diff options
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r-- | Documentation/filesystems/ext3.txt | 5 | ||||
-rw-r--r-- | Documentation/filesystems/proc.txt | 17 | ||||
-rw-r--r-- | Documentation/filesystems/ramfs-rootfs-initramfs.txt | 72 | ||||
-rw-r--r-- | Documentation/filesystems/relayfs.txt | 126 |
4 files changed, 196 insertions, 24 deletions
diff --git a/Documentation/filesystems/ext3.txt b/Documentation/filesystems/ext3.txt index 9840d5b8d5b9..22e4040564d5 100644 --- a/Documentation/filesystems/ext3.txt +++ b/Documentation/filesystems/ext3.txt @@ -22,6 +22,11 @@ journal=inum When a journal already exists, this option is the inode which will represent the ext3 file system's journal file. +journal_dev=devnum When the external journal device's major/minor numbers + have changed, this option allows to specify the new + journal location. The journal device is identified + through its new major/minor numbers encoded in devnum. + noload Don't load the journal on mounting. data=journal All data are committed into the journal prior diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index d4773565ea2f..a4dcf42c2fd9 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -1302,6 +1302,23 @@ VM has token based thrashing control mechanism and uses the token to prevent unnecessary page faults in thrashing situation. The unit of the value is second. The value would be useful to tune thrashing behavior. +drop_caches +----------- + +Writing to this will cause the kernel to drop clean caches, dentries and +inodes from memory, causing that memory to become free. + +To free pagecache: + echo 1 > /proc/sys/vm/drop_caches +To free dentries and inodes: + echo 2 > /proc/sys/vm/drop_caches +To free pagecache, dentries and inodes: + echo 3 > /proc/sys/vm/drop_caches + +As this is a non-destructive operation and dirty objects are not freeable, the +user should run `sync' first. + + 2.5 /proc/sys/dev - Device specific parameters ---------------------------------------------- diff --git a/Documentation/filesystems/ramfs-rootfs-initramfs.txt b/Documentation/filesystems/ramfs-rootfs-initramfs.txt index b3404a032596..60ab61e54e8a 100644 --- a/Documentation/filesystems/ramfs-rootfs-initramfs.txt +++ b/Documentation/filesystems/ramfs-rootfs-initramfs.txt @@ -143,12 +143,26 @@ as the following example: dir /mnt 755 0 0 file /init initramfs/init.sh 755 0 0 +Run "usr/gen_init_cpio" (after the kernel build) to get a usage message +documenting the above file format. + One advantage of the text file is that root access is not required to set permissions or create device nodes in the new archive. (Note that those two example "file" entries expect to find files named "init.sh" and "busybox" in a directory called "initramfs", under the linux-2.6.* directory. See Documentation/early-userspace/README for more details.) +The kernel does not depend on external cpio tools, gen_init_cpio is created +from usr/gen_init_cpio.c which is entirely self-contained, and the kernel's +boot-time extractor is also (obviously) self-contained. However, if you _do_ +happen to have cpio installed, the following command line can extract the +generated cpio image back into its component files: + + cpio -i -d -H newc -F initramfs_data.cpio --no-absolute-filenames + +Contents of initramfs: +---------------------- + If you don't already understand what shared libraries, devices, and paths you need to get a minimal root filesystem up and running, here are some references: @@ -161,13 +175,69 @@ designed to be a tiny C library to statically link early userspace code against, along with some related utilities. It is BSD licensed. I use uClibc (http://www.uclibc.org) and busybox (http://www.busybox.net) -myself. These are LGPL and GPL, respectively. +myself. These are LGPL and GPL, respectively. (A self-contained initramfs +package is planned for the busybox 1.2 release.) In theory you could use glibc, but that's not well suited for small embedded uses like this. (A "hello world" program statically linked against glibc is over 400k. With uClibc it's 7k. Also note that glibc dlopens libnss to do name lookups, even when otherwise statically linked.) +Why cpio rather than tar? +------------------------- + +This decision was made back in December, 2001. The discussion started here: + + http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1538.html + +And spawned a second thread (specifically on tar vs cpio), starting here: + + http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1587.html + +The quick and dirty summary version (which is no substitute for reading +the above threads) is: + +1) cpio is a standard. It's decades old (from the AT&T days), and already + widely used on Linux (inside RPM, Red Hat's device driver disks). Here's + a Linux Journal article about it from 1996: + + http://www.linuxjournal.com/article/1213 + + It's not as popular as tar because the traditional cpio command line tools + require _truly_hideous_ command line arguments. But that says nothing + either way about the archive format, and there are alternative tools, + such as: + + http://freshmeat.net/projects/afio/ + +2) The cpio archive format chosen by the kernel is simpler and cleaner (and + thus easier to create and parse) than any of the (literally dozens of) + various tar archive formats. The complete initramfs archive format is + explained in buffer-format.txt, created in usr/gen_init_cpio.c, and + extracted in init/initramfs.c. All three together come to less than 26k + total of human-readable text. + +3) The GNU project standardizing on tar is approximately as relevant as + Windows standardizing on zip. Linux is not part of either, and is free + to make its own technical decisions. + +4) Since this is a kernel internal format, it could easily have been + something brand new. The kernel provides its own tools to create and + extract this format anyway. Using an existing standard was preferable, + but not essential. + +5) Al Viro made the decision (quote: "tar is ugly as hell and not going to be + supported on the kernel side"): + + http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1540.html + + explained his reasoning: + + http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1550.html + http://www.uwsg.iu.edu/hypermail/linux/kernel/0112.2/1638.html + + and, most importantly, designed and implemented the initramfs code. + Future directions: ------------------ diff --git a/Documentation/filesystems/relayfs.txt b/Documentation/filesystems/relayfs.txt index d803abed29f0..5832377b7340 100644 --- a/Documentation/filesystems/relayfs.txt +++ b/Documentation/filesystems/relayfs.txt @@ -44,30 +44,41 @@ relayfs can operate in a mode where it will overwrite data not yet collected by userspace, and not wait for it to consume it. relayfs itself does not provide for communication of such data between -userspace and kernel, allowing the kernel side to remain simple and not -impose a single interface on userspace. It does provide a separate -helper though, described below. +userspace and kernel, allowing the kernel side to remain simple and +not impose a single interface on userspace. It does provide a set of +examples and a separate helper though, described below. + +klog and relay-apps example code +================================ + +relayfs itself is ready to use, but to make things easier, a couple +simple utility functions and a set of examples are provided. + +The relay-apps example tarball, available on the relayfs sourceforge +site, contains a set of self-contained examples, each consisting of a +pair of .c files containing boilerplate code for each of the user and +kernel sides of a relayfs application; combined these two sets of +boilerplate code provide glue to easily stream data to disk, without +having to bother with mundane housekeeping chores. + +The 'klog debugging functions' patch (klog.patch in the relay-apps +tarball) provides a couple of high-level logging functions to the +kernel which allow writing formatted text or raw data to a channel, +regardless of whether a channel to write into exists or not, or +whether relayfs is compiled into the kernel or is configured as a +module. These functions allow you to put unconditional 'trace' +statements anywhere in the kernel or kernel modules; only when there +is a 'klog handler' registered will data actually be logged (see the +klog and kleak examples for details). + +It is of course possible to use relayfs from scratch i.e. without +using any of the relay-apps example code or klog, but you'll have to +implement communication between userspace and kernel, allowing both to +convey the state of buffers (full, empty, amount of padding). + +klog and the relay-apps examples can be found in the relay-apps +tarball on http://relayfs.sourceforge.net -klog, relay-app & librelay -========================== - -relayfs itself is ready to use, but to make things easier, two -additional systems are provided. klog is a simple wrapper to make -writing formatted text or raw data to a channel simpler, regardless of -whether a channel to write into exists or not, or whether relayfs is -compiled into the kernel or is configured as a module. relay-app is -the kernel counterpart of userspace librelay.c, combined these two -files provide glue to easily stream data to disk, without having to -bother with housekeeping. klog and relay-app can be used together, -with klog providing high-level logging functions to the kernel and -relay-app taking care of kernel-user control and disk-logging chores. - -It is possible to use relayfs without relay-app & librelay, but you'll -have to implement communication between userspace and kernel, allowing -both to convey the state of buffers (full, empty, amount of padding). - -klog, relay-app and librelay can be found in the relay-apps tarball on -http://relayfs.sourceforge.net The relayfs user space API ========================== @@ -125,6 +136,8 @@ Here's a summary of the API relayfs provides to in-kernel clients: relay_reset(chan) relayfs_create_dir(name, parent) relayfs_remove_dir(dentry) + relayfs_create_file(name, parent, mode, fops, data) + relayfs_remove_file(dentry) channel management typically called on instigation of userspace: @@ -141,6 +154,8 @@ Here's a summary of the API relayfs provides to in-kernel clients: subbuf_start(buf, subbuf, prev_subbuf, prev_padding) buf_mapped(buf, filp) buf_unmapped(buf, filp) + create_buf_file(filename, parent, mode, buf, is_global) + remove_buf_file(dentry) helper functions: @@ -320,6 +335,71 @@ forces a sub-buffer switch on all the channel buffers, and can be used to finalize and process the last sub-buffers before the channel is closed. +Creating non-relay files +------------------------ + +relay_open() automatically creates files in the relayfs filesystem to +represent the per-cpu kernel buffers; it's often useful for +applications to be able to create their own files alongside the relay +files in the relayfs filesystem as well e.g. 'control' files much like +those created in /proc or debugfs for similar purposes, used to +communicate control information between the kernel and user sides of a +relayfs application. For this purpose the relayfs_create_file() and +relayfs_remove_file() API functions exist. For relayfs_create_file(), +the caller passes in a set of user-defined file operations to be used +for the file and an optional void * to a user-specified data item, +which will be accessible via inode->u.generic_ip (see the relay-apps +tarball for examples). The file_operations are a required parameter +to relayfs_create_file() and thus the semantics of these files are +completely defined by the caller. + +See the relay-apps tarball at http://relayfs.sourceforge.net for +examples of how these non-relay files are meant to be used. + +Creating relay files in other filesystems +----------------------------------------- + +By default of course, relay_open() creates relay files in the relayfs +filesystem. Because relay_file_operations is exported, however, it's +also possible to create and use relay files in other pseudo-filesytems +such as debugfs. + +For this purpose, two callback functions are provided, +create_buf_file() and remove_buf_file(). create_buf_file() is called +once for each per-cpu buffer from relay_open() to allow the client to +create a file to be used to represent the corresponding buffer; if +this callback is not defined, the default implementation will create +and return a file in the relayfs filesystem to represent the buffer. +The callback should return the dentry of the file created to represent +the relay buffer. Note that the parent directory passed to +relay_open() (and passed along to the callback), if specified, must +exist in the same filesystem the new relay file is created in. If +create_buf_file() is defined, remove_buf_file() must also be defined; +it's responsible for deleting the file(s) created in create_buf_file() +and is called during relay_close(). + +The create_buf_file() implementation can also be defined in such a way +as to allow the creation of a single 'global' buffer instead of the +default per-cpu set. This can be useful for applications interested +mainly in seeing the relative ordering of system-wide events without +the need to bother with saving explicit timestamps for the purpose of +merging/sorting per-cpu files in a postprocessing step. + +To have relay_open() create a global buffer, the create_buf_file() +implementation should set the value of the is_global outparam to a +non-zero value in addition to creating the file that will be used to +represent the single buffer. In the case of a global buffer, +create_buf_file() and remove_buf_file() will be called only once. The +normal channel-writing functions e.g. relay_write() can still be used +- writes from any cpu will transparently end up in the global buffer - +but since it is a global buffer, callers should make sure they use the +proper locking for such a buffer, either by wrapping writes in a +spinlock, or by copying a write function from relayfs_fs.h and +creating a local version that internally does the proper locking. + +See the 'exported-relayfile' examples in the relay-apps tarball for +examples of creating and using relay files in debugfs. + Misc ---- |