that will be used to tag all data coming from this source. It is +automatically generated when a new node is created, but it is likely +that you would want to change it. + +do_len switches on/off the additional "payload length" field in the +MIPI SyS-T message header. It is off by default as the STP already +marks message boundaries. + +ts_interval and clocksync_interval determine how much time in milliseconds +can pass before we need to include a protocol (not transport, aka STP) +timestamp in a message header or send a CLOCKSYNC packet, respectively. + +See Documentation/ABI/testing/configfs-stp-policy-p_sys-t for more +details. + +* [1] https://www.mipi.org/specifications/sys-t |