diff options
Diffstat (limited to 'Documentation/filesystems/caching/operations.rst')
-rw-r--r-- | Documentation/filesystems/caching/operations.rst | 210 |
1 files changed, 0 insertions, 210 deletions
diff --git a/Documentation/filesystems/caching/operations.rst b/Documentation/filesystems/caching/operations.rst deleted file mode 100644 index 9983e1675447..000000000000 --- a/Documentation/filesystems/caching/operations.rst +++ /dev/null @@ -1,210 +0,0 @@ -.. SPDX-License-Identifier: GPL-2.0 - -================================ -Asynchronous Operations Handling -================================ - -By: David Howells <dhowells@redhat.com> - -.. Contents: - - (*) Overview. - - (*) Operation record initialisation. - - (*) Parameters. - - (*) Procedure. - - (*) Asynchronous callback. - - -Overview -======== - -FS-Cache has an asynchronous operations handling facility that it uses for its -data storage and retrieval routines. Its operations are represented by -fscache_operation structs, though these are usually embedded into some other -structure. - -This facility is available to and expected to be used by the cache backends, -and FS-Cache will create operations and pass them off to the appropriate cache -backend for completion. - -To make use of this facility, <linux/fscache-cache.h> should be #included. - - -Operation Record Initialisation -=============================== - -An operation is recorded in an fscache_operation struct:: - - struct fscache_operation { - union { - struct work_struct fast_work; - struct slow_work slow_work; - }; - unsigned long flags; - fscache_operation_processor_t processor; - ... - }; - -Someone wanting to issue an operation should allocate something with this -struct embedded in it. They should initialise it by calling:: - - void fscache_operation_init(struct fscache_operation *op, - fscache_operation_release_t release); - -with the operation to be initialised and the release function to use. - -The op->flags parameter should be set to indicate the CPU time provision and -the exclusivity (see the Parameters section). - -The op->fast_work, op->slow_work and op->processor flags should be set as -appropriate for the CPU time provision (see the Parameters section). - -FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the -operation and waited for afterwards. - - -Parameters -========== - -There are a number of parameters that can be set in the operation record's flag -parameter. There are three options for the provision of CPU time in these -operations: - - (1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread - may decide it wants to handle an operation itself without deferring it to - another thread. - - This is, for example, used in read operations for calling readpages() on - the backing filesystem in CacheFiles. Although readpages() does an - asynchronous data fetch, the determination of whether pages exist is done - synchronously - and the netfs does not proceed until this has been - determined. - - If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags - before submitting the operation, and the operating thread must wait for it - to be cleared before proceeding:: - - wait_on_bit(&op->flags, FSCACHE_OP_WAITING, - TASK_UNINTERRUPTIBLE); - - - (2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it - will be given to keventd to process. Such an operation is not permitted - to sleep on I/O. - - This is, for example, used by CacheFiles to copy data from a backing fs - page to a netfs page after the backing fs has read the page in. - - If this option is used, op->fast_work and op->processor must be - initialised before submitting the operation:: - - INIT_WORK(&op->fast_work, do_some_work); - - - (3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it - will be given to the slow work facility to process. Such an operation is - permitted to sleep on I/O. - - This is, for example, used by FS-Cache to handle background writes of - pages that have just been fetched from a remote server. - - If this option is used, op->slow_work and op->processor must be - initialised before submitting the operation:: - - fscache_operation_init_slow(op, processor) - - -Furthermore, operations may be one of two types: - - (1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in - conjunction with any other operation on the object being operated upon. - - An example of this is the attribute change operation, in which the file - being written to may need truncation. - - (2) Shareable. Operations of this type may be running simultaneously. It's - up to the operation implementation to prevent interference between other - operations running at the same time. - - -Procedure -========= - -Operations are used through the following procedure: - - (1) The submitting thread must allocate the operation and initialise it - itself. Normally this would be part of a more specific structure with the - generic op embedded within. - - (2) The submitting thread must then submit the operation for processing using - one of the following two functions:: - - int fscache_submit_op(struct fscache_object *object, - struct fscache_operation *op); - - int fscache_submit_exclusive_op(struct fscache_object *object, - struct fscache_operation *op); - - The first function should be used to submit non-exclusive ops and the - second to submit exclusive ones. The caller must still set the - FSCACHE_OP_EXCLUSIVE flag. - - If successful, both functions will assign the operation to the specified - object and return 0. -ENOBUFS will be returned if the object specified is - permanently unavailable. - - The operation manager will defer operations on an object that is still - undergoing lookup or creation. The operation will also be deferred if an - operation of conflicting exclusivity is in progress on the object. - - If the operation is asynchronous, the manager will retain a reference to - it, so the caller should put their reference to it by passing it to:: - - void fscache_put_operation(struct fscache_operation *op); - - (3) If the submitting thread wants to do the work itself, and has marked the - operation with FSCACHE_OP_MYTHREAD, then it should monitor - FSCACHE_OP_WAITING as described above and check the state of the object if - necessary (the object might have died while the thread was waiting). - - When it has finished doing its processing, it should call - fscache_op_complete() and fscache_put_operation() on it. - - (4) The operation holds an effective lock upon the object, preventing other - exclusive ops conflicting until it is released. The operation can be - enqueued for further immediate asynchronous processing by adjusting the - CPU time provisioning option if necessary, eg:: - - op->flags &= ~FSCACHE_OP_TYPE; - op->flags |= ~FSCACHE_OP_FAST; - - and calling:: - - void fscache_enqueue_operation(struct fscache_operation *op) - - This can be used to allow other things to have use of the worker thread - pools. - - -Asynchronous Callback -===================== - -When used in asynchronous mode, the worker thread pool will invoke the -processor method with a pointer to the operation. This should then get at the -container struct by using container_of():: - - static void fscache_write_op(struct fscache_operation *_op) - { - struct fscache_storage *op = - container_of(_op, struct fscache_storage, op); - ... - } - -The caller holds a reference on the operation, and will invoke -fscache_put_operation() when the processor function returns. The processor -function is at liberty to call fscache_enqueue_operation() or to take extra -references. |