summaryrefslogtreecommitdiff
path: root/Documentation/networking
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking')
-rw-r--r--Documentation/networking/batman-adv.rst2
-rw-r--r--Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst44
-rw-r--r--Documentation/networking/devlink/index.rst1
-rw-r--r--Documentation/networking/devlink/sja1105.rst49
-rw-r--r--Documentation/networking/dsa/dsa.rst29
-rw-r--r--Documentation/networking/dsa/sja1105.rst218
-rw-r--r--Documentation/networking/ethtool-netlink.rst23
-rw-r--r--Documentation/networking/mptcp-sysctl.rst12
-rw-r--r--Documentation/networking/nf_conntrack-sysctl.rst7
-rw-r--r--Documentation/networking/pktgen.rst18
-rw-r--r--Documentation/networking/vrf.rst13
11 files changed, 125 insertions, 291 deletions
diff --git a/Documentation/networking/batman-adv.rst b/Documentation/networking/batman-adv.rst
index 74821d29a22f..b85563ea3682 100644
--- a/Documentation/networking/batman-adv.rst
+++ b/Documentation/networking/batman-adv.rst
@@ -157,7 +157,7 @@ Contact
Please send us comments, experiences, questions, anything :)
IRC:
- #batman on irc.freenode.org
+ #batadv on ircs://irc.hackint.org/
Mailing-list:
b.a.t.m.a.n@open-mesh.org (optional subscription at
https://lists.open-mesh.org/mailman3/postorius/lists/b.a.t.m.a.n.lists.open-mesh.org/)
diff --git a/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst b/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst
index ef8cb62e82a1..4b59cf2c599f 100644
--- a/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst
+++ b/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst
@@ -656,3 +656,47 @@ Bridge offloads tracepoints:
$ cat /sys/kernel/debug/tracing/trace
...
ip-5387 [000] ...1 573713: mlx5_esw_bridge_vport_cleanup: vport_num=1
+
+Eswitch QoS tracepoints:
+
+- mlx5_esw_vport_qos_create: trace creation of transmit scheduler arbiter for vport::
+
+ $ echo mlx5:mlx5_esw_vport_qos_create >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ <...>-23496 [018] .... 73136.838831: mlx5_esw_vport_qos_create: (0000:82:00.0) vport=2 tsar_ix=4 bw_share=0, max_rate=0 group=000000007b576bb3
+
+- mlx5_esw_vport_qos_config: trace configuration of transmit scheduler arbiter for vport::
+
+ $ echo mlx5:mlx5_esw_vport_qos_config >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ <...>-26548 [023] .... 75754.223823: mlx5_esw_vport_qos_config: (0000:82:00.0) vport=1 tsar_ix=3 bw_share=34, max_rate=10000 group=000000007b576bb3
+
+- mlx5_esw_vport_qos_destroy: trace deletion of transmit scheduler arbiter for vport::
+
+ $ echo mlx5:mlx5_esw_vport_qos_destroy >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ <...>-27418 [004] .... 76546.680901: mlx5_esw_vport_qos_destroy: (0000:82:00.0) vport=1 tsar_ix=3
+
+- mlx5_esw_group_qos_create: trace creation of transmit scheduler arbiter for rate group::
+
+ $ echo mlx5:mlx5_esw_group_qos_create >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ <...>-26578 [008] .... 75776.022112: mlx5_esw_group_qos_create: (0000:82:00.0) group=000000008dac63ea tsar_ix=5
+
+- mlx5_esw_group_qos_config: trace configuration of transmit scheduler arbiter for rate group::
+
+ $ echo mlx5:mlx5_esw_group_qos_config >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ <...>-27303 [020] .... 76461.455356: mlx5_esw_group_qos_config: (0000:82:00.0) group=000000008dac63ea tsar_ix=5 bw_share=100 max_rate=20000
+
+- mlx5_esw_group_qos_destroy: trace deletion of transmit scheduler arbiter for group::
+
+ $ echo mlx5:mlx5_esw_group_qos_destroy >> /sys/kernel/debug/tracing/set_event
+ $ cat /sys/kernel/debug/tracing/trace
+ ...
+ <...>-27418 [006] .... 76547.187258: mlx5_esw_group_qos_destroy: (0000:82:00.0) group=000000007b576bb3 tsar_ix=1
diff --git a/Documentation/networking/devlink/index.rst b/Documentation/networking/devlink/index.rst
index 03f56ed2961f..45b5f8b341df 100644
--- a/Documentation/networking/devlink/index.rst
+++ b/Documentation/networking/devlink/index.rst
@@ -43,7 +43,6 @@ parameters, info versions, and other features it supports.
mv88e6xxx
netdevsim
nfp
- sja1105
qed
ti-cpsw-switch
am65-nuss-cpsw-switch
diff --git a/Documentation/networking/devlink/sja1105.rst b/Documentation/networking/devlink/sja1105.rst
deleted file mode 100644
index e2679c274085..000000000000
--- a/Documentation/networking/devlink/sja1105.rst
+++ /dev/null
@@ -1,49 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-=======================
-sja1105 devlink support
-=======================
-
-This document describes the devlink features implemented
-by the ``sja1105`` device driver.
-
-Parameters
-==========
-
-.. list-table:: Driver-specific parameters implemented
- :widths: 5 5 5 85
-
- * - Name
- - Type
- - Mode
- - Description
- * - ``best_effort_vlan_filtering``
- - Boolean
- - runtime
- - Allow plain ETH_P_8021Q headers to be used as DSA tags.
-
- Benefits:
-
- - Can terminate untagged traffic over switch net
- devices even when enslaved to a bridge with
- vlan_filtering=1.
- - Can terminate VLAN-tagged traffic over switch net
- devices even when enslaved to a bridge with
- vlan_filtering=1, with some constraints (no more than
- 7 non-pvid VLANs per user port).
- - Can do QoS based on VLAN PCP and VLAN membership
- admission control for autonomously forwarded frames
- (regardless of whether they can be terminated on the
- CPU or not).
-
- Drawbacks:
-
- - User cannot use VLANs in range 1024-3071. If the
- switch receives frames with such VIDs, it will
- misinterpret them as DSA tags.
- - Switch uses Shared VLAN Learning (FDB lookup uses
- only DMAC as key).
- - When VLANs span cross-chip topologies, the total
- number of permitted VLANs may be less than 7 per
- port, due to a maximum number of 32 VLAN retagging
- rules per switch.
diff --git a/Documentation/networking/dsa/dsa.rst b/Documentation/networking/dsa/dsa.rst
index 20baacf2bc5c..89bb4fa4c362 100644
--- a/Documentation/networking/dsa/dsa.rst
+++ b/Documentation/networking/dsa/dsa.rst
@@ -200,19 +200,6 @@ receive all frames regardless of the value of the MAC DA. This can be done by
setting the ``promisc_on_master`` property of the ``struct dsa_device_ops``.
Note that this assumes a DSA-unaware master driver, which is the norm.
-Hardware manufacturers are strongly discouraged to do this, but some tagging
-protocols might not provide source port information on RX for all packets, but
-e.g. only for control traffic (link-local PDUs). In this case, by implementing
-the ``filter`` method of ``struct dsa_device_ops``, the tagger might select
-which packets are to be redirected on RX towards the virtual DSA user network
-interfaces, and which are to be left in the DSA master's RX data path.
-
-It might also happen (although silicon vendors are strongly discouraged to
-produce hardware like this) that a tagging protocol splits the switch-specific
-information into a header portion and a tail portion, therefore not falling
-cleanly into any of the above 3 categories. DSA does not support this
-configuration.
-
Master network devices
----------------------
@@ -663,6 +650,22 @@ Bridge layer
CPU port, and flooding towards the CPU port should also be enabled, due to a
lack of an explicit address filtering mechanism in the DSA core.
+- ``port_bridge_tx_fwd_offload``: bridge layer function invoked after
+ ``port_bridge_join`` when a driver sets ``ds->num_fwd_offloading_bridges`` to
+ a non-zero value. Returning success in this function activates the TX
+ forwarding offload bridge feature for this port, which enables the tagging
+ protocol driver to inject data plane packets towards the bridging domain that
+ the port is a part of. Data plane packets are subject to FDB lookup, hardware
+ learning on the CPU port, and do not override the port STP state.
+ Additionally, replication of data plane packets (multicast, flooding) is
+ handled in hardware and the bridge driver will transmit a single skb for each
+ packet that needs replication. The method is provided as a configuration
+ point for drivers that need to configure the hardware for enabling this
+ feature.
+
+- ``port_bridge_tx_fwd_unoffload``: bridge layer function invoken when a driver
+ leaves a bridge port which had the TX forwarding offload feature enabled.
+
Bridge VLAN filtering
---------------------
diff --git a/Documentation/networking/dsa/sja1105.rst b/Documentation/networking/dsa/sja1105.rst
index da4057ba37f1..564caeebe2b2 100644
--- a/Documentation/networking/dsa/sja1105.rst
+++ b/Documentation/networking/dsa/sja1105.rst
@@ -65,199 +65,6 @@ If that changed setting can be transmitted to the switch through the dynamic
reconfiguration interface, it is; otherwise the switch is reset and
reprogrammed with the updated static configuration.
-Traffic support
-===============
-
-The switches do not have hardware support for DSA tags, except for "slow
-protocols" for switch control as STP and PTP. For these, the switches have two
-programmable filters for link-local destination MACs.
-These are used to trap BPDUs and PTP traffic to the master netdevice, and are
-further used to support STP and 1588 ordinary clock/boundary clock
-functionality. For frames trapped to the CPU, source port and switch ID
-information is encoded by the hardware into the frames.
-
-But by leveraging ``CONFIG_NET_DSA_TAG_8021Q`` (a software-defined DSA tagging
-format based on VLANs), general-purpose traffic termination through the network
-stack can be supported under certain circumstances.
-
-Depending on VLAN awareness state, the following operating modes are possible
-with the switch:
-
-- Mode 1 (VLAN-unaware): a port is in this mode when it is used as a standalone
- net device, or when it is enslaved to a bridge with ``vlan_filtering=0``.
-- Mode 2 (fully VLAN-aware): a port is in this mode when it is enslaved to a
- bridge with ``vlan_filtering=1``. Access to the entire VLAN range is given to
- the user through ``bridge vlan`` commands, but general-purpose (anything
- other than STP, PTP etc) traffic termination is not possible through the
- switch net devices. The other packets can be still by user space processed
- through the DSA master interface (similar to ``DSA_TAG_PROTO_NONE``).
-- Mode 3 (best-effort VLAN-aware): a port is in this mode when enslaved to a
- bridge with ``vlan_filtering=1``, and the devlink property of its parent
- switch named ``best_effort_vlan_filtering`` is set to ``true``. When
- configured like this, the range of usable VIDs is reduced (0 to 1023 and 3072
- to 4094), so is the number of usable VIDs (maximum of 7 non-pvid VLANs per
- port*), and shared VLAN learning is performed (FDB lookup is done only by
- DMAC, not also by VID).
-
-To summarize, in each mode, the following types of traffic are supported over
-the switch net devices:
-
-+-------------+-----------+--------------+------------+
-| | Mode 1 | Mode 2 | Mode 3 |
-+=============+===========+==============+============+
-| Regular | Yes | No | Yes |
-| traffic | | (use master) | |
-+-------------+-----------+--------------+------------+
-| Management | Yes | Yes | Yes |
-| traffic | | | |
-| (BPDU, PTP) | | | |
-+-------------+-----------+--------------+------------+
-
-To configure the switch to operate in Mode 3, the following steps can be
-followed::
-
- ip link add dev br0 type bridge
- # swp2 operates in Mode 1 now
- ip link set dev swp2 master br0
- # swp2 temporarily moves to Mode 2
- ip link set dev br0 type bridge vlan_filtering 1
- [ 61.204770] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
- [ 61.239944] sja1105 spi0.1: Disabled switch tagging
- # swp3 now operates in Mode 3
- devlink dev param set spi/spi0.1 name best_effort_vlan_filtering value true cmode runtime
- [ 64.682927] sja1105 spi0.1: Reset switch and programmed static config. Reason: VLAN filtering
- [ 64.711925] sja1105 spi0.1: Enabled switch tagging
- # Cannot use VLANs in range 1024-3071 while in Mode 3.
- bridge vlan add dev swp2 vid 1025 untagged pvid
- RTNETLINK answers: Operation not permitted
- bridge vlan add dev swp2 vid 100
- bridge vlan add dev swp2 vid 101 untagged
- bridge vlan
- port vlan ids
- swp5 1 PVID Egress Untagged
-
- swp2 1 PVID Egress Untagged
- 100
- 101 Egress Untagged
-
- swp3 1 PVID Egress Untagged
-
- swp4 1 PVID Egress Untagged
-
- br0 1 PVID Egress Untagged
- bridge vlan add dev swp2 vid 102
- bridge vlan add dev swp2 vid 103
- bridge vlan add dev swp2 vid 104
- bridge vlan add dev swp2 vid 105
- bridge vlan add dev swp2 vid 106
- bridge vlan add dev swp2 vid 107
- # Cannot use mode than 7 VLANs per port while in Mode 3.
- [ 3885.216832] sja1105 spi0.1: No more free subvlans
-
-\* "maximum of 7 non-pvid VLANs per port": Decoding VLAN-tagged packets on the
-CPU in mode 3 is possible through VLAN retagging of packets that go from the
-switch to the CPU. In cross-chip topologies, the port that goes to the CPU
-might also go to other switches. In that case, those other switches will see
-only a retagged packet (which only has meaning for the CPU). So if they are
-interested in this VLAN, they need to apply retagging in the reverse direction,
-to recover the original value from it. This consumes extra hardware resources
-for this switch. There is a maximum of 32 entries in the Retagging Table of
-each switch device.
-
-As an example, consider this cross-chip topology::
-
- +-------------------------------------------------+
- | Host SoC |
- | +-------------------------+ |
- | | DSA master for embedded | |
- | | switch (non-sja1105) | |
- | +--------+-------------------------+--------+ |
- | | embedded L2 switch | |
- | | | |
- | | +--------------+ +--------------+ | |
- | | |DSA master for| |DSA master for| | |
- | | | SJA1105 1 | | SJA1105 2 | | |
- +--+---+--------------+-----+--------------+---+--+
-
- +-----------------------+ +-----------------------+
- | SJA1105 switch 1 | | SJA1105 switch 2 |
- +-----+-----+-----+-----+ +-----+-----+-----+-----+
- |sw1p0|sw1p1|sw1p2|sw1p3| |sw2p0|sw2p1|sw2p2|sw2p3|
- +-----+-----+-----+-----+ +-----+-----+-----+-----+
-
-To reach the CPU, SJA1105 switch 1 (spi/spi2.1) uses the same port as is uses
-to reach SJA1105 switch 2 (spi/spi2.2), which would be port 4 (not drawn).
-Similarly for SJA1105 switch 2.
-
-Also consider the following commands, that add VLAN 100 to every sja1105 user
-port::
-
- devlink dev param set spi/spi2.1 name best_effort_vlan_filtering value true cmode runtime
- devlink dev param set spi/spi2.2 name best_effort_vlan_filtering value true cmode runtime
- ip link add dev br0 type bridge
- for port in sw1p0 sw1p1 sw1p2 sw1p3 \
- sw2p0 sw2p1 sw2p2 sw2p3; do
- ip link set dev $port master br0
- done
- ip link set dev br0 type bridge vlan_filtering 1
- for port in sw1p0 sw1p1 sw1p2 sw1p3 \
- sw2p0 sw2p1 sw2p2; do
- bridge vlan add dev $port vid 100
- done
- ip link add link br0 name br0.100 type vlan id 100 && ip link set dev br0.100 up
- ip addr add 192.168.100.3/24 dev br0.100
- bridge vlan add dev br0 vid 100 self
-
- bridge vlan
- port vlan ids
- sw1p0 1 PVID Egress Untagged
- 100
-
- sw1p1 1 PVID Egress Untagged
- 100
-
- sw1p2 1 PVID Egress Untagged
- 100
-
- sw1p3 1 PVID Egress Untagged
- 100
-
- sw2p0 1 PVID Egress Untagged
- 100
-
- sw2p1 1 PVID Egress Untagged
- 100
-
- sw2p2 1 PVID Egress Untagged
- 100
-
- sw2p3 1 PVID Egress Untagged
-
- br0 1 PVID Egress Untagged
- 100
-
-SJA1105 switch 1 consumes 1 retagging entry for each VLAN on each user port
-towards the CPU. It also consumes 1 retagging entry for each non-pvid VLAN that
-it is also interested in, which is configured on any port of any neighbor
-switch.
-
-In this case, SJA1105 switch 1 consumes a total of 11 retagging entries, as
-follows:
-
-- 8 retagging entries for VLANs 1 and 100 installed on its user ports
- (``sw1p0`` - ``sw1p3``)
-- 3 retagging entries for VLAN 100 installed on the user ports of SJA1105
- switch 2 (``sw2p0`` - ``sw2p2``), because it also has ports that are
- interested in it. The VLAN 1 is a pvid on SJA1105 switch 2 and does not need
- reverse retagging.
-
-SJA1105 switch 2 also consumes 11 retagging entries, but organized as follows:
-
-- 7 retagging entries for the bridge VLANs on its user ports (``sw2p0`` -
- ``sw2p3``).
-- 4 retagging entries for VLAN 100 installed on the user ports of SJA1105
- switch 1 (``sw1p0`` - ``sw1p3``).
-
Switching features
==================
@@ -282,33 +89,10 @@ untagged), and therefore this mode is also supported.
Segregating the switch ports in multiple bridges is supported (e.g. 2 + 2), but
all bridges should have the same level of VLAN awareness (either both have
-``vlan_filtering`` 0, or both 1). Also an inevitable limitation of the fact
-that VLAN awareness is global at the switch level is that once a bridge with
-``vlan_filtering`` enslaves at least one switch port, the other un-bridged
-ports are no longer available for standalone traffic termination.
+``vlan_filtering`` 0, or both 1).
Topology and loop detection through STP is supported.
-L2 FDB manipulation (add/delete/dump) is currently possible for the first
-generation devices. Aging time of FDB entries, as well as enabling fully static
-management (no address learning and no flooding of unknown traffic) is not yet
-configurable in the driver.
-
-A special comment about bridging with other netdevices (illustrated with an
-example):
-
-A board has eth0, eth1, swp0@eth1, swp1@eth1, swp2@eth1, swp3@eth1.
-The switch ports (swp0-3) are under br0.
-It is desired that eth0 is turned into another switched port that communicates
-with swp0-3.
-
-If br0 has vlan_filtering 0, then eth0 can simply be added to br0 with the
-intended results.
-If br0 has vlan_filtering 1, then a new br1 interface needs to be created that
-enslaves eth0 and eth1 (the DSA master of the switch ports). This is because in
-this mode, the switch ports beneath br0 are not capable of regular traffic, and
-are only used as a conduit for switchdev operations.
-
Offloads
========
diff --git a/Documentation/networking/ethtool-netlink.rst b/Documentation/networking/ethtool-netlink.rst
index c86628e6a235..d9b55b7a1a4d 100644
--- a/Documentation/networking/ethtool-netlink.rst
+++ b/Documentation/networking/ethtool-netlink.rst
@@ -595,6 +595,14 @@ Link extended substates:
that is not formally
supported, which led to
signal integrity issues
+
+ ``ETHTOOL_LINK_EXT_SUBSTATE_BSI_SERDES_REFERENCE_CLOCK_LOST`` The external clock signal for
+ SerDes is too weak or
+ unavailable.
+
+ ``ETHTOOL_LINK_EXT_SUBSTATE_BSI_SERDES_ALOS`` The received signal for
+ SerDes is too weak because
+ analog loss of signal.
================================================================= =============================
Cable issue substates:
@@ -939,12 +947,25 @@ Kernel response contents:
``ETHTOOL_A_COALESCE_TX_USECS_HIGH`` u32 delay (us), high Tx
``ETHTOOL_A_COALESCE_TX_MAX_FRAMES_HIGH`` u32 max packets, high Tx
``ETHTOOL_A_COALESCE_RATE_SAMPLE_INTERVAL`` u32 rate sampling interval
+ ``ETHTOOL_A_COALESCE_USE_CQE_TX`` bool timer reset mode, Tx
+ ``ETHTOOL_A_COALESCE_USE_CQE_RX`` bool timer reset mode, Rx
=========================================== ====== =======================
Attributes are only included in reply if their value is not zero or the
corresponding bit in ``ethtool_ops::supported_coalesce_params`` is set (i.e.
they are declared as supported by driver).
+Timer reset mode (``ETHTOOL_A_COALESCE_USE_CQE_TX`` and
+``ETHTOOL_A_COALESCE_USE_CQE_RX``) controls the interaction between packet
+arrival and the various time based delay parameters. By default timers are
+expected to limit the max delay between any packet arrival/departure and a
+corresponding interrupt. In this mode timer should be started by packet
+arrival (sometimes delivery of previous interrupt) and reset when interrupt
+is delivered.
+Setting the appropriate attribute to 1 will enable ``CQE`` mode, where
+each packet event resets the timer. In this mode timer is used to force
+the interrupt if queue goes idle, while busy queues depend on the packet
+limit to trigger interrupts.
COALESCE_SET
============
@@ -977,6 +998,8 @@ Request contents:
``ETHTOOL_A_COALESCE_TX_USECS_HIGH`` u32 delay (us), high Tx
``ETHTOOL_A_COALESCE_TX_MAX_FRAMES_HIGH`` u32 max packets, high Tx
``ETHTOOL_A_COALESCE_RATE_SAMPLE_INTERVAL`` u32 rate sampling interval
+ ``ETHTOOL_A_COALESCE_USE_CQE_TX`` bool timer reset mode, Tx
+ ``ETHTOOL_A_COALESCE_USE_CQE_RX`` bool timer reset mode, Rx
=========================================== ====== =======================
Request is rejected if it attributes declared as unsupported by driver (i.e.
diff --git a/Documentation/networking/mptcp-sysctl.rst b/Documentation/networking/mptcp-sysctl.rst
index 76d939e688b8..b0d4da71e68e 100644
--- a/Documentation/networking/mptcp-sysctl.rst
+++ b/Documentation/networking/mptcp-sysctl.rst
@@ -45,3 +45,15 @@ allow_join_initial_addr_port - BOOLEAN
This is a per-namespace sysctl.
Default: 1
+
+stale_loss_cnt - INTEGER
+ The number of MPTCP-level retransmission intervals with no traffic and
+ pending outstanding data on a given subflow required to declare it stale.
+ The packet scheduler ignores stale subflows.
+ A low stale_loss_cnt value allows for fast active-backup switch-over,
+ an high value maximize links utilization on edge scenarios e.g. lossy
+ link with high BER or peer pausing the data processing.
+
+ This is a per-namespace sysctl.
+
+ Default: 4
diff --git a/Documentation/networking/nf_conntrack-sysctl.rst b/Documentation/networking/nf_conntrack-sysctl.rst
index 024d784157c8..34ca762ea56f 100644
--- a/Documentation/networking/nf_conntrack-sysctl.rst
+++ b/Documentation/networking/nf_conntrack-sysctl.rst
@@ -184,6 +184,13 @@ nf_conntrack_gre_timeout_stream - INTEGER (seconds)
This extended timeout will be used in case there is an GRE stream
detected.
+nf_hooks_lwtunnel - BOOLEAN
+ - 0 - disabled (default)
+ - not 0 - enabled
+
+ If this option is enabled, the lightweight tunnel netfilter hooks are
+ enabled. This option cannot be disabled once it is enabled.
+
nf_flowtable_tcp_timeout - INTEGER (seconds)
default 30
diff --git a/Documentation/networking/pktgen.rst b/Documentation/networking/pktgen.rst
index 7afa1c9f1183..1225f0f63ff0 100644
--- a/Documentation/networking/pktgen.rst
+++ b/Documentation/networking/pktgen.rst
@@ -248,26 +248,24 @@ Usage:::
-i : ($DEV) output interface/device (required)
-s : ($PKT_SIZE) packet size
- -d : ($DEST_IP) destination IP
+ -d : ($DEST_IP) destination IP. CIDR (e.g. 198.18.0.0/15) is also allowed
-m : ($DST_MAC) destination MAC-addr
+ -p : ($DST_PORT) destination PORT range (e.g. 433-444) is also allowed
-t : ($THREADS) threads to start
+ -f : ($F_THREAD) index of first thread (zero indexed CPU number)
-c : ($SKB_CLONE) SKB clones send before alloc new SKB
+ -n : ($COUNT) num messages to send per thread, 0 means indefinitely
-b : ($BURST) HW level bursting of SKBs
-v : ($VERBOSE) verbose
-x : ($DEBUG) debug
+ -6 : ($IP6) IPv6
+ -w : ($DELAY) Tx Delay value (ns)
+ -a : ($APPEND) Script will not reset generator's state, but will append its config
The global variables being set are also listed. E.g. the required
interface/device parameter "-i" sets variable $DEV. Copy the
pktgen_sampleXX scripts and modify them to fit your own needs.
-The old scripts::
-
- pktgen.conf-1-2 # 1 CPU 2 dev
- pktgen.conf-1-1-rdos # 1 CPU 1 dev w. route DoS
- pktgen.conf-1-1-ip6 # 1 CPU 1 dev ipv6
- pktgen.conf-1-1-ip6-rdos # 1 CPU 1 dev ipv6 w. route DoS
- pktgen.conf-1-1-flows # 1 CPU 1 dev multiple flows.
-
Interrupt affinity
===================
@@ -398,7 +396,7 @@ Current commands and configuration options
References:
- ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/
-- tp://robur.slu.se/pub/Linux/net-development/pktgen-testing/examples/
+- ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/examples/
Paper from Linux-Kongress in Erlangen 2004.
- ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/pktgen_paper.pdf
diff --git a/Documentation/networking/vrf.rst b/Documentation/networking/vrf.rst
index 0dde145043bc..0a9a6f968cb9 100644
--- a/Documentation/networking/vrf.rst
+++ b/Documentation/networking/vrf.rst
@@ -144,6 +144,19 @@ default VRF are only handled by a socket not bound to any VRF::
netfilter rules on the VRF device can be used to limit access to services
running in the default VRF context as well.
+Using VRF-aware applications (applications which simultaneously create sockets
+outside and inside VRFs) in conjunction with ``net.ipv4.tcp_l3mdev_accept=1``
+is possible but may lead to problems in some situations. With that sysctl
+value, it is unspecified which listening socket will be selected to handle
+connections for VRF traffic; ie. either a socket bound to the VRF or an unbound
+socket may be used to accept new connections from a VRF. This somewhat
+unexpected behavior can lead to problems if sockets are configured with extra
+options (ex. TCP MD5 keys) with the expectation that VRF traffic will
+exclusively be handled by sockets bound to VRFs, as would be the case with
+``net.ipv4.tcp_l3mdev_accept=0``. Finally and as a reminder, regardless of
+which listening socket is selected, established sockets will be created in the
+VRF based on the ingress interface, as documented earlier.
+
--------------------------------------------------------------------------------
Using iproute2 for VRFs