summaryrefslogtreecommitdiff
path: root/Documentation/driver-api/thermal/cpu-idle-cooling.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/driver-api/thermal/cpu-idle-cooling.rst')
-rw-r--r--Documentation/driver-api/thermal/cpu-idle-cooling.rst189
1 files changed, 189 insertions, 0 deletions
diff --git a/Documentation/driver-api/thermal/cpu-idle-cooling.rst b/Documentation/driver-api/thermal/cpu-idle-cooling.rst
new file mode 100644
index 000000000000..e4f0859486c7
--- /dev/null
+++ b/Documentation/driver-api/thermal/cpu-idle-cooling.rst
@@ -0,0 +1,189 @@
+
+Situation:
+----------
+
+Under certain circumstances a SoC can reach a critical temperature
+limit and is unable to stabilize the temperature around a temperature
+control. When the SoC has to stabilize the temperature, the kernel can
+act on a cooling device to mitigate the dissipated power. When the
+critical temperature is reached, a decision must be taken to reduce
+the temperature, that, in turn impacts performance.
+
+Another situation is when the silicon temperature continues to
+increase even after the dynamic leakage is reduced to its minimum by
+clock gating the component. This runaway phenomenon can continue due
+to the static leakage. The only solution is to power down the
+component, thus dropping the dynamic and static leakage that will
+allow the component to cool down.
+
+Last but not least, the system can ask for a specific power budget but
+because of the OPP density, we can only choose an OPP with a power
+budget lower than the requested one and under-utilize the CPU, thus
+losing performance. In other words, one OPP under-utilizes the CPU
+with a power less than the requested power budget and the next OPP
+exceeds the power budget. An intermediate OPP could have been used if
+it were present.
+
+Solutions:
+----------
+
+If we can remove the static and the dynamic leakage for a specific
+duration in a controlled period, the SoC temperature will
+decrease. Acting on the idle state duration or the idle cycle
+injection period, we can mitigate the temperature by modulating the
+power budget.
+
+The Operating Performance Point (OPP) density has a great influence on
+the control precision of cpufreq, however different vendors have a
+plethora of OPP density, and some have large power gap between OPPs,
+that will result in loss of performance during thermal control and
+loss of power in other scenarios.
+
+At a specific OPP, we can assume that injecting idle cycle on all CPUs
+belong to the same cluster, with a duration greater than the cluster
+idle state target residency, we lead to dropping the static and the
+dynamic leakage for this period (modulo the energy needed to enter
+this state). So the sustainable power with idle cycles has a linear
+relation with the OPP’s sustainable power and can be computed with a
+coefficient similar to:
+
+ Power(IdleCycle) = Coef x Power(OPP)
+
+Idle Injection:
+---------------
+
+The base concept of the idle injection is to force the CPU to go to an
+idle state for a specified time each control cycle, it provides
+another way to control CPU power and heat in addition to
+cpufreq. Ideally, if all CPUs belonging to the same cluster, inject
+their idle cycles synchronously, the cluster can reach its power down
+state with a minimum power consumption and reduce the static leakage
+to almost zero. However, these idle cycles injection will add extra
+latencies as the CPUs will have to wakeup from a deep sleep state.
+
+We use a fixed duration of idle injection that gives an acceptable
+performance penalty and a fixed latency. Mitigation can be increased
+or decreased by modulating the duty cycle of the idle injection.
+
+ ^
+ |
+ |
+ |------- -------
+ |_______|_______________________|_______|___________
+
+ <------>
+ idle <---------------------->
+ running
+
+ <----------------------------->
+ duty cycle 25%
+
+
+The implementation of the cooling device bases the number of states on
+the duty cycle percentage. When no mitigation is happening the cooling
+device state is zero, meaning the duty cycle is 0%.
+
+When the mitigation begins, depending on the governor's policy, a
+starting state is selected. With a fixed idle duration and the duty
+cycle (aka the cooling device state), the running duration can be
+computed.
+
+The governor will change the cooling device state thus the duty cycle
+and this variation will modulate the cooling effect.
+
+ ^
+ |
+ |
+ |------- -------
+ |_______|_______________|_______|___________
+
+ <------>
+ idle <-------------->
+ running
+
+ <----------------------------->
+ duty cycle 33%
+
+
+ ^
+ |
+ |
+ |------- -------
+ |_______|_______|_______|___________
+
+ <------>
+ idle <------>
+ running
+
+ <------------->
+ duty cycle 50%
+
+The idle injection duration value must comply with the constraints:
+
+- It is less than or equal to the latency we tolerate when the
+ mitigation begins. It is platform dependent and will depend on the
+ user experience, reactivity vs performance trade off we want. This
+ value should be specified.
+
+- It is greater than the idle state’s target residency we want to go
+ for thermal mitigation, otherwise we end up consuming more energy.
+
+Power considerations
+--------------------
+
+When we reach the thermal trip point, we have to sustain a specified
+power for a specific temperature but at this time we consume:
+
+ Power = Capacitance x Voltage^2 x Frequency x Utilisation
+
+... which is more than the sustainable power (or there is something
+wrong in the system setup). The ‘Capacitance’ and ‘Utilisation’ are a
+fixed value, ‘Voltage’ and the ‘Frequency’ are fixed artificially
+because we don’t want to change the OPP. We can group the
+‘Capacitance’ and the ‘Utilisation’ into a single term which is the
+‘Dynamic Power Coefficient (Cdyn)’ Simplifying the above, we have:
+
+ Pdyn = Cdyn x Voltage^2 x Frequency
+
+The power allocator governor will ask us somehow to reduce our power
+in order to target the sustainable power defined in the device
+tree. So with the idle injection mechanism, we want an average power
+(Ptarget) resulting in an amount of time running at full power on a
+specific OPP and idle another amount of time. That could be put in a
+equation:
+
+ P(opp)target = ((Trunning x (P(opp)running) + (Tidle x P(opp)idle)) /
+ (Trunning + Tidle)
+ ...
+
+ Tidle = Trunning x ((P(opp)running / P(opp)target) - 1)
+
+At this point if we know the running period for the CPU, that gives us
+the idle injection we need. Alternatively if we have the idle
+injection duration, we can compute the running duration with:
+
+ Trunning = Tidle / ((P(opp)running / P(opp)target) - 1)
+
+Practically, if the running power is less than the targeted power, we
+end up with a negative time value, so obviously the equation usage is
+bound to a power reduction, hence a higher OPP is needed to have the
+running power greater than the targeted power.
+
+However, in this demonstration we ignore three aspects:
+
+ * The static leakage is not defined here, we can introduce it in the
+ equation but assuming it will be zero most of the time as it is
+ difficult to get the values from the SoC vendors
+
+ * The idle state wake up latency (or entry + exit latency) is not
+ taken into account, it must be added in the equation in order to
+ rigorously compute the idle injection
+
+ * The injected idle duration must be greater than the idle state
+ target residency, otherwise we end up consuming more energy and
+ potentially invert the mitigation effect
+
+So the final equation is:
+
+ Trunning = (Tidle - Twakeup ) x
+ (((P(opp)dyn + P(opp)static ) - P(opp)target) / P(opp)target )