summaryrefslogtreecommitdiff
path: root/Documentation/devicetree
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree')
-rw-r--r--Documentation/devicetree/bindings/Makefile4
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt30
-rw-r--r--Documentation/devicetree/bindings/net/dsa/ksz.txt1
-rw-r--r--Documentation/devicetree/bindings/net/fsl-fec.txt30
-rw-r--r--Documentation/devicetree/bindings/net/macb.txt4
-rw-r--r--Documentation/devicetree/bindings/opp/opp.txt4
-rw-r--r--Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt (renamed from Documentation/devicetree/bindings/opp/kryo-cpufreq.txt)127
-rw-r--r--Documentation/devicetree/bindings/opp/qcom-opp.txt19
-rw-r--r--Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt167
-rw-r--r--Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml3
-rw-r--r--Documentation/devicetree/bindings/riscv/cpus.txt162
-rw-r--r--Documentation/devicetree/bindings/riscv/cpus.yaml16
-rw-r--r--Documentation/devicetree/bindings/riscv/sifive.yaml2
-rw-r--r--Documentation/devicetree/bindings/spi/spi-controller.yaml1
14 files changed, 371 insertions, 199 deletions
diff --git a/Documentation/devicetree/bindings/Makefile b/Documentation/devicetree/bindings/Makefile
index 6b0dfd5c17ba..5138a2f6232a 100644
--- a/Documentation/devicetree/bindings/Makefile
+++ b/Documentation/devicetree/bindings/Makefile
@@ -19,7 +19,9 @@ quiet_cmd_mk_schema = SCHEMA $@
DT_DOCS = $(shell \
cd $(srctree)/$(src) && \
- find * \( -name '*.yaml' ! -name $(DT_TMP_SCHEMA) \) \
+ find * \( -name '*.yaml' ! \
+ -name $(DT_TMP_SCHEMA) ! \
+ -name '*.example.dt.yaml' \) \
)
DT_SCHEMA_FILES ?= $(addprefix $(src)/,$(DT_DOCS))
diff --git a/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt
index 09fc02b99845..a5c1db95b3ec 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/snps,archs-idu-intc.txt
@@ -1,20 +1,30 @@
* ARC-HS Interrupt Distribution Unit
- This optional 2nd level interrupt controller can be used in SMP configurations for
- dynamic IRQ routing, load balancing of common/external IRQs towards core intc.
+ This optional 2nd level interrupt controller can be used in SMP configurations
+ for dynamic IRQ routing, load balancing of common/external IRQs towards core
+ intc.
Properties:
- compatible: "snps,archs-idu-intc"
- interrupt-controller: This is an interrupt controller.
-- #interrupt-cells: Must be <1>.
-
- Value of the cell specifies the "common" IRQ from peripheral to IDU. Number N
- of the particular interrupt line of IDU corresponds to the line N+24 of the
- core interrupt controller.
-
- intc accessed via the special ARC AUX register interface, hence "reg" property
- is not specified.
+- #interrupt-cells: Must be <1> or <2>.
+
+ Value of the first cell specifies the "common" IRQ from peripheral to IDU.
+ Number N of the particular interrupt line of IDU corresponds to the line N+24
+ of the core interrupt controller.
+
+ The (optional) second cell specifies any of the following flags:
+ - bits[3:0] trigger type and level flags
+ 1 = low-to-high edge triggered
+ 2 = NOT SUPPORTED (high-to-low edge triggered)
+ 4 = active high level-sensitive <<< DEFAULT
+ 8 = NOT SUPPORTED (active low level-sensitive)
+ When no second cell is specified, the interrupt is assumed to be level
+ sensitive.
+
+ The interrupt controller is accessed via the special ARC AUX register
+ interface, hence "reg" property is not specified.
Example:
core_intc: core-interrupt-controller {
diff --git a/Documentation/devicetree/bindings/net/dsa/ksz.txt b/Documentation/devicetree/bindings/net/dsa/ksz.txt
index 4ac21cef370e..113e7ac79aad 100644
--- a/Documentation/devicetree/bindings/net/dsa/ksz.txt
+++ b/Documentation/devicetree/bindings/net/dsa/ksz.txt
@@ -12,6 +12,7 @@ Required properties:
- "microchip,ksz8565"
- "microchip,ksz9893"
- "microchip,ksz9563"
+ - "microchip,ksz8563"
Optional properties:
diff --git a/Documentation/devicetree/bindings/net/fsl-fec.txt b/Documentation/devicetree/bindings/net/fsl-fec.txt
index 2d41fb96ce0a..5b88fae0307d 100644
--- a/Documentation/devicetree/bindings/net/fsl-fec.txt
+++ b/Documentation/devicetree/bindings/net/fsl-fec.txt
@@ -7,18 +7,6 @@ Required properties:
- phy-mode : See ethernet.txt file in the same directory
Optional properties:
-- phy-reset-gpios : Should specify the gpio for phy reset
-- phy-reset-duration : Reset duration in milliseconds. Should present
- only if property "phy-reset-gpios" is available. Missing the property
- will have the duration be 1 millisecond. Numbers greater than 1000 are
- invalid and 1 millisecond will be used instead.
-- phy-reset-active-high : If present then the reset sequence using the GPIO
- specified in the "phy-reset-gpios" property is reversed (H=reset state,
- L=operation state).
-- phy-reset-post-delay : Post reset delay in milliseconds. If present then
- a delay of phy-reset-post-delay milliseconds will be observed after the
- phy-reset-gpios has been toggled. Can be omitted thus no delay is
- observed. Delay is in range of 1ms to 1000ms. Other delays are invalid.
- phy-supply : regulator that powers the Ethernet PHY.
- phy-handle : phandle to the PHY device connected to this device.
- fixed-link : Assume a fixed link. See fixed-link.txt in the same directory.
@@ -47,11 +35,27 @@ Optional properties:
For imx6sx, "int0" handles all 3 queues and ENET_MII. "pps" is for the pulse
per second interrupt associated with 1588 precision time protocol(PTP).
-
Optional subnodes:
- mdio : specifies the mdio bus in the FEC, used as a container for phy nodes
according to phy.txt in the same directory
+Deprecated optional properties:
+ To avoid these, create a phy node according to phy.txt in the same
+ directory, and point the fec's "phy-handle" property to it. Then use
+ the phy's reset binding, again described by phy.txt.
+- phy-reset-gpios : Should specify the gpio for phy reset
+- phy-reset-duration : Reset duration in milliseconds. Should present
+ only if property "phy-reset-gpios" is available. Missing the property
+ will have the duration be 1 millisecond. Numbers greater than 1000 are
+ invalid and 1 millisecond will be used instead.
+- phy-reset-active-high : If present then the reset sequence using the GPIO
+ specified in the "phy-reset-gpios" property is reversed (H=reset state,
+ L=operation state).
+- phy-reset-post-delay : Post reset delay in milliseconds. If present then
+ a delay of phy-reset-post-delay milliseconds will be observed after the
+ phy-reset-gpios has been toggled. Can be omitted thus no delay is
+ observed. Delay is in range of 1ms to 1000ms. Other delays are invalid.
+
Example:
ethernet@83fec000 {
diff --git a/Documentation/devicetree/bindings/net/macb.txt b/Documentation/devicetree/bindings/net/macb.txt
index 63c73fafe26d..0b61a90f1592 100644
--- a/Documentation/devicetree/bindings/net/macb.txt
+++ b/Documentation/devicetree/bindings/net/macb.txt
@@ -15,10 +15,10 @@ Required properties:
Use "atmel,sama5d4-gem" for the GEM IP (10/100) available on Atmel sama5d4 SoCs.
Use "cdns,zynq-gem" Xilinx Zynq-7xxx SoC.
Use "cdns,zynqmp-gem" for Zynq Ultrascale+ MPSoC.
- Use "sifive,fu540-macb" for SiFive FU540-C000 SoC.
+ Use "sifive,fu540-c000-gem" for SiFive FU540-C000 SoC.
Or the generic form: "cdns,emac".
- reg: Address and length of the register set for the device
- For "sifive,fu540-macb", second range is required to specify the
+ For "sifive,fu540-c000-gem", second range is required to specify the
address and length of the registers for GEMGXL Management block.
- interrupts: Should contain macb interrupt
- phy-mode: See ethernet.txt file in the same directory.
diff --git a/Documentation/devicetree/bindings/opp/opp.txt b/Documentation/devicetree/bindings/opp/opp.txt
index 76b6c79604a5..68592271461f 100644
--- a/Documentation/devicetree/bindings/opp/opp.txt
+++ b/Documentation/devicetree/bindings/opp/opp.txt
@@ -140,8 +140,8 @@ Optional properties:
frequency for a short duration of time limited by the device's power, current
and thermal limits.
-- opp-suspend: Marks the OPP to be used during device suspend. Only one OPP in
- the table should have this.
+- opp-suspend: Marks the OPP to be used during device suspend. If multiple OPPs
+ in the table have this, the OPP with highest opp-hz will be used.
- opp-supported-hw: This enables us to select only a subset of OPPs from the
larger OPP table, based on what version of the hardware we are running on. We
diff --git a/Documentation/devicetree/bindings/opp/kryo-cpufreq.txt b/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
index c2127b96805a..4751029b9b74 100644
--- a/Documentation/devicetree/bindings/opp/kryo-cpufreq.txt
+++ b/Documentation/devicetree/bindings/opp/qcom-nvmem-cpufreq.txt
@@ -1,25 +1,38 @@
-Qualcomm Technologies, Inc. KRYO CPUFreq and OPP bindings
+Qualcomm Technologies, Inc. NVMEM CPUFreq and OPP bindings
===================================
-In Certain Qualcomm Technologies, Inc. SoCs like apq8096 and msm8996
-that have KRYO processors, the CPU ferequencies subset and voltage value
-of each OPP varies based on the silicon variant in use.
+In Certain Qualcomm Technologies, Inc. SoCs like apq8096 and msm8996,
+the CPU frequencies subset and voltage value of each OPP varies based on
+the silicon variant in use.
Qualcomm Technologies, Inc. Process Voltage Scaling Tables
defines the voltage and frequency value based on the msm-id in SMEM
and speedbin blown in the efuse combination.
-The qcom-cpufreq-kryo driver reads the msm-id and efuse value from the SoC
+The qcom-cpufreq-nvmem driver reads the msm-id and efuse value from the SoC
to provide the OPP framework with required information (existing HW bitmap).
This is used to determine the voltage and frequency value for each OPP of
operating-points-v2 table when it is parsed by the OPP framework.
Required properties:
--------------------
-In 'cpus' nodes:
+In 'cpu' nodes:
- operating-points-v2: Phandle to the operating-points-v2 table to use.
In 'operating-points-v2' table:
- compatible: Should be
- 'operating-points-v2-kryo-cpu' for apq8096 and msm8996.
+
+Optional properties:
+--------------------
+In 'cpu' nodes:
+- power-domains: A phandle pointing to the PM domain specifier which provides
+ the performance states available for active state management.
+ Please refer to the power-domains bindings
+ Documentation/devicetree/bindings/power/power_domain.txt
+ and also examples below.
+- power-domain-names: Should be
+ - 'cpr' for qcs404.
+
+In 'operating-points-v2' table:
- nvmem-cells: A phandle pointing to a nvmem-cells node representing the
efuse registers that has information about the
speedbin that is used to select the right frequency/voltage
@@ -678,3 +691,105 @@ soc {
};
};
};
+
+Example 2:
+---------
+
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ CPU0: cpu@100 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x100>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+
+ CPU1: cpu@101 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x101>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+
+ CPU2: cpu@102 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x102>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+
+ CPU3: cpu@103 {
+ device_type = "cpu";
+ compatible = "arm,cortex-a53";
+ reg = <0x103>;
+ ....
+ clocks = <&apcs_glb>;
+ operating-points-v2 = <&cpu_opp_table>;
+ power-domains = <&cpr>;
+ power-domain-names = "cpr";
+ };
+ };
+
+ cpu_opp_table: cpu-opp-table {
+ compatible = "operating-points-v2-kryo-cpu";
+ opp-shared;
+
+ opp-1094400000 {
+ opp-hz = /bits/ 64 <1094400000>;
+ required-opps = <&cpr_opp1>;
+ };
+ opp-1248000000 {
+ opp-hz = /bits/ 64 <1248000000>;
+ required-opps = <&cpr_opp2>;
+ };
+ opp-1401600000 {
+ opp-hz = /bits/ 64 <1401600000>;
+ required-opps = <&cpr_opp3>;
+ };
+ };
+
+ cpr_opp_table: cpr-opp-table {
+ compatible = "operating-points-v2-qcom-level";
+
+ cpr_opp1: opp1 {
+ opp-level = <1>;
+ qcom,opp-fuse-level = <1>;
+ };
+ cpr_opp2: opp2 {
+ opp-level = <2>;
+ qcom,opp-fuse-level = <2>;
+ };
+ cpr_opp3: opp3 {
+ opp-level = <3>;
+ qcom,opp-fuse-level = <3>;
+ };
+ };
+
+....
+
+soc {
+....
+ cpr: power-controller@b018000 {
+ compatible = "qcom,qcs404-cpr", "qcom,cpr";
+ reg = <0x0b018000 0x1000>;
+ ....
+ vdd-apc-supply = <&pms405_s3>;
+ #power-domain-cells = <0>;
+ operating-points-v2 = <&cpr_opp_table>;
+ ....
+ };
+};
diff --git a/Documentation/devicetree/bindings/opp/qcom-opp.txt b/Documentation/devicetree/bindings/opp/qcom-opp.txt
new file mode 100644
index 000000000000..32eb0793c7e6
--- /dev/null
+++ b/Documentation/devicetree/bindings/opp/qcom-opp.txt
@@ -0,0 +1,19 @@
+Qualcomm OPP bindings to describe OPP nodes
+
+The bindings are based on top of the operating-points-v2 bindings
+described in Documentation/devicetree/bindings/opp/opp.txt
+Additional properties are described below.
+
+* OPP Table Node
+
+Required properties:
+- compatible: Allow OPPs to express their compatibility. It should be:
+ "operating-points-v2-qcom-level"
+
+* OPP Node
+
+Required properties:
+- qcom,opp-fuse-level: A positive value representing the fuse corner/level
+ associated with this OPP node. Sometimes several corners/levels shares
+ a certain fuse corner/level. A fuse corner/level contains e.g. ref uV,
+ min uV, and max uV.
diff --git a/Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt b/Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt
new file mode 100644
index 000000000000..7deae57a587b
--- /dev/null
+++ b/Documentation/devicetree/bindings/opp/sun50i-nvmem-cpufreq.txt
@@ -0,0 +1,167 @@
+Allwinner Technologies, Inc. NVMEM CPUFreq and OPP bindings
+===================================
+
+For some SoCs, the CPU frequency subset and voltage value of each OPP
+varies based on the silicon variant in use. Allwinner Process Voltage
+Scaling Tables defines the voltage and frequency value based on the
+speedbin blown in the efuse combination. The sun50i-cpufreq-nvmem driver
+reads the efuse value from the SoC to provide the OPP framework with
+required information.
+
+Required properties:
+--------------------
+In 'cpus' nodes:
+- operating-points-v2: Phandle to the operating-points-v2 table to use.
+
+In 'operating-points-v2' table:
+- compatible: Should be
+ - 'allwinner,sun50i-h6-operating-points'.
+- nvmem-cells: A phandle pointing to a nvmem-cells node representing the
+ efuse registers that has information about the speedbin
+ that is used to select the right frequency/voltage value
+ pair. Please refer the for nvmem-cells bindings
+ Documentation/devicetree/bindings/nvmem/nvmem.txt and
+ also examples below.
+
+In every OPP node:
+- opp-microvolt-<name>: Voltage in micro Volts.
+ At runtime, the platform can pick a <name> and
+ matching opp-microvolt-<name> property.
+ [See: opp.txt]
+ HW: <name>:
+ sun50i-h6 speed0 speed1 speed2
+
+Example 1:
+---------
+
+ cpus {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ cpu0: cpu@0 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <0>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+
+ cpu1: cpu@1 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <1>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+
+ cpu2: cpu@2 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <2>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+
+ cpu3: cpu@3 {
+ compatible = "arm,cortex-a53";
+ device_type = "cpu";
+ reg = <3>;
+ enable-method = "psci";
+ clocks = <&ccu CLK_CPUX>;
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ operating-points-v2 = <&cpu_opp_table>;
+ #cooling-cells = <2>;
+ };
+ };
+
+ cpu_opp_table: opp_table {
+ compatible = "allwinner,sun50i-h6-operating-points";
+ nvmem-cells = <&speedbin_efuse>;
+ opp-shared;
+
+ opp@480000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <480000000>;
+
+ opp-microvolt-speed0 = <880000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@720000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <720000000>;
+
+ opp-microvolt-speed0 = <880000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@816000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <816000000>;
+
+ opp-microvolt-speed0 = <880000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@888000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <888000000>;
+
+ opp-microvolt-speed0 = <940000>;
+ opp-microvolt-speed1 = <820000>;
+ opp-microvolt-speed2 = <800000>;
+ };
+
+ opp@1080000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <1080000000>;
+
+ opp-microvolt-speed0 = <1060000>;
+ opp-microvolt-speed1 = <880000>;
+ opp-microvolt-speed2 = <840000>;
+ };
+
+ opp@1320000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <1320000000>;
+
+ opp-microvolt-speed0 = <1160000>;
+ opp-microvolt-speed1 = <940000>;
+ opp-microvolt-speed2 = <900000>;
+ };
+
+ opp@1488000000 {
+ clock-latency-ns = <244144>; /* 8 32k periods */
+ opp-hz = /bits/ 64 <1488000000>;
+
+ opp-microvolt-speed0 = <1160000>;
+ opp-microvolt-speed1 = <1000000>;
+ opp-microvolt-speed2 = <960000>;
+ };
+ };
+....
+soc {
+....
+ sid: sid@3006000 {
+ compatible = "allwinner,sun50i-h6-sid";
+ reg = <0x03006000 0x400>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ....
+ speedbin_efuse: speed@1c {
+ reg = <0x1c 4>;
+ };
+ };
+};
diff --git a/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml b/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
index 91d3e78b3395..400df2da018a 100644
--- a/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
+++ b/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.yaml
@@ -37,7 +37,8 @@ properties:
hwlocks: true
st,syscfg:
- $ref: "/schemas/types.yaml#/definitions/phandle-array"
+ allOf:
+ - $ref: "/schemas/types.yaml#/definitions/phandle-array"
description: Should be phandle/offset/mask
items:
- description: Phandle to the syscon node which includes IRQ mux selection.
diff --git a/Documentation/devicetree/bindings/riscv/cpus.txt b/Documentation/devicetree/bindings/riscv/cpus.txt
deleted file mode 100644
index adf7b7af5dc3..000000000000
--- a/Documentation/devicetree/bindings/riscv/cpus.txt
+++ /dev/null
@@ -1,162 +0,0 @@
-===================
-RISC-V CPU Bindings
-===================
-
-The device tree allows to describe the layout of CPUs in a system through
-the "cpus" node, which in turn contains a number of subnodes (ie "cpu")
-defining properties for every cpu.
-
-Bindings for CPU nodes follow the Devicetree Specification, available from:
-
-https://www.devicetree.org/specifications/
-
-with updates for 32-bit and 64-bit RISC-V systems provided in this document.
-
-===========
-Terminology
-===========
-
-This document uses some terminology common to the RISC-V community that is not
-widely used, the definitions of which are listed here:
-
-* hart: A hardware execution context, which contains all the state mandated by
- the RISC-V ISA: a PC and some registers. This terminology is designed to
- disambiguate software's view of execution contexts from any particular
- microarchitectural implementation strategy. For example, my Intel laptop is
- described as having one socket with two cores, each of which has two hyper
- threads. Therefore this system has four harts.
-
-=====================================
-cpus and cpu node bindings definition
-=====================================
-
-The RISC-V architecture, in accordance with the Devicetree Specification,
-requires the cpus and cpu nodes to be present and contain the properties
-described below.
-
-- cpus node
-
- Description: Container of cpu nodes
-
- The node name must be "cpus".
-
- A cpus node must define the following properties:
-
- - #address-cells
- Usage: required
- Value type: <u32>
- Definition: must be set to 1
- - #size-cells
- Usage: required
- Value type: <u32>
- Definition: must be set to 0
-
-- cpu node
-
- Description: Describes a hart context
-
- PROPERTIES
-
- - device_type
- Usage: required
- Value type: <string>
- Definition: must be "cpu"
- - reg
- Usage: required
- Value type: <u32>
- Definition: The hart ID of this CPU node
- - compatible:
- Usage: required
- Value type: <stringlist>
- Definition: must contain "riscv", may contain one of
- "sifive,rocket0"
- - mmu-type:
- Usage: optional
- Value type: <string>
- Definition: Specifies the CPU's MMU type. Possible values are
- "riscv,sv32"
- "riscv,sv39"
- "riscv,sv48"
- - riscv,isa:
- Usage: required
- Value type: <string>
- Definition: Contains the RISC-V ISA string of this hart. These
- ISA strings are defined by the RISC-V ISA manual.
-
-Example: SiFive Freedom U540G Development Kit
----------------------------------------------
-
-This system contains two harts: a hart marked as disabled that's used for
-low-level system tasks and should be ignored by Linux, and a second hart that
-Linux is allowed to run on.
-
- cpus {
- #address-cells = <1>;
- #size-cells = <0>;
- timebase-frequency = <1000000>;
- cpu@0 {
- clock-frequency = <1600000000>;
- compatible = "sifive,rocket0", "riscv";
- device_type = "cpu";
- i-cache-block-size = <64>;
- i-cache-sets = <128>;
- i-cache-size = <16384>;
- next-level-cache = <&L15 &L0>;
- reg = <0>;
- riscv,isa = "rv64imac";
- status = "disabled";
- L10: interrupt-controller {
- #interrupt-cells = <1>;
- compatible = "riscv,cpu-intc";
- interrupt-controller;
- };
- };
- cpu@1 {
- clock-frequency = <1600000000>;
- compatible = "sifive,rocket0", "riscv";
- d-cache-block-size = <64>;
- d-cache-sets = <64>;
- d-cache-size = <32768>;
- d-tlb-sets = <1>;
- d-tlb-size = <32>;
- device_type = "cpu";
- i-cache-block-size = <64>;
- i-cache-sets = <64>;
- i-cache-size = <32768>;
- i-tlb-sets = <1>;
- i-tlb-size = <32>;
- mmu-type = "riscv,sv39";
- next-level-cache = <&L15 &L0>;
- reg = <1>;
- riscv,isa = "rv64imafdc";
- status = "okay";
- tlb-split;
- L13: interrupt-controller {
- #interrupt-cells = <1>;
- compatible = "riscv,cpu-intc";
- interrupt-controller;
- };
- };
- };
-
-Example: Spike ISA Simulator with 1 Hart
-----------------------------------------
-
-This device tree matches the Spike ISA golden model as run with `spike -p1`.
-
- cpus {
- cpu@0 {
- device_type = "cpu";
- reg = <0x00000000>;
- status = "okay";
- compatible = "riscv";
- riscv,isa = "rv64imafdc";
- mmu-type = "riscv,sv48";
- clock-frequency = <0x3b9aca00>;
- interrupt-controller {
- #interrupt-cells = <0x00000001>;
- interrupt-controller;
- compatible = "riscv,cpu-intc";
- }
- }
- }
diff --git a/Documentation/devicetree/bindings/riscv/cpus.yaml b/Documentation/devicetree/bindings/riscv/cpus.yaml
index c899111aa5e3..b261a3015f84 100644
--- a/Documentation/devicetree/bindings/riscv/cpus.yaml
+++ b/Documentation/devicetree/bindings/riscv/cpus.yaml
@@ -10,6 +10,18 @@ maintainers:
- Paul Walmsley <paul.walmsley@sifive.com>
- Palmer Dabbelt <palmer@sifive.com>
+description: |
+ This document uses some terminology common to the RISC-V community
+ that is not widely used, the definitions of which are listed here:
+
+ hart: A hardware execution context, which contains all the state
+ mandated by the RISC-V ISA: a PC and some registers. This
+ terminology is designed to disambiguate software's view of execution
+ contexts from any particular microarchitectural implementation
+ strategy. For example, an Intel laptop containing one socket with
+ two cores, each of which has two hyperthreads, could be described as
+ having four harts.
+
properties:
compatible:
items:
@@ -50,6 +62,10 @@ properties:
User-Level ISA document, available from
https://riscv.org/specifications/
+ While the isa strings in ISA specification are case
+ insensitive, letters in the riscv,isa string must be all
+ lowercase to simplify parsing.
+
timebase-frequency:
type: integer
minimum: 1
diff --git a/Documentation/devicetree/bindings/riscv/sifive.yaml b/Documentation/devicetree/bindings/riscv/sifive.yaml
index 9d17dc2f3f84..3ab532713dc1 100644
--- a/Documentation/devicetree/bindings/riscv/sifive.yaml
+++ b/Documentation/devicetree/bindings/riscv/sifive.yaml
@@ -19,7 +19,7 @@ properties:
compatible:
items:
- enum:
- - sifive,freedom-unleashed-a00
+ - sifive,hifive-unleashed-a00
- const: sifive,fu540-c000
- const: sifive,fu540
...
diff --git a/Documentation/devicetree/bindings/spi/spi-controller.yaml b/Documentation/devicetree/bindings/spi/spi-controller.yaml
index 876c0623f322..a02e2fe2bfb2 100644
--- a/Documentation/devicetree/bindings/spi/spi-controller.yaml
+++ b/Documentation/devicetree/bindings/spi/spi-controller.yaml
@@ -73,7 +73,6 @@ patternProperties:
Compatible of the SPI device.
reg:
- maxItems: 1
minimum: 0
maximum: 256
description: