summaryrefslogtreecommitdiff
path: root/Documentation/mm/damon/design.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/mm/damon/design.rst')
-rw-r--r--Documentation/mm/damon/design.rst271
1 files changed, 230 insertions, 41 deletions
diff --git a/Documentation/mm/damon/design.rst b/Documentation/mm/damon/design.rst
index f9c50525bdbf..ddc50db3afa4 100644
--- a/Documentation/mm/damon/design.rst
+++ b/Documentation/mm/damon/design.rst
@@ -54,7 +54,7 @@ monitoring are address-space dependent.
DAMON consolidates these implementations in a layer called DAMON Operations
Set, and defines the interface between it and the upper layer. The upper layer
is dedicated for DAMON's core logics including the mechanism for control of the
-monitoring accruracy and the overhead.
+monitoring accuracy and the overhead.
Hence, DAMON can easily be extended for any address space and/or available
hardware features by configuring the core logic to use the appropriate
@@ -203,6 +203,8 @@ This scheme, however, cannot preserve the quality of the output if the
assumption is not guaranteed.
+.. _damon_design_adaptive_regions_adjustment:
+
Adaptive Regions Adjustment
~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -264,6 +266,111 @@ tracepoints. For more details, please refer to the documentations for
respectively.
+.. _damon_design_monitoring_params_tuning_guide:
+
+Monitoring Parameters Tuning Guide
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In short, set ``aggregation interval`` to capture meaningful amount of accesses
+for the purpose. The amount of accesses can be measured using ``nr_accesses``
+and ``age`` of regions in the aggregated monitoring results snapshot. The
+default value of the interval, ``100ms``, turns out to be too short in many
+cases. Set ``sampling interval`` proportional to ``aggregation interval``. By
+default, ``1/20`` is recommended as the ratio.
+
+``Aggregation interval`` should be set as the time interval that the workload
+can make an amount of accesses for the monitoring purpose, within the interval.
+If the interval is too short, only small number of accesses are captured. As a
+result, the monitoring results look everything is samely accessed only rarely.
+For many purposes, that would be useless. If it is too long, however, the time
+to converge regions with the :ref:`regions adjustment mechanism
+<damon_design_adaptive_regions_adjustment>` can be too long, depending on the
+time scale of the given purpose. This could happen if the workload is actually
+making only rare accesses but the user thinks the amount of accesses for the
+monitoring purpose too high. For such cases, the target amount of access to
+capture per ``aggregation interval`` should carefully reconsidered. Also, note
+that the captured amount of accesses is represented with not only
+``nr_accesses``, but also ``age``. For example, even if every region on the
+monitoring results show zero ``nr_accesses``, regions could still be
+distinguished using ``age`` values as the recency information.
+
+Hence the optimum value of ``aggregation interval`` depends on the access
+intensiveness of the workload. The user should tune the interval based on the
+amount of access that captured on each aggregated snapshot of the monitoring
+results.
+
+Note that the default value of the interval is 100 milliseconds, which is too
+short in many cases, especially on large systems.
+
+``Sampling interval`` defines the resolution of each aggregation. If it is set
+too large, monitoring results will look like every region was samely rarely
+accessed, or samely frequently accessed. That is, regions become
+undistinguishable based on access pattern, and therefore the results will be
+useless in many use cases. If ``sampling interval`` is too small, it will not
+degrade the resolution, but will increase the monitoring overhead. If it is
+appropriate enough to provide a resolution of the monitoring results that
+sufficient for the given purpose, it shouldn't be unnecessarily further
+lowered. It is recommended to be set proportional to ``aggregation interval``.
+By default, the ratio is set as ``1/20``, and it is still recommended.
+
+Based on the manual tuning guide, DAMON provides more intuitive knob-based
+intervals auto tuning mechanism. Please refer to :ref:`the design document of
+the feature <damon_design_monitoring_intervals_autotuning>` for detail.
+
+Refer to below documents for an example tuning based on the above guide.
+
+.. toctree::
+ :maxdepth: 1
+
+ monitoring_intervals_tuning_example
+
+
+.. _damon_design_monitoring_intervals_autotuning:
+
+Monitoring Intervals Auto-tuning
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+DAMON provides automatic tuning of the ``sampling interval`` and ``aggregation
+interval`` based on the :ref:`the tuning guide idea
+<damon_design_monitoring_params_tuning_guide>`. The tuning mechanism allows
+users to set the aimed amount of access events to observe via DAMON within
+given time interval. The target can be specified by the user as a ratio of
+DAMON-observed access events to the theoretical maximum amount of the events
+(``access_bp``) that measured within a given number of aggregations
+(``aggrs``).
+
+The DAMON-observed access events are calculated in byte granularity based on
+DAMON :ref:`region assumption <damon_design_region_based_sampling>`. For
+example, if a region of size ``X`` bytes of ``Y`` ``nr_accesses`` is found, it
+means ``X * Y`` access events are observed by DAMON. Theoretical maximum
+access events for the region is calculated in same way, but replacing ``Y``
+with theoretical maximum ``nr_accesses``, which can be calculated as
+``aggregation interval / sampling interval``.
+
+The mechanism calculates the ratio of access events for ``aggrs`` aggregations,
+and increases or decrease the ``sampleing interval`` and ``aggregation
+interval`` in same ratio, if the observed access ratio is lower or higher than
+the target, respectively. The ratio of the intervals change is decided in
+proportion to the distance between current samples ratio and the target ratio.
+
+The user can further set the minimum and maximum ``sampling interval`` that can
+be set by the tuning mechanism using two parameters (``min_sample_us`` and
+``max_sample_us``). Because the tuning mechanism changes ``sampling interval``
+and ``aggregation interval`` in same ratio always, the minimum and maximum
+``aggregation interval`` after each of the tuning changes can automatically set
+together.
+
+The tuning is turned off by default, and need to be set explicitly by the user.
+As a rule of thumbs and the Parreto principle, 4% access samples ratio target
+is recommended. Note that Parreto principle (80/20 rule) has applied twice.
+That is, assumes 4% (20% of 20%) DAMON-observed access events ratio (source)
+to capture 64% (80% multipled by 80%) real access events (outcomes).
+
+To know how user-space can use this feature via :ref:`DAMON sysfs interface
+<sysfs_interface>`, refer to :ref:`intervals_goal <sysfs_scheme>` part of
+the documentation.
+
+
.. _damon_design_damos:
Operation Schemes
@@ -443,10 +550,10 @@ aggressiveness (the quota) of the corresponding scheme. For example, if DAMOS
is under achieving the goal, DAMOS automatically increases the quota. If DAMOS
is over achieving the goal, it decreases the quota.
-The goal can be specified with three parameters, namely ``target_metric``,
-``target_value``, and ``current_value``. The auto-tuning mechanism tries to
-make ``current_value`` of ``target_metric`` be same to ``target_value``.
-Currently, two ``target_metric`` are provided.
+The goal can be specified with four parameters, namely ``target_metric``,
+``target_value``, ``current_value`` and ``nid``. The auto-tuning mechanism
+tries to make ``current_value`` of ``target_metric`` be same to
+``target_value``.
- ``user_input``: User-provided value. Users could use any metric that they
has interest in for the value. Use space main workload's latency or
@@ -458,6 +565,11 @@ Currently, two ``target_metric`` are provided.
in microseconds that measured from last quota reset to next quota reset.
DAMOS does the measurement on its own, so only ``target_value`` need to be
set by users at the initial time. In other words, DAMOS does self-feedback.
+- ``node_mem_used_bp``: Specific NUMA node's used memory ratio in bp (1/10,000).
+- ``node_mem_free_bp``: Specific NUMA node's free memory ratio in bp (1/10,000).
+
+``nid`` is optionally required for only ``node_mem_used_bp`` and
+``node_mem_free_bp`` to point the specific NUMA node.
To know how user-space can set the tuning goal metric, the target value, and/or
the current value via :ref:`DAMON sysfs interface <sysfs_interface>`, refer to
@@ -504,9 +616,13 @@ have a list of latency-critical processes.
To let users optimize DAMOS schemes with such special knowledge, DAMOS provides
a feature called DAMOS filters. The feature allows users to set an arbitrary
-number of filters for each scheme. Each filter specifies the type of target
-memory, and whether it should exclude the memory of the type (filter-out), or
-all except the memory of the type (filter-in).
+number of filters for each scheme. Each filter specifies
+
+- a type of memory (``type``),
+- whether it is for the memory of the type or all except the type
+ (``matching``), and
+- whether it is to allow (include) or reject (exclude) applying
+ the scheme's action to the memory (``allow``).
For efficient handling of filters, some types of filters are handled by the
core layer, while others are handled by operations set. In the latter case,
@@ -516,29 +632,105 @@ filter are not counted as the scheme has tried to the region. In contrast, if
a memory regions is filtered by an operations set layer-handled filter, it is
counted as the scheme has tried. This difference affects the statistics.
-Below types of filters are currently supported.
-
-- anonymous page
- - Applied to pages that containing data that not stored in files.
- - Handled by operations set layer. Supported by only ``paddr`` set.
-- memory cgroup
- - Applied to pages that belonging to a given cgroup.
- - Handled by operations set layer. Supported by only ``paddr`` set.
-- young page
- - Applied to pages that are accessed after the last access check from the
- scheme.
- - Handled by operations set layer. Supported by only ``paddr`` set.
-- address range
- - Applied to pages that belonging to a given address range.
- - Handled by the core logic.
-- DAMON monitoring target
- - Applied to pages that belonging to a given DAMON monitoring target.
- - Handled by the core logic.
-
-To know how user-space can set the watermarks via :ref:`DAMON sysfs interface
+When multiple filters are installed, the group of filters that handled by the
+core layer are evaluated first. After that, the group of filters that handled
+by the operations layer are evaluated. Filters in each of the groups are
+evaluated in the installed order. If a part of memory is matched to one of the
+filter, next filters are ignored. If the part passes through the filters
+evaluation stage because it is not matched to any of the filters, applying the
+scheme's action to it depends on the last filter's allowance type. If the last
+filter was for allowing, the part of memory will be rejected, and vice versa.
+
+For example, let's assume 1) a filter for allowing anonymous pages and 2)
+another filter for rejecting young pages are installed in the order. If a page
+of a region that eligible to apply the scheme's action is an anonymous page,
+the scheme's action will be applied to the page regardless of whether it is
+young or not, since it matches with the first allow-filter. If the page is
+not anonymous but young, the scheme's action will not be applied, since the
+second reject-filter blocks it. If the page is neither anonymous nor young,
+the page will pass through the filters evaluation stage since there is no
+matching filter, and the action will be applied to the page.
+
+Below ``type`` of filters are currently supported.
+
+- Core layer handled
+ - addr
+ - Applied to pages that belonging to a given address range.
+ - target
+ - Applied to pages that belonging to a given DAMON monitoring target.
+- Operations layer handled, supported by only ``paddr`` operations set.
+ - anon
+ - Applied to pages that containing data that not stored in files.
+ - active
+ - Applied to active pages.
+ - memcg
+ - Applied to pages that belonging to a given cgroup.
+ - young
+ - Applied to pages that are accessed after the last access check from the
+ scheme.
+ - hugepage_size
+ - Applied to pages that managed in a given size range.
+ - unmapped
+ - Applied to pages that unmapped.
+
+To know how user-space can set the filters via :ref:`DAMON sysfs interface
<sysfs_interface>`, refer to :ref:`filters <sysfs_filters>` part of the
documentation.
+.. _damon_design_damos_stat:
+
+Statistics
+~~~~~~~~~~
+
+The statistics of DAMOS behaviors that designed to help monitoring, tuning and
+debugging of DAMOS.
+
+DAMOS accounts below statistics for each scheme, from the beginning of the
+scheme's execution.
+
+- ``nr_tried``: Total number of regions that the scheme is tried to be applied.
+- ``sz_trtied``: Total size of regions that the scheme is tried to be applied.
+- ``sz_ops_filter_passed``: Total bytes that passed operations set
+ layer-handled DAMOS filters.
+- ``nr_applied``: Total number of regions that the scheme is applied.
+- ``sz_applied``: Total size of regions that the scheme is applied.
+- ``qt_exceeds``: Total number of times the quota of the scheme has exceeded.
+
+"A scheme is tried to be applied to a region" means DAMOS core logic determined
+the region is eligible to apply the scheme's :ref:`action
+<damon_design_damos_action>`. The :ref:`access pattern
+<damon_design_damos_access_pattern>`, :ref:`quotas
+<damon_design_damos_quotas>`, :ref:`watermarks
+<damon_design_damos_watermarks>`, and :ref:`filters
+<damon_design_damos_filters>` that handled on core logic could affect this.
+The core logic will only ask the underlying :ref:`operation set
+<damon_operations_set>` to do apply the action to the region, so whether the
+action is really applied or not is unclear. That's why it is called "tried".
+
+"A scheme is applied to a region" means the :ref:`operation set
+<damon_operations_set>` has applied the action to at least a part of the
+region. The :ref:`filters <damon_design_damos_filters>` that handled by the
+operation set, and the types of the :ref:`action <damon_design_damos_action>`
+and the pages of the region can affect this. For example, if a filter is set
+to exclude anonymous pages and the region has only anonymous pages, or if the
+action is ``pageout`` while all pages of the region are unreclaimable, applying
+the action to the region will fail.
+
+To know how user-space can read the stats via :ref:`DAMON sysfs interface
+<sysfs_interface>`, refer to :ref:s`stats <sysfs_stats>` part of the
+documentation.
+
+Regions Walking
+~~~~~~~~~~~~~~~
+
+DAMOS feature allowing users access each region that a DAMOS action has just
+applied. Using this feature, DAMON :ref:`API <damon_design_api>` allows users
+access full properties of the regions including the access monitoring results
+and amount of the region's internal memory that passed the DAMOS filters.
+:ref:`DAMON sysfs interface <sysfs_interface>` also allows users read the data
+via special :ref:`files <sysfs_schemes_tried_regions>`.
+
+.. _damon_design_api:
Application Programming Interface
---------------------------------
@@ -573,15 +765,11 @@ General Purpose User Interface Modules
DAMON modules that provide user space ABIs for general purpose DAMON usage in
runtime.
-DAMON user interface modules, namely 'DAMON sysfs interface' and 'DAMON debugfs
-interface' are DAMON API user kernel modules that provide ABIs to the
-user-space. Please note that DAMON debugfs interface is currently deprecated.
-
-Like many other ABIs, the modules create files on sysfs and debugfs, allow
-users to specify their requests to and get the answers from DAMON by writing to
-and reading from the files. As a response to such I/O, DAMON user interface
-modules control DAMON and retrieve the results as user requested via the DAMON
-API, and return the results to the user-space.
+Like many other ABIs, the modules create files on pseudo file systems like
+'sysfs', allow users to specify their requests to and get the answers from
+DAMON by writing to and reading from the files. As a response to such I/O,
+DAMON user interface modules control DAMON and retrieve the results as user
+requested via the DAMON API, and return the results to the user-space.
The ABIs are designed to be used for user space applications development,
rather than human beings' fingers. Human users are recommended to use such
@@ -590,8 +778,9 @@ Github (https://github.com/damonitor/damo), Pypi
(https://pypistats.org/packages/damo), and Fedora
(https://packages.fedoraproject.org/pkgs/python-damo/damo/).
-Please refer to the ABI :doc:`document </admin-guide/mm/damon/usage>` for
-details of the interfaces.
+Currently, one module for this type, namely 'DAMON sysfs interface' is
+available. Please refer to the ABI :ref:`doc <sysfs_interface>` for details of
+the interfaces.
Special-Purpose Access-aware Kernel Modules
@@ -599,8 +788,8 @@ Special-Purpose Access-aware Kernel Modules
DAMON modules that provide user space ABI for specific purpose DAMON usage.
-DAMON sysfs/debugfs user interfaces are for full control of all DAMON features
-in runtime. For each special-purpose system-wide data access-aware system
+DAMON user interface modules are for full control of all DAMON features in
+runtime. For each special-purpose system-wide data access-aware system
operations such as proactive reclamation or LRU lists balancing, the interfaces
could be simplified by removing unnecessary knobs for the specific purpose, and
extended for boot-time and even compile time control. Default values of DAMON