diff options
Diffstat (limited to 'Documentation/misc-devices/mei/mei.txt')
-rw-r--r-- | Documentation/misc-devices/mei/mei.txt | 266 |
1 files changed, 0 insertions, 266 deletions
diff --git a/Documentation/misc-devices/mei/mei.txt b/Documentation/misc-devices/mei/mei.txt deleted file mode 100644 index 2b80a0cd621f..000000000000 --- a/Documentation/misc-devices/mei/mei.txt +++ /dev/null @@ -1,266 +0,0 @@ -Intel(R) Management Engine Interface (Intel(R) MEI) -=================================================== - -Introduction -============ - -The Intel Management Engine (Intel ME) is an isolated and protected computing -resource (Co-processor) residing inside certain Intel chipsets. The Intel ME -provides support for computer/IT management features. The feature set -depends on the Intel chipset SKU. - -The Intel Management Engine Interface (Intel MEI, previously known as HECI) -is the interface between the Host and Intel ME. This interface is exposed -to the host as a PCI device. The Intel MEI Driver is in charge of the -communication channel between a host application and the Intel ME feature. - -Each Intel ME feature (Intel ME Client) is addressed by a GUID/UUID and -each client has its own protocol. The protocol is message-based with a -header and payload up to 512 bytes. - -Prominent usage of the Intel ME Interface is to communicate with Intel(R) -Active Management Technology (Intel AMT) implemented in firmware running on -the Intel ME. - -Intel AMT provides the ability to manage a host remotely out-of-band (OOB) -even when the operating system running on the host processor has crashed or -is in a sleep state. - -Some examples of Intel AMT usage are: - - Monitoring hardware state and platform components - - Remote power off/on (useful for green computing or overnight IT - maintenance) - - OS updates - - Storage of useful platform information such as software assets - - Built-in hardware KVM - - Selective network isolation of Ethernet and IP protocol flows based - on policies set by a remote management console - - IDE device redirection from remote management console - -Intel AMT (OOB) communication is based on SOAP (deprecated -starting with Release 6.0) over HTTP/S or WS-Management protocol over -HTTP/S that are received from a remote management console application. - -For more information about Intel AMT: -http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide - - -Intel MEI Driver -================ - -The driver exposes a misc device called /dev/mei. - -An application maintains communication with an Intel ME feature while -/dev/mei is open. The binding to a specific feature is performed by calling -MEI_CONNECT_CLIENT_IOCTL, which passes the desired UUID. -The number of instances of an Intel ME feature that can be opened -at the same time depends on the Intel ME feature, but most of the -features allow only a single instance. - -The Intel AMT Host Interface (Intel AMTHI) feature supports multiple -simultaneous user connected applications. The Intel MEI driver -handles this internally by maintaining request queues for the applications. - -The driver is transparent to data that are passed between firmware feature -and host application. - -Because some of the Intel ME features can change the system -configuration, the driver by default allows only a privileged -user to access it. - -A code snippet for an application communicating with Intel AMTHI client: - - struct mei_connect_client_data data; - fd = open(MEI_DEVICE); - - data.d.in_client_uuid = AMTHI_UUID; - - ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &data); - - printf("Ver=%d, MaxLen=%ld\n", - data.d.in_client_uuid.protocol_version, - data.d.in_client_uuid.max_msg_length); - - [...] - - write(fd, amthi_req_data, amthi_req_data_len); - - [...] - - read(fd, &amthi_res_data, amthi_res_data_len); - - [...] - close(fd); - - -IOCTL -===== - -The Intel MEI Driver supports the following IOCTL commands: - IOCTL_MEI_CONNECT_CLIENT Connect to firmware Feature (client). - - usage: - struct mei_connect_client_data clientData; - ioctl(fd, IOCTL_MEI_CONNECT_CLIENT, &clientData); - - inputs: - mei_connect_client_data struct contain the following - input field: - - in_client_uuid - UUID of the FW Feature that needs - to connect to. - outputs: - out_client_properties - Client Properties: MTU and Protocol Version. - - error returns: - EINVAL Wrong IOCTL Number - ENODEV Device or Connection is not initialized or ready. - (e.g. Wrong UUID) - ENOMEM Unable to allocate memory to client internal data. - EFAULT Fatal Error (e.g. Unable to access user input data) - EBUSY Connection Already Open - - Notes: - max_msg_length (MTU) in client properties describes the maximum - data that can be sent or received. (e.g. if MTU=2K, can send - requests up to bytes 2k and received responses up to 2k bytes). - - IOCTL_MEI_NOTIFY_SET: enable or disable event notifications - - Usage: - uint32_t enable; - ioctl(fd, IOCTL_MEI_NOTIFY_SET, &enable); - - Inputs: - uint32_t enable = 1; - or - uint32_t enable[disable] = 0; - - Error returns: - EINVAL Wrong IOCTL Number - ENODEV Device is not initialized or the client not connected - ENOMEM Unable to allocate memory to client internal data. - EFAULT Fatal Error (e.g. Unable to access user input data) - EOPNOTSUPP if the device doesn't support the feature - - Notes: - The client must be connected in order to enable notification events - - - IOCTL_MEI_NOTIFY_GET : retrieve event - - Usage: - uint32_t event; - ioctl(fd, IOCTL_MEI_NOTIFY_GET, &event); - - Outputs: - 1 - if an event is pending - 0 - if there is no even pending - - Error returns: - EINVAL Wrong IOCTL Number - ENODEV Device is not initialized or the client not connected - ENOMEM Unable to allocate memory to client internal data. - EFAULT Fatal Error (e.g. Unable to access user input data) - EOPNOTSUPP if the device doesn't support the feature - - Notes: - The client must be connected and event notification has to be enabled - in order to receive an event - - -Intel ME Applications -===================== - - 1) Intel Local Management Service (Intel LMS) - - Applications running locally on the platform communicate with Intel AMT Release - 2.0 and later releases in the same way that network applications do via SOAP - over HTTP (deprecated starting with Release 6.0) or with WS-Management over - SOAP over HTTP. This means that some Intel AMT features can be accessed from a - local application using the same network interface as a remote application - communicating with Intel AMT over the network. - - When a local application sends a message addressed to the local Intel AMT host - name, the Intel LMS, which listens for traffic directed to the host name, - intercepts the message and routes it to the Intel MEI. - For more information: - http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide - Under "About Intel AMT" => "Local Access" - - For downloading Intel LMS: - http://software.intel.com/en-us/articles/download-the-latest-intel-amt-open-source-drivers/ - - The Intel LMS opens a connection using the Intel MEI driver to the Intel LMS - firmware feature using a defined UUID and then communicates with the feature - using a protocol called Intel AMT Port Forwarding Protocol (Intel APF protocol). - The protocol is used to maintain multiple sessions with Intel AMT from a - single application. - - See the protocol specification in the Intel AMT Software Development Kit (SDK) - http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide - Under "SDK Resources" => "Intel(R) vPro(TM) Gateway (MPS)" - => "Information for Intel(R) vPro(TM) Gateway Developers" - => "Description of the Intel AMT Port Forwarding (APF) Protocol" - - 2) Intel AMT Remote configuration using a Local Agent - - A Local Agent enables IT personnel to configure Intel AMT out-of-the-box - without requiring installing additional data to enable setup. The remote - configuration process may involve an ISV-developed remote configuration - agent that runs on the host. - For more information: - http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide - Under "Setup and Configuration of Intel AMT" => - "SDK Tools Supporting Setup and Configuration" => - "Using the Local Agent Sample" - - An open source Intel AMT configuration utility, implementing a local agent - that accesses the Intel MEI driver, can be found here: - http://software.intel.com/en-us/articles/download-the-latest-intel-amt-open-source-drivers/ - - -Intel AMT OS Health Watchdog -============================ - -The Intel AMT Watchdog is an OS Health (Hang/Crash) watchdog. -Whenever the OS hangs or crashes, Intel AMT will send an event -to any subscriber to this event. This mechanism means that -IT knows when a platform crashes even when there is a hard failure on the host. - -The Intel AMT Watchdog is composed of two parts: - 1) Firmware feature - receives the heartbeats - and sends an event when the heartbeats stop. - 2) Intel MEI iAMT watchdog driver - connects to the watchdog feature, - configures the watchdog and sends the heartbeats. - -The Intel iAMT watchdog MEI driver uses the kernel watchdog API to configure -the Intel AMT Watchdog and to send heartbeats to it. The default timeout of the -watchdog is 120 seconds. - -If the Intel AMT is not enabled in the firmware then the watchdog client won't enumerate -on the me client bus and watchdog devices won't be exposed. - - -Supported Chipsets -================== - -7 Series Chipset Family -6 Series Chipset Family -5 Series Chipset Family -4 Series Chipset Family -Mobile 4 Series Chipset Family -ICH9 -82946GZ/GL -82G35 Express -82Q963/Q965 -82P965/G965 -Mobile PM965/GM965 -Mobile GME965/GLE960 -82Q35 Express -82G33/G31/P35/P31 Express -82Q33 Express -82X38/X48 Express - ---- -linux-mei@linux.intel.com |