summaryrefslogtreecommitdiff
path: root/Documentation/trace
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace')
-rw-r--r--Documentation/trace/ftrace-design.txt11
-rw-r--r--Documentation/trace/ftrace.txt10
-rw-r--r--Documentation/trace/hwlat_detector.txt79
-rw-r--r--Documentation/trace/kprobetrace.txt9
-rw-r--r--Documentation/trace/uprobetracer.txt9
5 files changed, 107 insertions, 11 deletions
diff --git a/Documentation/trace/ftrace-design.txt b/Documentation/trace/ftrace-design.txt
index dd5f916b351d..a273dd0bbaaa 100644
--- a/Documentation/trace/ftrace-design.txt
+++ b/Documentation/trace/ftrace-design.txt
@@ -203,6 +203,17 @@ along to ftrace_push_return_trace() instead of a stub value of 0.
Similarly, when you call ftrace_return_to_handler(), pass it the frame pointer.
+HAVE_FUNCTION_GRAPH_RET_ADDR_PTR
+--------------------------------
+
+An arch may pass in a pointer to the return address on the stack. This
+prevents potential stack unwinding issues where the unwinder gets out of
+sync with ret_stack and the wrong addresses are reported by
+ftrace_graph_ret_addr().
+
+Adding support for it is easy: just define the macro in asm/ftrace.h and
+pass the return address pointer as the 'retp' argument to
+ftrace_push_return_trace().
HAVE_FTRACE_NMI_ENTER
---------------------
diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt
index a6b3705e62a6..185c39fea2a0 100644
--- a/Documentation/trace/ftrace.txt
+++ b/Documentation/trace/ftrace.txt
@@ -858,11 +858,11 @@ x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
When enabled, it will account time the task has been
scheduled out as part of the function call.
- graph-time - When running function graph tracer, to include the
- time to call nested functions. When this is not set,
- the time reported for the function will only include
- the time the function itself executed for, not the time
- for functions that it called.
+ graph-time - When running function profiler with function graph tracer,
+ to include the time to call nested functions. When this is
+ not set, the time reported for the function will only
+ include the time the function itself executed for, not the
+ time for functions that it called.
record-cmd - When any event or tracer is enabled, a hook is enabled
in the sched_switch trace point to fill comm cache
diff --git a/Documentation/trace/hwlat_detector.txt b/Documentation/trace/hwlat_detector.txt
new file mode 100644
index 000000000000..3207717a0d1a
--- /dev/null
+++ b/Documentation/trace/hwlat_detector.txt
@@ -0,0 +1,79 @@
+Introduction:
+-------------
+
+The tracer hwlat_detector is a special purpose tracer that is used to
+detect large system latencies induced by the behavior of certain underlying
+hardware or firmware, independent of Linux itself. The code was developed
+originally to detect SMIs (System Management Interrupts) on x86 systems,
+however there is nothing x86 specific about this patchset. It was
+originally written for use by the "RT" patch since the Real Time
+kernel is highly latency sensitive.
+
+SMIs are not serviced by the Linux kernel, which means that it does not
+even know that they are occuring. SMIs are instead set up by BIOS code
+and are serviced by BIOS code, usually for "critical" events such as
+management of thermal sensors and fans. Sometimes though, SMIs are used for
+other tasks and those tasks can spend an inordinate amount of time in the
+handler (sometimes measured in milliseconds). Obviously this is a problem if
+you are trying to keep event service latencies down in the microsecond range.
+
+The hardware latency detector works by hogging one of the cpus for configurable
+amounts of time (with interrupts disabled), polling the CPU Time Stamp Counter
+for some period, then looking for gaps in the TSC data. Any gap indicates a
+time when the polling was interrupted and since the interrupts are disabled,
+the only thing that could do that would be an SMI or other hardware hiccup
+(or an NMI, but those can be tracked).
+
+Note that the hwlat detector should *NEVER* be used in a production environment.
+It is intended to be run manually to determine if the hardware platform has a
+problem with long system firmware service routines.
+
+Usage:
+------
+
+Write the ASCII text "hwlat" into the current_tracer file of the tracing system
+(mounted at /sys/kernel/tracing or /sys/kernel/tracing). It is possible to
+redefine the threshold in microseconds (us) above which latency spikes will
+be taken into account.
+
+Example:
+
+ # echo hwlat > /sys/kernel/tracing/current_tracer
+ # echo 100 > /sys/kernel/tracing/tracing_thresh
+
+The /sys/kernel/tracing/hwlat_detector interface contains the following files:
+
+width - time period to sample with CPUs held (usecs)
+ must be less than the total window size (enforced)
+window - total period of sampling, width being inside (usecs)
+
+By default the width is set to 500,000 and window to 1,000,000, meaning that
+for every 1,000,000 usecs (1s) the hwlat detector will spin for 500,000 usecs
+(0.5s). If tracing_thresh contains zero when hwlat tracer is enabled, it will
+change to a default of 10 usecs. If any latencies that exceed the threshold is
+observed then the data will be written to the tracing ring buffer.
+
+The minimum sleep time between periods is 1 millisecond. Even if width
+is less than 1 millisecond apart from window, to allow the system to not
+be totally starved.
+
+If tracing_thresh was zero when hwlat detector was started, it will be set
+back to zero if another tracer is loaded. Note, the last value in
+tracing_thresh that hwlat detector had will be saved and this value will
+be restored in tracing_thresh if it is still zero when hwlat detector is
+started again.
+
+The following tracing directory files are used by the hwlat_detector:
+
+in /sys/kernel/tracing:
+
+ tracing_threshold - minimum latency value to be considered (usecs)
+ tracing_max_latency - maximum hardware latency actually observed (usecs)
+ tracing_cpumask - the CPUs to move the hwlat thread across
+ hwlat_detector/width - specified amount of time to spin within window (usecs)
+ hwlat_detector/window - amount of time between (width) runs (usecs)
+
+The hwlat detector's kernel thread will migrate across each CPU specified in
+tracing_cpumask between each window. To limit the migration, either modify
+tracing_cpumask, or modify the hwlat kernel thread (named [hwlatd]) CPU
+affinity directly, and the migration will stop.
diff --git a/Documentation/trace/kprobetrace.txt b/Documentation/trace/kprobetrace.txt
index ea52ec1f8484..e4991fb1eedc 100644
--- a/Documentation/trace/kprobetrace.txt
+++ b/Documentation/trace/kprobetrace.txt
@@ -44,8 +44,8 @@ Synopsis of kprobe_events
+|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
- (u8/u16/u32/u64/s8/s16/s32/s64), "string" and bitfield
- are supported.
+ (u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
+ (x8/x16/x32/x64), "string" and bitfield are supported.
(*) only for return probe.
(**) this is useful for fetching a field of data structures.
@@ -54,7 +54,10 @@ Types
-----
Several types are supported for fetch-args. Kprobe tracer will access memory
by given type. Prefix 's' and 'u' means those types are signed and unsigned
-respectively. Traced arguments are shown in decimal (signed) or hex (unsigned).
+respectively. 'x' prefix implies it is unsigned. Traced arguments are shown
+in decimal ('s' and 'u') or hexadecimal ('x'). Without type casting, 'x32'
+or 'x64' is used depends on the architecture (e.g. x86-32 uses x32, and
+x86-64 uses x64).
String type is a special type, which fetches a "null-terminated" string from
kernel space. This means it will fail and store NULL if the string container
has been paged out.
diff --git a/Documentation/trace/uprobetracer.txt b/Documentation/trace/uprobetracer.txt
index 72d1cd4f7bf3..94b6b4581763 100644
--- a/Documentation/trace/uprobetracer.txt
+++ b/Documentation/trace/uprobetracer.txt
@@ -40,8 +40,8 @@ Synopsis of uprobe_tracer
+|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
- (u8/u16/u32/u64/s8/s16/s32/s64), "string" and bitfield
- are supported.
+ (u8/u16/u32/u64/s8/s16/s32/s64), hexadecimal types
+ (x8/x16/x32/x64), "string" and bitfield are supported.
(*) only for return probe.
(**) this is useful for fetching a field of data structures.
@@ -50,7 +50,10 @@ Types
-----
Several types are supported for fetch-args. Uprobe tracer will access memory
by given type. Prefix 's' and 'u' means those types are signed and unsigned
-respectively. Traced arguments are shown in decimal (signed) or hex (unsigned).
+respectively. 'x' prefix implies it is unsigned. Traced arguments are shown
+in decimal ('s' and 'u') or hexadecimal ('x'). Without type casting, 'x32'
+or 'x64' is used depends on the architecture (e.g. x86-32 uses x32, and
+x86-64 uses x64).
String type is a special type, which fetches a "null-terminated" string from
user space.
Bitfield is another special type, which takes 3 parameters, bit-width, bit-