summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/ntfs.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/ntfs.rst')
-rw-r--r--Documentation/filesystems/ntfs.rst466
1 files changed, 0 insertions, 466 deletions
diff --git a/Documentation/filesystems/ntfs.rst b/Documentation/filesystems/ntfs.rst
deleted file mode 100644
index 5bb093a26485..000000000000
--- a/Documentation/filesystems/ntfs.rst
+++ /dev/null
@@ -1,466 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-================================
-The Linux NTFS filesystem driver
-================================
-
-
-.. Table of contents
-
- - Overview
- - Web site
- - Features
- - Supported mount options
- - Known bugs and (mis-)features
- - Using NTFS volume and stripe sets
- - The Device-Mapper driver
- - The Software RAID / MD driver
- - Limitations when using the MD driver
-
-
-Overview
-========
-
-Linux-NTFS comes with a number of user-space programs known as ntfsprogs.
-These include mkntfs, a full-featured ntfs filesystem format utility,
-ntfsundelete used for recovering files that were unintentionally deleted
-from an NTFS volume and ntfsresize which is used to resize an NTFS partition.
-See the web site for more information.
-
-To mount an NTFS 1.2/3.x (Windows NT4/2000/XP/2003) volume, use the file
-system type 'ntfs'. The driver currently supports read-only mode (with no
-fault-tolerance, encryption or journalling) and very limited, but safe, write
-support.
-
-For fault tolerance and raid support (i.e. volume and stripe sets), you can
-use the kernel's Software RAID / MD driver. See section "Using Software RAID
-with NTFS" for details.
-
-
-Web site
-========
-
-There is plenty of additional information on the linux-ntfs web site
-at http://www.linux-ntfs.org/
-
-The web site has a lot of additional information, such as a comprehensive
-FAQ, documentation on the NTFS on-disk format, information on the Linux-NTFS
-userspace utilities, etc.
-
-
-Features
-========
-
-- This is a complete rewrite of the NTFS driver that used to be in the 2.4 and
- earlier kernels. This new driver implements NTFS read support and is
- functionally equivalent to the old ntfs driver and it also implements limited
- write support. The biggest limitation at present is that files/directories
- cannot be created or deleted. See below for the list of write features that
- are so far supported. Another limitation is that writing to compressed files
- is not implemented at all. Also, neither read nor write access to encrypted
- files is so far implemented.
-- The new driver has full support for sparse files on NTFS 3.x volumes which
- the old driver isn't happy with.
-- The new driver supports execution of binaries due to mmap() now being
- supported.
-- The new driver supports loopback mounting of files on NTFS which is used by
- some Linux distributions to enable the user to run Linux from an NTFS
- partition by creating a large file while in Windows and then loopback
- mounting the file while in Linux and creating a Linux filesystem on it that
- is used to install Linux on it.
-- A comparison of the two drivers using::
-
- time find . -type f -exec md5sum "{}" \;
-
- run three times in sequence with each driver (after a reboot) on a 1.4GiB
- NTFS partition, showed the new driver to be 20% faster in total time elapsed
- (from 9:43 minutes on average down to 7:53). The time spent in user space
- was unchanged but the time spent in the kernel was decreased by a factor of
- 2.5 (from 85 CPU seconds down to 33).
-- The driver does not support short file names in general. For backwards
- compatibility, we implement access to files using their short file names if
- they exist. The driver will not create short file names however, and a
- rename will discard any existing short file name.
-- The new driver supports exporting of mounted NTFS volumes via NFS.
-- The new driver supports async io (aio).
-- The new driver supports fsync(2), fdatasync(2), and msync(2).
-- The new driver supports readv(2) and writev(2).
-- The new driver supports access time updates (including mtime and ctime).
-- The new driver supports truncate(2) and open(2) with O_TRUNC. But at present
- only very limited support for highly fragmented files, i.e. ones which have
- their data attribute split across multiple extents, is included. Another
- limitation is that at present truncate(2) will never create sparse files,
- since to mark a file sparse we need to modify the directory entry for the
- file and we do not implement directory modifications yet.
-- The new driver supports write(2) which can both overwrite existing data and
- extend the file size so that you can write beyond the existing data. Also,
- writing into sparse regions is supported and the holes are filled in with
- clusters. But at present only limited support for highly fragmented files,
- i.e. ones which have their data attribute split across multiple extents, is
- included. Another limitation is that write(2) will never create sparse
- files, since to mark a file sparse we need to modify the directory entry for
- the file and we do not implement directory modifications yet.
-
-Supported mount options
-=======================
-
-In addition to the generic mount options described by the manual page for the
-mount command (man 8 mount, also see man 5 fstab), the NTFS driver supports the
-following mount options:
-
-======================= =======================================================
-iocharset=name Deprecated option. Still supported but please use
- nls=name in the future. See description for nls=name.
-
-nls=name Character set to use when returning file names.
- Unlike VFAT, NTFS suppresses names that contain
- unconvertible characters. Note that most character
- sets contain insufficient characters to represent all
- possible Unicode characters that can exist on NTFS.
- To be sure you are not missing any files, you are
- advised to use nls=utf8 which is capable of
- representing all Unicode characters.
-
-utf8=<bool> Option no longer supported. Currently mapped to
- nls=utf8 but please use nls=utf8 in the future and
- make sure utf8 is compiled either as module or into
- the kernel. See description for nls=name.
-
-uid=
-gid=
-umask= Provide default owner, group, and access mode mask.
- These options work as documented in mount(8). By
- default, the files/directories are owned by root and
- he/she has read and write permissions, as well as
- browse permission for directories. No one else has any
- access permissions. I.e. the mode on all files is by
- default rw------- and for directories rwx------, a
- consequence of the default fmask=0177 and dmask=0077.
- Using a umask of zero will grant all permissions to
- everyone, i.e. all files and directories will have mode
- rwxrwxrwx.
-
-fmask=
-dmask= Instead of specifying umask which applies both to
- files and directories, fmask applies only to files and
- dmask only to directories.
-
-sloppy=<BOOL> If sloppy is specified, ignore unknown mount options.
- Otherwise the default behaviour is to abort mount if
- any unknown options are found.
-
-show_sys_files=<BOOL> If show_sys_files is specified, show the system files
- in directory listings. Otherwise the default behaviour
- is to hide the system files.
- Note that even when show_sys_files is specified, "$MFT"
- will not be visible due to bugs/mis-features in glibc.
- Further, note that irrespective of show_sys_files, all
- files are accessible by name, i.e. you can always do
- "ls -l \$UpCase" for example to specifically show the
- system file containing the Unicode upcase table.
-
-case_sensitive=<BOOL> If case_sensitive is specified, treat all file names as
- case sensitive and create file names in the POSIX
- namespace. Otherwise the default behaviour is to treat
- file names as case insensitive and to create file names
- in the WIN32/LONG name space. Note, the Linux NTFS
- driver will never create short file names and will
- remove them on rename/delete of the corresponding long
- file name.
- Note that files remain accessible via their short file
- name, if it exists. If case_sensitive, you will need
- to provide the correct case of the short file name.
-
-disable_sparse=<BOOL> If disable_sparse is specified, creation of sparse
- regions, i.e. holes, inside files is disabled for the
- volume (for the duration of this mount only). By
- default, creation of sparse regions is enabled, which
- is consistent with the behaviour of traditional Unix
- filesystems.
-
-errors=opt What to do when critical filesystem errors are found.
- Following values can be used for "opt":
-
- ======== =========================================
- continue DEFAULT, try to clean-up as much as
- possible, e.g. marking a corrupt inode as
- bad so it is no longer accessed, and then
- continue.
- recover At present only supported is recovery of
- the boot sector from the backup copy.
- If read-only mount, the recovery is done
- in memory only and not written to disk.
- ======== =========================================
-
- Note that the options are additive, i.e. specifying::
-
- errors=continue,errors=recover
-
- means the driver will attempt to recover and if that
- fails it will clean-up as much as possible and
- continue.
-
-mft_zone_multiplier= Set the MFT zone multiplier for the volume (this
- setting is not persistent across mounts and can be
- changed from mount to mount but cannot be changed on
- remount). Values of 1 to 4 are allowed, 1 being the
- default. The MFT zone multiplier determines how much
- space is reserved for the MFT on the volume. If all
- other space is used up, then the MFT zone will be
- shrunk dynamically, so this has no impact on the
- amount of free space. However, it can have an impact
- on performance by affecting fragmentation of the MFT.
- In general use the default. If you have a lot of small
- files then use a higher value. The values have the
- following meaning:
-
- ===== =================================
- Value MFT zone size (% of volume size)
- ===== =================================
- 1 12.5%
- 2 25%
- 3 37.5%
- 4 50%
- ===== =================================
-
- Note this option is irrelevant for read-only mounts.
-======================= =======================================================
-
-
-Known bugs and (mis-)features
-=============================
-
-- The link count on each directory inode entry is set to 1, due to Linux not
- supporting directory hard links. This may well confuse some user space
- applications, since the directory names will have the same inode numbers.
- This also speeds up ntfs_read_inode() immensely. And we haven't found any
- problems with this approach so far. If you find a problem with this, please
- let us know.
-
-
-Please send bug reports/comments/feedback/abuse to the Linux-NTFS development
-list at sourceforge: linux-ntfs-dev@lists.sourceforge.net
-
-
-Using NTFS volume and stripe sets
-=================================
-
-For support of volume and stripe sets, you can either use the kernel's
-Device-Mapper driver or the kernel's Software RAID / MD driver. The former is
-the recommended one to use for linear raid. But the latter is required for
-raid level 5. For striping and mirroring, either driver should work fine.
-
-
-The Device-Mapper driver
-------------------------
-
-You will need to create a table of the components of the volume/stripe set and
-how they fit together and load this into the kernel using the dmsetup utility
-(see man 8 dmsetup).
-
-Linear volume sets, i.e. linear raid, has been tested and works fine. Even
-though untested, there is no reason why stripe sets, i.e. raid level 0, and
-mirrors, i.e. raid level 1 should not work, too. Stripes with parity, i.e.
-raid level 5, unfortunately cannot work yet because the current version of the
-Device-Mapper driver does not support raid level 5. You may be able to use the
-Software RAID / MD driver for raid level 5, see the next section for details.
-
-To create the table describing your volume you will need to know each of its
-components and their sizes in sectors, i.e. multiples of 512-byte blocks.
-
-For NT4 fault tolerant volumes you can obtain the sizes using fdisk. So for
-example if one of your partitions is /dev/hda2 you would do::
-
- $ fdisk -ul /dev/hda
-
- Disk /dev/hda: 81.9 GB, 81964302336 bytes
- 255 heads, 63 sectors/track, 9964 cylinders, total 160086528 sectors
- Units = sectors of 1 * 512 = 512 bytes
-
- Device Boot Start End Blocks Id System
- /dev/hda1 * 63 4209029 2104483+ 83 Linux
- /dev/hda2 4209030 37768814 16779892+ 86 NTFS
- /dev/hda3 37768815 46170809 4200997+ 83 Linux
-
-And you would know that /dev/hda2 has a size of 37768814 - 4209030 + 1 =
-33559785 sectors.
-
-For Win2k and later dynamic disks, you can for example use the ldminfo utility
-which is part of the Linux LDM tools (the latest version at the time of
-writing is linux-ldm-0.0.8.tar.bz2). You can download it from:
-
- http://www.linux-ntfs.org/
-
-Simply extract the downloaded archive (tar xvjf linux-ldm-0.0.8.tar.bz2), go
-into it (cd linux-ldm-0.0.8) and change to the test directory (cd test). You
-will find the precompiled (i386) ldminfo utility there. NOTE: You will not be
-able to compile this yourself easily so use the binary version!
-
-Then you would use ldminfo in dump mode to obtain the necessary information::
-
- $ ./ldminfo --dump /dev/hda
-
-This would dump the LDM database found on /dev/hda which describes all of your
-dynamic disks and all the volumes on them. At the bottom you will see the
-VOLUME DEFINITIONS section which is all you really need. You may need to look
-further above to determine which of the disks in the volume definitions is
-which device in Linux. Hint: Run ldminfo on each of your dynamic disks and
-look at the Disk Id close to the top of the output for each (the PRIVATE HEADER
-section). You can then find these Disk Ids in the VBLK DATABASE section in the
-<Disk> components where you will get the LDM Name for the disk that is found in
-the VOLUME DEFINITIONS section.
-
-Note you will also need to enable the LDM driver in the Linux kernel. If your
-distribution did not enable it, you will need to recompile the kernel with it
-enabled. This will create the LDM partitions on each device at boot time. You
-would then use those devices (for /dev/hda they would be /dev/hda1, 2, 3, etc)
-in the Device-Mapper table.
-
-You can also bypass using the LDM driver by using the main device (e.g.
-/dev/hda) and then using the offsets of the LDM partitions into this device as
-the "Start sector of device" when creating the table. Once again ldminfo would
-give you the correct information to do this.
-
-Assuming you know all your devices and their sizes things are easy.
-
-For a linear raid the table would look like this (note all values are in
-512-byte sectors)::
-
- # Offset into Size of this Raid type Device Start sector
- # volume device of device
- 0 1028161 linear /dev/hda1 0
- 1028161 3903762 linear /dev/hdb2 0
- 4931923 2103211 linear /dev/hdc1 0
-
-For a striped volume, i.e. raid level 0, you will need to know the chunk size
-you used when creating the volume. Windows uses 64kiB as the default, so it
-will probably be this unless you changes the defaults when creating the array.
-
-For a raid level 0 the table would look like this (note all values are in
-512-byte sectors)::
-
- # Offset Size Raid Number Chunk 1st Start 2nd Start
- # into of the type of size Device in Device in
- # volume volume stripes device device
- 0 2056320 striped 2 128 /dev/hda1 0 /dev/hdb1 0
-
-If there are more than two devices, just add each of them to the end of the
-line.
-
-Finally, for a mirrored volume, i.e. raid level 1, the table would look like
-this (note all values are in 512-byte sectors)::
-
- # Ofs Size Raid Log Number Region Should Number Source Start Target Start
- # in of the type type of log size sync? of Device in Device in
- # vol volume params mirrors Device Device
- 0 2056320 mirror core 2 16 nosync 2 /dev/hda1 0 /dev/hdb1 0
-
-If you are mirroring to multiple devices you can specify further targets at the
-end of the line.
-
-Note the "Should sync?" parameter "nosync" means that the two mirrors are
-already in sync which will be the case on a clean shutdown of Windows. If the
-mirrors are not clean, you can specify the "sync" option instead of "nosync"
-and the Device-Mapper driver will then copy the entirety of the "Source Device"
-to the "Target Device" or if you specified multiple target devices to all of
-them.
-
-Once you have your table, save it in a file somewhere (e.g. /etc/ntfsvolume1),
-and hand it over to dmsetup to work with, like so::
-
- $ dmsetup create myvolume1 /etc/ntfsvolume1
-
-You can obviously replace "myvolume1" with whatever name you like.
-
-If it all worked, you will now have the device /dev/device-mapper/myvolume1
-which you can then just use as an argument to the mount command as usual to
-mount the ntfs volume. For example::
-
- $ mount -t ntfs -o ro /dev/device-mapper/myvolume1 /mnt/myvol1
-
-(You need to create the directory /mnt/myvol1 first and of course you can use
-anything you like instead of /mnt/myvol1 as long as it is an existing
-directory.)
-
-It is advisable to do the mount read-only to see if the volume has been setup
-correctly to avoid the possibility of causing damage to the data on the ntfs
-volume.
-
-
-The Software RAID / MD driver
------------------------------
-
-An alternative to using the Device-Mapper driver is to use the kernel's
-Software RAID / MD driver. For which you need to set up your /etc/raidtab
-appropriately (see man 5 raidtab).
-
-Linear volume sets, i.e. linear raid, as well as stripe sets, i.e. raid level
-0, have been tested and work fine (though see section "Limitations when using
-the MD driver with NTFS volumes" especially if you want to use linear raid).
-Even though untested, there is no reason why mirrors, i.e. raid level 1, and
-stripes with parity, i.e. raid level 5, should not work, too.
-
-You have to use the "persistent-superblock 0" option for each raid-disk in the
-NTFS volume/stripe you are configuring in /etc/raidtab as the persistent
-superblock used by the MD driver would damage the NTFS volume.
-
-Windows by default uses a stripe chunk size of 64k, so you probably want the
-"chunk-size 64k" option for each raid-disk, too.
-
-For example, if you have a stripe set consisting of two partitions /dev/hda5
-and /dev/hdb1 your /etc/raidtab would look like this::
-
- raiddev /dev/md0
- raid-level 0
- nr-raid-disks 2
- nr-spare-disks 0
- persistent-superblock 0
- chunk-size 64k
- device /dev/hda5
- raid-disk 0
- device /dev/hdb1
- raid-disk 1
-
-For linear raid, just change the raid-level above to "raid-level linear", for
-mirrors, change it to "raid-level 1", and for stripe sets with parity, change
-it to "raid-level 5".
-
-Note for stripe sets with parity you will also need to tell the MD driver
-which parity algorithm to use by specifying the option "parity-algorithm
-which", where you need to replace "which" with the name of the algorithm to
-use (see man 5 raidtab for available algorithms) and you will have to try the
-different available algorithms until you find one that works. Make sure you
-are working read-only when playing with this as you may damage your data
-otherwise. If you find which algorithm works please let us know (email the
-linux-ntfs developers list linux-ntfs-dev@lists.sourceforge.net or drop in on
-IRC in channel #ntfs on the irc.freenode.net network) so we can update this
-documentation.
-
-Once the raidtab is setup, run for example raid0run -a to start all devices or
-raid0run /dev/md0 to start a particular md device, in this case /dev/md0.
-
-Then just use the mount command as usual to mount the ntfs volume using for
-example::
-
- mount -t ntfs -o ro /dev/md0 /mnt/myntfsvolume
-
-It is advisable to do the mount read-only to see if the md volume has been
-setup correctly to avoid the possibility of causing damage to the data on the
-ntfs volume.
-
-
-Limitations when using the Software RAID / MD driver
------------------------------------------------------
-
-Using the md driver will not work properly if any of your NTFS partitions have
-an odd number of sectors. This is especially important for linear raid as all
-data after the first partition with an odd number of sectors will be offset by
-one or more sectors so if you mount such a partition with write support you
-will cause massive damage to the data on the volume which will only become
-apparent when you try to use the volume again under Windows.
-
-So when using linear raid, make sure that all your partitions have an even
-number of sectors BEFORE attempting to use it. You have been warned!
-
-Even better is to simply use the Device-Mapper for linear raid and then you do
-not have this problem with odd numbers of sectors.